Net wor k Wor ki ng Group J. Vol | brecht
Request for Comments: 4137 Meet i nghouse Data Comuni cati ons
Cat egory: | nformational P. Eronen

Noki a

N. Petroni

University of Maryl and
Y. GChba

TARI

August 2005

State Machi nes for Extensible Authentication Protocol (EAP)
Peer and Aut henti cat or

Status of This Meno

This meno provides infornmation for the Internet conmunity. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice

Copyright (C The Internet Society (2005).

Abst ract

Thi s docunment describes a set of state machines for Extensible

Aut henti cation Protocol (EAP) peer, EAP stand-al one authenticator
(non- pass-t hrough), EAP backend aut henticator (for use on

Aut henti cation, Authorization, and Accounting (AAA) servers), and EAP
full authenticator (for both |local and pass-through). This set of
state machi nes shows how EAP can be inplenented to support depl oynment
in either a peer/authenticator or peer/authenticator/AAA Server
environnent. The peer and stand-al one authenticator nmachines are
illustrative of how the EAP protocol defined in RFC 3748 nay be

i npl enented. The backend and full/pass-through authenticators
illustrate how EAP/ AAA protocol support defined in RFC 3579 nmay be

i npl emented. \Where there are differences, RFC 3748 and RFC 3579 are
aut horitative.

The state machines are based on the EAP "Switch" nodel. This nodel
i ncl udes events and actions for the interaction between the EAP
Switch and EAP nethods. A brief description of the EAP "Swi tch"
nmodel is given in the Introduction section

The state nmachi ne and associ ated nodel are infornative only.
| mpl enent ati ons nay achi eve the sane results using different nethods.

Vol | brecht, et al. I nf or mat i onal [ Page 1]



RFC 4137 EAP State Machi nes August 2005

Tabl e of Contents

1. Introduction: The EAP Switch Mdel ........... ... ... .. .. ......
2. Specification of Requirenments ......... ... . .. .. ...
3. Notational Conventions Used in State Diagrans ................

3.1. Notational Specifics ........ ... . . i
State Machine Symbols ........ ... ... . . . . .. e
Docunment Authority ....... ...
State Machi Ne . ... . . . . e
Interface between Peer State Machi ne and Lower Layer ....
Interface between Peer State Machine and Methods ........
Peer State Machine Local Variables ......................
Peer State Machine Procedures ..............c. ...
Peer State Machine States ............. . ...,
d Al one Authenticator State Machine ......................

w
)

@
PO EC W

—

YRR BRRATW

I nterface between Stand- Al one Authenticator State

Machi ne and Lower Layer ........... ... ...

o
N

I nterface between Stand-Al one Authenticator State

Machi ne and Methods .......... . . . . . .
St and- Al one Aut henticator State Machi ne Local Variables ...
EAP St and- Al one Aut henticator Procedures ................
EAP St and- Al one Aut henticator States ....................
Backend Authenticator ........... . . . ... i

o
@ @er oo
POOR®

Interface between Backend Aut henticator State

Machi ne and Lower Layer ............. . ...,

o
N

Interface between Backend Aut henticator State

Machi ne and Methods . ...... . .. . .
Backend Aut henticator State Machine Local Variables .....
EAP Backend Aut henticator Procedures ....................
EAP Backend Authenticator States ................ ... .....
FuI | Authenticator ......... ... e

\l
Npooo
Do AW

Interface between Full Authenticator State Machi ne

and Lower Layer . ... ...

N
)

Interface between Full Authenticator State Michi ne

and Methods ... ...

7.3. Full Authenticator State Machine Local Variables ........
7.4. EAP Full Authenticator Procedures ..................0.....
7.5. EAP Full Authenticator States ............ ...

8. Inplenmentation Considerations ............. . ... . ... i,
8. 1. RODBUStNESS .. . . e
8.2. Met hod/ Met hod and Met hod/ Lower - Layer Interfaces .........

8.

3. Peer State Machine Interoperability wth Depl oyed

Inmplementati ONS ... .. . e

9. Security Considerations ............ i
10. AcknowW edgemBnt s . .. ...
11, Ref BrENCEeS .. o o
11.1. Normative References ........ ... ...

11. 2. Informative References ........... ... ..

Vol | brecht, et al. I nf or mat i onal [ Page 2]



RFC 4137 EAP State Machi nes August 2005

Appendi x. ASCI|1 Versions of State Diagrans ..................co..... 38
A.1l. EAP Peer State Machine (Figure 3) ........ ... . ... ... ... 38
A. 2. EAP Stand- Al one Authenticator State Machine (Figure 4) ..41
A. 3. EAP Backend Authenticator State Machine (Figure 5) ...... 44

A.4. EAP Full Authenticator State Machine (Figures 6 and 7) ..47
1. Introduction: The EAP Switch Mode

This docunent offers a proposed state machine for RFCs [ RFC3748] and
[ RFC3579]. There are state nachines for the peer, the stand-al one
aut henti cator, a backend authenticator, and a full/pass-through

aut henticator. Acconpanying each state machi ne diagramis a
description of the variables, the functions, and the states in the
diagram Wenever possible, the sane notation has been used in each
of the state machi nes.

An EAP aut hentication consists of one or nore EAP nethods in sequence
foll owed by an EAP Success or EAP Failure sent fromthe authenticator
to the peer. The EAP switches control negotiation of EAP nethods and
sequences of nethods.

Peer Peer | Authenticator Aut h
Met hod | Met hod
\ | /

\ | /
Peer | Aut h
EAP <----- [---------- > EAP
Swi tch | Swi tch

Figure 1: EAP Switch Mdel
At both the peer and authenticator, one or nore EAP nethods exist.
The EAP switches select which nethods each is willing to use, and
negoti ate between thenselves to pick a nmethod or sequence of nethods.

Note that the nmethods nmay al so have state nachines. The details of
these are outside the scope of this paper

Vol | brecht, et al. I nf or mat i onal [ Page 3]



RFC 4137 EAP State Machi nes August 2005

\ pass-through

Peer | Authenticator | Backend
| / Local |
| / Met hod |
Peer | Aut h | Backend
EAP -|----- > EAP | --> EAP
Swi tch Swi tch | / Server
|/
|
|

|
| \
|
|

Fi gure 2: EAP Pass- Through Mde

The Ful |/ Pass-Through state nmachine all ows an NAS or edge device to
pass EAP Response nessages to a backend server where the

aut henti cation nethod resides. This paper includes a state machine
for the EAP authenticator that supports both | ocal and pass-through
met hods as well as a state machine for the backend authenti cator
existing at the AAA server. A sinple stand-alone authenticator is
al so provided to show a basic, non-pass-through authenticator’s
behavi or.

Thi s docunent describes a set of state machines that can nmanage EAP
aut hentication fromthe peer to an EAP nmet hod on the authenticator or
fromthe peer through the authenticator pass-through nethod to the
EAP met hod on the backend EAP server.

Sone environments where EAP is used, such as PPP, nmay support peer-
to-peer operation. That is, both parties act as peers and

aut henticators at the same tinme, in two sinmultaneous and i ndependent
EAP conversations. |In this case, the inplenentation at each node has
to performdenultiplexing of incom ng EAP packets. EAP packets with
code set to Response are delivered to the authenticator state

machi ne, and EAP packets with code set to Request, Success, or
Failure are delivered to the peer state machine.

The state diagrans presented in this docunent have been coordinated
with the diagrans in [1X-2004]. The fornmat of the diagrams is
adapted fromthe fornmat therein. The interface between the state
machi nes defined here and the | EEE 802. 1X-2004 state machines is al so
expl ai ned in Appendi x F of [1X-2004].

2. Specification of Requirenments

In this docunent, several words are used to signify the requirenents
of the specification. These words are often capitalized. The key
words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT", " SHOULD'
"SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" are to be
interpreted as described in [ RFC2119].

Vol | brecht, et al. I nf or mat i onal [ Page 4]



RFC 4137 EAP State Machi nes August 2005

3. Notational Conventions Used in State D agrans
3.1. Notational Specifics

The follow ng state diagrans have been conpl eted based on the
conventions specified in [1X-2004], section 8.2.1. The conplete text
i s reproduced here:

State diagrans are used to represent the operation of the protoco
by a nunber of cooperating state nmachi nes, each conprising a group
of connected, nutually exclusive states. Only one state of each
machi ne can be active at any given tine.

Each state is represented in the state diagramas a rectangul ar
box, divided into two parts by a horizontal line. The upper part
contains the state identifier, witten in uppercase letters. The
| ower part contains any procedures that are executed upon entry to
the state.

Al'l permissible transitions between states are represented by
arrows, the arrowhead denoting the direction of the possible
transition. Labels attached to arrows denote the condition(s)
that nmust be nmet in order for the transition to take place. Al
conditions are expressions that evaluate to TRUE or FALSE, if a
condition evaluates to TRUE, then the condition is net. The |abe
UCT denotes an unconditional transition (i.e., UCT al ways
evaluates to TRUE). A transition that is global in nature (i.e.
a transition that occurs fromany of the possible states if the
condition attached to the arrowis net) is denoted by an open
arrow, i.e., no specific state is identified as the origin of the
transition. When the condition associated with a gl oba
transition is net, it supersedes all other exit conditions

i ncluding UCT. The special global condition BEA N supersedes all
ot her global conditions, and once asserted it renmains asserted
until all state bl ocks have executed to the point that variable
assi gnnents and ot her consequences of their execution remain
unchanged.

On entry to a state, the procedures defined for the state (if any)
are executed exactly once, in the order that they appear on the
page. Each action is deened to be atomic; i.e., execution of a
procedure conpl etes before the next sequential procedure starts to
execute. No procedures execute outside a state block. The
procedures in only one state bl ock execute at a tinme, even if the
conditions for execution of state blocks in different state

machi nes are satisfied, and all procedures in an executing state
bl ock compl ete execution before the transition to and execution of
any other state block occurs. That is, the execution of any state

Vol | brecht, et al. I nf or mat i onal [ Page 5]



RFC 4137 EAP State Machi nes August 2005

bl ock appears to be atonic with respect to the execution of any
other state block, and the transition condition to that state from
the previous state is TRUE when executi on commences. The order of
execution of state blocks in different state nachines is undefined
except as constrained by their transition conditions. A variable
that is set to a particular value in a state block retains this

val ue until a subsequent state block executes a procedure that
nmodi fi es the val ue.

On conpletion of all the procedures within a state, all exit
conditions for the state (including all conditions associated wth
gl obal transitions) are evaluated continuously until one of the
conditions is net. The |abel ELSE denotes a transition that
occurs if none of the other conditions for transitions fromthe
state are net (i.e., ELSE evaluates to TRUE if all other possible
exit conditions fromthe state evaluate to FALSE). Were two or
nmore exit conditions with the same | evel of precedence beconme TRUE
si mul t aneously, the choice as to which exit condition causes the
state transition to take place is arbitrary.

Where it is necessary to split a state machi ne description across
nore than one diagram a transition between two states that appear
on different diagrans is represented by an exit arrow drawn wth
dashed lines, plus a reference to the diagramthat contains the
destination state. Simlarly, dashed arrows and a dashed state
box are used on the destination diagramto show the transition to
the destination state. |In a state machine that has been split in
this way, any global transitions that can cause entry to states
defined in one of the diagrans are deened potential exit
conditions for all the states of the state nachi ne, regardl ess of
whi ch di agramthe state boxes appear in.

Shoul d a conflict exist between the interpretation of a state

di agram and either the corresponding global transition tables or
the textual description associated with the state nachine, the
state diagramtakes precedence. The interpretation of the specia
synbol s and operators used in the state diagrans is as defined in
Section 3.2; these synbols and operators are derived fromthe
notati on of the C++ programm ng | anguage, |SO I EC 14882. |If a
bool ean variable is described in this clause as being set, it has
or is assigned the value TRUE, if it is described as being reset
or clear, it has the value FALSE

In addition to the above notation, there are a couple of
clarifications specific to this document. First, all bool ean
variables are initialized to FALSE before the state machi ne execution
begins. Second, the follow ng notational shorthand is specific to

t hi s docunent:

Vol | brecht, et al. I nf or mat i onal [ Page 6]



RFC 4137 EAP State Machi nes August 2005

<vari abl e> = <expressi onl> | <expression2>

Execution of a statenent of this formw Il result in <variable>
havi ng a val ue of exactly one of the expressions. The logic for
whi ch of those expressions gets executed is outside of the state
machi ne and coul d be environnental, configurable, or based on
anot her state machine, such as that of the nethod.

3.2. State Machi ne Synbol s

()

Used to force the precedence of operators in Bool ean expressions
and to delimt the argunment(s) of actions within state boxes.

Used as a terminating delimter for actions within state boxes.
If a state box contains nultiple actions, the order of execution
follows the normal English |anguage conventions for reading text.

Assi gnnent action. The value of the expression to the right of
the operator is assigned to the variable to the left of the
operator. |If this operator is used to define nultiple assignments
(e.g., a=b =X), the action causes the value of the expression
followi ng the right-nost assignment operator to be assigned to all
the variables that appear to the left of the right-npst assignnment
operator.

Logi cal NOT operator.

Logi cal AND operator.

Logi cal OR operator.

if...then...
Conditional action. |If the Bool ean expression following the "if"
eval uates to TRUE, then the action followi ng the "then" is
execut ed.

Vol | brecht, et al. I nf or mat i onal [ Page 7]



RFC 4137 EAP State Machi nes August 2005

{ statenent 1, ... statenent N}

Compound statenent. Braces are used to group statenents that are
executed together as if they were a single statenent.

Inequality. Evaluates to TRUE if the expression to the left of
the operator is not equal in value to the expression to the right.

Equality. Evaluates to TRUE if the expression to the left of the
operator is equal in value to the expression to the right.

>
Greater than. Evaluates to TRUE if the value of the expression to
the left of the operator is greater than the value of the
expression to the right.

<=
Less than or equal to. Evaluates to TRUE if the value of the
expression to the left of the operator is either |ess than or
equal to the value of the expression to the right.

++
I ncrenment the preceding integer operator by 1

+
Arithmetic addition operator.

&

Bi twi se AND operat or.
3.3. Document Authority

Shoul d a conflict exist between the interpretation of a state di agram
and either the corresponding global transition tables or the textua
description associated with the state nachine, the state diagram

t akes precedence. Wen a discrepancy occurs between any part of this
docunent (text or diagram) and any of the related docunments

([ RFC3748], [RFC3579], etc.), the latter (the other docunent) is
considered authoritative and takes precedence.

Vol | brecht, et al. I nf or mat i onal [ Page 8]



RFC 4137 EAP State Machi nes August 2005

4, Peer State Machine

The following is a diagramof the EAP peer state nachine. Also
included is an explanation of the primtives and procedures
referenced in the diagram as well as a clarification of notation

(see the .pdf version for mssing diagram or
refer to Appendix A1 if reading the .txt version)

Figure 3: EAP Peer State Machine
4.1. Interface between Peer State Machi ne and Lower Layer

The | ower |ayer presents nmessages to the EAP peer state nachi ne by
storing the packet in eapReqData and setting the eapReq signal to
TRUE. Note that despite the name of the signal, the |ower |ayer does
not actually inspect the contents of the EAP packet (it could be a
Success or Failure nessage instead of a Request).

When the EAP peer state nmachine has finished processing the nessage,
it sets either eapResp or eapNoResp. |If it sets eapResp, the
correspondi ng response packet is stored in eapRespbData. The | ower

| ayer is responsible for actually transmtting this nmessage. When
the EAP peer state nachine authentication is conplete, it will set
eapSuccess or eapFailure to indicate to the | ower layer that the
aut henti cation has succeeded or failed.

4.1.1. Variables (Lower Layer to Peer)
eapReq (bool ean)

Set to TRUE in lower |ayer, FALSE in peer state machine.
Indicates that a request is available in the | ower |ayer

eapRegDat a ( EAP packet)

Set in lower layer when eapReq is set to TRUE. The contents of
the avail abl e request.

port Enabl ed (bool ean)

I ndi cates that the EAP peer state nachine should be ready for
comuni cation. This is set to TRUE when the EAP conversation is
started by the lower layer. |f at any point the conmunication
port or session is not available, portEnabled is set to FALSE, and
the state machine transitions to DI SABLED. To avoid unnecessary
resets, the lower l[ayer may danpen |ink down indications when it
believes that the Iink is only tenporarily down and that it wll

Vol | brecht, et al. I nf or mat i onal [ Page 9]



RFC 4137 EAP State Machi nes August 2005

soon be back up (see [RFC3748], Section 7.12). In this case,
port Enabl ed may not always be equal to the "link up" flag of the
| oner |ayer.

i dl evhile (integer)

Qutside tinmer used to indicate how nuch tinme remai ns before the
peer will time out while waiting for a valid request.

eapRestart (bool ean)

I ndicates that the |l ower layer would Iike to restart
aut henti cati on.

al t Accept (bool ean)
Alternate indication of success, as described in [RFC3748].
al t Rej ect (bool ean)
Alternate indication of failure, as described in [ RFC3748].
4.1.2. Variables (peer to |ower |ayer)
eapResp (bool ean)

Set to TRUE in peer state nachine, FALSE in |ower |ayer
I ndicates that a response is to be sent.

eapNoResp (bool ean)
Set to TRUE in peer state nachine, FALSE in |ower |ayer
I ndi cates that the request has been processed, but that there is
no response to send.

eapSuccess (bool ean)

Set to TRUE in peer state nachine, FALSE in |ower |ayer
I ndi cates that the peer has reached the SUCCESS state.

eapFai | (bool ean)

Set to TRUE in peer state nmachine, FALSE in | ower |ayer
I ndi cates that the peer has reached the FAI LURE state.

Vol | brecht, et al. I nf or mat i onal [ Page 10]



RFC 4137 EAP State Machi nes August 2005

4.

1

. 2.

eapRespDat a ( EAP packet)

Set in peer state machine when eapResp is set to TRUE. The EAP
packet that is the response to send.

eapKeyDat a ( EAP key)
Set in peer state machi ne when keying naterial becones avail abl e.
Set during the METHOD state. Note that this document does not
define the structure of the type "EAP key". W expect that it
will be defined in [Keying].

eapKeyAvai | abl e (bool ean)

Set to TRUE in the SUCCESS state if keying material is avail able.
The actual key is stored in eapKeyDat a.

3. Constants

ClientTi meout (integer)

Configurabl e anbunt of tinme to wait for a valid request before
aborting, initialized by inplenentation-specific neans (e.g., a
configuration setting).

Interface between Peer State Machi ne and Met hods

I N eapRegData (includes reqld)

QUT: ignore, eapRespData, allowNotifications, decision

I NV QUT: nethodState, (nethod-specific state)

The followi ng describes the interaction between the state nachi ne and
EAP net hods.

If methodState==INIT, the nethod starts by initializing its own
met hod- specific state.

Next, the nethod nust deci de whether to process the packet or to
discard it silently. |If the packet appears to have been sent by
soneone other than the legitimte authenticator (for instance, if
message integrity check fails) and the nethod is capable of treating
such situations as non-fatal, the nethod can set ignore=TRUE. In
this case, the nethod should not nodify any other variabl es.

If the method decides to process the packet, it behaves as foll ows.

Vol | brecht, et al. I nf or mat i onal [ Page 11]



RFC 4137 EAP State Machi nes August 2005

0 It updates its own nethod-specific state.

o |If the method has derived keying material it wants to export, it
stores the keying material to eapKeyDat a.

0 It creates a response packet (with the sane identifier as the
request) and stores it to eapRespData.

o It sets ignore=FALSE

Next, the nethod nust update nethodState and decision according to
the follow ng rules.

nmet hodSt at e=CONT: The met hod al ways continues at this point (and the
peer wants to continue it). The decision variable is always set
to FAIL.

met hodSt at e=MAY_CONT: At this point, the authenticator can decide
either to continue the method or to end the conversation. The
decision variable tells us what to do if the conversation ends.
If the current situation does not satisfy the peer’s security
policy (that is, if the authenticator now decides to all ow access,
the peer will not use it), set decision=FAIL. Oherw se, set
deci si on=COND_SUCC

nmet hodSt at e=DONE: The met hod never continues at this point (or the
peer sees no point in continuing it).

If either (a) the authenticator has infornmed us that it will not
al l ow access, or (b) we're not willing to talk to this

aut henticator (e.g., our security policy is not satisfied), set
decision=FAIL. (Note that this state can occur even if the nethod
still has additional nessages left, if continuing it cannot change
the peer’s decision to success).

If both (a) the server has informed us that it will allow access
and the next packet will be EAP Success, and (b) we're willing to
use this access, set decisi on=UNCOND_SUCC

O herwi se, we do not know what the server’s decision is, but are
willing to use the access if the server allows. |In this case, set
deci si on=COND_SUCC

Finally, the nmethod nust set the allowNotifications variable. |If the
new nethodState is either CONT or MAY_CONT, and if the nethod
specification does not forbid the use of Notification nmessages, set

al l omNot i fications=TRUE. O herw se, set allowNotificati ons=FALSE

Vol | brecht, et al. I nf or mat i onal [ Page 12]



RFC 4137 EAP State Machi nes August 2005

4.3. Peer State Mchine Local Variables
4.3.1. Long-Term (Mi nt ai ned between Packets)
sel ect Met hod (EAP type)

Set in GET_METHOD state. The nethod that the peer believes is
currently "in progress”

nmet hodSt at e (enuner ati on)
As descri bed above.
lastld (integer)

0-255 or NONE. Set in SEND RESPONSE state. The EAP identifier
val ue of the |ast request.

| ast RespDat a ( EAP packet)

Set in SEND RESPONSE state. The EAP packet |ast sent fromthe
peer.

deci si on (enuneration)
As descri bed above.

NOTE: EAP type can be normal type (0..253,255), or an extended type
consi sting of type 254, Vendor-1d, and Vendor - Type.

4.3.2. Short-Term (Not Mintai ned between Packets)
rxReq (bool ean)

Set in RECElIVED state. Indicates that the current received packet
is an EAP request.

rxsSuccess (bool ean)

Set in RECElIVED state. |Indicates that the current received packet
is an EAP Success.

rxFai |l ure (bool ean)

Set in RECEIVED state. Indicates that the current received packet
is an EAP Fail ure.

Vol | brecht, et al. I nf or mat i onal [ Page 13]



RFC 4137 EAP State Machi nes August 2005

reqld (integer)

Set in RECEIVED state. The identifier value associated with the
current EAP request.

reqMet hod (EAP type)

Set in RECEIVED state. The nethod type of the current EAP
request.

i gnore (bool ean)

Set in METHOD state. |Indicates whether the nethod has decided to
drop the current packet.

4. 4, Peer State Machi ne Procedures

NOTE: For nethod procedures, the nmethod uses its internal state in
addition to the infornmation provided by the EAP | ayer. The only
argunents that are explicitly shown as inputs to the procedures are
those provided to the nethod by EAP. Those inputs provided by the
method’ s internal state remain inplicit.

par seEapReq()
Deternine the code, identifier value, and type of the current
request. In the case of a parsing error (e.g., the length field
is longer than the received packet), rxReq, rxSuccess, and
rxFailure will all be set to FALSE. The values of reqld and
reqMet hod nay be undefined as a result. Returns three bool eans,
one integer, and one EAP type.

processNotify()

Process the contents of Notification Request (for instance,
display it to the user or log it). The return value is undefined.

bui | dNot i fy()

Create the appropriate notification response. Returns an EAP
packet .

processldentity()

Process the contents of ldentity Request. Return value is
undefi ned.

Vol | brecht, et al. I nf or mat i onal [ Page 14]



RFC 4137 EAP State Machi nes August 2005

buil dldentity()
Create the appropriate identity response. Returns an EAP packet.
m check()

Met hod- speci fic procedure to test for the validity of a nessage.
Ret urns a bool ean

m process()
Met hod procedure to parse and process a request for that nethod.
Returns a nethodState enuneration, a decision enuneration, and a
bool ean.

m bui | dResp()

Met hod procedure to create a response nessage. Returns an EAP
packet .

m get Key()

Met hod procedure to obtain key material for use by EAP or | ower
| ayers. Returns an EAP key.

4.5, Peer State Machine States
DI SABLED
This state is reached whenever service fromthe |ower layer is
interrupted or unavailable. Imediate transition to | N TIALIZE
occurs when the port becones enabl ed.
I NI TI ALI ZE
Initializes variables when the state machine is activated.

| DLE

The state machi ne spends nost of its tinme here, waiting for
somet hi ng to happen.

RECEI VED

This state is entered when an EAP packet is received. The packet
header is parsed here

Vol | brecht, et al. I nf or mat i onal [ Page 15]



RFC 4137 EAP State Machi nes August 2005

GET_METHOD

This state is entered when a request for a new type cones in.
Either the correct nmethod is started, or a Nak response is built.

METHOD
The met hod processi ng happens here. The request fromthe
aut henticator is processed, and an appropriate response packet is
built.

SEND_RESPONSE

This state signals the lower |ayer that a response packet is ready
to be sent.

DI SCARD

This state signals the lower |ayer that the request was di scarded,
and no response packet will be sent at this tine.

| DENTI TY

Handl es requests for Ildentity nethod and builds a response.
NOTI FI CATI ON

Handl es requests for Notification nethod and builds a response.
RETRANSM T

Retransmits the previous response packet.
SUCCESS

A final state indicating success.
FAlI LURE

A final state indicating failure.

Vol | brecht, et al. I nf or mat i onal [ Page 16]



RFC 4137 EAP State Machi nes August 2005

5.

5.

5.

St and- Al one Aut henticator State Machi ne

The following is a diagramof the stand-al one EAP authenticator state
machi ne. This diagram should be used for those interested in a

sel f-contai ned, or non-pass-through, authenticator. Included is an
expl anation of the primtives and procedures referenced in the
diagram as well as a clarification of notation

(see the .pdf version for mssing diagram or
refer to Appendix A 2 if reading the .txt version)

Fi gure 4: EAP Stand- Al one Authenticator State Machine

1. Interface between Stand-Al one Authenticator State Machi ne and
Lower Layer

The | ower |ayer presents messages to the EAP authenticator state
machi ne by storing the packet in eapRespData and setting the eapResp
signal to TRUE.

When the EAP authenticator state machine has finished processing the
nmessage, it sets one of the signals eapReq, eapNoReq, eapSuccess, and
eapFail. If it sets eapReq, eapSuccess, or eapFail, the
correspondi ng request (or success/failure) packet is stored in
eapRegData. The lower layer is responsible for actually transmtting
t hi s nessage

1.1. Variables (Lower Layer to Stand- Al one Authenticator)
eapResp (bool ean)

Set to TRUE in lower layer, FALSE in authenticator state machine.
I ndi cates that an EAP response is avail able for processing.

eapRespDat a ( EAP packet)

Set in lower |layer when eapResp is set to TRUE. The EAP packet to
be processed.

port Enabl ed (bool ean)

I ndi cates that the EAP authenticator state nachine should be ready
for conmunication. This is set to TRUE when the EAP conversation
is started by the lower layer. |If at any point the comunication
port or session is not available, portEnabled is set to FALSE, and
the state machine transitions to DI SABLED. To avoid unnecessary
resets, the lower l[ayer may danpen |ink down indications when it
believes that the Iink is only tenporarily down and that it wll

Vol | brecht, et al. I nf or mat i onal [ Page 17]



RFC 4137 EAP State Machi nes August 2005

soon be back up (see [RFC3748], Section 7.12). In this case,
port Enabl ed may not always be equal to the "link up" flag of the
| oner |ayer.

retransWil e (integer)

Qutside tinmer used to indicate how | ong the authenticator has
waited for a new (valid) response.

eapRestart (bool ean)

I ndicates that the |l ower layer would Iike to restart
aut henti cati on.

eapSRTT (i nteger)
Snoot hed round-trip tine. (See [RFC3748], Section 4.3.)
eapRTTVAR (i nt eger)
Round-trip tine variation. (See [RFC3748], Section 4.3.)
5.1.2. Variables (Stand-Al one Aut henticator To Lower Layer)
eapReq (bool ean)

Set to TRUE in authenticator state machine, FALSE in |ower |ayer
I ndi cates that a new EAP request is ready to be sent.

eapNoReq (bool ean)
Set to TRUE in authenticator state nmachine, FALSE in |ower |ayer
I ndi cates the npost recent response has been processed, but there
is no new request to send.

eapSuccess (bool ean)

Set to TRUE in authenticator state nmachine, FALSE in |ower |ayer
I ndicates that the state machi ne has reached t he SUCCESS st at e.

eapFai | (bool ean)

Set to TRUE in authenticator state nachine, FALSE in | ower |ayer
I ndicates that the state nmachi ne has reached the FAI LURE state.

Vol | brecht, et al. I nf or mat i onal [ Page 18]



RFC 4137 EAP State Machi nes August 2005

eapTi neout (bool ean)
Set to TRUE in the TIMEOQUT_FAILURE state if the authenticator has
reached its maxi mum number of retransm ssions wi thout receiving a
response.

eapReqgDat a ( EAP packet)
Set in authenticator state machi ne when eapReq, eapSuccess, or
eapFail is set to TRUE. The actual EAP request to be sent (or
success/failure).

eapKeyDat a (EAP key)
Set in authenticator state machi ne when keying naterial becones
avail able. Set during the METHOD state. Note that this docunent
does not define the structure of the type "EAP key". W expect
that it will be defined in [Keying].

eapKeyAvai | abl e (bool ean)

Set to TRUE in the SUCCESS state if keying material is avail able.
The actual key is stored in eapKeyDat a.

5.1.3. Constants
MaxRetrans (i nteger)

Confi gurabl e maxi num for how many retransni ssions should be
attenpted before aborting.

5.2. Interface between Stand- Al one Authenticator State Machi ne and
Met hods

I N. eapRespData, nethodState
QUT: ignore, eapReqData
I NV OQUT: currentld, (method-specific state), (policy)

The follow ng describes the interaction between the state nachi ne and
EAP net hods.

minit (in: -, out: -)

Vol | brecht, et al. I nf or mat i onal [ Page 19]



RFC 4137 EAP State Machi nes August 2005

Wien the nethod is first started, it nust initialize its own nethod-
specific state, possibly using sone information fromPolicy (e.g.
identity).

m bui | dReq (in: integer, out: EAP packet)

Next, the nethod creates a new EAP Request packet, with the given
identifier value, and updates its method-specific state accordingly.

m get Ti neout (in: -, out: integer or NONE)

The met hod can al so provide a hint for retransmi ssion tinmeout with
m get Ti neout .

m check (in: EAP packet, out: bool ean)

When a new EAP Response is received, the nmethod nust first decide
whet her to process the packet or to discard it silently. If the
packet |ooks like it was not sent by the legitinmte peer (e.g., if it
has an invalid Message Integrity Check (MC), which should never
occur), the method can indicate this by returning FALSE. In this
case, the method should not nodify its own nethod-specific state.
m process (in: EAP packet, out: -)

misDone (in: -, out: bool ean)

m getKey (in: -, out: EAP key or NONE)

Next, the nethod processes the EAP Response and updates its own
met hod- specific state. Now the options are to continue the
conversation (send another request) or to end this nethod.

If the nethod wants to end the conversation, it

o0 Tells Policy about the outcone of the nmethod and possibly other
i nformation.

o |If the method has derived keying material it wants to export,
returns it from m getKey().

0 Indicates that the nethod wants to end by returning TRUE from
m i sDone().

O herwi se, the nmethod continues by sendi ng anot her request, as
described earlier.

Vol | brecht, et al. I nf or mat i onal [ Page 20]



RFC 4137 EAP State Machi nes August 2005

5.3. Stand- Al one Authenticator State Machi ne Local Vari ables
5.3.1. Long-Term ( Mai nt ai ned between Packets)
current Met hod (EAP type)
EAP type, IDENTITY, or NOTIFI CATI ON.
currentld (integer)
0-255 or NONE. Usually updated in PROPOSE METHOD st at e.
Indicates the identifier value of the currently outstandi ng EAP
request.
nmet hodSt at e (enunerati on)
As descri bed above.

retransCount (i nteger)

Reset in SEND REQUEST state and updated in RETRANSM T st ate.
Current nunber of retransni ssions.

| ast RegDat a ( EAP packet)

Set in SEND REQUEST state. EAP packet containing the [ast sent
request.

met hodTi meout (i nteger)
Met hod- provi ded hint for suitable retransm ssion tinmeout, or NONE.
5.3.2. Short-Term (Not Maintained between Packets)
rxResp (bool ean)

Set in RECEIVED state. |Indicates that the current received packet
is an EAP response.

respld (integer)

Set in RECEIVED state. The identifier fromthe current EAP
response.

respMet hod (EAP type)

Set in RECElIVED state. The nethod type of the current EAP
response.

Vol | brecht, et al. I nf or mat i onal [ Page 21]



RFC 4137 EAP State Machi nes August 2005

i gnore (bool ean)

Set in METHOD state. |Indicates whether the nethod has decided to
drop the current packet.

deci si on (enuneration)

Set in SELECT_ACTION state. Tenporarily stores the policy
deci sion to succeed, fail, or continue.

5.4. EAP Stand- Al one Authenticator Procedures
NOTE: For nethod procedures, the nmethod uses its internal state in
addition to the information provided by the EAP layer. The only
argunents that are explicitly shown as inputs to the procedures are
those provided to the nmethod by EAP. Those inputs provided by the
method’ s internal state remain inplicit.
cal cul at eTi meout ()
Cal cul ates the retransmi ssion tineout, taking into account the
retransm ssion count, round-trip time measurenments, and mnet hod-
specific timeout hint (see [ RFC3748], Section 4.3). Returns an
i nteger.
par seEapResp()
Determ nes the code, identifier value, and type of the current
response. 1In the case of a parsing error (e.g., the length field
is longer than the received packet), rxResp will be set to FALSE
The val ues of respld and respMet hod nmay be undefined as a result.
Returns a bool ean, an integer, and an EAP type.
bui | dSuccess()
Creates an EAP Success Packet. Returns an EAP packet.
bui | dFai | ure()
Creates an EAP Failure Packet. Returns an EAP packet.
next | d()

Determ nes the next identifier value to use, based on the previous
one. Returns an integer

Vol | brecht, et al. I nf or mat i onal [ Page 22]



RFC 4137 EAP State Machi nes August 2005

Pol i cy. updat e()

Updates all variables related to internal policy state. The
return val ue i s undefi ned.

Po

i cy. get Next Met hod()

Deternines the nmethod that should be used at this point in the
conversation based on predefined policy. Policy.getNextMthod()
MUST conply with [RFC3748] (Section 2.1), which forbids the use of
sequences of authentication nmethods within an EAP conversati on.
Thus, if an authentication nethod has al ready been executed within
an EAP di al og, Policy. get Next Met hod() MJST NOT propose anot her

aut hentication nethod within the sane EAP dial og. Returns an EAP

type.
Po

i cy. get Deci si on()

Determines if the policy will allow SUCCESS, FAIL, or is yet to
determine (CONTINUE). Returns a decision enuneration.

m check()

Met hod- speci fic procedure to test for the validity of a nessage.
Returns a bool ean.

m process()

Met hod procedure to parse and process a response for that nethod.
The return val ue i s undefi ned.

minit()

Met hod procedure to initialize state just before use. The return
val ue i s undefi ned.

m reset ()

Met hod procedure to indicate that the nmethod is ending in the
m ddl e of or before conpletion. The return value is undefined.

m i sDone()

Met hod procedure to check for nmethod conpletion. Returns a
bool ean.

Vol | brecht, et al. I nf or mat i onal [ Page 23]



RFC 4137 EAP State Machi nes August 2005

m get Ti neout ()

Met hod procedure to determine an appropriate tineout hint for that
met hod. Returns an integer.

m get Key()

Met hod procedure to obtain key material for use by EAP or |ower
| ayers. Returns an EAP key.

m bui | dReq()

Met hod procedure to produce the next request. Returns an EAP
packet .

5. 5. EAP St and- Al one Aut henticator States
DI SABLED

The authenticator is disabled until the port is enabled by the
| oner |ayer.

I NI TI ALI ZE
Initializes variables when the state machine is activated.
| DLE

The state machi ne spends nost of its tinme here, waiting for
sonet hi ng to happen.

RECEI VED

This state is entered when an EAP packet is received. The packet
header is parsed here.

| NTEGRI TY_CHECK

A nmethod state in which the integrity of the inconmi ng packet from
the peer is verified by the method.

METHOD_RESPONSE
A nmethod state in which the inconing packet is processed.
METHOD REQUEST

A nethod state in which a new request is fornmulated if necessary.

Vol | brecht, et al. I nf or mat i onal [ Page 24]



RFC 4137 EAP State Machi nes August 2005

PROPOSE_METHOD

A state in which the authenticator decides which method to try
next in the authentication

SELECT_ACTI ON

Bet ween net hods, the state machine re-eval uates whether its policy
is satisfied and succeeds, fails, or remains undeci ded.

SEND_REQUEST

This state signals the lower |ayer that a request packet is ready
to be sent.

DI SCARD

This state signals the lower |ayer that the response was
di scarded, and no new request packet will be sent at this tine.

NAK
This state processes Nak responses fromthe peer
RETRANSM T
Retransmits the previous request packet.
SUCCESS
A final state indicating success.
FAI LURE
A final state indicating failure.
TI MEOUT_FAI LURE
A final state indicating failure because no response has been
recei ved. Because no response was received, no new nessage
(including failure) should be sent to the peer. Note that this is

different fromthe FAILURE state, in which a nessage indicating
failure is sent to the peer.

Vol | brecht, et al. I nf or mat i onal [ Page 25]



RFC 4137 EAP State Machi nes August 2005

6. EAP Backend Aut henti cator

When operating in pass-through node, there are conceptually two parts
to the authenticator: the part that passes packets through, and the
backend that actually inplenments the EAP nethod. The follow ng

di agram shows a state nmachine for the backend part of this nodel when
using a AAA server. Note that this diagramis identical to Figure 4
except that no retransnmit is included in the IDLE state because with
RADI US, retransmit is handled by the NAS. Also, a PlICK UP_METHOD
state and variable in INITIALI ZE state are added to all ow the Mt hod
to "pick up" a nmethod started in a NAS. Included is an expl anation
of the primtives and procedures referenced in the diagram nmany of
whi ch are the sane as above. Note that the "lower layer" in this
case is sone AAA protocol (e.g., RAD US).

(see the .pdf version for mssing diagram or
refer to Appendix A 3 if reading the .txt version)

Fi gure 5: EAP Backend Aut henticator State Machine

6.1. Interface between Backend Authenticator State Machi ne and Lower
Layer

The | ower |ayer presents nessages to the EAP backend aut henticator
state machine by storing the packet in aaaEapRespData and setting the
aaaEapResp signhal to TRUE

When t he EAP backend aut henticator state machine has finished
processing the nessage, it sets one of the signals aaaEapReq,
aaaEapNoReq, aaaSuccess, and aaaFail. |If it sets eapReq, eapSuccess,
or eapFail, the correspondi ng request (or success/failure) packet is
stored in aaaEapRegData. The lower layer is responsible for actually
transmitting this nessage.

6.1.1. Variables (AAA Interface to Backend Authenticator)

aaaEapResp (bool ean)
Set to TRUE in | ower layer, FALSE in authenticator state machine.
Usual |y indicates that an EAP response, stored in aaaEapRespDat a,
is available for processing by the AAA server. |f aaaEapRespData
is set to NONE, it indicates that the AAA server should send the
initial EAP request.

aaaEapRespDat a ( EAP packet)

Set in lower |layer when eapResp is set to TRUE. The EAP packet to
be processed, or NONE

Vol | brecht, et al. I nf or mat i onal [ Page 26]



RFC 4137 EAP State Machi nes August 2005

backendEnabl ed (bool ean)
Indicates that there is a valid link to use for the comruni cation
If at any point the port is not avail able, backendEnabled is set
to FALSE, and the state nachine transitions to DI SABLED
6.1.2. Variables (Backend Authenticator to AAA Interface)

aaaEapReq (bool ean)

Set to TRUE in authenticator state nmachine, FALSE in | ower |ayer
I ndicates that a new EAP request is ready to be sent.

aaaEapNoReq (bool ean)
Set to TRUE in authenticator state machine, FALSE in | ower |ayer.
I ndicates that the npbst recent response has been processed, but
there is no new request to send.

aaasSuccess (bool ean)

Set to TRUE in authenticator state machi ne, FALSE in | ower | ayer.
Indicates that the state machi ne has reached the SUCCESS st at e.

aaaFai | (bool ean)

Set to TRUE in authenticator state machine, FALSE in |ower |ayer
Indicates that the state machi ne has reached the FAlILURE state.

aaaEapReqgDat a ( EAP packet)
Set in authenticator state nmachi ne when aaaEapReq, aaaSuccess, or
aaaFail is set to TRUE. The actual EAP request to be sent (or
success/failure).

aaaEapKeyDat a ( EAP key)
Set in authenticator state nmachi ne when keying naterial becones
avai l able. Set during the METHOD_RESPONSE state. Note that this
docunent does not define the structure of the type "EAP key". W
expect that it will be defined in [Keying].

aaaEapKeyAvai | abl e (bool ean)

Set to TRUE in the SUCCESS state if keying material is avail able.
The actual key is stored i n aaaEapKeyDat a.

Vol | brecht, et al. I nf or mat i onal [ Page 27]



RFC 4137 EAP State Machi nes August 2005

aaaMet hodTi neout (i nt eger)

Met hod- provi ded hint for suitable retransm ssion tinmeout, or NONE.
(Note that this hint is for the EAP retransm ssions done by the
pass-t hrough authenticator, not for retransm ssions of AAA
packets.)

6.2. Interface between Backend Authenticator State Michine and
Met hods

The backend method interface is alnost the sane as in stand-al one
aut henticator described in Section 5.2. The only difference is that
sonme net hods on the backend may support "picking up" a conversation
started by the pass-through. That is, the EAP Request packet was
sent by the pass-through, but the backend rust process the
correspondi ng EAP Response. Usually only the Identity method
supports this, but others are possible.

When "picking up" a conversation, minitPickUp() is called instead of
minit(). Next, mprocess() nmust exani ne eapRespData and update its
own net hod-specific state to match what it would have been if it had
actually sent the corresponding request. (CGbviously, this only works
for methods that can determne what the initial request contained;
Identity and EAP-TLS are good exanpl es.)

After this, the processing continues as described in Section 5. 2.
6.3. Backend Authenticator State Machi ne Local Vari abl es

For definitions of the variables used in the Backend Authenti cator
see Section 5. 3.

6. 4. EAP Backend Aut henticator Procedures

Most of the procedures of the backend authenticator have al ready been
defined in Section 5.4. This section contains definitions for those
not existent in the stand-al one version, as well as those that are
defined differently.

NOTE: For nethod procedures, the method uses its internal state in
addition to the information provided by the EAP | ayer. The only
argunents that are explicitly shown as inputs to the procedures are
those provided to the nmethod by EAP. Those inputs provided by the
nmethod’s internal state remain inplicit.

Vol | brecht, et al. I nf or mat i onal [ Page 28]



RFC 4137 EAP State Machi nes August 2005

Pol i cy. doPi ckUp()

Notifies the policy that an al ready-chosen nmethod i s being picked
up and will be conpleted. Returns a bool ean

m i nitPi ckUp()

Met hod procedure to initialize state when continuing from an
al ready-started method. The return value is undefined.

6. 5. EAP Backend Aut henticator States

Most of the states of the backend authenticator have al ready been
defined in Section 5.5. This section contains definitions for those
not existent in the stand-al one version, as well as those that are
defined differently.

Pl CK_UP_METHCD

Sets an initial state for a method that is being continued and
that was started el sewhere

7. EAP Ful | Aut henti cator

The following two diagrans show the state nachine for a conplete
authenticator. The first diagramis identical to the stand-al one
state nachine, shown in Figure 4, with the exception that the
SELECT _ACTION state has an added transition to PASSTHROUGH  The
second di agram al so keeps nost of the logic, except the four nethod
states, and it shows how the state nmachi ne works once it goes to
pass-t hrough node

The first diagramis largely a reproduction of that found above, with
the added hooks for a transition to PASSTHROUGH node.

(see the .pdf version for mssing diagram or
refer to Appendix A 4 if reading the .txt version)

Figure 6: EAP Full Authenticator State Machine (Part 1)
The second di agram descri bes the functionality necessary for an
aut henti cator operating in pass-through node. This section of the
diagramis the counterpart of the backend di agram above.

(see the .pdf version for mssing diagram or
refer to Appendix A 4 if reading the .txt version)

Figure 7: EAP Full Authenticator State Machine (Part 2)

Vol | brecht, et al. I nf or mat i onal [ Page 29]



RFC 4137 EAP State Machi nes August 2005
7.1. Interface between Full Authenticator State Machine and Lower
Layers
The full authenticator is unique in that it interfaces to nultiple
| ower layers in order to support pass-through node. The interface to
the primary EAP transport layer is the sane as described in Section
5. The follow ng describes the interface to the second | ower |ayer
whi ch represents an interface to AAA. Note that there is not
necessarily a direct interaction between the EAP | ayer and the AAA
| ayer, as in the case of [1X-2004].
7.1.1. Variables (AAA Interface to Full Authenticator)
aaaEapReq (bool ean)

Set to TRUE in | ower layer, FALSE in authenticator state machine.
I ndicates that a new EAP request is available fromthe AAA server

aaaEapNoReq (bool ean)
Set to TRUE in | ower layer, FALSE in authenticator state machine.
I ndi cates that the npbst recent response has been processed, but
that there is no new request to send.

aaasSuccess (bool ean)

Set to TRUE in lower layer. |Indicates that the AAA backend
aut henti cator has reached t he SUCCESS st ate.

aaaFai | (bool ean)

Set to TRUE in lower layer. |Indicates that the AAA backend
aut henti cator has reached the FAILURE state.

aaaEapRegDat a ( EAP packet)

Set in the lower |ayer when aaaEapReq, aaaSuccess, or aaaFail is
set to TRUE. The actual EAP request to be sent (or success/
failure).

aaaEapKeyDat a ( EAP key)

Set in lower |layer when keying material beconmes available fromthe
AAA server. Note that this docunent does not define the structure
of the type "EAP key". W expect that it will be defined in

[ Keyi ng] .

Vol | brecht, et al. I nf or mat i onal [ Page 30]



RFC 4137 EAP State Machi nes August 2005

aaaEapKeyAvai | abl e (bool ean)

Set to TRUE in the lower layer if keying material is avail able.
The actual key is stored i n aaaEapKeyDat a.

aaaMet hodTi neout (i nt eger)
Met hod- provi ded hint for suitable retransm ssion tinmeout, or NONE.
(Note that this hint is for the EAP retransni ssions done by the
pass-t hrough authenticator, not for retransm ssions of AAA
packets.)

7.1.2. Variables (full authenticator to AAA interface)

aaaEapResp (bool ean)
Set to TRUE in authenticator state machine, FALSE in the | ower
layer. Indicates that an EAP response is available for processing
by the AAA server.

aaaEapRespDat a ( EAP packet)

Set in authenticator state nachi ne when eapResp is set to TRUE
The EAP packet to be processed.

aaal dentity (EAP packet)

Set in authenticator state nmachi ne when an | DENTITY response is
received. Makes that identity available to AAA | ower | ayer

aaaTi neout (bool ean)
Set in AAA IDLE if, after a configurable anmount of time, there is
no response fromthe AAA |ayer. The AAA layer in the NAS is
itself alive and OK, but for sone reason it has not received a
val id Access-Accept/ Reject indication fromthe backend.
7.1.3. Constants
Same as Section 5.

7.2. Interface between Full Authenticator State Muchi ne and Met hods

Sane as stand-al one authenticator (Section 5.2).

Vol | brecht, et al. I nf or mat i onal [ Page 31]



RFC 4137 EAP State Machi nes August 2005

7.3. Full Authenticator State Muchi ne Local Vari ables
Many of the variables of the full authenticator have already been
defined in Section 5. This section contains definitions for those
not existent in the stand-alone version, as well as those that are
defined differently.
7.3.1. Short-Term (Not Mintained between Packets)
deci si on (enuneration)
Set in SELECT ACTION state. Tenporarily stores the policy
deci sion to succeed, fail, continue with a | ocal nethod, or
continue in pass-through node.
7.4. EAP Full Authenticator Procedures

Al'l the procedures defined in Section 5 exist in the full version.
In addition, the follow ng procedures are defined.

getld()

Determ nes the identifier value chosen by the AAA server for the
current EAP request. The return value is an integer

7.5. EAP Full Authenticator States

All the states defined in Section 5 exist in the full version. |In
addition, the followi ng states are defi ned.

I NI TI ALI ZE_PASSTHROUGH

Initializes variables when the pass-through portion of the state
machi ne i s activat ed.

| DLE2

The state machine waits for a response fromthe primary | ower
| ayer, which transports EAP traffic fromthe peer.

| DLE

The state machi ne spends nost of its tinme here, waiting for
sonet hing to happen.

Vol | brecht, et al. I nf or mat i onal [ Page 32]



RFC 4137 EAP State Machi nes August 2005

RECEI VED2
This state is entered when an EAP packet is received and the
aut henticator is in PASSTHROUGH node. The packet header is parsed
her e.
AAA REQUEST
The i ncom ng EAP packet is parsed for sending to the AAA server
AAA | DLE
Idle state that tells the AAA layer that it has a response and
then waits for a new request, a no-request signal, or
success/failure.

AAA_RESPONSE

State in which the request fromthe AAA interface is processed
into an EAP request.

SEND_REQUEST2

This state signals the lower |ayer that a request packet is ready
to be sent.

DI SCARD2
This state signals the |lower |ayer that the response was
di scarded, and that no new request packet will be sent at this
tinme.
RETRANSM T2
Retransmits the previous request packet.
SUCCESS2
A final state indicating success.

FAI LURE2

A final state indicating failure.

Vol | brecht, et al. I nf or mat i onal [ Page 33]



RFC 4137 EAP State Machi nes August 2005

TI MEQUT_FAI LUREZ2

A final state indicating failure because no response has been
recei ved. Because no response was received, no new nessage
(including failure) should be sent to the peer. Note that this is
different fromthe FAILURE2 state, in which a nessage indicating
failure is sent to the peer.

8. Inplenmentation Considerations
8.1. Robustness

In order to deal with erroneous cases that are not directly rel ated
to the protocol behavior, inplenentations nay need additiona
consi derations to provide robustness against errors.

For exanple, an inplenentation of a state nachine may spend a
significant anount of tinme in a particular state performng the
procedure defined for the state without returning a response. |f
such an inplementation is nade on a nultithreadi ng system the
procedure nay be perforned in a separate thread so that the

i mpl ement ati on can perform appropriate action w thout bl ocking on the
state for a long tine (or forever if the procedure never conpletes
due to, e.g., a non-responding user or a bug in an application
cal | back function).

The following states are identified as the possible places of
bl ocki ng:

0 |IDENTITY state in the peer state machine. It nmay take sone tine
to process ldentity request when a user input is needed for
obtaining an identity fromthe user. The user may never input an
identity. An inplenentation nmay define an additional state
transition from I DENTITY state to FAILURE state so that
aut hentication can fail if no identity is obtained fromthe user
before dientTineout tiner expires.

o METHOD state in the peer state nachine and i n METHOD RESPONSE
state in the authenticator state machines. |t may take sone tine
to perform net hod-specific procedures in these states. An
i npl ement ati on nmay define an additional state transition from
METHOD state and METHOD RESPONSE state to FAILURE or
TI MEQUT_FAI LURE state so that authentication can fail if no nmethod
processing result is obtained fromthe nethod before methodTi meout
timer expires.

Vol | brecht, et al. I nf or mat i onal [ Page 34]



RFC 4137 EAP State Machi nes August 2005

8.2. Method/ Met hod and Met hod/ Lower - Layer |nterfaces

| mpl enent ati ons may define additional interfaces to pass nethod-
specific informati on between nethods and | ower |ayers. These
interfaces are beyond the scope of this docunent.

8.3. Peer State Machine Interoperability with Deployed |Inplenentations

Nunber of depl oyed EAP aut henticator inplenmentations, mainly in
RADI US aut henti cation servers, have been observed to increnment the
Identifier field incorrectly when generating EAP Success and EAP
Fai l ure packets which is against the MUST requirenment in RFC 3748
section 4.2. The peer state nmachine is based on RFC 3748, and as
such it will discard such EAP Success and EAP Fail ure packets.

As a workaround for the potential interoperability issue with

exi sting inplenentations, conditions for peer state machine
transitions from RECEI VED state to SUCCESS and FAlI LURE states MAY be
changed from"(reqld == lastld)" to "((reqld == lastld) || (reqld ==
(lastld + 1) & 255))". However, because this behavior does not
conformto RFC 3748, such a workaround is not reconmended, and if

i ncluded, it should be inplenented as an optional workaround that can
be di sabl ed.

9. Security Considerations

This docunent’s intent is to describe the EAP state machine fully.
To this end, any security concerns with this docunment are likely a
reflection of security concerns with EAP itself.

An accurate state machi ne can hel p reduce i nplenentation errors.
Al t hough [ RFC3748] renmmains the normative protocol description, this
state nachine should help in this regard.

As noted in [RFC3748], some security concerns arise because of the
foll owi ng EAP packets:

1. EAP- Request/ Response ldentity
2. EAP- Response/ NAK
3. EAP-Success/ Failure

Because t hese packets are not cryptographically protected by
t hensel ves, an attacker can nodify or insert themw thout inmediate
detection by the peer or authenticator

Fol l owi ng Figure 3 specification, an attacker may cause denial of
service by:

Vol | brecht, et al. I nf or mat i onal [ Page 35]



RFC 4137 EAP State Machi nes August 2005

0 Sending an EAP-Failure to the peer before the peer has started an
EAP aut hentication nmethod. As long as the peer has not nodified
the nmethodState variable (initialized to NONE), the peer MJST
accept an EAP-Fail ure.

o Forcing the peer to engage in endl ess EAP- Request/ Response
Identity exchanges before it has started an EAP aut hentication
nmet hod. As long as the peer has not nodified the sel ectedMet hod
variable (initialized to NONE), the peer MJST accept an EAP-
Request/ldentity and respond to it with an EAP-Response/ldentity.

Fol l owi ng Figure 4 specification, an attacker may cause deni al of
service bhy:

0 Sending a NAK to the authenticator after the authenticator first
proposes an EAP authentication nethod to the peer. \Wen the
nmet hodSt at e vari abl e has the val ue PROPOSED, the authenticator is
obliged to process a NAK that is received in response to its first
packet of an EAP authentication nethod.

There MAY be sone cases when it is desired to prevent such attacks.
This can be done by nodifying initial values of sone variables of the
EAP state machi nes. However, such nodifications are NOT RECOMVENDED.

There is a trade-off between nmitigating these denial-of-service
attacks and being able to deal with EAP peers and authenticators in
general. For instance, if a NAK is ignored when it is sent to the
aut henticator after it has just proposed an EAP aut hentication met hod
to the peer, then a legitimte peer that is not able or willing to
process the proposed EAP authentication nethod would fail w thout an
opportunity to negotiate another EAP nethod.

10. Acknow edgenents

The work in this docunent was done as part of the EAP Design Team

It was done primarily by N ck Petroni, John Vollbrecht, Pasi Eronen
and Yoshihiro Chba. N ck started this work with Bryan Payne and Chuk
Seng at the University of Maryland. John Vollbrecht of Meetinghouse
Dat a Communi cations started independently with hel p from Dave Spence
at Interlink Networks. John and Nick collaborated to create a comon
docunent, and then were joined by Pasi Eronen of Nokia, who has nade
maj or contributions in creating coherent state nmachi nes, and by

Yoshi hiro Onhba of Toshi ba, who insisted on including pass-through
document ati on and provi ded significant support for understanding

i mpl emrent ati on issues.

Vol | brecht, et al. I nf or mat i onal [ Page 36]



RFC 4137 EAP State Machi nes August 2005

In addition, significant response and conversation has cone fromthe
design team especially Jari Arkko of Ericsson and Bernard Aboba of
Mcrosoft, as well as the rest of the team It has al so been

revi ewed by | EEE 802.1, and has had input from Ji m Burns of
Meet i nghouse and Paul Congdon of Hew ett Packard.

11. References
11.1. Normative References

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[ RFC3579] Aboba, B. and P. Cal houn, "RADI US (Renote Authentication
Dial In User Service) Support For Extensible
Aut henti cation Protocol (EAP)", RFC 3579, Septenber 2003.

[ RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H
Levkowet z, Ed., "Extensible Authentication Protoco
(EAP)", RFC 3748, June 2004.

11.2. Informative References
[ Keyi ng] Aboba, B., Sinon, D., Arkko, J., Eronen, P., Levkowetz,

H., "Extensible Authentication Protocol (EAP) Key
Management Framewor k", Work in Progress, July 2005.

[ 1X-2004] Institute of Electrical and El ectronics Engineers,
"Standard for Local and Metropolitan Area NetworKks:
Port-Based Network Access Control", |EEE 802. 1X- 2004,

Decenber 2004.

Vol | brecht, et al. I nf or mat i onal [ Page 37]



RFC 4137 EAP State Machi nes August 2005

Appendi x A.  ASCI| versions of state diagrans

Thi s appendi x contains the state diagrans in ASCII format. Please
use the PDF version whenever possible; it is much easier to
under st and.

The notation is as follows: state nane and pseudocode executed when
entering it are shown on the left; outgoing transitions with their
condi tions are shown on the right.

A.1. EAP Peer State Machine (Figure 3)

(gl obal transitions) | | port Enabl ed | Dl SABLED
I T tmmm e me e
| eapRestart && | I NI TI ALI ZE
| port Enabl ed |

_____________________________ U

DI SABLED | port Enabl ed | I NI TI ALI ZE

_____________________________ o e e e e e e e e e e e e e e e e e e et e e e e e e ==

I NI TI ALI ZE

sel ect edMet hod = NONE
nmet hodSt ate = NONE
al l omNotifications = TRUE

| |
| |
| |
| |
decision = FAIL | UCT | | DLE
idlewhile = dientTinmeout | |
lastld = NONE | |
eapSuccess = FALSE | |
eapFai |l = FALSE |
eapKeyDat a = NONE | |
eapKeyAvail abl e = FALSE | |
eapRestart = FALSE | |
_____________________________ e
| DLE | eapReq | RECEI VED
________________________ o e e e e e e - -
| (al t Accept && |
| decision != FAIL) ||
| (idleWiile == 0 & | SUCCESS
| deci sion == |
| UNCOND_SUCC) |
[--- - RS

Vol | brecht, et al. I nf or mat i onal [ Page 38]



RFC 4137 EAP State Machi nes August 2005

al t Rej ect | |

(idlewile == |

decision != |
UNCOND_SUCC) | | | FAI LURE

|

I

I

2

(al t Accept &&
nmet hodState ! = CONT &&
deci sion == FAIL)

RECEI VED rxReq &&
(reqgld !'=lastld) &&
(regMet hod ==
sel ect edMet hod) &&
(et hodSt at e ! = DONE)

+

|
(rxReq, rxSuccess, rxFai |l ure, |
reql d, reghet hod) = |
par seEapReq( eapReqgDat a) |
........................ +

| rxReq && |

| (reqld !'=lastld) && |

| (sel ect edMet hod == |

| NONE) && |
| (regMethod ! = |
| |
| |
| |
+

|

|

|

|

|

|

+

GET_METHOD

| DENTI TY) &&
(regMethod ! =
NOTI FI CATI ON)
| rxReq &&
| (reqld !'=lastld) &&
| (sel ect edMet hod == | DENTI TY
| NONE) &&
| (regMet hod ==
| | DENTI TY)
| rxReq && |
| (reqld !'=lastld) && |
| (regMet hod == |  NOTI FI CATI ON
| NOTI FI CATI ON) && |
| al | omNot i fications |

| rxReq && | RETRANSM T
| (reqld == lastld) |

| rxsSuccess &&

| (regld == lastld) && | SUCCESS
| (decision !'= FAIL) |

Vol | brecht, et al. I nf or mat i onal [ Page 39]



RFC 4137 EAP State Machi nes August 2005

________________________ .
| (methodState! =CONT) && |
| ((rxFailure & |
| decision != |
| UNCOND_SuUCC) | | | FAlI LURE
| (rxSuccess && |
| decision == FAIL)) && |
| (reqld == lastld) |
........................ B,
| el se | DI SCARD
_____________________________ e
METHOD | |
| |
i gnore = m check(eapReqData) | i gnore | DI SCARD
if (lignore) { | |
(et hodSt at e, deci si on, | |
al l omNot i fications) = I R R T R LT
m pr ocess( eapReqDat a) | |
/* methodState is CONT, | |
MAY CONT, or DONE */ | (methodStat e==DONE) && | FAI LURE
/* decision is FAIL, | (deci sion == FAIL) |
COND_SUCC, or | |
UNCOND_SucCC */ | |
eapRespData = [--- - LR
m bui | dResp(reql d) | |
if (misKeyAvail able()) | el se | SEND RESPONSE
eapKeyData = mgetKey() | |
} | |
_____________________________ e
GET_METHOD | |
| sel ect edMet hod == |
if (allowvethod(regMethod)) {]| reqMet hod | METHOD
sel ect edMet hod = reqMet hod | |
met hodState = INIT | |
} else { I T T LR
eapRespData = | |
bui | dNak(reql d) | el se | SEND_ RESPONSE
} | |
............................. e
| DENTI TY | |
| |
processldentity(eapRegbData) | uct | SEND_RESPONSE
eapRespData = | |
buil dldentity(reqld) | |
............................. e

Vol | brecht, et al. I nf or mat i onal [ Page 40]



RFC 4137 EAP State Machi nes August 2005
____________________________ o e e e e e e e e e e e e e e e e e e e e e e e e e = =
NOTI FI CATI ON | |

| |

processNoti fy(eapReqgDat a) | uct | SEND_RESPONSE

eapRespData = | |

bui | dNoti fy(reqld) | |

____________________________ o e e e e e e e e e e e e e e e e e e e e e e e e e = =

RETRANSM T | |
| uct | SEND_RESPONSE

eapRespData = | ast RespDat a | |

____________________________ e

DI SCARD | |
| uct | | DLE

eapReq = FALSE | |

eapNoResp = TRUE | |

____________________________ e

SEND RESPONSE | |
| |

lastld = reqld | |

| ast RespDat a = eapRespDat a | uct | | DLE

eapReq = FALSE | |

eapResp = TRUE | |

idleWwiile = dientTi neout | |

____________________________ T

SUCCESS | |
| |

i f (eapKeyData != NONE) | |

eapKeyAvai l abl e = TRUE | |

eapSuccess = TRUE | |

____________________________ T

FAI LURE | |
| |

eapFail = TRUE | |

Figure 8

A 2 EAP Stand- Al one Authenticator State Machine (Figure 4)

(gl obal transitions) | I port Enabl ed | DI SABLED
[------mmm e Feem e e e
| eapRestart && | I NI TI ALI ZE
| port Enabl ed |

______________________________ e

Dl SABLED | por t Enabl ed | I NI TI ALI ZE

______________________________ O

Vol | brecht, et al. I nf or mat i onal [ Page 41]



RFC 4137 EAP State Machi nes August 2005

I NI TI ALI ZE

| |
| |
currentld = NONE | |
eapSuccess = FALSE | |
eapFail = FALSE | ucTt | SELECT_ACTI ON
eapTi neout = FALSE | |
eapKeyDat a = NONE | |
eapKeyAvail abl e = FALSE | |
eapRestart = FALSE | |

______________________________ O
| DLE | |
| retransWile == | RETRANSM T
retransWhile = | |
cal cul at eTi neout ( I R
retransCount, eapSRITT, | eapResp | RECEI VED
eapRTTVAR, net hodTi neout) | |
______________________________ o
RETRANSM T | |
| retransCount > | TI MEOUT_FAI LURE
ret ransCount ++ | MaxRet r ans |
i f (retransCount <=MaxRetrans){| |
eapRegDat a = | ast RegDat a [------mmm e R LT
eapReq = TRUE | el se | | DLE
} | |
______________________________ e
RECEI VED rxResp &&
(respld ==

(rxResp, respld, respMet hod) =
par seEapResp( eapRespDat a)

| |
| |
| currentld) && |
| (respMethod == NAK |
| | | NAK
| respMet hod == |
| EXPANDED NAK) && |
| (met hodState == |
| PROPOSED) |

| rxResp && |
| (respld == |
| currentld) &% | I NTEGRI TY_CHECK
| (respMet hod == |
| current Met hod) |

Vol | brecht, et al. I nf or mat i onal [ Page 42]



RFC 4137

m reset ()
Pol i cy. updat e(<...>)

SELECT_ACTI ON
deci sion =
Pol i cy. get Deci si on()
SUCCESS, FAI LURE, or
CONTI NUE */

| NTEGRI TY_CHECK

/*

i gnore m check( eapRespDat a)

METHOD_RESPONSE

m pr ocess(eapRespDat a)

if (misDone()) {

Policy. update(<...>)
eapKeyData = m get Key()
nmet hodState = END

} else
net hodSt at e = CONTI NUE

PROPOSE_METHOD

current Met hod =
Pol i cy. get Next Met hod()

minit()

i f (currentMet hod==I DENTI TY |
cur r ent Met hod==NOTI FI CATI ON)
met hodSt at e = CONTI NUE

el se
nmet hodSt at e = PROPOSED

METHOD _REQUEST

currentld = nextld(currentld)

eapReqData =

m bui | dReq(current1d)
met hodTi nmeout m get Ti neout ()

Vol | brecht, et al. |

EAP St ate Machi nes

o e e e e e e e e e e e - -
|

| UcCT

|

|

o e e e e e e e e e e e e e e e a ==
| decision == FAl LURE
|

| decision == SUCCESS
| _____________________
| el se

o e e e e e e e e e e e - -
| i gnore

[ 2o mmm e
| lignore

Fo e e e e e e e e e e e e e =
|

| nmethodState == END

|

|

[ = o mm e
|

| el se

|

|

o e e e e e e e e e e e e e m -
|

|

|

|

| UCT

|

|

|

|

|

o e e e e e e e e e e e e e e - -
|

|

| UcT

|

|

|

o e e e e e e e e e e e e e m -

nf or mati ona

August 2005

oo e e e e e e e mmoo- -
|
|  SELECT_ACTI ON
|
|
o e e e e e e e e e oo
| FAl LURE
|
A,
| SUCCESS
o e e e e e e e e o=
| PROPOSE_METHCOD
oo e e e e e e e mmoo- -
| DI SCARD
A,
| METHOD_ RESPONSE
o e e e e e e e e o=
|
|  SELECT_ACTI ON
|
|
o e e e e e e e e e a e =
|
| METHOD_REQUEST
|
|
A,
|
|
|
| METHOD REQUEST
|
|
|
|
|
oo e e e e e emooo -
|
| SEND_REQUEST
|
|
|
A,

[ Page 43]



RFC 4137 EAP State Machi nes August 2005

DI SCARD

eapResp = FALSE
eapNoReq = TRUE

SEND_REQUEST

+

|

|

|

|

+

|

|

retransCount = 0 |

| ast RegDat a = eapReqgDat a |

eapResp = FALSE |

eapReq = TRUE |

______________________________ +
TI MEQUT_FAI LURE | |

|

|

+

|

|

|

|

|

+

|

|

|

|

|

|

|

eapTi meout = TRUE

FAI LURE

eapReqData =
bui | dFai | ure(currentld)
eapFail = TRUE

eapReqData =
bui | dSuccess(currentld)
i f (eapKeyData != NONE)
eapKeyAvai |l abl e = TRUE
eapSuccess = TRUE

Figure 9

A. 3. EAP Backend Authenticator State Machine (Figure 5)

(gl obal transitions) | ! backendEnabl ed | Dl SABLED

Dl SABLED | backendEnabl ed && | I NI TI ALI ZE
| aaaEapResp |

Vol | brecht, et al. I nf or mat i onal [ Page 44]



RFC 4137 EAP State Machi nes August 2005

______________________________ e
| NI TI ALI ZE | I rxResp | SELECT_ACTI ON
I -

current Met hod = NONE | rxResp && |

(rxResp, respld, respMet hod) = | (respMethod == NAK |
par seEapResp( aaaEapRespDat a) | | | NAK

i f (rxResp) | respMet hod == |

currentld = respld | EXPANDED_NAK) |
el se I R
currentld = NONE | el se | PICK UP_METHOD
______________________________ O

Pl CK_UP_METHOD | |
| currentMethod == | SELECT_ACTI ON

if (Policy.doPickUp( | NONE |

respMet hod)) { | |
current Method = respMethod |--------------------- L
m i nit Pi ckUp() | el se | METHOD RESPONSE

} | |
______________________________ e
| DLE | aaaEapResp | RECEI VED
.............................. e

RECEI VED rxResp &&
(respld ==

(rxResp, respld, respMet hod) =
par seEapResp(aaaEapRespDat a)

| |
| |
| currentld) && |
| (respMethod == NAK |
| | | NAK
| respMet hod == |
| EXPANDED NAK) && |
| (rmet hodState == |
| PROPOSED) |

| rxResp && |
| (respld == |
| currentld) && | INTEGRI TY_CHECK
| (respMet hod == |
| current Met hod) |

|
|
mreset () |
Pol i cy. update(<...>) |

Vol | brecht, et al. I nf or mat i onal [ Page 45]



RFC 4137 EAP State Machi nes August 2005

SELECT_ACTI ON | decision == FAI LURE | FAI LURE

deci sion = I e e
Pol i cy. get Deci si on() | decision == SUCCESS | SUCCESS

/* SUCCESS, FAI LURE, or
CONTI NUE */

| NTEGRI TY_CHECK

i gnore =
m check( aaaEapRespDat a)
METHOD_RESPONSE
nmet hodSt ate == END
m pr ocess(aaaEapRespDat a)
if (misDone()) {
Pol i cy. update(<...>)
aaaEapKeyData = m get Key()
nmet hodState = END
} else
nmet hodSt at e = CONTI NUE

PROPCSE_METHCD

Pol i cy. get Next Met hod()
minit()

i f (currentMet hod==I DENTITY ||
cur rent Met hod==NOTI FI CATI ON)
net hodSt at e = CONTI NUE

el se
nmet hodSt at e = PROPOSED

METHOD REQUEST

METHOD_REQUEST

currentld = nextld(currentld)
aaaEapReqData =

m bui | dReq(current1d)
aaaMet hodTi neout =

m get Ti neout ()

DI SCARD

aaaEapResp = FALSE
aaaEapNoReq = TRUE

|
|
+
|
|
|
|
+
|
|
|
|
|
|
|
|
|
+
|
|
current Met hod = |
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
+
|
|
|
|
+

Vol | brecht, et al. I nf or mat i onal [ Page 46]



RFC 4137 EAP St ate Machi nes

SEND_REQUEST

aaaEapResp = FALSE
aaaEapReq = TRUE

FAI LURE

bui | dFai | ure(currentld)
aaaEapFail = TRUE

aaaEapReqData =
bui | dSuccess(current|d)

i f (aaaEapKeyData != NONE)
aaaEapKeyAvai |l abl e = TRUE

+
|
|
|
|
+
|
|
aaaEapRegDat a = |
|
|
+
|
|
|
|
|
aaaEapSuccess = TRUE |

August 2005

Fi gure 10

A. 4. EAP Full Authenticator State Machine (Figures 6 and 7)

This state nmachi ne contains all the states from EAP st and-al one
aut henticator state machine, except that SELECT_ACTION state is

replaced with the follow ng:

SELECT_ACTI ON | decision == FAILURE | FAI LURE
| |
deci sion = [----mmmm e - T
Pol i cy. get Deci si on() | decision == SUCCESS | SUCCESS
/* SUCCESS, FAILURE, CONTINUE, |--------------------- R
or PASSTHROUGH */ | deci sion == | I NI TI ALI ZE_
| PASSTHROUCH | PASSTHROUCH
[-----mmmmm e SRS UL
| el se | PROPOSE _METHOD
Figure 11
And the followi ng new states are added:
I NI TI ALI ZE_PASSTHROUGH | currentld !'= NONE | AAA REQUEST
| --------------------- [ TS
aaaEapRespDat a = NONE | currentld == NONE | AAA | DLE
______________________________ o
Vol | brecht, et al. I nf or mat i onal [ Page 47]



RFC 4137 EAP State Machi nes August 2005

______________________________ e
| DLE2 | |
| retransWile == | RETRANSM T2
retrans\ile = | |
cal cul at eTi meout ( [------mmm e R LT
retransCount, eapSRITT, | eapResp | RECEI VED2
eapRTTVAR, net hodTi neout) | |
______________________________ e
RETRANSM T2 | |
| retransCount > | TI MEQUT _
ret ransCount ++ | MaxRet r ans | FAI LURE2
i f (retransCount <=MaxRetrans){| |
eapReqDat a = | ast RegDat a [-----mmm e oo
eapReq = TRUE | el se | | DLE2
______________________________ S VSR
RECEI VED2 | rxResp && |
| (respld == | AAA REQUEST
(rxResp, respld, respMet hod) = | currentld) |
par seEapResp(eapRespDat a) I R
| el se | DI SCARD2
______________________________ O
AAA REQUEST | |
| |
if (respMethod == I DENTITY) { | UcT | AAA | DLE
aaal dentity = eapRespData | |
aaaEapRespDat a = eapRespData | |
______________________________ O
AAA | DLE | aaaEapNoReq | DI SCARD2
I S
aaaFail = FALSE | aaaEapReq | AAA_RESPONSE
aaasSuccess = FALSE R e
aaaEapReq = FALSE | aaaTi meout | TI MEQUT _
aaaEapNoReq = FALSE | | FAI LURE2
aaaEapResp = TRUE [------mmm e R LT
| aaaFai | | FAl LURE2
[-----mmmmm e SRS UL
| aaasuccess | SUCCESS2
.............................. e
AAA RESPONSE | |
| |
eapRegDat a = aaaEapReqgDat a | UcT | SEND_REQUEST?2
currentld = getld(eapReqgData) | |
nmet hodTi meout = | |
aaaMet hodTi meout | |
______________________________ O

Vol | brecht, et al. I nf or mat i onal [ Page 48]



RFC 4137

DI SCARD2

eapResp = FALSE
eapNoReq = TRUE

SEND_REQUEST?2

retransCount = 0

| ast RegDat a = eapReqgDat a
eapResp = FALSE

eapReq = TRUE

TI MEOUT_FAI LURE2

eapTi meout = TRUE

FAI LURE2

eapReqDat a = aaaEapReqDat a
eapFail = TRUE

SUCCESS?
eapReqDat a = aaaEapReqDat a
eapKeyDat a = aaaEapKeyDat a

eapKeyAvail abl e =
aaaEapKeyAvai | abl e
eapSuccess = TRUE

EAP St ate Machi nes

August 2005

| DLE2

Vol | brecht, et al

Fi gure 12

I nf or mat i ona

[ Page 49]



RFC 4137 EAP State Machi nes August 2005

Aut hors’ Addr esses

John Vol | brecht

Meet i nghouse Data Comuni cati ons
9682 Alice Hill Drive

Dexter, M 48130

USA

EMni | : jrv@rt ghouse. com

Pasi Eronen

Noki a Research Center
P. 0. Box 407

FI N- 00045 Noki a Group,
Fi nl and

EMai | ;: pasi . eronen@oki a. com

Nick L. Petroni, Jr.

Uni versity of Maryl and, Coll ege Park
A.V. WIlians Building

Col | ege Park, MD 20742

USA

EMai | : npetroni @s. und. edu
Yoshi hiro Chba

Toshi ba Anerica Research, Inc.
1 Telcordia Drive

Pi scat away, NJ 08854

USA

EMai | : yohba@ari.toshi ba. com

Vol | brecht, et al. I nf or mat i onal [ Page 50]



RFC 4137 EAP State Machi nes August 2005

Ful I Copyright Statenent
Copyright (C The Internet Society (2005).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS CR | MPLI ED,

I NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the infornation to the IETF at ietf-
ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Vol | brecht, et al. I nf or mat i onal [ Page 51]



