
Network Working Group J. Strassner
Request for Comments: 3703 Intelliden Corporation
Category: Standards Track B. Moore
 IBM Corporation
 R. Moats
 Lemur Networks, Inc.
 E. Ellesson
 February 2004

 Policy Core Lightweight Directory Access Protocol (LDAP) Schema

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This document defines a mapping of the Policy Core Information Model
 to a form that can be implemented in a directory that uses
 Lightweight Directory Access Protocol (LDAP) as its access protocol.
 This model defines two hierarchies of object classes: structural
 classes representing information for representing and controlling
 policy data as specified in RFC 3060, and relationship classes that
 indicate how instances of the structural classes are related to each
 other. Classes are also added to the LDAP schema to improve the
 performance of a client’s interactions with an LDAP server when the
 client is retrieving large amounts of policy-related information.
 These classes exist only to optimize LDAP retrievals: there are no
 classes in the information model that correspond to them.

Table of Contents

 1. Introduction ... 2
 2. The Policy Core Information Model 4
 3. Inheritance Hierarchy for the PCLS 5
 4. General Discussion of Mapping the Information Model to LDAP .. 6
 4.1. Summary of Class and Association Mappings 7
 4.2. Usage of DIT Content and Structure Rules and Name Forms. 9
 4.3. Naming Attributes in the PCLS 10

Strassner, et al. Standards Track [Page 1]

RFC 3703 Policy Core LDAP Schema February 2004

 4.4. Rule-Specific and Reusable Conditions and Actions 11
 4.5. Location and Retrieval of Policy Objects in the
 Directory .. 16
 4.5.1. Aliases and Other DIT-Optimization Techniques .. 19
 5. Class Definitions .. 19
 5.1. The Abstract Class "pcimPolicy" 21
 5.2. The Three Policy Group Classes 22
 5.3. The Three Policy Rule Classes 23
 5.4. The Class pcimRuleConditionAssociation 30
 5.5. The Class pcimRuleValidityAssociation 32
 5.6. The Class pcimRuleActionAssociation 34
 5.7. The Auxiliary Class pcimConditionAuxClass 36
 5.8. The Auxiliary Class pcimTPCAuxClass 36
 5.9. The Auxiliary Class pcimConditionVendorAuxClass 40
 5.10. The Auxiliary Class pcimActionAuxClass 41
 5.11. The Auxiliary Class pcimActionVendorAuxClass 42
 5.12. The Class pcimPolicyInstance 43
 5.13. The Auxiliary Class pcimElementAuxClass 44
 5.14. The Three Policy Repository Classes 45
 5.15. The Auxiliary Class pcimSubtreesPtrAuxClass 46
 5.16. The Auxiliary Class pcimGroupContainmentAuxClass 48
 5.17. The Auxiliary Class pcimRuleContainmentAuxClass 49
 6. Extending the Classes Defined in This Document 50
 6.1. Subclassing pcimConditionAuxClass and pcimActionAuxClass 50
 6.2. Using the Vendor Policy Attributes 50
 6.3. Using Time Validity Periods 51
 7. Security Considerations 51
 8. IANA Considerations .. 53
 8.1. Object Identifiers 53
 8.2. Object Identifier Descriptors 53
 9. Acknowledgments .. 56
 10. Appendix: Constructing the Value of orderedCIMKeys 57
 11. References ... 58
 11.1. Normative References 58
 11.2. Informative References 59
 12. Authors’ Addresses ... 60
 13. Full Copyright Statement 61

1. Introduction

 This document takes as its starting point the object-oriented
 information model for representing information for representing and
 controlling policy data as specified in [1]. Lightweight Directory
 Access Protocol (LDAP) [2] implementers, please note that the use of
 the term "policy" in this document does not refer to the use of the
 term "policy" as defined in X.501 [4]. Rather, the use of the term
 "policy" throughout this document is defined as follows:

Strassner, et al. Standards Track [Page 2]

RFC 3703 Policy Core LDAP Schema February 2004

 Policy is defined as a set of rules to administer, manage, and
 control access to network resources.

 This work is currently under joint development in the IETF’s Policy
 Framework working group and in the Policy working group of the
 Distributed Management Task Force (DMTF). This model defines two
 hierarchies of object classes: structural classes representing policy
 information and control of policies, and relationship classes that
 indicate how instances of the structural classes are related to each
 other. In general, both of these class hierarchies will need to be
 mapped to a particular data store.

 This document defines the mapping of these information model classes
 to a directory that uses LDAP as its access protocol. Two types of
 mappings are involved:

 - For the structural classes in the information model, the
 mapping is basically one-for-one: information model classes map
 to LDAP classes, information model properties map to LDAP
 attributes.

 - For the relationship classes in the information model,
 different mappings are possible. In this document, the Policy
 Core Information Model’s (PCIM’s) relationship classes and
 their properties are mapped in three ways: to LDAP auxiliary
 classes, to attributes representing distinguished name (DN)
 references, and to superior-subordinate relationships in the
 Directory Information Tree (DIT).

 Implementations that use an LDAP directory as their policy repository
 and want to implement policy information according to RFC 3060 [1]
 SHALL use the LDAP schema defined in this document, or a schema that
 subclasses from the schema defined in this document. The use of the
 information model defined in reference [1] as the starting point
 enables the inheritance and the relationship class hierarchies to be
 extensible, such that other types of policy repositories, such as
 relational databases, can also use this information.

 This document fits into the overall framework for representing,
 deploying, and managing policies being developed by the Policy
 Framework Working Group.

 The LDAP schema described in this document uses the prefix "pcim" to
 identify its classes and attributes. It consists of ten very general
 classes: pcimPolicy (an abstract class), three policy group classes
 (pcimGroup, pcimGroupAuxClass, and pcimGroupInstance), three policy
 rule classes (pcimRule, pcimRuleAuxClass, and pcimRuleInstance), and
 three special auxiliary classes (pcimConditionAuxClass,

Strassner, et al. Standards Track [Page 3]

RFC 3703 Policy Core LDAP Schema February 2004

 pcimTPCAuxClass, and pcimActionAuxClass). (Note that the
 PolicyTimePeriodCondition auxiliary class defined in [1] would
 normally have been named pcimTimePeriodConditionAuxClass, but this
 name is too long for some directories. Therefore, we have
 abbreviated this name to be pcimTPCAuxClass).

 The mapping for the PCIM classes pcimGroup and pcimRule is designed
 to be as flexible as possible. Three classes are defined for these
 two PCIM classes. First, an abstract superclass is defined that
 contains all required properties of each PCIM class. Then, both an
 auxiliary class as well as a structural class are derived from the
 abstract superclass. This provides maximum flexibility for the
 developer.

 The schema also contains two less general classes:
 pcimConditionVendorAuxClass and pcimActionVendorAuxClass. To achieve
 the mapping of the information model’s relationships, the schema also
 contains two auxiliary classes: pcimGroupContainmentAuxClass and
 pcimRuleContainmentAuxClass. Capturing the distinction between
 rule-specific and reusable policy conditions and policy actions
 introduces seven other classes: pcimRuleConditionAssociation,
 pcimRuleValidityAssociation, pcimRuleActionAssociation,
 pcimPolicyInstance, and three policy repository classes
 (pcimRepository, pcimRepositoryAuxClass, and pcimRepositoryInstance).
 Finally, the schema includes two classes (pcimSubtreesPtrAuxClass and
 pcimElementAuxClass) for optimizing LDAP retrievals. In all, the
 schema contains 23 classes.

 Within the context of this document, the term "PCLS" (Policy Core
 LDAP Schema) is used to refer to the LDAP class definitions that this
 document contains. The term "PCIM" refers to classes defined in [1].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [10].

2. The Policy Core Information Model

 This document contains an LDAP schema representing the classes
 defined in the companion document "Policy Core Information
 Model -- Version 1 Specification" [1]. Other documents may
 subsequently be produced, with mappings of this same PCIM to other
 storage technologies. Since the detailed semantics of the PCIM
 classes appear only in [1], that document is a prerequisite for
 reading and understanding this document.

Strassner, et al. Standards Track [Page 4]

RFC 3703 Policy Core LDAP Schema February 2004

3. Inheritance Hierarchy for the PCLS

 The following diagram illustrates the class hierarchy for the LDAP
 Classes defined in this document:

 top
 |
 +--dlm1ManagedElement (abstract)
 | |
 | +--pcimPolicy (abstract)
 | | |
 | | +--pcimGroup (abstract)
 | | | |
 | | | +--pcimGroupAuxClass (auxiliary)
 | | | |
 | | | +--pcimGroupInstance (structural)
 | | |
 | | +--pcimRule (abstract)
 | | | |
 | | | +--pcimRuleAuxClass (auxiliary)
 | | | |
 | | | +--pcimRuleInstance (structural)
 | | |
 | | +--pcimRuleConditionAssociation (structural)
 | | |
 | | +--pcimRuleValidityAssociation (structural)
 | | |
 | | +--pcimRuleActionAssociation (structural)
 | | |
 | | +--pcimPolicyInstance (structural)
 | | |
 | | +--pcimElementAuxClass (auxiliary)
 | |
 | +--dlm1ManagedSystemElement (abstract)
 | |
 | +--dlm1LogicalElement (abstract)
 | |
 | +--dlm1System (abstract)
 | |
 | +--dlm1AdminDomain (abstract)
 | |
 | +--pcimRepository (abstract)
 | |
 | +--pcimRepositoryAuxClass (auxiliary)

Strassner, et al. Standards Track [Page 5]

RFC 3703 Policy Core LDAP Schema February 2004

 top
 | |
 | +--pcimRepositoryInstance
 | (structural)
 |
 +--pcimConditionAuxClass (auxiliary)
 | |
 | +---pcimTPCAuxClass (auxiliary)
 | |
 | +---pcimConditionVendorAuxClass (auxiliary)
 |
 +--pcimActionAuxClass (auxiliary)
 | |
 | +---pcimActionVendorAuxClass (auxiliary)
 |
 +--pcimSubtreesPtrAuxClass (auxiliary)
 |
 +--pcimGroupContainmentAuxClass (auxiliary)
 |
 +--pcimRuleContainmentAuxClass (auxiliary)

 Figure 1. LDAP Class Inheritance Hierarchy for the PCLS

4. General Discussion of Mapping the Information Model to LDAP

 The classes described in Section 5 below contain certain
 optimizations for a directory that uses LDAP as its access protocol.
 One example of this is the use of auxiliary classes to represent some
 of the associations defined in the information model. Other data
 stores might need to implement these associations differently. A
 second example is the introduction of classes specifically designed
 to optimize retrieval of large amounts of policy-related data from a
 directory. This section discusses some general topics related to the
 mapping from the information model to LDAP.

 The remainder of this section will discuss the following topics.
 Section 4.1 will discuss the strategy used in mapping the classes and
 associations defined in [1] to a form that can be represented in a
 directory that uses LDAP as its access protocol. Section 4.2
 discusses DIT content and structure rules, as well as name forms.
 Section 4.3 describes the strategy used in defining naming attributes
 for the schema described in Section 5 of this document. Section 4.4
 defines the strategy recommended for locating and retrieving
 PCIM-derived objects in the directory.

Strassner, et al. Standards Track [Page 6]

RFC 3703 Policy Core LDAP Schema February 2004

4.1. Summary of Class and Association Mappings

 Fifteen of the classes in the PCLS come directly from the nine
 corresponding classes in the information model. Note that names of
 classes begin with an upper case character in the information model
 (although for CIM in particular, case is not significant in class and
 property names), but with a lower case character in LDAP. This is
 because although LDAP doesn’t care, X.500 doesn’t allow class names
 to begin with an uppercase character. Note also that the prefix
 "pcim" is used to identify these LDAP classes.

 +---------------------------+-------------------------------+
 | Information Model | LDAP Class(es) |
 +---------------------------+-------------------------------+
 +---------------------------+-------------------------------+
 | Policy | pcimPolicy |
 +---------------------------+-------------------------------+
 | PolicyGroup | pcimGroup |
 | | pcimGroupAuxClass |
 | | pcimGroupInstance |
 +---------------------------+-------------------------------+
 | PolicyRule | pcimRule |
 | | pcimRuleAuxClass |
 | | pcimRuleInstance |
 +---------------------------+-------------------------------+
 | PolicyCondition | pcimConditionAuxClass |
 +---------------------------+-------------------------------+
 | PolicyAction | pcimActionAuxClass |
 +---------------------------+-------------------------------+
 | VendorPolicyCondition | pcimConditionVendorAuxClass |
 +---------------------------+-------------------------------+
 | VendorPolicyAction | pcimActionVendorAuxClass |
 +---------------------------+-------------------------------+
 | PolicyTimePeriodCondition | pcimTPCAuxClass |
 +---------------------------+-------------------------------+
 | PolicyRepository | pcimRepository |
 | | pcimRepositoryAuxClass |
 | | pcimRepositoryInstance |
 +---------------------------+-------------------------------+

 Figure 2. Mapping of Information Model Classes to LDAP

 The associations in the information model map to attributes that
 reference DNs (Distinguished Names) or to Directory Information Tree
 (DIT) containment (i.e., superior-subordinate relationships) in LDAP.
 Two of the attributes that reference DNs appear in auxiliary classes,
 which allow each of them to represent several relationships from the
 information model.

Strassner, et al. Standards Track [Page 7]

RFC 3703 Policy Core LDAP Schema February 2004

+----------------------------------+----------------------------------+
| Information Model Association | LDAP Attribute / Class |
+-----------------------------------+---------------------------------+
+-----------------------------------+---------------------------------+
| PolicyGroupInPolicyGroup | pcimGroupsAuxContainedSet in |
| | pcimGroupContainmentAuxClass |
+-----------------------------------+---------------------------------+
| PolicyRuleInPolicyGroup | pcimRulesAuxContainedSet in |
| | pcimRuleContainmentAuxClass |
+-----------------------------------+---------------------------------+
PolicyConditionInPolicyRule	DIT containment or
	pcimRuleConditionList in
	pcimRule or
	pcimConditionDN in
	pcimRuleConditionAssociation
+-----------------------------------+---------------------------------+	
PolicyActionInPolicyRule	DIT containment or
	pcimRuleActionList in
	pcimRule or
	pcimActionDN in
	pcimRuleActionAssociation
+-----------------------------------+---------------------------------+	
PolicyRuleValidityPeriod	pcimRuleValidityPeriodList
	in pcimRule or (if reusable)
	referenced through the
	pcimTimePeriodConditionDN in
	pcimRuleValidityAssociation
+-----------------------------------+---------------------------------+	
PolicyConditionInPolicyRepository	DIT containment
+-----------------------------------+---------------------------------+	
PolicyActionInPolicyRepository	DIT containment
+-----------------------------------+---------------------------------+	
PolicyRepositoryInPolicyRepository	DIT containment
+-----------------------------------+---------------------------------+

 Figure 3. Mapping of Information Model Associations to LDAP

 Of the remaining classes in the PCLS, two (pcimElementAuxClass and
 pcimSubtreesPtrAuxClass) are included to make navigation through the
 DIT and retrieval of the entries found there more efficient. This
 topic is discussed below in Section 4.5.

 The remaining four classes in the PCLS, pcimRuleConditionAssociation,
 pcimRuleValidityAssociation, pcimRuleActionAssociation, and
 pcimPolicyInstance, are all involved with the representation of
 policy conditions and policy actions in an LDAP directory. This
 topic is discussed below in Section 4.4.

Strassner, et al. Standards Track [Page 8]

RFC 3703 Policy Core LDAP Schema February 2004

4.2. Usage of DIT Content and Structure Rules and Name Forms

 There are three powerful tools that can be used to help define
 schemata. The first, DIT content rules, is a way of defining the
 content of an entry for a structural object class. It can be used to
 specify the following characteristics of the entry:

 - additional mandatory attributes that the entries are required
 to contain
 - additional optional attributes the entries are allowed to
 contain
 - the set of additional auxiliary object classes that these
 entries are allowed to be members of
 - any optional attributes from the structural and auxiliary
 object class definitions that the entries are required to
 preclude

 DIT content rules are NOT mandatory for any structural object class.

 A DIT structure rule, together with a name form, controls the
 placement and naming of an entry within the scope of a subschema.
 Name forms define which attribute type(s) are required and are
 allowed to be used in forming the Relative Distinguished Names (RDNs)
 of entries. DIT structure rules specify which entries are allowed to
 be superior to other entries, and hence control the way that RDNs are
 added together to make DNs.

 A name form specifies the following:

 - the structural object class of the entries named by this name
 form
 - attributes that are required to be used in forming the RDNs of
 these entries
 - attributes that are allowed to be used in forming the RDNs of
 these entries
 - an object identifier to uniquely identify this name form

 Note that name forms can only be specified for structural object
 classes. However, every entry in the DIT must have a name form
 controlling it.

 Unfortunately, current LDAP servers vary quite a lot in their support
 of these features. There are also three crucial implementation
 points that must be followed. First, X.500 use of structure rules
 requires that a structural object class with no superior structure
 rule be a subschema administrative point. This is exactly NOT what
 we want for policy information. Second, when an auxiliary class is
 subclassed, if a content rule exists for the structural class that

Strassner, et al. Standards Track [Page 9]

RFC 3703 Policy Core LDAP Schema February 2004

 the auxiliary class refers to, then that content rule needs to be
 augmented. Finally, most LDAP servers unfortunately do not support
 inheritance of structure and content rules.

 Given these concerns, DIT structure and content rules have been
 removed from the PCLS. This is because, if included, they would be
 normative references and would require OIDs. However, we don’t want
 to lose the insight gained in building the structure and content
 rules of the previous version of the schema. Therefore, we describe
 where such rules could be used in this schema, what they would
 control, and what their effect would be.

4.3. Naming Attributes in the PCLS

 Instances in a directory are identified by distinguished names (DNs),
 which provide the same type of hierarchical organization that a file
 system provides in a computer system. A distinguished name is a
 sequence of RDNs. An RDN provides a unique identifier for an
 instance within the context of its immediate superior, in the same
 way that a filename provides a unique identifier for a file within
 the context of the folder in which it resides.

 To preserve maximum naming flexibility for policy administrators,
 three optional (i.e., "MAY") naming attributes have been defined.
 They are:

 - Each of the structural classes defined in this schema has its
 own unique ("MAY") naming attribute. Since the naming
 attributes are different, a policy administrator can, by using
 these attributes, guarantee that there will be no name
 collisions between instances of different classes, even if the
 same value is assigned to the instances’ respective naming
 attributes.

 - The LDAP attribute cn (corresponding to X.500’s commonName) is
 included as a MAY attribute in the abstract class pcimPolicy,
 and thus by inheritance in all of its subclasses. In X.500,
 commonName typically functions as an RDN attribute, for naming
 instances of many classes (e.g., X.500’s person class).

 - A special attribute is provided for implementations that expect
 to map between native CIM and LDAP representations of policy
 information. This attribute, called orderedCimKeys, is defined
 in the class dlm1ManagedElement [6]. The value of this
 attribute is derived algorithmically from values that are
 already present in a CIM policy instance. The normative
 reference for this algorithm is contained in [6]. See the
 appendix of this document for a description of the algorithm.

Strassner, et al. Standards Track [Page 10]

RFC 3703 Policy Core LDAP Schema February 2004

 Since any of these naming attributes MAY be used for naming an
 instance of a PCLS class, implementations MUST be able to accommodate
 instances named in any of these ways.

 Note that it is recommended that two or more of these attributes
 SHOULD NOT be used together to form a multi-part RDN, since support
 for multi-part RDNs is limited among existing directory
 implementations.

4.4. Rule-Specific and Reusable Conditions and Actions

 The PCIM [1] distinguishes between two types of policy conditions and
 policy actions: those associated with a single policy rule, and
 those that are reusable, in the sense that they may be associated
 with more than one policy rule. While there is no inherent
 functional difference between a rule-specific condition or action and
 a reusable one, there is both a usage, as well as, an implementation
 difference between them.

 Defining a condition or action as reusable vs. rule-specific reflects
 a conscious decision on the part of the administrator in defining how
 they are used. In addition, there are variations that reflect
 implementing rule-specific vs. reusable policy conditions and actions
 and how they are treated in a policy repository. The major
 implementation differences between a rule-specific and a reusable
 condition or action are delineated below:

 1. It is natural for a rule-specific condition or action to be
 removed from the policy repository at the same time the rule is.
 It is just the opposite for reusable conditions and actions.
 This is because the condition or action is conceptually attached
 to the rule in the rule-specific case, whereas it is referenced
 (e.g., pointed at) in the reusable case. The persistence of a
 pcimRepository instance is independent of the persistence of a
 pcimRule instance.
 2. Access permissions for a rule-specific condition or action are
 usually identical to those for the rule itself. On the other
 hand, access permissions of reusable conditions and actions must
 be expressible without reference to a policy rule.
 3. Rule-specific conditions and actions require fewer accesses,
 because the conditions and actions are "attached" to the rule.
 In contrast, reusable conditions and actions require more
 accesses, because each condition or action that is reusable
 requires a separate access.
 4. Rule-specific conditions and actions are designed for use by a
 single rule. As the number of rules that use the same
 rule-specific condition increase, subtle problems are created
 (the most obvious being how to keep the rule-specific conditions

Strassner, et al. Standards Track [Page 11]

RFC 3703 Policy Core LDAP Schema February 2004

 and actions updated to reflect the same value). Reusable
 conditions and actions lend themselves for use by multiple
 independent rules.
 5. Reusable conditions and actions offer an optimization when
 multiple rules are using the same condition or action. This is
 because the reusable condition or action only needs be updated
 once, and by virtue of DN reference, the policy rules will be
 automatically updated.

 The preceding paragraph does not contain an exhaustive list of the
 ways in which reusable and rule-specific conditions should be treated
 differently. Its purpose is merely to justify making a semantic
 distinction between rule-specific and reusable, and then reflecting
 this distinction in the policy repository itself.

 When the policy repository is realized in an LDAP-accessible
 directory, the distinction between rule-specific and reusable
 conditions and actions is realized via placement of auxiliary classes
 and via DIT containment. Figure 4 illustrates a policy rule Rule1
 with one rule-specific condition CA and one rule-specific action AB.

 +-----+
 |Rule1|
 | |
 +-----|- -|-----+
 | +-----+ |
 | * * |
 | * * |
 | **** **** |
 | * * |
 v * * v
 +--------+ +--------+
 | CA+ca | | AB+ab |
 +--------+ +--------+

 +------------------------------+
 |LEGEND: |
 | ***** DIT containment |
 | + auxiliary attachment |
 | ----> DN reference |
 +------------------------------+

 Figure 4 Rule-Specific Policy Conditions and Actions

Strassner, et al. Standards Track [Page 12]

RFC 3703 Policy Core LDAP Schema February 2004

 Because the condition and action are specific to Rule1, the auxiliary
 classes ca and ab that represent them are attached, respectively, to
 the structural classes CA and AB. These structural classes represent
 not the condition ca and action ab themselves, but rather the
 associations between Rule1 and ca, and between Rule1 and ab.

 As Figure 4 illustrates, Rule1 contains DN references to the
 structural classes CA and AB that appear below it in the DIT. At
 first glance it might appear that these DN references are
 unnecessary, since a subtree search below Rule1 would find all of the
 structural classes representing the associations between Rule1 and
 its conditions and actions. Relying only on a subtree search,
 though, runs the risk of missing conditions or actions that should
 have appeared in the subtree, but for some reason did not, or of
 finding conditions or actions that were inadvertently placed in the
 subtree, or that should have been removed from the subtree, but for
 some reason were not. Implementation experience has suggested that
 many (but not all) of these risks are eliminated.

 However, it must be noted that this comes at a price. The use of DN
 references, as shown in Figure 4 above, thwarts inheritance of access
 control information as well as existence dependency information. It
 also is subject to referential integrity considerations. Therefore,
 it is being included as an option for the designer.

 Figure 5 illustrates a second way of representing rule-specific
 conditions and actions in an LDAP-accessible directory: attachment of
 the auxiliary classes directly to the instance representing the
 policy rule. When all of the conditions and actions are attached to
 a policy rule in this way, the rule is termed a "simple" policy rule.
 When conditions and actions are not attached directly to a policy
 rule, the rule is termed a "complex" policy rule.

 +-----------+
 |Rule1+ca+ab|
 | |
 +-----------+

 +------------------------------+
 |LEGEND: |
 | + auxiliary attachment |
 +------------------------------+

 Figure 5. A Simple Policy Rule

Strassner, et al. Standards Track [Page 13]

RFC 3703 Policy Core LDAP Schema February 2004

 The simple/complex distinction for a policy rule is not all or
 nothing. A policy rule may have its conditions attached to itself
 and its actions attached to other entries, or it may have its actions
 attached to itself and its conditions attached to other entries.
 However, it SHALL NOT have either its conditions or its actions
 attached both to itself and to other entries, with one exception: a
 policy rule may reference its validity periods with the
 pcimRuleValidityPeriodList attribute, but have its other conditions
 attached to itself.

 The tradeoffs between simple and complex policy rules are between the
 efficiency of simple rules and the flexibility and greater potential
 for reuse of complex rules. With a simple policy rule, the semantic
 options are limited:

 - All conditions are ANDed together. This combination can be
 represented in two ways in the Disjunctive Normal Form (DNF)/
 Conjunctive Normal Form (CNF) (please see [1] for definitions of
 these terms) expressions characteristic of policy conditions: as
 a DNF expression with a single AND group, or as a CNF expression
 with multiple single-condition OR groups. The first of these is
 arbitrarily chosen as the representation for the ANDed conditions
 in a simple policy rule.

 - If multiple actions are included, no order can be specified for
 them.

 If a policy administrator needs to combine conditions in some other
 way, or if there is a set of actions that must be ordered, then the
 only option is to use a complex policy rule.

 Finally, Figure 6 illustrates the same policy rule Rule1, but this
 time its condition and action are reusable. The association classes
 CA and AB are still present, and they are still DIT contained under
 Rule1. But rather than having the auxiliary classes ca and ab
 attached directly to the association classes CA and AB, each now
 contains DN references to other entries to which these auxiliary
 classes are attached. These other entries, CIA and AIB, are DIT
 contained under RepositoryX, which is an instance of the class
 pcimRepository. Because they are named under an instance of
 pcimRepository, ca and ab are clearly identified as reusable.

Strassner, et al. Standards Track [Page 14]

RFC 3703 Policy Core LDAP Schema February 2004

 +-----+ +-------------+
 |Rule1| | RepositoryX |
 +-|- -|--+ | |
 | +-----+ | +-------------+
 | * * | * *
 | * * | * *
 | *** **** | * *
 | * * v * *
 | * +---+ * *
 | * |AB | +------+ *
 v * | -|-------->|AIB+ab| *
 +---+ +---+ +------+ *
 |CA | +------+
 | -|------------------------>|CIA+ca|
 +---+ +------+

 +------------------------------+
 |LEGEND: |
 | ***** DIT containment |
 | + auxiliary attachment |
 | ----> DN reference |
 +------------------------------+

 Figure 6. Reusable Policy Conditions and Actions

 The classes pcimConditionAuxClass and pcimActionAuxClass do not
 themselves represent actual conditions and actions: these are
 introduced in their subclasses. What pcimConditionAuxClass and
 pcimActionAuxClass do introduce are the semantics of being a policy
 condition or a policy action. These are the semantics that all the
 subclasses of pcimConditionAuxClass and pcimActionAuxClass inherit.
 Among these semantics are those of representing either a
 rule-specific or a reusable policy condition or policy action.

 In order to preserve the ability to represent a rule-specific or a
 reusable condition or action, as well as a simple policy rule, all
 the subclasses of pcimConditionAuxClass and pcimActionAuxClass MUST
 also be auxiliary classes.

Strassner, et al. Standards Track [Page 15]

RFC 3703 Policy Core LDAP Schema February 2004

4.5. Location and Retrieval of Policy Objects in the Directory

 When a Policy Decision Point (PDP) goes to an LDAP directory to
 retrieve the policy object instances relevant to the Policy
 Enforcement Points (PEPs) it serves, it is faced with two related
 problems:

 - How does it locate and retrieve the directory entries that apply
 to its PEPs? These entries may include instances of the PCLS
 classes, instances of domain-specific subclasses of these
 classes, and instances of other classes modeling such resources
 as user groups, interfaces, and address ranges.

 - How does it retrieve the directory entries it needs in an
 efficient manner, so that retrieval of policy information from
 the directory does not become a roadblock to scalability? There
 are two facets to this efficiency: retrieving only the relevant
 directory entries, and retrieving these entries using as few LDAP
 calls as possible.

 The placement of objects in the Directory Information Tree (DIT)
 involves considerations other than how the policy-related objects
 will be retrieved by a PDP. Consequently, all that the PCLS can do
 is to provide a "toolkit" of classes to assist the policy
 administrator as the DIT is being designed and built. A PDP SHOULD
 be able to take advantage of any tools that the policy administrator
 is able to build into the DIT, but it MUST be able to use a less
 efficient means of retrieval if that is all it has available to it.

 The basic idea behind the LDAP optimization classes is a simple one:
 make it possible for a PDP to retrieve all the policy-related objects
 it needs, and only those objects, using as few LDAP calls as
 possible. An important assumption underlying this approach is that
 the policy administrator has sufficient control over the underlying
 DIT structure to define subtrees for storing policy information. If
 the policy administrator does not have this level of control over DIT
 structure, a PDP can still retrieve the policy-related objects it
 needs individually. But it will require more LDAP access operations
 to do the retrieval in this way. Figure 7 illustrates how LDAP
 optimization is accomplished.

Strassner, et al. Standards Track [Page 16]

RFC 3703 Policy Core LDAP Schema February 2004

 +-----+
 ---------------->| A |
 DN reference to | | DN references to subtrees +---+
 starting object +-----+ +-------------------------->| C |
 | o--+----+ +---+ +---+
 | o--+------------->| B | / \
 +-----+ +---+ / \
 / \ / \ / ... \
 / \ / \
 / \ / ... \

 Figure 7. Using the pcimSubtreesPtrAuxClass to Locate Policies

 The PDP is configured initially with a DN reference to some entry in
 the DIT. The structural class of this entry is not important; the
 PDP is interested only in the pcimSubtreesPtrAuxClass attached to it.
 This auxiliary class contains a multi-valued attribute with DN
 references to objects that anchor subtrees containing policy-related
 objects of interest to the PDP. Since pcimSubtreesPtrAuxClass is an
 auxiliary class, it can be attached to an entry that the PDP would
 need to access anyway - perhaps an entry containing initial
 configuration settings for the PDP, or for a PEP that uses the PDP.

 Once it has retrieved the DN references, the PDP will direct to each
 of the objects identified by them an LDAP request that all entries in
 its subtree be evaluated against the selection criteria specified in
 the request. The LDAP-enabled directory then returns all entries in
 that subtree that satisfy the specified criteria.

 The selection criteria always specify that object class="pcimPolicy".
 Since all classes representing policy rules, policy conditions, and
 policy actions, both in the PCLS and in any domain-specific schema
 derived from it, are subclasses of the abstract class policy, this
 criterion evaluates to TRUE for all instances of these classes. To
 accommodate special cases where a PDP needs to retrieve objects that
 are not inherently policy-related (for example, an IP address range
 object referenced by a subclass of pcimActionAuxClass representing
 the DHCP action "assign from this address range"), the auxiliary
 class pcimElementAuxClass can be used to "tag" an entry, so that it
 will be found by the selection criterion "object class=pcimPolicy".

 The approach described in the preceding paragraph will not work for
 certain directory implementations, because these implementations do
 not support matching of auxiliary classes in the objectClass
 attribute. For environments where these implementations are expected
 to be present, the "tagging" of entries as relevant to policy can be

Strassner, et al. Standards Track [Page 17]

RFC 3703 Policy Core LDAP Schema February 2004

 accomplished by inserting the special value "POLICY" into the list of
 values contained in the pcimKeywords attribute (provided by the
 pcimPolicy class).

 If a PDP needs only a subset of the policy-related objects in the
 indicated subtrees, then it can be configured with additional
 selection criteria based on the pcimKeywords attribute defined in the
 pcimPolicy class. This attribute supports both standardized and
 administrator- defined values. For example, a PDP could be
 configured to request only those policy-related objects containing
 the keywords "DHCP" and "Eastern US".

 To optimize what is expected to be a typical case, the initial
 request from the client includes not only the object to which its
 "seed" DN references, but also the subtree contained under this
 object. The filter for searching this subtree is whatever the client
 is going to use later to search the other subtrees: object
 class="pcimPolicy" or the presence of the keyword "POLICY", and/or
 presence of a more specific value of pcimKeywords (e.g., "QoS Edge
 Policy").

 Returning to the example in Figure 7, we see that in the best case, a
 PDP can get all the policy-related objects it needs, and only those
 objects, with exactly three LDAP requests: one to its starting
 object A to get the references to B and C, as well as the
 policy-related objects it needs from the subtree under A, and then
 one each to B and C to get all the policy-related objects that pass
 the selection criteria with which it was configured. Once it has
 retrieved all of these objects, the PDP can then traverse their
 various DN references locally to understand the semantic
 relationships among them. The PDP should also be prepared to find a
 reference to another subtree attached to any of the objects it
 retrieves, and to follow this reference first, before it follows any
 of the semantically significant references it has received. This
 recursion permits a structured approach to identifying related
 policies. In Figure 7, for example, if the subtree under B includes
 departmental policies and the one under C includes divisional
 policies, then there might be a reference from the subtree under C to
 an object D that roots the subtree of corporate-level policies.

 A PDP SHOULD understand the pcimSubtreesPtrAuxClass class, SHOULD be
 capable of retrieving and processing the entries in the subtrees it
 references, and SHOULD be capable of doing all of this recursively.
 The same requirements apply to any other entity needing to retrieve
 policy information from the directory. Thus, a Policy Management
 Tool that retrieves policy entries from the directory in order to
 perform validation and conflict detection SHOULD also understand and
 be capable of using the pcimSubtreesPtrAuxClass. All of these

Strassner, et al. Standards Track [Page 18]

RFC 3703 Policy Core LDAP Schema February 2004

 requirements are "SHOULD"s rather than "MUST"s because an LDAP client
 that doesn’t implement them can still access and retrieve the
 directory entries it needs. The process of doing so will just be
 less efficient than it would have been if the client had implemented
 these optimizations.

 When it is serving as a tool for creating policy entries in the
 directory, a Policy Management Tool SHOULD support creation of
 pcimSubtreesPtrAuxClass entries and their references to object
 instances.

4.5.1. Aliases and Other DIT-Optimization Techniques

 Additional flexibility in DIT structure is available to the policy
 administrator via LDAP aliasing and other techniques. Previous
 versions of this document have used aliases. However, because
 aliases are experimental, the use of aliases has been removed from
 this version of this document. This is because the IETF has yet to
 produce a specification on how aliases are represented in the
 directory or how server implementations are to process aliases.

5. Class Definitions

 The semantics for the policy information classes that are to be
 mapped directly from the information model to an LDAP representation
 are detailed in [1]. Consequently, all that this document presents
 for these classes is the specification for how to do the mapping from
 the information model (which is independent of repository type and
 access protocol) to a form that can be accessed using LDAP. Remember
 that some new classes needed to be created (that were not part of
 [1]) to implement the LDAP mapping. These new LDAP-only classes are
 fully documented in this document.

 The formal language for specifying the classes, attributes, and DIT
 structure and content rules is that defined in reference [3]. If
 your implementation does not support auxiliary class inheritance, you
 will have to list auxiliary classes in content rules explicitly or
 define them in another (implementation-specific) way.

 The following notes apply to this section in its entirety.

 Note 1: in the following definitions, the class and attribute
 definitions follow RFC 2252 [3] but they are line-wrapped to enhance
 human readability.

 Note 2: where applicable, the possibilities for specifying DIT
 structure and content rules are noted. However, care must be taken
 in specifying DIT structure rules. This is because X.501 [4] states

Strassner, et al. Standards Track [Page 19]

RFC 3703 Policy Core LDAP Schema February 2004

 that an entry may only exist in the DIT as a subordinate to another
 superior entry (the superior) if a DIT structure rule exists in the
 governing subschema which:

 1) indicates a name form for the structural object class of the
 subordinate entry, and
 2) either includes the entry’s superior structure rule as a possible
 superior structure rule, or
 3) does not specify a superior structure rule.

 If this last case (3) applies, then the entry is defined to be a
 subschema administrative point. This is not what is desired.
 Therefore, care must be taken in defining structure rules, and in
 particular, they must be locally augmented.

 Note 3: Wherever possible, both an equality and a substring matching
 rule are defined for a particular attribute (as well as an ordering
 match rule to enable sorting of matching results). This provides two
 different choices for the developer for maximum flexibility.

 For example, consider the pcimRoles attribute (section 5.3). Suppose
 that a PEP has reported that it is interested in pcimRules for three
 roles R1, R2, and R3. If the goal is to minimize queries, then the
 PDP can supply three substring filters containing the three role
 names.

 These queries will return all of the pcimRules that apply to the PEP,
 but they may also get some that do not apply (e.g., ones that contain
 one of the roles R1, R2, or R3 and one or more other roles present in
 a role-combination [1]).

 Another strategy would be for the PDP to use only equality filters.
 This approach eliminates the extraneous replies, but it requires the
 PDP to explicitly build the desired role-combinations itself. It
 also requires extra queries. Note that this approach is practical
 only because the role names in a role combination are required to
 appear in alphabetical order.

 Note 4: in the following definitions, note that all LDAP matching
 rules are defined in [3] and in [9]. The corresponding X.500
 matching rules are defined in [8].

 Note 5: some of the following attribute definitions specify
 additional constraints on various data types (e.g., this integer has
 values that are valid from 1..10). Text has been added to instruct
 servers and applications what to do if a value outside of this range

Strassner, et al. Standards Track [Page 20]

RFC 3703 Policy Core LDAP Schema February 2004

 is encountered. In all cases, if a constraint is violated, then the
 policy rule SHOULD be treated as being disabled, meaning that
 execution of the policy rule SHOULD be stopped.

5.1. The Abstract Class pcimPolicy

 The abstract class pcimPolicy is a direct mapping of the abstract
 class Policy from the PCIM. The class value "pcimPolicy" is also
 used as the mechanism for identifying policy-related instances in the
 Directory Information Tree. An instance of any class may be "tagged"
 with this class value by attaching to it the auxiliary class
 pcimElementAuxClass. Since pcimPolicy is derived from the class
 dlm1ManagedElement defined in reference [6], this specification has a
 normative dependency on that element of reference [6].

 The class definition is as follows:

 (1.3.6.1.1.6.1.1 NAME ’pcimPolicy’
 DESC ’An abstract class that is the base class for all classes
 that describe policy-related instances.’
 SUP dlm1ManagedElement
 ABSTRACT
 MAY (cn $ dlmCaption $ dlmDescription $ orderedCimKeys $
 pcimKeywords)
)

 The attribute cn is defined in RFC 2256 [7]. The dlmCaption,
 dlmDescription, and orderedCimKeys attributes are defined in [6].

 The pcimKeywords attribute is a multi-valued attribute that contains
 a set of keywords to assist directory clients in locating the policy
 objects identified by these keywords. It is defined as follows:

 (1.3.6.1.1.6.2.3 NAME ’pcimKeywords’
 DESC ’A set of keywords to assist directory clients in
 locating the policy objects applicable to them.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

Strassner, et al. Standards Track [Page 21]

RFC 3703 Policy Core LDAP Schema February 2004

5.2. The Three Policy Group Classes

 PCIM [1] defines the PolicyGroup class to serve as a generalized
 aggregation mechanism, enabling PolicyRules and/or PolicyGroups to be
 aggregated together. PCLS maps this class into three LDAP classes,
 called pcimGroup, pcimGroupAuxClass, and pcimGroupInstance. This is
 done in order to provide maximum flexibility for the DIT designer.

 The class definitions for the three policy group classes are listed
 below. These class definitions do not include attributes to realize
 the PolicyRuleInPolicyGroup and PolicyGroupInPolicyGroup associations
 from the PCIM. This is because a pcimGroup object refers to
 instances of pcimGroup and pcimRule via, respectively, the attribute
 pcimGroupsAuxContainedSet in the pcimGroupContainmentAuxClass object
 class and the attribute pcimRulesAuxContainedSet in the
 pcimRuleContainmentAuxClass object class.

 To maximize flexibility, the pcimGroup class is defined as abstract.
 The subclass pcimGroupAuxClass provides for auxiliary attachment to
 another entry, while the structural subclass pcimGroupInstance is
 available to represent a policy group as a standalone entry.

 The class definitions are as follows. First, the definition of the
 abstract class pcimGroup:

 (1.3.6.1.1.6.1.2 NAME ’pcimGroup’
 DESC ’A container for a set of related pcimRules and/or
 a set of related pcimGroups.’
 SUP pcimPolicy
 ABSTRACT
 MAY (pcimGroupName)
)

 The one attribute of pcimGroup is pcimGroupName. This attribute is
 used to define a user-friendly name of this policy group, and may be
 used as a naming attribute if desired. It is defined as follows:

 (1.3.6.1.1.6.2.4 NAME ’pcimGroupName’
 DESC ’The user-friendly name of this policy group.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

Strassner, et al. Standards Track [Page 22]

RFC 3703 Policy Core LDAP Schema February 2004

 The two subclasses of pcimGroup are defined as follows. The class
 pcimGroupAuxClass is an auxiliary class that can be used to collect a
 set of related pcimRule and/or pcimGroup classes. It is defined as
 follows:

 (1.3.6.1.1.6.1.3 NAME ’pcimGroupAuxClass’
 DESC ’An auxiliary class that collects a set of related
 pcimRule and/or pcimGroup entries.’
 SUP pcimGroup
 AUXILIARY
)

 The class pcimGroupInstance is a structural class that can be used to
 collect a set of related pcimRule and/or pcimGroup classes. It is
 defined as follows:

 (1.3.6.1.1.6.1.4 NAME ’pcimGroupInstance’
 DESC ’A structural class that collects a set of related
 pcimRule and/or pcimGroup entries.’
 SUP pcimGroup
 STRUCTURAL
)

 A DIT content rule could be written to enable an instance of
 pcimGroupInstance to have attached to it either references to one or
 more policy groups (using pcimGroupContainmentAuxClass) or references
 to one or more policy rules (using pcimRuleContainmentAuxClass).
 This would be used to formalize the semantics of the PolicyGroup
 class [1]. Since these semantics do not include specifying any
 properties of the PolicyGroup class, the content rule would not need
 to specify any attributes.

 Similarly, three separate DIT structure rules could be written, each
 of which would refer to a specific name form that identified one of
 the three possible naming attributes (i.e., pcimGroupName, cn, and
 orderedCIMKeys) for the pcimGroup object class. This structure rule
 SHOULD include a superiorStructureRule (see Note 2 at the beginning
 of section 5). The three name forms referenced by the three
 structure rules would each define one of the three naming attributes.

5.3. The Three Policy Rule Classes

 The information model defines a PolicyRule class to represent the "If
 Condition then Action" semantics associated with processing policy
 information. For maximum flexibility, the PCLS maps this class into
 three LDAP classes.

Strassner, et al. Standards Track [Page 23]

RFC 3703 Policy Core LDAP Schema February 2004

 To maximize flexibility, the pcimRule class is defined as abstract.
 The subclass pcimRuleAuxClass provides for auxiliary attachment to
 another entry, while the structural subclass pcimRuleInstance is
 available to represent a policy rule as a standalone entry.

 The conditions and actions associated with a policy rule are modeled,
 respectively, with auxiliary subclasses of the auxiliary classes
 pcimConditionAuxClass and pcimActionAuxClass. Each of these
 auxiliary subclasses is attached to an instance of one of three
 structural classes. A subclass of pcimConditionAuxClass is attached
 to an instance of pcimRuleInstance, to an instance of
 pcimRuleConditionAssociation, or to an instance of
 pcimPolicyInstance. Similarly, a subclass of pcimActionAuxClass is
 attached to an instance of pcimRuleInstance, to an instance of
 pcimRuleActionAssociation, or to an instance of pcimPolicyInstance.

 The pcimRuleValidityPeriodList attribute (defined below) realizes the
 PolicyRuleValidityPeriod association defined in the PCIM. Since this
 association has no additional properties besides those that tie the
 association to its associated objects, this association can be
 realized by simply using an attribute. Thus, the
 pcimRuleValidityPeriodList attribute is simply a multi-valued
 attribute that provides an unordered set of DN references to one or
 more instances of the pcimTPCAuxClass, indicating when the policy
 rule is scheduled to be active and when it is scheduled to be
 inactive. A policy rule is scheduled to be active if it is active
 according to AT LEAST ONE of the pcimTPCAuxClass instances referenced
 by this attribute.

 The PolicyConditionInPolicyRule and PolicyActionInPolicyRule
 associations, however, do have additional attributes. The
 association PolicyActionInPolicyRule defines an integer attribute to
 sequence the actions, and the association PolicyConditionInPolicyRule
 has both an integer attribute to group the condition terms as well as
 a Boolean property to specify whether a condition is to be negated.

 In the PCLS, these additional association attributes are represented
 as attributes of two classes introduced specifically to model these
 associations. These classes are the pcimRuleConditionAssociation
 class and the pcimRuleActionAssociation class, which are defined in
 Sections 5.4 and 5.5, respectively. Thus, they do not appear as
 attributes of the class pcimRule. Instead, the pcimRuleConditionList
 and pcimRuleActionList attributes can be used to reference these
 classes.

Strassner, et al. Standards Track [Page 24]

RFC 3703 Policy Core LDAP Schema February 2004

 The class definitions for the three pcimRule classes are as follows.

 The abstract class pcimRule is a base class for representing the "If
 Condition then Action" semantics associated with a policy rule. It
 is defined as follows:

 (1.3.6.1.1.6.1.5 NAME ’pcimRule’
 DESC ’The base class for representing the "If Condition
 then Action" semantics associated with a policy rule.’
 SUP pcimPolicy
 ABSTRACT
 MAY (pcimRuleName $ pcimRuleEnabled $
 pcimRuleConditionListType $ pcimRuleConditionList $
 pcimRuleActionList $ pcimRuleValidityPeriodList $
 pcimRuleUsage $ pcimRulePriority $
 pcimRuleMandatory $ pcimRuleSequencedActions $
 pcimRoles)
)

 The PCIM [1] defines seven properties for the PolicyRule class. The
 PCLS defines eleven attributes for the pcimRule class, which is the
 LDAP equivalent of the PolicyRule class. Of these eleven attributes,
 seven are mapped directly from corresponding properties in PCIM’s
 PolicyRule class. The remaining four attributes are a class-specific
 optional naming attribute, and three attributes used to realize the
 three associations that the pcimRule class participates in.

 The pcimRuleName attribute is used as a user-friendly name of this
 policy rule, and can also serve as the class-specific optional naming
 attribute. It is defined as follows:

 (1.3.6.1.1.6.2.5 NAME ’pcimRuleName’
 DESC ’The user-friendly name of this policy rule.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

 The pcimRuleEnabled attribute is an integer enumeration indicating
 whether a policy rule is administratively enabled (value=1),
 administratively disabled (value=2), or enabled for debug (value=3).
 It is defined as follows:

 (1.3.6.1.1.6.2.6 NAME ’pcimRuleEnabled’
 DESC ’An integer indicating whether a policy rule is
 administratively enabled (value=1), disabled

Strassner, et al. Standards Track [Page 25]

RFC 3703 Policy Core LDAP Schema February 2004

 (value=2), or enabled for debug (value=3).’
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
)

 Note: All other values for the pcimRuleEnabled attribute are
 considered errors, and the administrator SHOULD treat this rule as
 being disabled if an invalid value is found.

 The pcimRuleConditionListType attribute is used to indicate whether
 the list of policy conditions associated with this policy rule is in
 disjunctive normal form (DNF, value=1) or conjunctive normal form
 (CNF, value=2). It is defined as follows:

 (1.3.6.1.1.6.2.7 NAME ’pcimRuleConditionListType’
 DESC ’A value of 1 means that this policy rule is in
 disjunctive normal form; a value of 2 means that this
 policy rule is in conjunctive normal form.’
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
)

 Note: any value other than 1 or 2 for the pcimRuleConditionListType
 attribute is considered an error. Administrators SHOULD treat this
 rule as being disabled if an invalid value is found, since it is
 unclear how to structure the condition list.

 The pcimRuleConditionList attribute is a multi-valued attribute that
 is used to realize the policyRuleInPolicyCondition association
 defined in [1]. It contains a set of DNs of
 pcimRuleConditionAssociation entries representing associations
 between this policy rule and its conditions. No order is implied.
 It is defined as follows:

 (1.3.6.1.1.6.2.8 NAME ’pcimRuleConditionList’
 DESC ’Unordered set of DNs of pcimRuleConditionAssociation
 entries representing associations between this policy
 rule and its conditions.’
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

Strassner, et al. Standards Track [Page 26]

RFC 3703 Policy Core LDAP Schema February 2004

 The pcimRuleActionList attribute is a multi-valued attribute that is
 used to realize the policyRuleInPolicyAction association defined in
 [1]. It contains a set of DNs of pcimRuleActionAssociation entries
 representing associations between this policy rule and its actions.
 No order is implied. It is defined as follows:

 (1.3.6.1.1.6.2.9 NAME ’pcimRuleActionList’
 DESC ’Unordered set of DNs of pcimRuleActionAssociation
 entries representing associations between this policy
 rule and its actions.’
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

 The pcimRuleValidityPeriodList attribute is a multi-valued attribute
 that is used to realize the pcimRuleValidityPeriod association that
 is defined in [1]. It contains a set of DNs of
 pcimRuleValidityAssociation entries that determine when the pcimRule
 is scheduled to be active or inactive. No order is implied. It is
 defined as follows:

 (1.3.6.1.1.6.2.10 NAME ’pcimRuleValidityPeriodList’
 DESC ’Unordered set of DNs of pcimRuleValidityAssociation
 entries that determine when the pcimRule is scheduled
 to be active or inactive.’
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

 The pcimRuleUsage attribute is a free-form string providing
 guidelines on how this policy should be used. It is defined as
 follows:

 (1.3.6.1.1.6.2.11 NAME ’pcimRuleUsage’
 DESC ’This attribute is a free-form sting providing
 guidelines on how this policy should be used.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

Strassner, et al. Standards Track [Page 27]

RFC 3703 Policy Core LDAP Schema February 2004

 The pcimRulePriority attribute is a non-negative integer that is used
 to prioritize this pcimRule relative to other pcimRules. A larger
 value indicates a higher priority. It is defined as follows:

 (1.3.6.1.1.6.2.12 NAME ’pcimRulePriority’
 DESC ’A non-negative integer for prioritizing this
 pcimRule relative to other pcimRules. A larger
 value indicates a higher priority.’
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
)

 Note: if the value of the pcimRulePriority field is 0, then it SHOULD
 be treated as "don’t care". On the other hand, if the value is
 negative, then it SHOULD be treated as an error and Administrators
 SHOULD treat this rule as being disabled.

 The pcimRuleMandatory attribute is a Boolean attribute that, if TRUE,
 indicates that for this policy rule, the evaluation of its conditions
 and execution of its actions (if the condition is satisfied) is
 required. If it is FALSE, then the evaluation of its conditions and
 execution of its actions (if the condition is satisfied) is not
 required. This attribute is defined as follows:

 (1.3.6.1.1.6.2.13 NAME ’pcimRuleMandatory’
 DESC ’If TRUE, indicates that for this policy rule, the
 evaluation of its conditions and execution of its
 actions (if the condition is satisfied) is required.’
 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 SINGLE-VALUE
)

 The pcimRuleSequencedActions attribute is an integer enumeration that
 is used to indicate that the ordering of actions defined by the
 pcimActionOrder attribute is either mandatory(value=1),
 recommended(value=2), or dontCare(value=3). It is defined as
 follows:

 (1.3.6.1.1.6.2.14 NAME ’pcimRuleSequencedActions’
 DESC ’An integer enumeration indicating that the ordering of
 actions defined by the pcimActionOrder attribute is
 mandatory(1), recommended(2), or dontCare(3).’
 EQUALITY integerMatch
 ORDERING integerOrderingMatch

Strassner, et al. Standards Track [Page 28]

RFC 3703 Policy Core LDAP Schema February 2004

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
)

 Note: if the value of pcimRulesSequencedActions field is not one of
 these three values, then Administrators SHOULD treat this rule as
 being disabled.

 The pcimRoles attribute represents the policyRoles property of [1].
 Each value of this attribute represents a role-combination, which is
 a string of the form:
 <RoleName>[&&<RoleName>]* where the individual role names appear
 in alphabetical order according to the collating sequence for UCS-2.
 This attribute is defined as follows:

 (1.3.6.1.1.6.2.15 NAME ’pcimRoles’
 DESC ’Each value of this attribute represents a role-
 combination.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

 Note: if the value of the pcimRoles attribute does not conform to the
 format "<RoleName>[&&<RoleName>]*" (see Section 6.3.7 of [1]), then
 this attribute is malformed and its policy rule SHOULD be treated as
 being disabled.

 The two subclasses of the pcimRule class are defined as follows.
 First, the pcimRuleAuxClass is an auxiliary class for representing
 the "If Condition then Action" semantics associated with a policy
 rule. Its class definition is as follows:

 (1.3.6.1.1.6.1.6 NAME ’pcimRuleAuxClass’
 DESC ’An auxiliary class for representing the "If Condition
 then Action" semantics associated with a policy rule.’
 SUP pcimRule
 AUXILIARY
)

 The pcimRuleInstance is a structural class for representing the "If
 Condition then Action" semantics associated with a policy rule. Its
 class definition is as follows:

 (1.3.6.1.1.6.1.7 NAME ’pcimRuleInstance’
 DESC ’A structural class for representing the "If Condition
 then Action" semantics associated with a policy rule.’

Strassner, et al. Standards Track [Page 29]

RFC 3703 Policy Core LDAP Schema February 2004

 SUP pcimRule
 STRUCTURAL
)

 A DIT content rule could be written to enable an instance of
 pcimRuleInstance to have attached to it either references to one or
 more policy conditions (using pcimConditionAuxClass) or references to
 one or more policy actions (using pcimActionAuxClass). This would be
 used to formalize the semantics of the PolicyRule class [1]. Since
 these semantics do not include specifying any properties of the
 PolicyRule class, the content rule would not need to specify any
 attributes.

 Similarly, three separate DIT structure rules could be written, each
 of which would refer to a specific name form that identified one of
 its three possible naming attributes (i.e., pcimRuleName, cn, and
 orderedCIMKeys). This structure rule SHOULD include a
 superiorStructureRule (see Note 2 at the beginning of section 5).
 The three name forms referenced by the three structure rules would
 each define one of the three naming attributes.

5.4. The Class pcimRuleConditionAssociation

 This class contains attributes to represent the properties of the
 PCIM’s PolicyConditionInPolicyRule association. Instances of this
 class are related to an instance of pcimRule via DIT containment.
 The policy conditions themselves are represented by auxiliary
 subclasses of the auxiliary class pcimConditionAuxClass. These
 auxiliary classes are attached directly to instances of
 pcimRuleConditionAssociation for rule-specific policy conditions.
 For a reusable policy condition, the policyCondition auxiliary
 subclass is attached to an instance of the class pcimPolicyInstance
 (which is presumably associated with a pcimRepository by DIT
 containment), and the policyConditionDN attribute (of this class) is
 used to reference the reusable policyCondition instance.

 The class definition is as follows:

 (1.3.6.1.1.6.1.8 NAME ’pcimRuleConditionAssociation’
 DESC ’This class contains attributes characterizing the
 relationship between a policy rule and one of its
 policy conditions.’
 SUP pcimPolicy
 MUST (pcimConditionGroupNumber $ pcimConditionNegated)
 MAY (pcimConditionName $ pcimConditionDN)
)

Strassner, et al. Standards Track [Page 30]

RFC 3703 Policy Core LDAP Schema February 2004

 The attributes of this class are defined as follows.

 The pcimConditionGroupNumber attribute is a non-negative integer. It
 is used to identify the group to which the condition referenced by
 this association is assigned. This attribute is defined as follows:

 (1.3.6.1.1.6.2.16
 NAME ’pcimConditionGroupNumber’
 DESC ’The number of the group to which a policy condition
 belongs. This is used to form the DNF or CNF
 expression associated with a policy rule.’
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
)

 Note that this number is non-negative. A negative value for this
 attribute is invalid, and any policy rule that refers to an invalid
 entry SHOULD be treated as being disabled.

 The pcimConditionNegated attribute is a Boolean attribute that
 indicates whether this policy condition is to be negated or not. If
 it is TRUE (FALSE), it indicates that a policy condition IS (IS NOT)
 negated in the DNF or CNF expression associated with a policy rule.
 This attribute is defined as follows:

 (1.3.6.1.1.6.2.17
 NAME ’pcimConditionNegated’
 DESC ’If TRUE (FALSE), it indicates that a policy condition
 IS (IS NOT) negated in the DNF or CNF expression
 associated with a policy rule.’
 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 SINGLE-VALUE
)

 The pcimConditionName is a user-friendly name for identifying this
 policy condition, and may be used as a naming attribute if desired.
 This attribute is defined as follows:

 (1.3.6.1.1.6.2.18
 NAME ’pcimConditionName’
 DESC ’A user-friendly name for a policy condition.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch

Strassner, et al. Standards Track [Page 31]

RFC 3703 Policy Core LDAP Schema February 2004

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

 The pcimConditionDN attribute is a DN that references an instance of
 a reusable policy condition. This attribute is defined as follows:

 (1.3.6.1.1.6.2.19
 NAME ’pcimConditionDN’
 DESC ’A DN that references an instance of a reusable policy
 condition.’
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 SINGLE-VALUE
)

 A DIT content rule could be written to enable an instance of
 pcimRuleConditionAssociation to have attached to it an instance of
 the auxiliary class pcimConditionAuxClass, or one of its subclasses.
 This would be used to formalize the semantics of the
 PolicyConditionInPolicyRule association. Specifically, this would be
 used to represent a rule-specific policy condition [1].
 Similarly, three separate DIT structure rules could be written. Each
 of these DIT structure rules would refer to a specific name form that
 defined two important semantics. First, each name form would
 identify one of the three possible naming attributes (i.e.,
 pcimConditionName, cn, and orderedCIMKeys) for the
 pcimRuleConditionAssociation object class. Second, each name form
 would require that an instance of the pcimRuleConditionAssociation
 class have as its superior an instance of the pcimRule class. This
 structure rule SHOULD also include a superiorStructureRule (see Note
 2 at the beginning of section 5).

5.5. The Class pcimRuleValidityAssociation

 The policyRuleValidityPeriod aggregation is mapped to the PCLS
 pcimRuleValidityAssociation class. This class represents the
 scheduled activation and deactivation of a policy rule by binding the
 definition of times that the policy is active to the policy rule
 itself. The "scheduled" times are either identified through an
 attached auxiliary class pcimTPCAuxClass, or are referenced through
 its pcimTimePeriodConditionDN attribute.

 This class is defined as follows:

 (1.3.6.1.1.6.1.9 NAME ’pcimRuleValidityAssociation’
 DESC ’This defines the scheduled activation or deactivation
 of a policy rule.’

Strassner, et al. Standards Track [Page 32]

RFC 3703 Policy Core LDAP Schema February 2004

 SUP pcimPolicy
 STRUCTURAL
 MAY (pcimValidityConditionName $ pcimTimePeriodConditionDN)
)

 The attributes of this class are defined as follows:

 The pcimValidityConditionName attribute is used to define a
 user-friendly name of this condition, and may be used as a naming
 attribute if desired. This attribute is defined as follows:

 (1.3.6.1.1.6.2.20
 NAME ’pcimValidityConditionName’
 DESC ’A user-friendly name for identifying an instance of
 a pcimRuleValidityAssociation entry.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

 The pcimTimePeriodConditionDN attribute is a DN that references a
 reusable time period condition. It is defined as follows:

 (1.3.6.1.1.6.2.21
 NAME ’pcimTimePeriodConditionDN’
 DESC ’A reference to a reusable policy time period
 condition.’
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 SINGLE-VALUE
)

 A DIT content rule could be written to enable an instance of
 pcimRuleValidityAssociation to have attached to it an instance of the
 auxiliary class pcimTPCAuxClass, or one of its subclasses. This
 would be used to formalize the semantics of the
 PolicyRuleValidityPeriod aggregation [1].

 Similarly, three separate DIT structure rules could be written. Each
 of these DIT structure rules would refer to a specific name form that
 defined two important semantics. First, each name form would
 identify one of the three possible naming attributes (i.e.,
 pcimValidityConditionName, cn, and orderedCIMKeys) for the
 pcimRuleValidityAssociation object class. Second, each name form
 would require that an instance of the pcimRuleValidityAssociation
 class have as its superior an instance of the pcimRule class. This

Strassner, et al. Standards Track [Page 33]

RFC 3703 Policy Core LDAP Schema February 2004

 structure rule SHOULD also include a superiorStructureRule (see Note
 2 at the beginning of section 5).

5.6. The Class pcimRuleActionAssociation

 This class contains an attribute to represent the one property of the
 PCIM PolicyActionInPolicyRule association, ActionOrder. This
 property is used to specify an order for executing the actions
 associated with a policy rule. Instances of this class are related
 to an instance of pcimRule via DIT containment. The actions
 themselves are represented by auxiliary subclasses of the auxiliary
 class pcimActionAuxClass.

 These auxiliary classes are attached directly to instances of
 pcimRuleActionAssociation for rule-specific policy actions. For a
 reusable policy action, the pcimAction auxiliary subclass is attached
 to an instance of the class pcimPolicyInstance (which is presumably
 associated with a pcimRepository by DIT containment), and the
 pcimActionDN attribute (of this class) is used to reference the
 reusable pcimCondition instance.

 The class definition is as follows:

 (1.3.6.1.1.6.1.10 NAME ’pcimRuleActionAssociation’
 DESC ’This class contains attributes characterizing the
 relationship between a policy rule and one of its
 policy actions.’
 SUP pcimPolicy
 MUST (pcimActionOrder)
 MAY (pcimActionName $ pcimActionDN)
)

 The pcimActionName attribute is used to define a user-friendly name
 of this action, and may be used as a naming attribute if desired.
 This attribute is defined as follows:

 (1.3.6.1.1.6.2.22
 NAME ’pcimActionName’
 DESC ’A user-friendly name for a policy action.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

Strassner, et al. Standards Track [Page 34]

RFC 3703 Policy Core LDAP Schema February 2004

 The pcimActionOrder attribute is an unsigned integer that is used to
 indicate the relative position of an action in a sequence of actions
 that are associated with a given policy rule. When this number is
 positive, it indicates a place in the sequence of actions to be
 performed, with smaller values indicating earlier positions in the
 sequence. If the value is zero, then this indicates that the order
 is irrelevant. Note that if two or more actions have the same
 non-zero value, they may be performed in any order as long as they
 are each performed in the correct place in the overall sequence of
 actions. This attribute is defined as follows:

 (1.3.6.1.1.6.2.23
 NAME ’pcimActionOrder’
 DESC ’An integer indicating the relative order of an action
 in the context of a policy rule.’
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
)

 Note: if the value of the pcimActionOrder field is negative, then it
 SHOULD be treated as an error and any policy rule that refers to such
 an entry SHOULD be treated as being disabled.

 The pcimActionDN attribute is a DN that references a reusable policy
 action. It is defined as follows:

 (1.3.6.1.1.6.2.24
 NAME ’pcimActionDN’
 DESC ’A DN that references a reusable policy action.’
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 SINGLE-VALUE
)

 A DIT content rule could be written to enable an instance of
 pcimRuleActionAssociation to have attached to it an instance of the
 auxiliary class pcimActionAuxClass, or one of its subclasses. This
 would be used to formalize the semantics of the
 PolicyActionInPolicyRule association. Specifically, this would be
 used to represent a rule-specific policy action [1].

 Similarly, three separate DIT structure rules could be written. Each
 of these DIT structure rules would refer to a specific name form that
 defined two important semantics. First, each name form would
 identify one of the three possible naming attributes (i.e.,
 pcimActionName, cn, and orderedCIMKeys) for the

Strassner, et al. Standards Track [Page 35]

RFC 3703 Policy Core LDAP Schema February 2004

 pcimRuleActionAssociation object class. Second, each name form would
 require that an instance of the pcimRuleActionAssociation class have
 as its superior an instance of the pcimRule class. This structure
 rule should also include a superiorStructureRule (see Note 2 at the
 beginning of section 5).

5.7. The Auxiliary Class pcimConditionAuxClass

 The purpose of a policy condition is to determine whether or not the
 set of actions (contained in the pcimRule that the condition applies
 to) should be executed or not. This class defines the basic
 organizational semantics of a policy condition, as specified in [1].
 Subclasses of this auxiliary class can be attached to instances of
 three other classes in the PCLS. When a subclass of this class is
 attached to an instance of pcimRuleConditionAssociation, or to an
 instance of pcimRule, it represents a rule-specific policy condition.
 When a subclass of this class is attached to an instance of
 pcimPolicyInstance, it represents a reusable policy condition.

 Since all of the classes to which subclasses of this auxiliary class
 may be attached are derived from the pcimPolicy class, the attributes
 of pcimPolicy will already be defined for the entries to which these
 subclasses attach. Thus, this class is derived directly from "top".

 The class definition is as follows:

 (1.3.6.1.1.6.1.11 NAME ’pcimConditionAuxClass’
 DESC ’A class representing a condition to be evaluated in
 conjunction with a policy rule.’
 SUP top
 AUXILIARY
)

5.8. The Auxiliary Class pcimTPCAuxClass

 The PCIM defines a time period class, PolicyTimePeriodCondition, to
 provide a means of representing the time periods during which a
 policy rule is valid, i.e., active. It also defines an aggregation,
 PolicyRuleValidityPeriod, so that time periods can be associated with
 a PolicyRule. The LDAP mapping also provides two classes, one for
 the time condition itself, and one for the aggregation.

 In the PCIM, the time period class is named
 PolicyTimePeriodCondition. However, the resulting name of the
 auxiliary class in this mapping (pcimTimePeriodConditionAuxClass)
 exceeds the length of a name that some directories can store.
 Therefore, the name has been shortened to pcimTPCAuxClass.

Strassner, et al. Standards Track [Page 36]

RFC 3703 Policy Core LDAP Schema February 2004

 The class definition is as follows:

 (1.3.6.1.1.6.1.12 NAME ’pcimTPCAuxClass’
 DESC ’This provides the capability of enabling or disabling
 a policy rule according to a predetermined schedule.’
 SUP pcimConditionAuxClass
 AUXILIARY
 MAY (pcimTPCTime $ pcimTPCMonthOfYearMask $
 pcimTPCDayOfMonthMask $ pcimTPCDayOfWeekMask $
 pcimTPCTimeOfDayMask $ pcimTPCLocalOrUtcTime)
)

 The attributes of the pcimTPCAuxClass are defined as follows.

 The pcimTPCTime attribute represents the time period that a policy
 rule is enabled for. This attribute is defined as a string in [1]
 with a special format which defines a time period with a starting
 date and an ending date separated by a forward slash ("/"), as
 follows:

 yyyymmddThhmmss/yyyymmddThhmmss

 where the first date and time may be replaced with the string
 "THISANDPRIOR" or the second date and time may be replaced with the
 string "THISANDFUTURE". This attribute is defined as follows:

 (1.3.6.1.1.6.2.25
 NAME ’pcimTPCTime’
 DESC ’The start and end times on which a policy rule is
 valid.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.44
 SINGLE-VALUE
)

 The value of this attribute SHOULD be checked against its defined
 format ("yyyymmddThhmmss/yyyymmddThhmmss", where the first and second
 date strings may be replaced with the strings "THISANDPRIOR" and
 "THISANDFUTURE"). If the value of this attribute does not conform to
 this syntax, then this SHOULD be considered an error and the policy
 rule SHOULD be treated as being disabled.

 The next four attributes (pcimTPCMonthOfYearMask,
 pcimTPCDayOfMonthMask, pcimTPCDayOfWeekMask, and
 pcimTPCTimeOfDayMask) are all defined as octet strings in [1].
 However, the semantics of each of these attributes are contained in

Strassner, et al. Standards Track [Page 37]

RFC 3703 Policy Core LDAP Schema February 2004

 bit strings of various fixed lengths. Therefore, the PCLS uses a
 syntax of Bit String to represent each of them. The definition of
 these four attributes are as follows.

 The pcimTPCMonthOfYearMask attribute defines a 12-bit mask
 identifying the months of the year in which a policy rule is valid.
 The format is a bit string of length 12, representing the months of
 the year from January through December. The definition of this
 attribute is as follows:

 (1.3.6.1.1.6.2.26
 NAME ’pcimTPCMonthOfYearMask’
 DESC ’This identifies the valid months of the year for a
 policy rule using a 12-bit string that represents the
 months of the year from January through December.’
 EQUALITY bitStringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.6
 SINGLE-VALUE
)

 The value of this attribute SHOULD be checked against its defined
 format. If the value of this attribute does not conform to this
 syntax, then this SHOULD be considered an error and the policy rule
 SHOULD be treated as being disabled.

 The pcimTPCMonthOfDayMask attribute defines a mask identifying the
 days of the month on which a policy rule is valid. The format is a
 bit string of length 62. The first 31 positions represent the days
 of the month in ascending order, from day 1 to day 31. The next 31
 positions represent the days of the month in descending order, from
 the last day to the day 31 days from the end. The definition of this
 attribute is as follows:

 (1.3.6.1.1.6.2.27
 NAME ’pcimTPCDayOfMonthMask’
 DESC ’This identifies the valid days of the month for a
 policy rule using a 62-bit string. The first 31
 positions represent the days of the month in ascending
 order, and the next 31 positions represent the days of
 the month in descending order.’
 EQUALITY bitStringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.6
 SINGLE-VALUE
)

Strassner, et al. Standards Track [Page 38]

RFC 3703 Policy Core LDAP Schema February 2004

 The value of this attribute SHOULD be checked against its defined
 format. If the value of this attribute does not conform to this
 syntax, then this SHOULD be considered an error and the policy rule
 SHOULD be treated as being disabled.

 The pcimTPCDayOfWeekMask attribute defines a mask identifying the
 days of the week on which a policy rule is valid. The format is a
 bit string of length 7, representing the days of the week from Sunday
 through Saturday. The definition of this attribute is as follows:

 (1.3.6.1.1.6.2.28
 NAME ’pcimTPCDayOfWeekMask’
 DESC ’This identifies the valid days of the week for a
 policy rule using a 7-bit string. This represents
 the days of the week from Sunday through Saturday.’
 EQUALITY bitStringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.6
 SINGLE-VALUE
)

 The value of this attribute SHOULD be checked against its defined
 format. If the value of this attribute does not conform to this
 syntax, then this SHOULD be considered an error and the policy rule
 SHOULD be treated as being disabled.

 The pcimTPCTimeOfDayMask attribute defines the range of times at
 which a policy rule is valid. If the second time is earlier than the
 first, then the interval spans midnight. The format of the string is
 Thhmmss/Thhmmss. The definition of this attribute is as follows:

 (1.3.6.1.1.6.2.29
 NAME ’pcimTPCTimeOfDayMask’
 DESC ’This identifies the valid range of times for a policy
 using the format Thhmmss/Thhmmss.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.44
 SINGLE-VALUE
)

 The value of this attribute SHOULD be checked against its defined
 format. If the value of this attribute does not conform to this
 syntax, then this SHOULD be considered an error and the policy rule
 SHOULD be treated as being disabled.

Strassner, et al. Standards Track [Page 39]

RFC 3703 Policy Core LDAP Schema February 2004

 Finally, the pcimTPCLocalOrUtcTime attribute is used to choose
 between local or UTC time representation. This is mapped as a simple
 integer syntax, with the value of 1 representing local time and the
 value of 2 representing UTC time. The definition of this attribute
 is as follows:

 (1.3.6.1.1.6.2.30
 NAME ’pcimTPCLocalOrUtcTime’
 DESC ’This defines whether the times in this instance
 represent local (value=1) times or UTC (value=2)
 times.’
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
)

 Note: if the value of the pcimTPCLocalOrUtcTime is not 1 or 2, then
 this SHOULD be considered an error and the policy rule SHOULD be
 disabled. If the attribute is not present at all, then all times are
 interpreted as if it were present with the value 2, that is, UTC
 time.

5.9. The Auxiliary Class pcimConditionVendorAuxClass

 This class provides a general extension mechanism for representing
 policy conditions that have not been modeled with specific
 properties. Instead, its two properties are used to define the
 content and format of the condition, as explained below. This class
 is intended for vendor-specific extensions that are not amenable to
 using pcimCondition; standardized extensions SHOULD NOT use this
 class.

 The class definition is as follows:

 (1.3.6.1.1.6.1.13 NAME ’pcimConditionVendorAuxClass’
 DESC ’A class that defines a registered means to describe a
 policy condition.’
 SUP pcimConditionAuxClass
 AUXILIARY
 MAY (pcimVendorConstraintData $
 pcimVendorConstraintEncoding)
)

 The pcimVendorConstraintData attribute is a multi-valued attribute.
 It provides a general mechanism for representing policy conditions
 that have not been modeled as specific attributes. This information
 is encoded in a set of octet strings. The format of the octet

Strassner, et al. Standards Track [Page 40]

RFC 3703 Policy Core LDAP Schema February 2004

 strings is identified by the OID stored in the
 pcimVendorConstraintEncoding attribute. This attribute is defined as
 follows:

 (1.3.6.1.1.6.2.31
 NAME ’pcimVendorConstraintData’
 DESC ’Mechanism for representing constraints that have not
 been modeled as specific attributes. Their format is
 identified by the OID stored in the attribute
 pcimVendorConstraintEncoding.’
 EQUALITY octetStringMatch
 ORDERING octetStringOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
)

 The pcimVendorConstraintEncoding attribute is used to identify the
 format and semantics for the pcimVendorConstraintData attribute.
 This attribute is defined as follows:

 (1.3.6.1.1.6.2.32
 NAME ’pcimVendorConstraintEncoding’
 DESC ’An OID identifying the format and semantics for the
 pcimVendorConstraintData for this instance.’
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
 SINGLE-VALUE
)

5.10. The Auxiliary Class pcimActionAuxClass

 The purpose of a policy action is to execute one or more operations
 that will affect network traffic and/or systems, devices, etc. in
 order to achieve a desired policy state. This class is used to
 represent an action to be performed as a result of a policy rule
 whose condition clause was satisfied.

 Subclasses of this auxiliary class can be attached to instances of
 three other classes in the PCLS. When a subclass of this class is
 attached to an instance of pcimRuleActionAssociation, or to an
 instance of pcimRule, it represents a rule-specific policy action.
 When a subclass of this class is attached to an instance of
 pcimPolicyInstance, it represents a reusable policy action.

 Since all of the classes to which subclasses of this auxiliary class
 may be attached are derived from the pcimPolicy class, the attributes
 of the pcimPolicy class will already be defined for the entries to
 which these subclasses attach. Thus, this class is derived directly
 from "top".

Strassner, et al. Standards Track [Page 41]

RFC 3703 Policy Core LDAP Schema February 2004

 The class definition is as follows:

 (1.3.6.1.1.6.1.14 NAME ’pcimActionAuxClass’
 DESC ’A class representing an action to be performed as a
 result of a policy rule.’
 SUP top
 AUXILIARY
)

5.11. The Auxiliary Class pcimActionVendorAuxClass

 The purpose of this class is to provide a general extension mechanism
 for representing policy actions that have not been modeled with
 specific properties. Instead, its two properties are used to define
 the content and format of the action, as explained below.

 As its name suggests, this class is intended for vendor-specific
 extensions that are not amenable to using the standard pcimAction
 class. Standardized extensions SHOULD NOT use this class.

 The class definition is as follows:

 (1.3.6.1.1.6.1.15 NAME ’pcimActionVendorAuxClass’
 DESC ’A class that defines a registered means to describe a
 policy action.’
 SUP pcimActionAuxClass
 AUXILIARY
 MAY (pcimVendorActionData $ pcimVendorActionEncoding)
)

 The pcimVendorActionData attribute is a multi-valued attribute. It
 provides a general mechanism for representing policy actions that
 have not been modeled as specific attributes. This information is
 encoded in a set of octet strings. The format of the octet strings
 is identified by the OID stored in the pcimVendorActionEncoding
 attribute. This attribute is defined as follows:

 (1.3.6.1.1.6.2.33
 NAME ’pcimVendorActionData’
 DESC ’ Mechanism for representing policy actions that have
 not been modeled as specific attributes. Their
 format is identified by the OID stored in the
 attribute pcimVendorActionEncoding.’
 EQUALITY octetStringMatch
 ORDERING octetStringOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
)

Strassner, et al. Standards Track [Page 42]

RFC 3703 Policy Core LDAP Schema February 2004

 The pcimVendorActionEncoding attribute is used to identify the format
 and semantics for the pcimVendorActionData attribute. This attribute
 is defined as follows:

 (1.3.6.1.1.6.2.34
 NAME ’pcimVendorActionEncoding’
 DESC ’An OID identifying the format and semantics for the
 pcimVendorActionData attribute of this instance.’
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
 SINGLE-VALUE
)

5.12. The Class pcimPolicyInstance

 This class is not defined in the PCIM. Its role is to serve as a
 structural class to which auxiliary classes representing policy
 information are attached when the information is reusable. For
 auxiliary classes representing policy conditions and policy actions,
 there are alternative structural classes that may be used. See
 Section 4.4 for a complete discussion of reusable policy conditions
 and actions, and of the role that this class plays in how they are
 represented.

 The class definition is as follows:

 (1.3.6.1.1.6.1.16 NAME ’pcimPolicyInstance’
 DESC ’A structural class to which aux classes containing
 reusable policy information can be attached.’
 SUP pcimPolicy
 MAY (pcimPolicyInstanceName)
)

 The pcimPolicyInstanceName attribute is used to define a
 user-friendly name of this class, and may be used as a naming
 attribute if desired. It is defined as follows:

 (1.3.6.1.1.6.2.35 NAME ’pcimPolicyInstanceName’
 DESC ’The user-friendly name of this policy instance.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

Strassner, et al. Standards Track [Page 43]

RFC 3703 Policy Core LDAP Schema February 2004

 A DIT content rule could be written to enable an instance of
 pcimPolicyInstance to have attached to it either instances of one or
 more of the auxiliary object classes pcimConditionAuxClass and
 pcimActionAuxClass. Since these semantics do not include specifying
 any properties, the content rule would not need to specify any
 attributes. Note that other content rules could be defined to enable
 other policy-related auxiliary classes to be attached to
 pcimPolicyInstance.

 Similarly, three separate DIT structure rules could be written. Each
 of these DIT structure rules would refer to a specific name form that
 defined two important semantics. First, each name form would
 identify one of the three possible naming attributes (i.e.,
 pcimPolicyInstanceName, cn, and orderedCIMKeys) for this object
 class. Second, each name form would require that an instance of the
 pcimPolicyInstance class have as its superior an instance of the
 pcimRepository class. This structure rule SHOULD also include a
 superiorStructureRule (see Note 2 at the beginning of section 5).

5.13. The Auxiliary Class pcimElementAuxClass

 This class introduces no additional attributes, beyond those defined
 in the class pcimPolicy from which it is derived. Its role is to
 "tag" an instance of a class defined outside the realm of policy
 information as represented by PCIM as being nevertheless relevant to
 a policy specification. This tagging can potentially take place at
 two levels:

 - Every instance to which pcimElementAuxClass is attached becomes
 an instance of the class pcimPolicy, since pcimElementAuxClass is
 a subclass of pcimPolicy. Searching for object
 class="pcimPolicy" will return the instance. (As noted earlier,
 this approach does NOT work for some directory implementations.
 To accommodate these implementations, policy-related entries
 SHOULD be tagged with the pcimKeyword "POLICY".)

 - With the pcimKeywords attribute that it inherits from pcimPolicy,
 an instance to which pcimElementAuxClass is attached can be
 tagged as being relevant to a particular type or category of
 policy information, using standard keywords,
 administrator-defined keywords, or both.

 The class definition is as follows:

 (1.3.6.1.1.6.1.17 NAME ’pcimElementAuxClass’
 DESC ’An auxiliary class used to tag instances of classes
 defined outside the realm of policy as relevant to a
 particular policy specification.’

Strassner, et al. Standards Track [Page 44]

RFC 3703 Policy Core LDAP Schema February 2004

 SUP pcimPolicy
 AUXILIARY
)

5.14. The Three Policy Repository Classes

 These classes provide a container for reusable policy information,
 such as reusable policy conditions and/or reusable policy actions.
 This document is concerned with mapping just the properties that
 appear in these classes. Conceptually, this may be thought of as a
 special location in the DIT where policy information may reside.
 Since pcimRepository is derived from the class dlm1AdminDomain
 defined in reference [6], this specification has a normative
 dependency on that element of reference [6] (as well as on its entire
 derivation hierarchy, which also appears in reference [6]). To
 maximize flexibility, the pcimRepository class is defined as
 abstract. A subclass pcimRepositoryAuxClass provides for auxiliary
 attachment to another entry, while a structural subclass
 pcimRepositoryInstance is available to represent a policy repository
 as a standalone entry.

 The definition for the pcimRepository class is as follows:

 (1.3.6.1.1.6.1.18 NAME ’pcimRepository’
 DESC ’A container for reusable policy information.’
 SUP dlm1AdminDomain
 ABSTRACT
 MAY (pcimRepositoryName)
)

 The pcimRepositoryName attribute is used to define a user-friendly
 name of this class, and may be used as a naming attribute if desired.
 It is defined as follows:

 (1.3.6.1.1.6.2.36 NAME ’pcimRepositoryName’
 DESC ’The user-friendly name of this policy repository.’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

Strassner, et al. Standards Track [Page 45]

RFC 3703 Policy Core LDAP Schema February 2004

 The two subclasses of pcimRepository are defined as follows. First,
 the pcimRepositoryAuxClass is an auxiliary class that can be used to
 aggregate reusable policy information. It is defined as follows:

 (1.3.6.1.1.6.1.19 NAME ’pcimRepositoryAuxClass’
 DESC ’An auxiliary class that can be used to aggregate
 reusable policy information.’
 SUP pcimRepository
 AUXILIARY
)

 In cases where structural classes are needed instead of an auxiliary
 class, the pcimRepositoryInstance class is a structural class that
 can be used to aggregate reusable policy information. It is defined
 as follows:

 (1.3.6.1.1.6.1.20 NAME ’pcimRepositoryInstance’
 DESC ’A structural class that can be used to aggregate
 reusable policy information.’
 SUP pcimRepository
 STRUCTURAL
)

 Three separate DIT structure rules could be written for this class.
 Each of these DIT structure rules would refer to a specific name form
 that enabled an instance of the pcimRepository class to be named
 under any superior using one of the three possible naming attributes
 (i.e., pcimRepositoryName, cn, and orderedCIMKeys). This structure
 rule SHOULD also include a superiorStructureRule (see Note 2 at the
 beginning of section 5).

5.15. The Auxiliary Class pcimSubtreesPtrAuxClass

 This auxiliary class provides a single, multi-valued attribute that
 references a set of objects that are at the root of DIT subtrees
 containing policy-related information. By attaching this attribute
 to instances of various other classes, a policy administrator has a
 flexible way of providing an entry point into the directory that
 allows a client to locate and retrieve the policy information
 relevant to it.

 It is intended that these entries are placed in the DIT such that
 well-known DNs can be used to reference a well-known structural entry
 that has the pcimSubtreesPtrAuxClass attached to it. In effect, this
 defines a set of entry points. Each of these entry points can
 contain and/or reference all related policy entries for

Strassner, et al. Standards Track [Page 46]

RFC 3703 Policy Core LDAP Schema February 2004

 any well-known policy domains. The pcimSubtreesPtrAuxClass functions
 as a tag to identify portions of the DIT that contain policy
 information.

 This object does not provide the semantic linkages between individual
 policy objects, such as those between a policy group and the policy
 rules that belong to it. Its only role is to enable efficient bulk
 retrieval of policy-related objects, as described in Section 4.5.

 Once the objects have been retrieved, a directory client can
 determine the semantic linkages by following references contained in
 multi-valued attributes, such as pcimRulesAuxContainedSet.

 Since policy-related objects will often be included in the DIT
 subtree beneath an object to which this auxiliary class is attached,
 a client SHOULD request the policy-related objects from the subtree
 under the object with these references at the same time that it
 requests the references themselves.

 Since clients are expected to behave in this way, the policy
 administrator SHOULD make sure that this subtree does not contain so
 many objects unrelated to policy that an initial search done in this
 way results in a performance problem. The pcimSubtreesPtrAuxClass
 SHOULD NOT be attached to the partition root for a large directory
 partition containing a relatively few number of policy-related
 objects along with a large number of objects unrelated to policy
 (again, "policy" here refers to the PCIM, not the X.501, definition
 and use of "policy"). A better approach would be to introduce a
 container object immediately below the partition root, attach
 pcimSubtreesPtrAuxClass to this container object, and then place all
 of the policy-related objects in that subtree.

 The class definition is as follows:

 (1.3.6.1.1.6.1.21 NAME ’pcimSubtreesPtrAuxClass’
 DESC ’An auxiliary class providing DN references to roots of
 DIT subtrees containing policy-related objects.’
 SUP top
 AUXILIARY
 MAY (pcimSubtreesAuxContainedSet)
)

Strassner, et al. Standards Track [Page 47]

RFC 3703 Policy Core LDAP Schema February 2004

 The attribute pcimSubtreesAuxContainedSet provides an unordered set
 of DN references to instances of one or more objects under which
 policy-related information is present. The objects referenced may or
 may not themselves contain policy-related information. The attribute
 definition is as follows:

 (1.3.6.1.1.6.2.37
 NAME ’pcimSubtreesAuxContainedSet’
 DESC ’DNs of objects that serve as roots for DIT subtrees
 containing policy-related objects.’
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

 Note that the cn attribute does NOT need to be defined for this
 class. This is because an auxiliary class is used as a means to
 collect common attributes and treat them as properties of an object.
 A good analogy is a #include file, except that since an auxiliary
 class is a class, all the benefits of a class (e.g., inheritance) can
 be applied to an auxiliary class.

5.16. The Auxiliary Class pcimGroupContainmentAuxClass

 This auxiliary class provides a single, multi-valued attribute that
 references a set of pcimGroups. By attaching this attribute to
 instances of various other classes, a policy administrator has a
 flexible way of providing an entry point into the directory that
 allows a client to locate and retrieve the pcimGroups relevant to it.

 As is the case with pcimRules, a policy administrator might have
 several different references to a pcimGroup in the overall directory
 structure. The pcimGroupContainmentAuxClass is the mechanism that
 makes it possible for the policy administrator to define all these
 different references.

 The class definition is as follows:

 (1.3.6.1.1.6.1.22 NAME ’pcimGroupContainmentAuxClass’
 DESC ’An auxiliary class used to bind pcimGroups to an
 appropriate container object.’
 SUP top
 AUXILIARY
 MAY (pcimGroupsAuxContainedSet)
)

Strassner, et al. Standards Track [Page 48]

RFC 3703 Policy Core LDAP Schema February 2004

 The attribute pcimGroupsAuxContainedSet provides an unordered set of
 references to instances of one or more pcimGroups associated with the
 instance of a structural class to which this attribute has been
 appended.

 The attribute definition is as follows:

 (1.3.6.1.1.6.2.38
 NAME ’pcimGroupsAuxContainedSet’
 DESC ’DNs of pcimGroups associated in some way with the
 instance to which this attribute has been appended.’
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

 Note that the cn attribute does NOT have to be defined for this class
 for the same reasons as those given for the pcimSubtreesPtrAuxClass
 in section 5.15.

5.17. The Auxiliary Class pcimRuleContainmentAuxClass

 This auxiliary class provides a single, multi-valued attribute that
 references a set of pcimRules. By attaching this attribute to
 instances of various other classes, a policy administrator has a
 flexible way of providing an entry point into the directory that
 allows a client to locate and retrieve the pcimRules relevant to it.

 A policy administrator might have several different references to a
 pcimRule in the overall directory structure. For example, there
 might be references to all pcimRules for traffic originating in a
 particular subnet from a directory entry that represents that subnet.
 At the same time, there might be references to all pcimRules related
 to a particular DiffServ setting from an instance of a pcimGroup
 explicitly introduced as a container for DiffServ-related pcimRules.
 The pcimRuleContainmentAuxClass is the mechanism that makes it
 possible for the policy administrator to define all these separate
 references.

 The class definition is as follows:

 (1.3.6.1.1.6.1.23 NAME ’pcimRuleContainmentAuxClass’
 DESC ’An auxiliary class used to bind pcimRules to an
 appropriate container object.’
 SUP top
 AUXILIARY
 MAY (pcimRulesAuxContainedSet)
)

Strassner, et al. Standards Track [Page 49]

RFC 3703 Policy Core LDAP Schema February 2004

 The attribute pcimRulesAuxContainedSet provides an unordered set of
 references to one or more instances of pcimRules associated with the
 instance of a structural class to which this attribute has been
 appended. The attribute definition is as follows:

 (1.3.6.1.1.6.2.39
 NAME ’pcimRulesAuxContainedSet’
 DESC ’DNs of pcimRules associated in some way with the
 instance to which this attribute has been appended.’
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

 The cn attribute does NOT have to be defined for this class for the
 same reasons as those given for the pcimSubtreesPtrAuxClass in
 section 5.15.

6. Extending the Classes Defined in This Document

 The following subsections provide general guidance on how to create a
 domain-specific schema derived from this document, discuss how the
 vendor classes in the PCLS should be used, and explain how
 policyTimePeriodConditions are related to other policy conditions.

6.1. Subclassing pcimConditionAuxClass and pcimActionAuxClass

 In Section 4.4, there is a discussion of how, by representing policy
 conditions and policy actions as auxiliary classes in a schema, the
 flexibility is retained to instantiate a particular condition or
 action as either rule-specific or reusable. This flexibility is lost
 if a condition or action class is defined as structural rather than
 auxiliary. For standardized schemata, this document specifies that
 domain-specific information MUST be expressed in auxiliary subclasses
 of pcimConditionAuxClass and pcimActionAuxClass. It is RECOMMENDED
 that non-standardized schemata follow this practice as well.

6.2. Using the Vendor Policy Attributes

 As discussed Section 5.9, the attributes pcimVendorConstraintData and
 pcimVendorConstraintEncoding are included in the
 pcimConditionVendorAuxClass to provide a mechanism for representing
 vendor-specific policy conditions that are not amenable to being
 represented with the pcimCondition class (or its subclasses). The
 attributes pcimVendorActionData and pcimVendorActionEncoding in the
 pcimActionVendorAuxClass class play the same role with respect to
 actions. This enables interoperability between different vendors who
 could not otherwise interoperate.

Strassner, et al. Standards Track [Page 50]

RFC 3703 Policy Core LDAP Schema February 2004

 For example, imagine a network composed of access devices from vendor
 A, edge and core devices from vendor B, and a policy server from
 vendor C. It is desirable for this policy server to be able to
 configure and manage all of the devices from vendors A and B.
 Unfortunately, these devices will in general have little in common
 (e.g., different mechanisms, different ways for controlling those
 mechanisms, different operating systems, different commands, and so
 forth). The extension conditions provide a way for vendor-specific
 commands to be encoded as octet strings, so that a single policy
 server can commonly manage devices from different vendors.

6.3. Using Time Validity Periods

 Time validity periods are defined as an auxiliary subclass of
 pcimConditionAuxClass, called pcimTPCAuxClass. This is to allow
 their inclusion in the AND/OR condition definitions for a pcimRule.
 Care should be taken not to subclass pcimTPCAuxClass to add
 domain-specific condition properties.

 For example, it would be incorrect to add IPsec- or QoS-specific
 condition properties to the pcimTPCAuxClass class, just because IPsec
 or QoS includes time in its condition definition. The correct
 subclassing would be to create IPsec or QoS-specific subclasses of
 pcimConditionAuxClass and then combine instances of these
 domain-specific condition classes with the appropriate validity
 period criteria. This is accomplished using the AND/OR association
 capabilities for policy conditions in pcimRules.

7. Security Considerations

 The PCLS, presented in this document, provides a mapping of the
 object-oriented model for describing policy information (PCIM) into a
 data model that forms the basic framework for describing the
 structure of policy data, in the case where the policy repository
 takes the form of an LDAP-accessible directory.

 PCLS is not intended to represent any particular system design or
 implementation. PCLS is not directly useable in a real world system,
 without the discipline-specific mappings that are works in progress
 in the Policy Framework Working Group of the IETF.

 These other derivative documents, which use PCIM and its
 discipline-specific extensions as a base, will need to convey more
 specific security considerations (refer to RFC 3060 for more
 information.)

Strassner, et al. Standards Track [Page 51]

RFC 3703 Policy Core LDAP Schema February 2004

 The reason that PCLS, as defined here, is not representative of any
 real-world system, is that its object classes were designed to be
 independent of any specific discipline, or policy domain. For
 example, DiffServ and IPsec represent two different policy domains.
 Each document that extends PCIM to one of these domains will derive
 subclasses from the classes and relationships defined in PCIM, in
 order to represent extensions of a generic model to cover specific
 technical domains.

 PCIM-derived documents will thus subclass the PCIM classes into
 classes specific to each technical policy domain (QOS, IPsec, etc.),
 which will, in turn, be mapped, to directory-specific schemata
 consistent with the PCLS documented here.

 Even though discipline-specific security requirements are not
 appropriate for PCLS, specific security requirements MUST be defined
 for each operational real-world application of PCIM. Just as there
 will be a wide range of operational, real-world systems using PCIM,
 there will also be a wide range of security requirements for these
 systems. Some operational, real-world systems that are deployed
 using PCLS may have extensive security requirements that impact
 nearly all object classes utilized by such a system, while other
 systems’ security requirements might have very little impact.

 The derivative documents, discussed above, will create the context
 for applying operational, real-world, system-level security
 requirements against the various models that derive from PCIM,
 consistent with PCLS.

 In some real-world scenarios, the values associated with certain
 properties, within certain instantiated object classes, may represent
 information associated with scarce, and/or costly (and therefore
 valuable) resources. It may be the case that these values must not
 be disclosed to, or manipulated by, unauthorized parties.

 Since this document forms the basis for the representation of a
 policy data model in a specific format (an LDAP-accessible
 directory), it is herein appropriate to reference the data
 model-specific tools and mechanisms that are available for achieving
 the authentication and authorization implicit in a requirement that
 restricts read and/or read- write access to these values stored in a
 directory.

Strassner, et al. Standards Track [Page 52]

RFC 3703 Policy Core LDAP Schema February 2004

 General LDAP security considerations apply, as documented in RFC 3377
 [2]. LDAP-specific authentication and authorization tools and
 mechanisms are found in the following standards track documents,
 which are appropriate for application to the management of security
 applied to policy data models stored in an LDAP-accessible directory:

 - RFC 2829 (Authentication Methods for LDAP)
 - RFC 2830 (Lightweight Directory Access Protocol (v3): Extension
 for Transport Layer Security)

 Any identified security requirements that are not dealt with in the
 appropriate discipline-specific information model documents, or in
 this document, MUST be dealt with in the derivative data model
 documents which are specific to each discipline.

8. IANA Considerations

 Refer to RFC 3383, "Internet Assigned Numbers Authority (IANA)
 Considerations for the Lightweight Directory Access Protocol (LDAP)"
 [16].

8.1. Object Identifiers

 The IANA has registered an LDAP Object Identifier for use in this
 technical specification according to the following template:

 Subject: Request for LDAP OID Registration
 Person & email address to contact for further information:
 Bob Moore (remoore@us.ibm.com)
 Specification: RFC 3703
 Author/Change Controller: IESG
 Comments:
 The assigned OID will be used as a base for identifying
 a number of schema elements defined in this document.

 IANA has assigned an OID of 1.3.6.1.1.6 with the name of pcimSchema
 to this registration as recorded in the following registry:

 http://www.iana.org/assignments/smi-numbers

8.2. Object Identifier Descriptors

 The IANA has registered the LDAP Descriptors used in this technical
 specification as detailed in the following template:

 Subject: Request for LDAP Descriptor Registration Update
 Descriptor (short name): see comment
 Object Identifier: see comment

Strassner, et al. Standards Track [Page 53]

RFC 3703 Policy Core LDAP Schema February 2004

 Person & email address to contact for further information:
 Bob Moore (remoore@us.ibm.com)
 Usage: see comment
 Specification: RFC 3703
 Author/Change Controller: IESG
 Comments:

 The following descriptors have been added:

 NAME Type OID
 -------------- ---- ------------
 pcimPolicy O 1.3.6.1.1.6.1.1
 pcimGroup O 1.3.6.1.1.6.1.2
 pcimGroupAuxClass O 1.3.6.1.1.6.1.3
 pcimGroupInstance O 1.3.6.1.1.6.1.4
 pcimRule O 1.3.6.1.1.6.1.5
 pcimRuleAuxClass O 1.3.6.1.1.6.1.6
 pcimRuleInstance O 1.3.6.1.1.6.1.7
 pcimRuleConditionAssociation O 1.3.6.1.1.6.1.8
 pcimRuleValidityAssociation O 1.3.6.1.1.6.1.9
 pcimRuleActionAssociation O 1.3.6.1.1.6.1.10
 pcimConditionAuxClass O 1.3.6.1.1.6.1.11
 pcimTPCAuxClass O 1.3.6.1.1.6.1.12
 pcimConditionVendorAuxClass O 1.3.6.1.1.6.1.13
 pcimActionAuxClass O 1.3.6.1.1.6.1.14
 pcimActionVendorAuxClass O 1.3.6.1.1.6.1.15
 pcimPolicyInstance O 1.3.6.1.1.6.1.16
 pcimElementAuxClass O 1.3.6.1.1.6.1.17
 pcimRepository O 1.3.6.1.1.6.1.18
 pcimRepositoryAuxClass O 1.3.6.1.1.6.1.19
 pcimRepositoryInstance O 1.3.6.1.1.6.1.20
 pcimSubtreesPtrAuxClass O 1.3.6.1.1.6.1.21
 pcimGroupContainmentAuxClass O 1.3.6.1.1.6.1.22
 pcimRuleContainmentAuxClass O 1.3.6.1.1.6.1.23
 pcimKeywords A 1.3.6.1.1.6.2.3
 pcimGroupName A 1.3.6.1.1.6.2.4
 pcimRuleName A 1.3.6.1.1.6.2.5
 pcimRuleEnabled A 1.3.6.1.1.6.2.6
 pcimRuleConditionListType A 1.3.6.1.1.6.2.7
 pcimRuleConditionList A 1.3.6.1.1.6.2.8
 pcimRuleActionList A 1.3.6.1.1.6.2.9
 pcimRuleValidityPeriodList A 1.3.6.1.1.6.2.10
 pcimRuleUsage A 1.3.6.1.1.6.2.11
 pcimRulePriority A 1.3.6.1.1.6.2.12
 pcimRuleMandatory A 1.3.6.1.1.6.2.13
 pcimRuleSequencedActions A 1.3.6.1.1.6.2.14
 pcimRoles A 1.3.6.1.1.6.2.15
 pcimConditionGroupNumber A 1.3.6.1.1.6.2.16

Strassner, et al. Standards Track [Page 54]

RFC 3703 Policy Core LDAP Schema February 2004

 NAME Type OID
 -------------- ---- ------------
 pcimConditionNegated A 1.3.6.1.1.6.2.17
 pcimConditionName A 1.3.6.1.1.6.2.18
 pcimConditionDN A 1.3.6.1.1.6.2.19
 pcimValidityConditionName A 1.3.6.1.1.6.2.20
 pcimTimePeriodConditionDN A 1.3.6.1.1.6.2.21
 pcimActionName A 1.3.6.1.1.6.2.22
 pcimActionOrder A 1.3.6.1.1.6.2.23
 pcimActionDN A 1.3.6.1.1.6.2.24
 pcimTPCTime A 1.3.6.1.1.6.2.25
 pcimTPCMonthOfYearMask A 1.3.6.1.1.6.2.26
 pcimTPCDayOfMonthMask A 1.3.6.1.1.6.2.27
 pcimTPCDayOfWeekMask A 1.3.6.1.1.6.2.28
 pcimTPCTimeOfDayMask A 1.3.6.1.1.6.2.29
 pcimTPCLocalOrUtcTime A 1.3.6.1.1.6.2.30
 pcimVendorConstraintData A 1.3.6.1.1.6.2.31
 pcimVendorConstraintEncoding A 1.3.6.1.1.6.2.32
 pcimVendorActionData A 1.3.6.1.1.6.2.33
 pcimVendorActionEncoding A 1.3.6.1.1.6.2.34
 pcimPolicyInstanceName A 1.3.6.1.1.6.2.35
 pcimRepositoryName A 1.3.6.1.1.6.2.36
 pcimSubtreesAuxContainedSet A 1.3.6.1.1.6.2.37
 pcimGroupsAuxContainedSet A 1.3.6.1.1.6.2.38
 pcimRulesAuxContainedSet A 1.3.6.1.1.6.2.39

 where Type A is Attribute, Type O is ObjectClass

 These assignments are recorded in the following registry:

 http://www.iana.org/assignments/ldap-parameters

Strassner, et al. Standards Track [Page 55]

RFC 3703 Policy Core LDAP Schema February 2004

9. Acknowledgments

 We would like to thank Kurt Zeilenga, Roland Hedburg, and Steven Legg
 for doing a review of this document and making many helpful
 suggestions and corrections.

 Several of the policy classes in this model first appeared in early
 IETF drafts on IPsec policy and QoS policy. The authors of these
 drafts were Partha Bhattacharya, Rob Adams, William Dixon, Roy
 Pereira, Raju Rajan, Jean-Christophe Martin, Sanjay Kamat, Michael
 See, Rajiv Chaudhury, Dinesh Verma, George Powers, and Raj Yavatkar.

 This document is closely aligned with the work being done in the
 Distributed Management Task Force (DMTF) Policy and Networks working
 groups. We would especially like to thank Lee Rafalow, Glenn Waters,
 David Black, Michael Richardson, Mark Stevens, David Jones, Hugh
 Mahon, Yoram Snir, and Yoram Ramberg for their helpful comments.

Strassner, et al. Standards Track [Page 56]

RFC 3703 Policy Core LDAP Schema February 2004

10. Appendix: Constructing the Value of orderedCIMKeys

 This appendix is non-normative, and is included in this document as a
 guide to implementers that wish to exchange information between CIM
 schemata and LDAP schemata.

 Within a CIM name space, the naming is basically flat; all instances
 are identified by the values of their key properties, and each
 combination of key values must be unique. A limited form of
 hierarchical naming is available in CIM, however, by using weak
 associations: since a weak association involves propagation of key
 properties and their values from the superior object to the
 subordinate one, the subordinate object can be thought of as being
 named "under" the superior object. Once they have been propagated,
 however, propagated key properties and their values function in
 exactly the same way that native key properties and their values do
 in identifying a CIM instance.

 The CIM mapping document [6] introduces a special attribute,
 orderedCIMKeys, to help map from the CIM_ManagedElement class to the
 LDAP class dlm1ManagedElement. This attribute SHOULD only be used in
 an environment where it is necessary to map between an
 LDAP-accessible directory and a CIM repository. For an LDAP
 environment, other LDAP naming attributes are defined (i.e., cn and a
 class-specific naming attribute) that SHOULD be used instead.

 The role of orderedCIMKeys is to represent the information necessary
 to correlate an entry in an LDAP-accessible directory with an
 instance in a CIM name space. Depending on how naming of CIM-related
 entries is handled in an LDAP directory, the value of orderedCIMKeys
 represents one of two things:

 - If the DIT hierarchy does not mirror the "weakness hierarchy" of
 the CIM name space, then orderedCIMKeys represents all the
 keys of the CIM instance, both native and propagated.
 - If the DIT hierarchy does mirror the "weakness hierarchy" of the
 CIM name space, then orderedCIMKeys may represent either all the
 keys of the instance, or only the native keys.

 Regardless of which of these alternatives is taken, the syntax of
 orderedCIMKeys is the same - a DirectoryString of the form

 <className>.<key>=<value>[,<key>=<value>]*

 where the <key>=<value> elements are ordered by the names of the key
 properties, according to the collating sequence for US ASCII. The
 only spaces allowed in the DirectoryString are those that fall within
 a <value> element. As with alphabetizing the key properties, the

Strassner, et al. Standards Track [Page 57]

RFC 3703 Policy Core LDAP Schema February 2004

 goal of suppressing the spaces is once again to make the results of
 string operations predictable.

 The values of the <value> elements are derived from the various CIM
 syntaxes according to a grammar specified in [5].

11. References

11.1. Normative References

 [1] Moore, B., Ellesson,E., Strassner, J. and A. Westerinen "Policy
 Core Information Model -- Version 1 Specification", RFC 3060,
 February 2001.

 [2] Hodges, J. and R. Morgan, "Lightweight Directory Access
 Protocol (v3): Technical Specification", RFC 3377, September
 2002.

 [3] Wahl, M., Coulbeck, A., Howes,T. and S. Kille, "Lightweight
 Directory Access Protocol (v3): Attribute Syntax Definitions",
 RFC 2252, December 1997.

 [4] The Directory: Models. ITU-T Recommendation X.501, 2001.

 [5] Distributed Management Task Force, Inc., "Common Information
 Model (CIM) Specification", Version 2.2, June 14, 1999. This
 document is available on the following DMTF web page:
 http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf

 [6] Distributed Management Task Force, Inc., "DMTF LDAP Schema for
 the CIM v2.5 Core Information Model", April 15, 2002. This
 document is available on the following DMTF web page:
 http://www.dmtf.org/standards/documents/DEN/DSP0123.pdf

 [7] Wahl, M., "A Summary of the X.500(96) User Schema for use with
 LDAPv3", RFC 2256, December 1997.

 [8] The Directory: Selected Attribute Types. ITU-T Recommendation
 X.520, 2001.

 [9] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
 (LDAP): Additional Matching Rules", RFC 3698, February 2004.

 [10] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

Strassner, et al. Standards Track [Page 58]

RFC 3703 Policy Core LDAP Schema February 2004

11.2. Informative References

 [11] Hovey, R. and S. Bradner, "The Organizations Involved in the
 IETF Standards Process", BCP 11, RFC 2028, October 1996.

 [12] Strassner, J., policy architecture BOF presentation, 42nd IETF
 Meeting, Chicago, Illinois, October 1998. Minutes of this BOF
 are available at the following location:
 http://www.ietf.org/proceedings/98aug/index.html.

 [13] Yavatkar, R., Guerin, R. and D. Pendarakis, "A Framework for
 Policy-based Admission Control", RFC 2753, January 2000.

 [14] Wahl, M., Alvestrand, H., Hodges, J. and R. Morgan,
 "Authentication Methods for LDAP", RFC 2829, May 2000

 [15] Hodges, J., Morgan, R. and M. Wahl, "Lightweight Directory
 Access Protocol (v3): Extension for Transport Layer Security",
 RFC 2830, May 2000.

 [16] Zeilenga, K., "Internet Assigned Numbers Authority (IANA)
 Considerations for the Lightweight Directory Access Protocol
 (LDAP)", BCP 64, RFC 3383, September 2002.

Strassner, et al. Standards Track [Page 59]

RFC 3703 Policy Core LDAP Schema February 2004

12. Authors’ Addresses

 John Strassner
 Intelliden Corporation
 90 South Cascade Avenue
 Colorado Springs, CO 80903

 Phone: +1.719.785.0648
 Fax: +1.719.785.0644
 EMail: john.strassner@intelliden.com

 Bob Moore
 IBM Corporation
 P. O. Box 12195, BRQA/B501/G206
 3039 Cornwallis Rd.
 Research Triangle Park, NC 27709-2195

 Phone: +1 919-254-4436
 Fax: +1 919-254-6243
 EMail: remoore@us.ibm.com

 Ryan Moats
 Lemur Networks, Inc.
 15621 Drexel Circle
 Omaha, NE 68135

 Phone: +1-402-894-9456
 EMail: rmoats@lemurnetworks.net

 Ed Ellesson
 3026 Carriage Trail
 Hillsborough, NC 27278

 Phone: +1 919-644-3977
 EMail: ellesson@mindspring.com

Strassner, et al. Standards Track [Page 60]

RFC 3703 Policy Core LDAP Schema February 2004

13. Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78 and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology
 described in this document or the extent to which any license
 under such rights might or might not be available; nor does it
 represent that it has made any independent effort to identify any
 such rights. Information on the procedures with respect to
 rights in RFC documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention
 any copyrights, patents or patent applications, or other
 proprietary rights that may cover technology that may be required
 to implement this standard. Please address the information to the
 IETF at ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Strassner, et al. Standards Track [Page 61]

