
Network Working Group R. Friend
Request for Comments: 3943 Hifn
Category: Informational November 2004

 Transport Layer Security (TLS) Protocol Compression Using
 Lempel-Ziv-Stac (LZS)

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 The Transport Layer Security (TLS) protocol (RFC 2246) includes
 features to negotiate selection of a lossless data compression method
 as part of the TLS Handshake Protocol and then to apply the algorithm
 associated with the selected method as part of the TLS Record
 Protocol. TLS defines one standard compression method, which
 specifies that data exchanged via the record protocol will not be
 compressed. This document describes an additional compression method
 associated with the Lempel-Ziv-Stac (LZS) lossless data compression
 algorithm for use with TLS. This document also defines the
 application of the LZS algorithm to the TLS Record Protocol.

Friend Informational [Page 1]

RFC 3943 TLS Compression Using LZS November 2004

Table of Contents

 1. Introduction . 2
 1.1. General. 2
 1.2. Specification of Requirements. 3
 2. Compression Methods. 3
 2.1. LZS CompresionMethod 4
 2.2. Security Issues with Single History Compression. 4
 3. LZS Compression. 4
 3.1. Background of LZS Compression 4
 3.2. LZS Compression History and Record Processing 5
 3.3. LZS Compressed Record Format 6
 3.4. TLSComp Header Format 6
 3.4.1. Flags. 6
 3.5. LZS Compression Encoding Format 7
 3.6. Padding . 8
 4. Sending Compressed Records 8
 4.1. Transmitter Process. 9
 4.2. Receiver Process . 9
 4.3. Anti-expansion Mechanism 10
 5. Internationalization Considerations 10
 6. IANA Considerations . 10
 7. Security Considerations. 11
 8. Acknowledgements . 11
 9. References . 12
 9.1. Normative References 12
 9.2. Informative References 12
 Author’s Address . 12
 Full Copyright Statement . 13

1. Introduction

1.1. General

 The Transport Layer Security (TLS) protocol (RFC 2246, [2]) includes
 features to negotiate selection of a lossless data compression method
 as part of the TLS Handshake Protocol and then to apply the algorithm
 associated with the selected method as part of the TLS Record
 Protocol. TLS defines one standard compression method,
 CompressionMethod.null, which specifies that data exchanged via the
 record protocol will not be compressed. Although this single
 compression method helps ensure that TLS implementations are
 interoperable, the lack of additional standard compression methods
 has limited the ability to develop interoperative implementations
 that include data compression.

Friend Informational [Page 2]

RFC 3943 TLS Compression Using LZS November 2004

 TLS is used extensively to secure client-server connections on the
 World Wide Web. Although these connections can often be
 characterized as short-lived and exchanging relatively small amounts
 of data, TLS is also being used in environments where connections can
 be long-lived and the amount of data exchanged can extend into
 thousands or millions of octets. For example, TLS is now
 increasingly being used as an alternative Virtual Private Network
 (VPN) connection. Compression services have long been associated
 with IPSec and PPTP VPN connections, so extending compression
 services to TLS VPN connections preserves the user experience for any
 VPN connection. Compression within TLS is one way to help reduce the
 bandwidth and latency requirements associated with exchanging large
 amounts of data while preserving the security services provided by
 TLS.

 This document describes an additional compression method associated
 with a lossless data compression algorithm for use with TLS. This
 document specifies the application of Lempel-Ziv-Stac (LZS)
 compression, a lossless compression algorithm, to TLS record
 payloads. This specification also assumes a thorough understanding
 of the TLS protocol [2].

1.2. Specification of Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119 [1].

2. Compression Methods

 As described in section 6 of RFC 2246 [2], TLS is a stateful
 protocol. Compression methods used with TLS can be either stateful
 (the compressor maintains its state through all compressed records)
 or stateless (the compressor compresses each record independently),
 but there seems to be little known benefit in using a stateless
 compression method within TLS. The LZS compression method described
 in this document is stateful.

 Compression algorithms can occasionally expand, rather than compress,
 input data. The worst-case expansion factor of the LZS compression
 method is only 12.5%. Thus, TLS records of 15K bytes can never
 exceed the expansion limits described in section 6.2.2 of RFC 2246
 [2]. If TLS records of 16K bytes expand to an amount greater than
 17K bytes, then the uncompressed version of the TLS record must be
 transmitted, as described below.

Friend Informational [Page 3]

RFC 3943 TLS Compression Using LZS November 2004

2.1. LZS CompressionMethod

 The LZS CompressionMethod is a 16-bit index and is negotiated as
 described in RFC 2246 [2] and RFC 3749 [3]. The LZS
 CompressionMethod is stored in the TLS Record Layer connection state
 as described in RFC 2246 [2].

 IANA has assigned 64 as compression method identifier for applying
 LZS compression to TLS record payloads.

2.2. Security Issues with Compression Histories

 Sharing compression histories between or among more than one TLS
 session may potentially cause information leakage between the TLS
 sessions, as pathological compressed data can potentially reference
 data prior to the beginning of the current record. LZS
 implementations guard against this situation. However, to avoid this
 potential threat, implementations supporting TLS compression MUST use
 separate compression histories for each TLS session. This is not a
 limitation of LZS compression but is an artifact for any compression
 algorithm.

 Furthermore, the LZS compression history (as well as any compression
 history) contains plaintext. Specifically, the LZS history contains
 the last 2K bytes of plaintext of the TLS session. Thus, when the
 TLS session terminates, the implementation SHOULD treat the history
 as it does any plaintext (e.g., free memory, overwrite contents).

3. LZS Compression

3.1. Background of LZS Compression

 Starting with a sliding window compression history, similar to LZ1
 [8], a new, enhanced compression algorithm identified as LZS was
 developed. The LZS algorithm is a general-purpose lossless
 compression algorithm for use with a wide variety of data types. Its
 encoding method is very efficient, providing compression for strings
 as short as two octets in length.

 The LZS algorithm uses a sliding window of 2,048 bytes. During
 compression, redundant sequences of data are replaced with tokens
 that represent those sequences. During decompression, the original
 sequences are substituted for the tokens in such a way that the
 original data is exactly recovered. LZS differs from lossy
 compression algorithms, such as those often used for video
 compression, that do not exactly reproduce the original data. The
 details of LZS compression can be found in section 3.5 below.

Friend Informational [Page 4]

RFC 3943 TLS Compression Using LZS November 2004

3.2. LZS Compression History and Record Processing

 This standard specifies "stateful" compression -- that is,
 maintaining the compression history between records within a
 particular TLS compression session. Within each separate compression
 history, the LZS CompressionMethod can maintain compression history
 information when compressing and decompressing record payloads.
 Stateful compression provides a higher compression ratio to be
 achieved on the data stream, as compared to stateless compression
 (resetting the compression history between every record),
 particularly for small records.

 Stateful compression requires both a reliable link and sequenced
 record delivery to ensure that all records can be decompressed in the
 same order they were compressed. Since TLS and lower-layer protocols
 provide reliable, sequenced record delivery, compression history
 information MAY be maintained and exploited when the LZS
 CompressionMethod is used.

 Furthermore, there MUST be a separate LZS compression history
 associated with each open TLS session. This not only provides
 enhanced security (no potential information leakage between sessions
 via a shared compression history), but also enables superior
 compression ratio (bit bandwidth on the connection) across all open
 TLS sessions with compression. A shared history would require
 resetting the compression (and decompression) history when switching
 between TLS sessions, and a single history implementation would
 require resetting the compression (and decompression) history between
 each record.

 The sender MUST reset the compression history prior to compressing
 the first TLS record of a TLS session after TLS handshake completes.
 It is advantageous for the sender to maintain the compression history
 for all subsequent records processed during the TLS session. This
 results in the greatest compression ratio for a given data set. In
 either case, this compression history MUST NOT be used for any other
 open TLS session, to ensure privacy between TLS sessions.

 The sender MUST "flush" the compressor each time it transmits a
 compressed record. Flushing means that all data going into the
 compressor is included in the output, i.e., no data is retained in
 the hope of achieving better compression. Flushing ensures that each
 compressed record payload can be decompressed completely. Flushing is
 necessary to prevent a record’s data from spilling over into a later
 record. This is important for synchronizing compressed data with the
 authenticated and encrypted data in a TLS record. Flushing is
 handled automatically in most LZS implementations.

Friend Informational [Page 5]

RFC 3943 TLS Compression Using LZS November 2004

 When the TLS session terminates, the implementation SHOULD dispose of
 the memory resources associated with the related TLS compression
 history. That is, the compression history SHOULD be handled as the
 TLS key material is handled.

 The LZS CompressionMethod also features "decompressing" uncompressed
 data in order to maintain the history if the "compressed" data
 actually expanded. The LZS CompressionMethod record format
 facilitates identifying whether records contain compressed or
 uncompressed data. The LZS decoding process accommodates
 decompressing either compressed or uncompressed data.

3.3. LZS Compressed Record Format

 Prior to compression, the uncompressed data (TLSPlaintext.fragment)
 is composed of a plaintext TLS record. After compression, the
 compressed data (TLSCompressed.fragment) is composed of an 8-bit
 TLSComp header followed by the compressed (or uncompressed) data.

3.4. TLSComp Header Format

 The one-octet header has the following structure:

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | Flags |
 | |
 +-+-+-+-+-+-+-+-+

3.4.1. Flags

 The format of the 8-bit Flags TLSComp field is as follows:

 0 1 2 3 4 5 6 7
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | Res | Res | Res | Res | Res | Res | RST | C/U |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 Res-Reserved

 Reserved for future use. MUST be set to zero. MUST be ignored by
 the receiving node.

Friend Informational [Page 6]

RFC 3943 TLS Compression Using LZS November 2004

 RST-Reset Compression History

 The RST bit is used to inform the decompressing peer that the
 compression history in this TLS session was reset prior to the
 data contained in this TLS record being compressed. When the RST
 bit is set to "1", a compression history reset is performed; when
 RST is set to "0", a compression history reset is not performed.

 This bit MUST be set to a value of "1" for the first compressed
 TLS transmitted record of a TLS session. This bit may also be
 used by the transmitter for other exception cases when the
 compression history must be reset.

 C/U-Compressed/Uncompressed Bit

 The C/U indicates whether the data field contains compressed or
 uncompressed data. A value of 1 indicates compressed data (often
 referred to as a compressed record), and a value of 0 indicates
 uncompressed data (or an uncompressed record).

3.5. LZS Compression Encoding Format

 The LZS compression method, encoding format, and application examples
 are described in RFC 1967 [6], RFC 1974 [5], and RFC 2395 [4].

 Some implementations of LZS allow the sending compressor to select
 from among several options to provide varying compression ratios,
 processing speeds, and memory requirements. Other implementations of
 LZS provide optimal compression ratio at byte-per-clock speeds.

 The receiving LZS decompressor automatically adjusts to the settings
 selected by the sender. Also, receiving LZS decompressors will
 update the decompression history with uncompressed data. This
 facilitates never obtaining less than a 1:1 compression ratio in the
 session and never transmitting with expanded data.

 The input to the payload compression algorithm is TLSPlaintext data
 destined to an active TLS session with compression negotiated. The
 output of the algorithm is a new (and hopefully smaller)
 TLSCompressed record. The output payload contains the input
 payload’s data in either compressed or uncompressed format. The
 input and output payloads are each an integral number of bytes in
 length.

 The output payload is always prepended with the TLSComp header. If
 the uncompressed form is used, the output payload is identical to the
 input payload, and the TLSComp header reflects uncompressed data.

Friend Informational [Page 7]

RFC 3943 TLS Compression Using LZS November 2004

 If the compressed form is used, encoded as defined in ANSI X3.241
 [7], and the TLSComp header reflects compressed data. The LZS
 encoded format is repeated here for informational purposes ONLY.

 <Compressed Stream> := [<Compressed String>*] <End Marker>
 <Compressed String> := 0 <Raw Byte> | 1 <Compressed Bytes>

 <Raw Byte> := (8-bit byte)
 <Compressed Bytes> := <Offset> <Length>

 <Offset> := 1 | (7-bit offset)
 0 (11-bit offset)
 <End Marker> := 110000000
 := 1 | 0

 <Length> :=
 00 = 2 1111 0110 = 14
 01 = 3 1111 0111 = 15
 10 = 4 1111 1000 = 16
 1100 = 5 1111 1001 = 17
 1101 = 6 1111 1010 = 18
 1110 = 7 1111 1011 = 19
 1111 0000 = 8 1111 1100 = 20
 1111 0001 = 9 1111 1101 = 21
 1111 0010 = 10 1111 1110 = 22
 1111 0011 = 11 1111 1111 0000 = 23
 1111 0100 = 12 1111 1111 0001 = 24
 1111 0101 = 13 ...

3.6. Padding

 A datagram payload compressed with LZS always ends with the last
 compressed data byte (also known as the <end marker>), which is used
 to disambiguate padding. This allows trailing bits, as well as
 bytes, to be considered padding.

 The size of a compressed payload MUST be in whole octet units.

4. Sending Compressed Datagrams

 All TLS records processed with a TLS session state that includes LZS
 compression are processed as follows. The reliable and efficient
 transport of LZS compressed records in the TLS session depends on the
 following processes.

Friend Informational [Page 8]

RFC 3943 TLS Compression Using LZS November 2004

4.1. Transmitter Process

 The compression operation results in either compressed or
 uncompressed data. When a TLS record is received, it is assigned to
 a particular TLS context that includes the LZS compression history
 buffer. It is processed according to ANSI X3.241-1994 to form
 compressed data or used as is to form uncompressed data. For the
 first record of the session, or for exception conditions, the
 compression history MUST be cleared. In performing the compression
 operation, the compression history MUST be updated when either a
 compressed record or an uncompressed record is produced.
 Uncompressed TLS records MAY be sent at any time. Uncompressed TLS
 records MUST be sent if compression causes enough expansion to make
 the data compression TLS record size exceed the MTU defined in
 section 6.2.2 in RFC 2246. The output of the compression operation
 is placed in the fragment field of the TLSCompressed structure
 (TLSCompressed.fragment).

 The TLSComp header byte is located just prior to the first byte of
 the compressed TLS record in TLSCompressed.fragment. The C/U bit in
 the TLSComp header is set according to whether the data field
 contains compressed or uncompressed data. The RST bit in the TLSComp
 header is set to "1" if the compression history was reset prior to
 compressing the TLSplaintext.fragment that is composed of a
 TLSCompressed.fragment. Uncompressed data MUST be transmitted (and
 the C/U bit set to 0) if the "compressed" (expanded) data exceeded
 17K bytes.

4.2. Receiver Process

 Prior to decompressing the first compressed TLS record in the TLS
 session, the receiver MUST reset the decompression history.
 Subsequent records are decompressed in the order received. The
 receiver decompresses the Payload Data field according to the
 encoding specified in section 3.5 above.

 If the received datagram is not compressed, the receiver does not
 need to perform decompression processing, and the Payload Data field
 of the datagram is ready for processing by the next protocol layer.

 After a TLS record is received from the peer and decrypted, the RST
 and C/U bits MUST be checked.

 If the C/U bit is set to "1", the resulting compressed data block
 MUST be decompressed according to section 3.5 above.

 If the C/U bit is set to "0", the specified decompression history
 MUST be updated with the received uncompressed data.

Friend Informational [Page 9]

RFC 3943 TLS Compression Using LZS November 2004

 If the RST bit is set to "1", the receiving decompression history MAY
 be reset to an initial state prior to decompressing the TLS record.
 (However, due to the characteristics of the Hifn LZS algorithm, a
 decompression history reset is not required). After reset, any
 compressed or uncompressed data contained in the record is processed.

4.3. Anti-expansion Mechanism

 During compression, there are two workable options for handling
 records that expand:

 1) Send the expanded data (as long as TLSCompressed.length is 17K or
 less) and maintain the history, thus allowing loss of current
 bandwidth but preserving future bandwidth on the link.

 2) Send the uncompressed data and do not clear the compression
 history; the decompressor will update its history, thus conserving
 the current bandwidth and future bandwidth on the link.

 The second option is the preferred option and SHOULD be implemented.

 There is a third option:

 3) Send the uncompressed data and clear the history, thus conserving
 current bandwidth but allowing possible loss of future bandwidth
 on the link.

 This option SHOULD NOT be implemented.

5. Internationalization Considerations

 The compression method identifiers specified in this document are
 machine-readable numbers. As such, issues of human
 internationalization and localization are not introduced.

6. IANA Considerations

 Section 2 of RFC 3749 [3] describes a registry of compression method
 identifiers to be maintained by the IANA and to be assigned within
 three zones.

 IANA has assigned an identifier for the LZS compression method from
 the RFC 2434 Specification Required IANA pool, as described in
 sections 2 and 5 of RFC 3749 [3].

 The IANA-assigned compression method identifier for LZS is 64 decimal
 (0x40).

Friend Informational [Page 10]

RFC 3943 TLS Compression Using LZS November 2004

7. Security Considerations

 This document does not introduce any topics that alter the threat
 model addressed by TLS. The security considerations described
 throughout RFC 2246 [2] apply here as well.

 However, combining compression with encryption can sometimes reveal
 information that would not have been revealed without compression.
 Data that is the same length before compression might be a different
 length after compression, so adversaries that observe the length of
 the compressed data might be able to derive information about the
 corresponding uncompressed data. Some symmetric encryption
 ciphersuites do not hide the length of symmetrically encrypted data
 at all. Others hide it to some extent but not fully. For example,
 ciphersuites that use stream cipher encryption without padding do not
 hide length at all; ciphersuites that use Cipher Block Chaining (CBC)
 encryption with padding provide some length hiding, depending on how
 the amount of padding is chosen. Use of TLS compression SHOULD take
 into account that the length of compressed data may leak more
 information than the length of the original uncompressed data.

 Another security issue to be aware of is that the LZS compression
 history contains plaintext. In order to prevent any kind of
 information leakage outside the system, when a TLS session with
 compression terminates, the implementation SHOULD treat the
 compression history as it does plaintext -- that is, care should be
 taken not to reveal the compression history in any form or to use it
 again. This is described in sections 2.2 and 3.2 above.

 This information leakage concept can be extended to the situation of
 sharing a single compression history across more than one TLS
 session, as addressed in section 2.2 above.

 Other security issues are discussed in RFC 3749 [3].

8. Acknowledgements

 The concepts described in this document were derived from RFC 1967
 [6], RFC 1974 [5], RFC 2395 [4], and RFC 3749 [3]. The author
 acknowledges the contributions of Scott Hollenbeck, Douglas Whiting,
 and Russell Dietz, and help from Steve Bellovin, Russ Housley, and
 Eric Rescorla.

Friend Informational [Page 11]

RFC 3943 TLS Compression Using LZS November 2004

9. References

9.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999.

 [3] Hollenbeck, S. "Transport Layer Security Protocol Compression
 Methods", RFC 3749, May 2004.

9.2. Informative References

 [4] Friend, R. and R. Monsour, "IP Payload Compression Using LZS",
 RFC 2395, December 1998.

 [5] Friend, R. and W. Simpson, "PPP Stac LZS Compression Protocol",
 RFC 1974, August 1996.

 [6] Schneider, K. and R. Friend, "PPP LZS-DCP Compression Protocol
 (LZS-DCP)", RFC 1967, August 1996.

 [7] American National Standards Institute, Inc., "Data Compression
 Method for Information Systems," ANSI X3.241-1994, August 1994.

 [8] Lempel, A. and J. Ziv, "A Universal Algorithm for Sequential
 Data Compression", IEEE Transactions On Information Theory, Vol.
 IT-23, No. 3, September 1977.

Author’s Address

 Robert Friend
 Hifn
 5973 Avenida Encinas
 Carlsbad, CA 92008
 US

 EMail: rfriend@hifn.com

Friend Informational [Page 12]

RFC 3943 TLS Compression Using LZS November 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and at www.rfc-editor.org, and except as set
 forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the ISOC’s procedures with respect to rights in ISOC Documents can
 be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Friend Informational [Page 13]

