
Network Working Group R. Ogier
Request for Comments: 3684 SRI International
Category: Experimental F. Templin
 Nokia
 M. Lewis
 SRI International
 February 2004

 Topology Dissemination Based on Reverse-Path Forwarding (TBRPF)

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 Topology Dissemination Based on Reverse-Path Forwarding (TBRPF) is a
 proactive, link-state routing protocol designed for mobile ad-hoc
 networks, which provides hop-by-hop routing along shortest paths to
 each destination. Each node running TBRPF computes a source tree
 (providing paths to all reachable nodes) based on partial topology
 information stored in its topology table, using a modification of
 Dijkstra’s algorithm. To minimize overhead, each node reports only
 part of its source tree to neighbors. TBRPF uses a combination of
 periodic and differential updates to keep all neighbors informed of
 the reported part of its source tree. Each node also has the option
 to report additional topology information (up to the full topology),
 to provide improved robustness in highly mobile networks. TBRPF
 performs neighbor discovery using "differential" HELLO messages which
 report only *changes* in the status of neighbors. This results in
 HELLO messages that are much smaller than those of other link-state
 routing protocols such as OSPF.

Ogier, et al. Experimental [Page 1]

RFC 3684 TBRPF February 2004

Table of Contents

 1. Introduction. 3
 2. Requirements. 4
 3. Terminology . 4
 4. Applicability Section . 5
 5. TBRPF Overview. 6
 5.1. Overview of Neighbor Discovery 6
 5.2. Overview of the Routing Module. 8
 6. TBRPF Packets . 10
 6.1. TBRPF Packet Header. 10
 6.2. TBRPF Packet Body. 11
 6.2.1. Padding Options (TYPE = 0 thru 1). 12
 6.2.2. Messages (TYPE = 2 thru 10). 13
 7. TBRPF Neighbor Discovery. 13
 7.1. HELLO Message Format 13
 7.2. Neighbor Table . 14
 7.3. Sending HELLO Messages 15
 7.4. Processing a Received HELLO Message. 16
 7.5. Expiration of Timer nbr_life 18
 7.6. Link-Layer Failure Notification. 18
 7.7. Optional Link Metrics. 18
 7.8. Configurable Parameters. 19
 8. TBRPF Routing Module. 19
 8.1. Conceptual Data Structures 19
 8.2. TOPOLOGY UPDATE Message Format 21
 8.3. Interface, Host, and Network Prefix Association
 Message Formats. 23
 8.4. TBRPF Routing Operation. 24
 8.4.1. Periodic Processing. 24
 8.4.2. Updating the Source Tree and Topology
 Graph. 25
 8.4.3. Updating the Routing Table 26
 8.4.4. Updating the Reported Node Set 27
 8.4.5. Generating Periodic Updates. 29
 8.4.6. Generating Differential Updates. 29
 8.4.7. Processing Topology Updates. 30
 8.4.8. Expiring Topology Information. 32
 8.4.9. Optional Reporting of Redundant Topology
 Information. 32
 8.4.10. Local Topology Changes 33
 8.4.11. Generating Association Messages. 34
 8.4.12. Processing Association Messages. 36
 8.4.13. Non-Relay Operation. 37
 8.5. Configurable Parameters. 38
 9. TBRPF Flooding Mechanism. 38
 10. Operation of TBRPF in Mobile Ad-Hoc Networks. 39
 10.1. Data Link Layer Assumptions. 39

Ogier, et al. Experimental [Page 2]

RFC 3684 TBRPF February 2004

 10.2. Network Layer Assumptions. 39
 10.3. Optional Automatic Address Resolution. 40
 10.4. Support for Multiple Interfaces and/or
 Alias Addresses. 40
 10.5. Support for Network Prefixes 40
 10.6. Support for non-MANET Hosts. 40
 10.7. Internet Protocol Considerations 41
 10.7.1. IPv4 Operation 41
 10.7.2. IPv6 Operation 41
 11. IANA Considerations . 41
 12. Security Considerations 42
 13. Acknowledgements. 42
 14. References. 42
 14.1. Normative References 42
 14.2. Informative References 43
 Authors’ Addresses. 45
 Full Copyright Statement. 46

1. Introduction

 Topology Dissemination Based on Reverse-Path Forwarding (TBRPF) is a
 proactive, link-state routing protocol designed for mobile ad-hoc
 networks (MANETs), which provides hop-by-hop routing along shortest
 paths to each destination. Each node running TBRPF computes a source
 tree (providing shortest paths to all reachable nodes) based on
 partial topology information stored in its topology table, using a
 modification of Dijkstra’s algorithm. To minimize overhead, each
 node reports only *part* of its source tree to neighbors.

 TBRPF uses a combination of periodic and differential updates to keep
 all neighbors informed of the reported part of its source tree. Each
 node also has the option to report addition topology information (up
 to the full topology), to provide improved robustness in highly
 mobile networks.

 TBRPF performs neighbor discovery using "differential" HELLO messages
 which report only *changes* in the status of neighbors. This results
 in HELLO messages that are much smaller than those of other link-
 state routing protocols such as OSPF [6].

 TBRPF consists of two modules: the neighbor discovery module and the
 routing module (which performs topology discovery and route
 computation). An overview of these modules is given in Section 5.

Ogier, et al. Experimental [Page 3]

RFC 3684 TBRPF February 2004

2. Requirements

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL", when
 they appear in this document, are to be interpreted as described in
 BCP 14, RFC 2119 [1].

 This document also makes use of internal conceptual variables to
 describe protocol behavior and external variables that an
 implementation must allow system administrators to change. The
 specific variable names, how their values change, and how their
 settings influence protocol behavior are provided to demonstrate
 protocol behavior. An implementation is not required to have them in
 the exact form described here, so long as its external behavior is
 consistent with that described in this document.

3. Terminology

 The following terms are used to describe TBRPF:

 node
 A router that implements TBRPF.

 router ID
 Each node is identified by a unique 32-bit router ID (RID), which
 for IPv4 is typically equal to the IP address of one of its
 interfaces. The term "node u" denotes the node whose RID is equal
 to u.

 interface
 A node’s attachment to a communication facility or medium through
 which it can communicate with other nodes. A node can have
 multiple interfaces. An interface can be wireless or wired, and
 can be broadcast (e.g., Ethernet) or point-to-point. Each
 interface is identified by its IP address. The term "interface I"
 denotes the interface whose IP address is I.

 link
 A link is an ordered pair of interfaces (I,J) where I and J are on
 two different nodes, and where interface I has recently received
 packets sent from interface J. A link (i,j) from node i to node j
 is said to exist if node i has an interface I and node j has an
 interface J such that (I,J) is a link. Nodes i and j are called
 the "tail" and "head" of the link, respectively.

 bidirectional link
 A link (I,J) such that interfaces I and J can both hear each
 other. Also called a 2-way link.

Ogier, et al. Experimental [Page 4]

RFC 3684 TBRPF February 2004

 neighbor node
 A node j is said to be a neighbor of node i if node i can hear
 node j on some interface. Node j is said to be a 2-way neighbor
 if there is a bidirectional link between i and j.

 MANET interface
 Any wireless interface such that two neighbor nodes on the
 interface need not be neighbors of each other. MANET nodes
 typically have at least one MANET interface, but this is not a
 requirement.

 topology
 The topology of the network is described by a graph G = (V, E),
 where V is the set of nodes u and E is the set of links (u,v) in
 the network.

 source tree
 The directed tree (denoted T) computed by each node that provides
 shortest paths to all other reachable nodes.

 topology update
 A message that reports the state of one or more links.

 parent
 The parent of node i for node u is the next node on the computed
 shortest path from node i to node u.

 predecessor
 The predecessor of a node v on the source tree is the node u such
 that the link (u,v) is in the source tree.

 leaf node
 A leaf node of the source tree is a node on the source tree that
 is not the predecessor of any other node on the source tree.

 proactive routing protocol
 A routing protocol in which each node maintains routes to all
 reachable destinations at all times, whether or not there is
 currently any need to deliver packets to those destinations. In
 contrast, an "on-demand" routing protocol discovers and maintains
 routes only when they are needed.

4. Applicability Section

 TBRPF is a proactive routing protocol designed for mobile ad-hoc
 networks (MANETs). It can support networks with up to a few hundred
 nodes, and can be combined with hierarchical routing techniques to
 support much larger networks. Because it employs techniques to

Ogier, et al. Experimental [Page 5]

RFC 3684 TBRPF February 2004

 greatly reduce control traffic, TBRPF can support much larger and
 denser networks than routing protocols based on the classical link-
 state algorithm (e.g., OSPF).

 The number of nodes that can be supported depends on several factors,
 including the MAC data rate, the rate of topology changes, and the
 network density (average number of neighbors). Simulations have been
 reported in which TBRPF has supported as many as 500 nodes. In
 simulations with 100 nodes and 20 traffic streams (sources), using
 IEEE 802.11 with a data rate of 2 Mbps, TBRPF was found to generate
 approximately 80-120 kb/s of routing control traffic for the
 scenarios considered, which compared favorably with other MANET
 routing protocols [7][8]. A proof of correctness for TBRPF can be
 found in references [8] and [9].

5. TBRPF Overview

 TBRPF consists of two main modules: the neighbor discovery module,
 and the routing module (which performs topology discovery and route
 computation).

5.1. Overview of Neighbor Discovery

 The TBRPF Neighbor Discovery (TND) protocol allows each node i to
 quickly detect the neighbor nodes j such that a bidirectional link
 (I,J) exists between an interface I of node i and an interface J of
 node j. The protocol also quickly detects when a bidirectional link
 breaks or becomes unidirectional.

 The key feature of TND is that it uses "differential" HELLO messages
 which report only *changes* in the status of links. This results in
 HELLO messages that are much smaller than those of other link-state
 routing protocols such as OSPF, in which each HELLO message includes
 the IDs of *all* neighbors. As a result, HELLO messages can be sent
 more frequently, which allows faster detection of topology changes.

 TND is designed to be fully modular and independent of the routing
 module. TND performs ONLY neighbor sensing, i.e., it determines
 which nodes are (1-hop) neighbors. In particular, it does not
 discover 2-hop neighbors (which is handled by the routing module).
 As a result, TND can be used by other routing protocols, and TBRPF
 can use another neighbor discovery protocol in place of TND, e.g.,
 one provided by the link layer.

 Nodes with multiple interfaces run TND separately on each interface,
 similar to OSPF. Thus, a neighbor table is maintained for each local
 interface, and a HELLO sent on a particular interface contains only
 information regarding neighbors heard on that interface.

Ogier, et al. Experimental [Page 6]

RFC 3684 TBRPF February 2004

 We note that, in wireless networks, it is possible for a single
 interface I to receive packets from multiple interfaces J associated
 with the same neighbor node. This could happen, for example, if the
 neighbor uses a directional antenna with different interfaces
 representing different beams. For this reason, TBRPF includes
 neighbor interface addresses in HELLO messages, unlike OSPF, which
 includes only router IDs in HELLO packets.

 Each TBRPF node maintains a neighbor table for each local interface
 I, which stores state information for each neighbor interface J heard
 on that interface, i.e., for each link (I,J) between interface I and
 a neighbor interface J. The status of each link can be 1-WAY, 2-WAY,
 or LOST. The neighbor table for interface I determines the contents
 of HELLO messages sent on interface I, and is updated based on HELLO
 messages received on interface I (and possibly on link-layer
 notifications).

 Each TBRPF node sends (on each interface) at least one HELLO message
 per HELLO_INTERVAL. Each HELLO message contains three (possibly
 empty) lists of neighbor interface addresses (which are formatted as
 three message subtypes): NEIGHBOR REQUEST, NEIGHBOR REPLY, and
 NEIGHBOR LOST. Each HELLO message also contains the current HELLO
 sequence number (HSEQ), which is incremented with each transmitted
 HELLO.

 In the following overview of the operation of TND, we assume that
 interface I belongs to node i, and interface J belongs to node j.
 When a node i changes the status of a link (I,J), it includes the
 neighbor interface address J in the appropriate list (NEIGHBOR
 REQUEST/REPLY/LOST) in at most NBR_HOLD_COUNT (typically 3)
 consecutive HELLOs sent on interface I. This ensures that node j
 will either receive one of these HELLOs on interface J, or will miss
 NBR_HOLD_COUNT HELLOs and thus declare the link (J,I) to be LOST.
 This technique makes it unnecessary for a node to include each 1-WAY
 or 2-WAY neighbor in HELLOs indefinitely, unlike OSPF.

 To avoid establishing a link that is likely to be short lived (i.e.,
 to employ hysteresis), node i must receive (on interface I) at least
 HELLO_ACQUIRE_COUNT (e.g., 2) of the last HELLO_ACQUIRE_WINDOW (e.g.,
 3) HELLOs sent from a neighbor interface J, before declaring the link
 (I,J) to be 1-WAY. When this happens, node i includes J in the
 NEIGHBOR REQUEST list in each of its next NBR_HOLD_COUNT HELLO
 messages sent on interface I, or until a NEIGHBOR REPLY message
 containing I is received on interface I from neighbor interface J.

 If node j receives (on interface J) one of the HELLOs sent from
 interface I that contains J in the NEIGHBOR REQUEST list, then node j
 declares the link (J,I) to be 2-WAY (unless it is already 2-WAY), and

Ogier, et al. Experimental [Page 7]

RFC 3684 TBRPF February 2004

 includes I in the NEIGHBOR REPLY list in each of its next
 NBR_HOLD_COUNT HELLO messages sent on interface J. Upon receiving
 one of these HELLOs on interface I, node i declares the link (I,J) to
 be 2-WAY.

 If node i receives a HELLO on interface I, sent from neighbor
 interface J, whose HSEQ indicates that at least NBR_HOLD_COUNT HELLOs
 were missed, or if node i receives no HELLO on interface I sent from
 interface J within NBR_HOLD_TIME seconds, then node i changes the
 status of link (I,J) to LOST (unless it is already LOST), and
 includes J in the NEIGHBOR LOST list in each of its next
 NBR_HOLD_COUNT HELLO messages sent on interface I (unless the link
 changes status before these transmissions are complete). Node j will
 either receive one of these HELLOs on interface J or will miss
 NBR_HOLD_COUNT HELLOs; in either case, node j will declare the link
 (J,I) to be LOST. In this manner, both nodes will agree that the
 link between I and J is no longer bidirectional, even if node j can
 still hear HELLOs from node i.

 Each node may maintain and update one or more link metrics for each
 link (I,J) from a local interface I to a neighbor interface J,
 representing the quality of the link. Such link metrics can be used
 as additional conditions for changing the status of a neighbor, based
 on the link metric going above or below some threshold. TBRPF also
 allows link metrics to be advertised in topology updates, and to be
 used for computing shortest paths.

5.2. Overview of the Routing Module

 Each node running TBRPF maintains a source tree, denoted T, which
 provides shortest paths to all reachable nodes. Each node computes
 and updates its source tree based on partial topology information
 stored in its topology table, using a modification of Dijkstra’s
 algorithm. To minimize overhead, each node reports only part of its
 source tree to neighbors. The main idea behind the current version
 of TBRPF came from PTSP [10], another protocol in which each node
 reports only part of its source tree. (However, TBRPF differs from
 PTSP in several ways.) The current version of TBRPF should not be
 confused with its previous version [11], which is a full-topology
 routing protocol.

 The part of T that a node reports to neighbors is called the
 "reported subtree" and is denoted RT. Each node reports RT to
 neighbors in *periodic* topology updates (e.g., every 5 seconds), and
 reports changes (additions and deletions) to RT in more frequent
 differential updates (e.g., every 1 second). Periodic updates
 inform new neighbors of RT, and ensure that each neighbor eventually
 learns RT even if it does not receive all updates. Differential

Ogier, et al. Experimental [Page 8]

RFC 3684 TBRPF February 2004

 updates ensure the fast propagation of each topology update to all
 nodes that are affected by the update. A received topology update is
 not forwarded, but *may* result in a change to RT, which will be
 reported in the next differential or periodic update. Whenever
 possible, topology updates are included in the same packet as a HELLO
 message, to minimize the number of control packets sent. TBRPF does
 not require reliable or sequenced delivery of messages, and does not
 use ACKs or NACKs.

 TBRPF supports multiple interfaces, associated hosts, and network
 prefixes. Information regarding associated interfaces, hosts, and
 prefixes is disseminated efficiently in periodic and differential
 updates, similar to the dissemination of topology updates.

 The reported subtree RT consists of links (u,v) of T such that u is
 in the "reported node set" RN, which is computed as follows. Node i
 includes a neighbor j in RN if and only if node i determines that one
 of its neighbors may select i to be its next hop on its shortest path
 to j. To make this determination, node i computes the shortest
 paths, up to 2 hops, from each neighbor to each other neighbor, using
 only neighbors (or node i itself) as an intermediate node, and using
 relay priority (included in HELLO messages) and router ID to break
 ties. After a node determines which neighbors are in RN, each
 reachable node u is included in RN if and only if the next hop on the
 shortest path to u is in RN. A node also includes itself in RN. As
 a result, the reported subtree RT includes the subtrees of T that are
 rooted at neighbors in RN, and also includes all local links to
 neighbors.

 We note that neighbors in RN are analogous to multipoint relay (MPR)
 selectors [12]. Thus, if node i selects neighbor j to be in RN, then
 node i effectively selects itself to be an MPR of node j. This is
 quite different from [12], in which a node does not select itself to
 be an MPR, but selects a subset of its neighbors to be MPRs.

 A node with a larger relay priority reports a larger part of its
 source tree (on average), and is more likely to be selected as a
 next-hop relay by its neighbors. A node with relay priority equal to
 0 is called a non-relay node, and never forwards packets originating
 from other nodes.

 TBRPF does not use sequence numbers for topology updates, thus
 reducing message overhead and avoiding wraparound problems. Instead,
 a technique similar to SPTA [13] is used in which, for each link
 (u,v) reported by one or more neighbors, only the next hop p(u) to u
 is believed regarding the state of the link. (However, in SPTA each
 node reports the full topology.) Using this technique, each node
 maintains a topology graph TG, consisting of links that are believed

Ogier, et al. Experimental [Page 9]

RFC 3684 TBRPF February 2004

 to be up, and computes T as the shortest-path tree within TG. To
 allow immediate rerouting, the restriction that each link (u,v) in TG
 must be reported by p(u) is relaxed temporarily if p(u) changes to a
 neighbor that is not reporting the link.

 Each node is required to report RT, but may report additional links,
 e.g., to provide increased robustness in highly mobile networks.
 More precisely, a node may maintain any subgraph H of TG that
 contains T, and report the reported subgraph RH, which consists of
 links (u,v) of H such that u is in RN. For example, H can equal TG,
 which would provide each node with the full network topology if this
 is done by all nodes. H can also be a biconnected subgraph that
 contains T, which would provide each node with two disjoint paths to
 each other node, if this is done by all nodes.

 TBRPF allows the option to include link metrics in topology updates,
 and to compute paths that are shortest with respect to the metric.
 This allows packets to be sent along paths that are higher quality
 than minimum-hop paths.

 TBRPF allows path optimality to be traded off in order to reduce the
 amount of control traffic in networks with a large diameter, where
 the degree of approximation is determined by the configurable
 parameter NON_TREE_PENALTY.

6. TBRPF Packets

 Nodes send TBRPF protocol data in contiguous units known as packets.
 Each packet includes a header, optional header extensions, and a body
 comprising one or more messages and padding options as needed. To
 facilitate efficient receiver processing, senders SHOULD insert
 padding options as necessary to align multi-octet words within the
 TBRPF packet on natural boundaries (i.e., modulo-8/4/2 addresses for
 64/32/16-bit words, respectively). Receivers MUST be capable of
 processing multi-octet words whether or not aligned on natural
 boundaries. The following sections specify elements of the TBRPF
 packet in more detail.

6.1. TBRPF Packet Header

 TBRPF packet headers are variable-length (minimum one octet). The
 format for the packet header is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vers |L|I|R|R| Reserved | Header Extensions ...
 +-+

Ogier, et al. Experimental [Page 10]

RFC 3684 TBRPF February 2004

 Version (4 bits)
 The TBRPF version number. This specification documents version 4
 of the protocol.

 Flags (4 bits)
 Two bits (L,I) specify which header extensions (if any) follow.
 Two bits (R) are reserved for future use, and MUST be zero. Any
 extensions specified by these bits MUST appear in the same order
 as the bits (i.e., first L, then I) as follows:

 L - Length included
 If the underlying delivery service provides a length field, the
 sender MAY set L = ’0’ and omit the length extension. Otherwise,
 the sender MUST set L = ’1’ and include a 16-bit unsigned integer
 length immediately after any previous header field. The length
 includes all header and data bytes and is written into the length
 field in network byte order.

 Receivers examine the L bit to determine whether the length field
 is present. If L = ’1’, the receiver reads the length field to
 determine the length of the TBRPF packet, including the TBRPF
 packet header. Receivers discard any TBRPF packet if neither the
 underlying delivery service nor the TBRPF packet header provide
 packet length.

 I - Router ID (RID) included
 If the underlying delivery service encodes the sender’s RID, the
 sender MAY set I = ’0’ and omit the RID field. Otherwise, the
 sender MUST set I = ’1’ and include a 4-octet RID in network byte
 order immediately after any previous header fields. The RID
 option provides a mechanism for implicit network-level address
 resolution. A receiver that detects a RID option SHOULD create a
 binding between the RID and the source address that appears in the
 network-level header.

 Reserved
 Reserved for future use; MUST be zero.

6.2. TBRPF Packet Body

 The TBRPF packet body consists of the concatenation of one or more
 TBRPF messages (and padding options where necessary). Messages and
 padding options within the TBRPF packet body are encoded using the
 following format:

 +-+-+-+-+-+-+-+-+- - - - -
 |OPTIONS| TYPE | VALUE
 +-+-+-+-+-+-+-+-+- - - - -

Ogier, et al. Experimental [Page 11]

RFC 3684 TBRPF February 2004

 OPTIONS (4 bits)
 Four option bits that depend on TYPE.

 TYPE (4 bits)
 Identifier for message type or padding option.

 VALUE
 Variable-length field. (Format and length depend on TYPE, as
 described in the following sections.)

 The sequence of elements MUST be processed strictly in the order they
 appear within the TBRPF packet body; a receiver must not, for
 example, scan through the packet body looking for a particular type
 of element prior to processing all preceding elements [2]. TBRPF
 packet elements include padding options and messages as described
 below.

6.2.1. Padding Options (TYPE = 0 thru 1)

 Senders MAY insert two types of padding options where necessary,
 e.g., to satisfy alignment requirements for other elements [2].
 Padding options may occur anywhere within the TBRPF packet body. The
 following two padding options are defined:

 Pad1 option (TYPE = 0)

 +-+-+-+-+-+-+-+-+
 | 0 | 0 |
 +-+-+-+-+-+-+-+-+

 The Pad1 option inserts one octet of padding into the TBRPF packet
 body; the VALUE field is omitted. If more than one octet of padding
 is required, the PadN option (described next) should be used, rather
 than multiple Pad1 options.

 PadN option (TYPE = 1)

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - - - -
 | 0 | 1 | LEN | Zero-valued Octets
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - - - -

 The PadN option inserts two or more octets of padding into the TBRPF
 packet body. The first octet of the VALUE field contains an 8-bit
 unsigned integer length containing a value between 0 - 253 which
 specifies the number of zero-valued octets that immediately follow,
 yielding a maximum total of 255 padding octets.

Ogier, et al. Experimental [Page 12]

RFC 3684 TBRPF February 2004

6.2.2. Messages (TYPE = 2 thru 10)

 Additional message types are described as they occur in the following
 sections. Senders encode messages as specified by the individual
 message formats. Receivers detect errors in message construction,
 e.g., messages with unrecognized types, messages with a non-integral
 number of elements, or with fewer elements than indicated, etc. In
 all cases, upon detecting an error, the receiver MUST discontinue
 processing the current TBRPF packet and discard any unprocessed
 elements.

7. TBRPF Neighbor Discovery

 This section describes the TBRPF Neighbor Discovery (TND) protocol,
 which allows each node to quickly detect bidirectional links (I,J)
 between a local interface I and a neighbor interface J, and to
 quickly detect the loss of such links. The interface between TND and
 the routing module is defined by the neighbor table maintained by TND
 and the three procedures Link_Up(I,J), Link_Down(I,J), and
 Link_Change(I,J), which are called by TND to announce a new link, the
 loss of a link, and a change in the metric of a link, respectively.

7.1. HELLO Message Format

 The HELLO message has the following three subtypes:

 - NEIGHBOR REQUEST (TYPE = 2)
 - NEIGHBOR REPLY (TYPE = 3)
 - NEIGHBOR LOST (TYPE = 4)

 Each HELLO subtype has the following format:

 +-+
 | 0 | TYPE | HSEQ | Pri | n |
 +-+
 | Neighbor Interface Address (1) |
 +-+
 | Neighbor Interface Address (2) |
 +-+
 ˜ ... ˜
 +-+
 | Neighbor Interface Address (n) |
 +-+

 HSEQ (8 bits)
 The HELLO sequence number.

Ogier, et al. Experimental [Page 13]

RFC 3684 TBRPF February 2004

 Pri (4 bits)
 This field indicates the sending node’s relay priority, which is
 an integer between 0 and 15. A node with a higher relay priority
 is more likely to be selected as the next hop on a route. The
 value 0 is reserved for non-relay nodes, i.e., nodes that should
 never forward packets originating from other nodes. A router in
 normal operation SHOULD have a relay priority equal to 7. A
 router can change its relay priority dynamically, e.g., when its
 power supply becomes critical.

 n (12 bits)
 The number of 32-bit neighbor interface addresses in the message.

 A HELLO message is the concatenation of a NEIGHBOR REQUEST message, a
 NEIGHBOR REPLY message, and a NEIGHBOR LOST message, where each of
 the last two messages is omitted if its list of neighbor interface
 addresses is empty. Thus, a HELLO message always includes a
 (possibly empty) NEIGHBOR REQUEST.

7.2. Neighbor Table

 Each node maintains, for each of its local interfaces I, a neighbor
 table, which stores state information for each neighbor interface J
 from which HELLO messages have recently been received by interface I.
 The entry for neighbor interface J, in the neighbor table for I,
 contains the following variables:

 nbr_rid(I,J) - The router ID of the node associated with neighbor
 interface J.

 nbr_status(I,J) - The current status of the link (I,J), which can
 be LOST, 1-WAY, or 2-WAY.

 nbr_life(I,J) - The amount of time (in seconds) remaining before
 nbr_status(I,J) must be changed to LOST if no further HELLO
 message from interface J is received. Set to NBR_HOLD_TIME
 whenever a HELLO is received on interface I from interface J.

 nbr_hseq(I,J) - The value of HSEQ in the last HELLO message
 received on interface I from interface J. Used to determine the
 number of HELLOs that have been missed.

 nbr_count(I,J) - The remaining number of times a NEIGHBOR REQUEST/
 REPLY/LOST message containing J must be sent on interface I.

 hello_history(I,J) - A list of the sequence numbers of the last
 HELLO_ACQUIRE_WINDOW HELLO messages received on interface I from
 interface J.

Ogier, et al. Experimental [Page 14]

RFC 3684 TBRPF February 2004

 nbr_metric(I,J) - An optional measure of the quality of the link
 (I,J), represented by an integer between 1 and 255, where smaller
 values indicate better quality. Defaults to 1 if not used.

 nbr_pri(I,J) - The relay priority of the node associated with
 interface J.

 The entry for interface J in the neighbor table for interface I may
 be deleted if no HELLO has been received on interface I from
 interface J within the last 2*NBR_HOLD_TIME seconds. (It is kept
 while NEIGHBOR LOST messages containing J are being transmitted.)
 The absence of an entry for a given interface J is equivalent to an
 entry with nbr_status(I,J) = LOST and hello_history(I,J) = NULL.

 The three possible values of nbr_status(I,J) have the following
 informal meanings (the exact meanings are defined by the protocol):

 LOST
 Interface I has not received a sufficient number of HELLO messages
 recently from Interface J.

 1-WAY
 Interface I has received a sufficient number of HELLO messages
 recently from Interface J, but the link is not 2-WAY.

 2-WAY
 Interfaces I and J have both received a sufficient number of HELLO
 messages recently from each other.

7.3. Sending HELLO Messages

 Each node MUST send, on each local interface, at least one HELLO
 message per HELLO_INTERVAL. HELLO messages MAY be sent more
 frequently than this (e.g., for faster detection of topology
 changes). However, to avoid the possibility that HSEQ wraps around
 to the same number before a neighbor that stops receiving HELLO
 messages changes the status of the link to LOST, the time between two
 consecutive HELLO messages (sent on a given interface) MUST be
 greater than NBR_HOLD_TIME/128 second.

 To avoid synchronization of control messages, which can result in
 collisions, HELLO messages SHOULD NOT be transmitted at equal
 intervals. To achieve this, a node MAY choose the interval between
 consecutive HELLO messages to be HELLO_INTERVAL - jitter, where
 jitter is selected randomly from the interval [0, MAX_JITTER].

Ogier, et al. Experimental [Page 15]

RFC 3684 TBRPF February 2004

 Each HELLO message always includes a NEIGHBOR REQUEST message, even
 if its list of neighbor addresses is empty. The NEIGHBOR REQUEST
 message includes the sequence number HSEQ, which is incremented by 1
 (modulo 256) each time a HELLO is sent. The HELLO message also
 includes a NEIGHBOR REPLY message if its list of neighbor addresses
 is nonempty, and a NEIGHBOR LOST message if its list of neighbor
 addresses is nonempty. The contents of these three messages are
 determined by the following steps at node i for each interface I:

 1. For each interface J such that nbr_status(I,J) = LOST and
 nbr_count(I,J) > 0, include J in the NEIGHBOR LOST message and
 decrement nbr_count(I,J).

 2. For each interface J such that nbr_status(I,J) = 1-WAY and
 nbr_count(I,J) > 0, include J in the NEIGHBOR REQUEST message and
 decrement nbr_count(I,J).

 3. For each interface J such that nbr_status(I,J) = 2-WAY and
 nbr_count(I,J) > 0, include J in the NEIGHBOR REPLY message and
 decrement nbr_count(I,J).

 If a node restarts, so that all entries are removed from the neighbor
 table, then the node MUST ensure that (for each interface) at least
 one of the following two conditions is satisfied:

 1. The difference between the transmission times of the first HELLO
 sent after restarting and the last HELLO sent before restarting is
 at least 2*NBR_HOLD_TIME.

 2. Letting HSEQ_LAST denote the sequence number of the last HELLO
 that was sent before restarting, the sequence number of the first
 HELLO sent after restarting is set to HSEQ_LAST + NBR_HOLD_COUNT +
 1 (modulo 256).

 Either of these conditions ensures that, if node i with interface I
 restarts, then each neighbor of node i that has a link (J,I) to
 interface I will set the status of the link to LOST.

7.4. Processing a Received HELLO Message

 When a node receives a HELLO message, it obtains the IP address of
 the sending interface from the IP header. If the TBRPF packet header
 of the received HELLO contains the RID option, then the RID of the
 sending node is obtained from the TBRPF packet header; otherwise it
 is equal to the IP address of the sending interface. If node i (with
 RID equal to i) receives a HELLO message on interface I, sent by node
 j (with RID equal to j) on interface J, with sequence number HSEQ and
 relay priority PRI, then node i performs the following steps:

Ogier, et al. Experimental [Page 16]

RFC 3684 TBRPF February 2004

 1. If the neighbor table for interface I does not contain an entry
 for interface J, create one with nbr_rid(I,J) = j, nbr_status(I,J)
 = LOST (temporarily), nbr_count(I,J) = 0, and nbr_hseq(I,J) =
 HSEQ.

 2. Update hello_history(I,J) to reflect the received HELLO message.
 If nbr_hseq(I,J) > HSEQ (due to wraparound), set nbr_hseq(I,J) =
 nbr_hseq(I,J) - 256.

 3. If nbr_status(I,J) = LOST and hello_history(I,J) indicates that
 HELLO_ACQUIRE_COUNT of the last HELLO_ACQUIRE_WINDOW HELLO
 messages from interface J have been received:

 a. If interface I does not appear in the NEIGHBOR REQUEST list or
 the NEIGHBOR REPLY list, set nbr_status(I,J) = 1-WAY and
 nbr_count(I,J) = NBR_HOLD_COUNT.

 b. Else, set nbr_status(I,J) = 2-WAY and nbr_count(I,J) =
 NBR_HOLD_COUNT. Call Link_Up(I,J).

 4. Else, if nbr_status(I,J) = 1-WAY:

 a. If HSEQ - nbr_hseq(I,J) > NBR_HOLD_COUNT, then set
 nbr_status(I,J) = LOST and nbr_count(I,J) = NBR_HOLD_COUNT.

 b. Else, if interface I appears in the NEIGHBOR REQUEST list, set
 nbr_status(I,J) = 2-WAY and nbr_count(I,J) = NBR_HOLD_COUNT.
 Call Link_Up(I,J).

 c. Else, if interface I appears in the NEIGHBOR REPLY list, set
 nbr_status(I,J) = 2-WAY and nbr_count(I,J) = 0. Call
 Link_Up(I,J).

 5. Else, if nbr_status(I,J) = 2-WAY:

 a. If interface I appears in the NEIGHBOR LOST list, set
 nbr_status(I,J) = LOST and nbr_count(I,J) = 0. Call
 Link_Down(I,J).

 b. Else, if HSEQ - nbr_hseq(I,J) > NBR_HOLD_COUNT, set
 nbr_status(I,J) = LOST and nbr_count(I,J) = NBR_HOLD_COUNT.
 Call Link_Down(I,J).

 c. Else, if interface I appears in the NEIGHBOR REQUEST list and
 nbr_count(I,J) = 0, set nbr_count(I,J) = NBR_HOLD_COUNT.

 6. Set nbr_life(I,J) = NBR_HOLD_TIME, nbr_hseq(I,J) = HSEQ, and
 nbr_pri(I,J) = PRI.

Ogier, et al. Experimental [Page 17]

RFC 3684 TBRPF February 2004

7.5. Expiration of Timer nbr_life

 Upon expiration of the timer nbr_life(I,J) in the neighbor table for
 interface I, node i performs the following step:

 If nbr_status(I,J) = 1-WAY or 2-WAY, set nbr_status(I,J) = LOST
 and nbr_count(I,J) = NBR_HOLD_COUNT. Call Link_Down(I,J).

7.6. Link-Layer Failure Notification

 Some link-layer protocols (e.g., IEEE 802.11) provide a notification
 that the link to a particular neighbor has failed, e.g., after
 attempting a maximum number of retransmissions. If such an
 notification is provided by the link layer, then node i SHOULD
 perform the following step upon receipt of a link-layer failure
 notification for the link (I,J) from local interface I to neighbor
 interface J:

 If nbr_status(I,J) = 2-WAY, set nbr_status(I,J) = LOST and
 nbr_count(I,J) = NBR_HOLD_COUNT. Call Link_Down(I,J).

7.7. Optional Link Metrics

 Each node MAY maintain and update one or more link metrics for each
 link (I,J), representing the quality of the link, e.g., signal
 strength, number of HELLOs received over some time interval,
 reliability, stability, bandwidth, etc. Each node MUST declare a
 neighbor to be LOST if either NBR_HOLD_COUNT HELLOs are missed or if
 no HELLO is received within NBR_HOLD_TIME seconds; however, a node
 MAY also declare a neighbor to be LOST based on a link metric being
 above or below some threshold. Each node MUST receive at least
 HELLO_ACQUIRE_COUNT of the last HELLO_ACQUIRE_WINDOW HELLOs from a
 neighbor before declaring the neighbor 1-WAY or 2-WAY; however, a
 node MAY require an additional condition based on a link metric being
 above or below some threshold, before declaring the neighbor 1-WAY or
 2-WAY. This document does not specify any particular link metric,
 but an implementation of TBRPF that uses such metrics is considered
 to be compliant with this specification.

 The function Link_Change(I,J) is called to alert the routing module
 whenever nbr_metric(I,J) changes significantly. If the configurable
 parameter USE_METRICS is equal to 1, then the metrics nbr_metric(I,J)
 are used by the routing module for route computation, as described in
 Section 8.

Ogier, et al. Experimental [Page 18]

RFC 3684 TBRPF February 2004

7.8. Configurable Parameters

 This section lists the parameters used by the neighbor discovery
 protocol, and their proposed default values. All nodes MUST be
 configured to have the same value for all of the following
 parameters.

 Parameter Name Default Value
 -------------- -------------
 HELLO_INTERVAL 1 second
 MAX_JITTER 0.1 second
 NBR_HOLD_TIME 3 seconds
 NBR_HOLD_COUNT 3
 HELLO_ACQUIRE_COUNT 2
 HELLO_ACQUIRE_WINDOW 3

8. TBRPF Routing Module

 This section describes the TBRPF routing module, which performs
 topology discovery and route computation.

8.1. Conceptual Data Structures

 In addition to the information required by the neighbor discovery
 protocol, each node running TBRPF maintains a topology table TT,
 which stores information for each known node and link in the network.
 Nodes are identified by their RIDs, i.e., node u is the node whose
 RID is u. The following information is stored in the topology table
 at node i for each node u and link (u,v):

 T(u,v) - Equal to 1 if (u,v) is in node i’s source tree T, and 0
 otherwise. The previous source tree is also maintained as old_T.

 RN(u) - Equal to 1 if u is in node i’s reported node set RN, and 0
 otherwise. The previous reported node set is also maintained as
 old_RN.

 RT(u,v) - Equal to 1 if (u,v) is in node i’s reported subtree RT,
 and 0 otherwise. Since RT is defined as the set of links (u,v) in
 T such that u is in RN, this variable need not be maintained
 explicitly.

 TG(u,v) - Equal to 1 if (u,v) is in node i’s topology graph TG,
 and 0 otherwise.

 N - The set of 2-way neighbors of node i.

Ogier, et al. Experimental [Page 19]

RFC 3684 TBRPF February 2004

 r(u,v) - The list of neighbors that are reporting link (u,v) in
 their reported subtree RT. The set of links (u,v) reported by
 neighbor j is denoted RT_j.

 r(u) - The list of neighbors that are reporting node u in their
 reported node set RN.

 p(u) - The current parent for node u, equal to the next node on
 the shortest path to u.

 pred(u) - The node that is the predecessor of node u in the source
 tree T. Equal to NULL if node u is not reachable.

 pred(j,u) - The node that is the predecessor of node u in the
 subtree RT_j reported by neighbor j.

 d(u) - The length of the shortest path to node u. If USE_METRICS
 = 0, d(u) is the number of hops to node u.

 reported(u,v) - Equal to 1 if link (u,v) in TG is reported by
 p(u), and 0 otherwise.

 tg_expire(u) - Expiration time for links (u,v) in TG.

 rt_expire(j,u) - Expiration time for links (u,v) in RT_j.

 nr_expire(u,v) - Expiration time for a link (u,v) in TG such that
 reported(u,v) = 0. Such non-reported links can be used
 temporarily during rerouting.

 metric(j,u,v) - The metric for link (u,v) reported by neighbor j.

 metric(u,v) - The metric for link (u,v) in TG. For a neighbor j,
 metric(i,j) is the minimum of nbr_metric(I,J) over all 2-WAY links
 (I,J) from i to j.

 cost(u,v) - The cost for link (u,v), equal to metric(u,v) if
 USE_METRICS = 1, and otherwise equal to 1.

 local_if(j) - The address of the preferred local interface for
 forwarding packets to neighbor j.

 nbr_if(j) - The address of the preferred interface of neighbor j.

Ogier, et al. Experimental [Page 20]

RFC 3684 TBRPF February 2004

 The routing table consists of a list of tuples of the form (rt_dest,
 rt_next, rt_dist, rt_if_id), where rt_dest is the destination IP
 address or prefix, rt_next is the interface address of the next hop
 of the route, rt_dist is the length of the route, and rt_if_id is the
 ID of the local interface through which the next hop can be reached.

 Each node also maintains three tables that describe associated IP
 addresses or prefixes: the "interface table", which associates
 interface IP addresses with router IDs, the "host table", which
 associates host IP addresses with router IDs, and the "network prefix
 table", which associates network prefixes with router IDs.

 The "interface table" consists of tuples of the form (if_addr,
 if_rid, if_expire), where if_addr is an interface IP address
 associated with the router with RID = if_rid, and if_expire is the
 time at which the tuple expires and MUST be removed. The interface
 table at a node does NOT contain an entry in which if_addr equals the
 node’s own RID; thus, a node does not advertise its own RID as an
 associated interface.

 The "host table" consists of tuples of the form (h_addr, h_rid,
 h_expire), where h_addr is a host IP address associated with the
 router with RID = h_rid, and h_expire is the time at which the tuple
 expires and MUST be removed.

 The "network prefix table" consists of tuples of the form
 (net_prefix, net_length, net_rid, net_expire), where net_prefix and
 net_length describe a network prefix associated with the router with
 RID = net_rid, and net_expire is the time at which the tuple expires
 and MUST be removed. A MANET may be configured as a "stub" network,
 in which case one or more gateway routers may announce a default
 prefix such that net_prefix = net_length = 0. Two copies of each
 table are kept: an "old" copy that was last reported to neighbors,
 and the current copy that is updated when association messages are
 received.

8.2. TOPOLOGY UPDATE Message Format

 The TOPOLOGY UPDATE message has the two formats, depending on the
 size of the message. The normal format is as follows, and is used
 whenever n, NRL, and NRNL all do not exceed 255:

Ogier, et al. Experimental [Page 21]

RFC 3684 TBRPF February 2004

 +-+
 |M|D|0|0| TYPE | n | NRL | NRNL |
 +-+
 | Router ID of u |
 +-+
 | Router ID of v_1 |
 +-+
 ˜ ... ˜
 +-+
 | Router ID of v_n |
 +-+
 | metric 1 | metric 2 | ... |
 +-+
 | ... |
 +-+

 The message body contains the n+1 router IDs for nodes u,
 v_1,...,v_n, which represent the links (u,v_1),..., (u,v_n). The
 first NRL of the v_k are reported leaf nodes, the next NRNL of the
 v_k are reported non-leaf nodes, and the last n - (NRL+NRNL) of the
 v_k are not reported (not in RN).

 The M bit indicates whether or not link metrics are included in the
 message. If M = 1, then a 1-octet metric is included for each of the
 links (u,v_1),..., (u,v_n), following the last router ID.

 The D bit indicates whether or not implicit deletion is used, and
 must be set to 1 if and only if IMPLICIT_DELETION = 1.

 The TOPOLOGY UPDATE message has the following three subtypes:

 FULL (TYPE = 5)
 A FULL update (FULL, n, NRL, NRNL, u, v_1,..., v_n) reports that
 the links (u,v_1),..., (u,v_n) belong to the sending router’s
 reported subtree RT, and that RT contains no other links with tail
 u.

 ADD (TYPE = 6)
 An ADD update (ADD, n, NRL, NRNL, u, v_1,..., v_n) reports that
 the links (u,v_1),..., (u,v_n) have been added to the sending
 router’s reported subtree RT.

 DELETE (TYPE = 7)
 A DELETE update (DELETE, n, NRL, NRNL, u, v_1,..., v_n) reports
 that the links (u,v_1),..., (u,v_n) have been deleted from the
 sending router’s reported subtree RT.

Ogier, et al. Experimental [Page 22]

RFC 3684 TBRPF February 2004

 If n, NRL, or NRNL is larger than 255, then the long format of the
 TOPOLOGY UPDATE message is used, in which the first 4 octets of the
 normal format are replaced by the following 8 octets:

 +-+
 |M|D|1|0| TYPE | 0 | n |
 +-+
 | NRL | NRNL |
 +-+

8.3. Interface, Host, and Network Prefix Association Message Formats

 The INTERFACE ASSOCIATION (TYPE = 8) and HOST ASSOCIATION (TYPE = 9)
 messages have the following format:

 +-+
 |ST | 0 | TYPE | Reserved | n |
 +-+
 | Router ID |
 +-+
 | IP Address |
 +-+
 | IP Address |
 +-+
 | ... |
 +-+

 The message body contains the router ID of the originating node, and
 n IP addresses of interfaces (TYPE = 8) or hosts (TYPE = 9) that are
 associated with the router ID. The ST field is defined below.

 The NETWORK PREFIX ASSOCIATION message (TYPE = 10) has the following
 format:

 +-+
 |ST | 0 | TYPE | Reserved | n |
 +-+
 | Router ID |
 +-+
 | PrefixLength | Prefix byte 1 | Prefix byte 2 | ... |
 +-+
 | ... | PrefixLength | Prefix byte 1 | Prefix byte 2 |
 +-+
 | ... |
 +-+

Ogier, et al. Experimental [Page 23]

RFC 3684 TBRPF February 2004

 The message body contains the router ID of the originating node, and
 n network prefixes, each specified by a 1-octet prefix length
 followed immediately by the prefix, using the minimum number of whole
 octets required. To minimize overhead, the prefix lengths and
 prefixes are NOT aligned along word boundaries.

 The INTERFACE ASSOCIATION, HOST ASSOCIATION, and NETWORK PREFIX
 ASSOCIATION messages each have the following three subtypes (similar
 to those for the TOPOLOGY UPDATE message):

 FULL (ST = 0)
 Indicates that this is a FULL update that includes all interface
 addresses, host addresses, or network prefixes associated with the
 given router ID.

 ADD (ST = 1)
 Indicates that the included IP addresses or network prefixes are
 associated with the router ID, but may not include all such IP
 addresses or network prefixes.

 DELETE (ST = 2)
 Indicates that the included IP addresses or network prefixes are
 no longer associated with the router ID.

8.4. TBRPF Routing Operation

 This section describes the operation of the TBRPF routing module.
 The operation is divided into the following subsections: periodic
 processing, updating the source tree and topology graph, updating the
 routing table, updating the reported node set, generating periodic
 updates, generating differential updates, processing topology
 updates, expiring topology information, optional reporting of
 redundant topology information, local topology changes, generating
 association messages, processing association messages, and non-relay
 operation. The operation is described in terms of procedures (e.g.,
 Update_All), which may be executed periodically or in response to
 some event, and may be called by other procedures. In all
 procedures, node i is the node executing the procedure.

8.4.1. Periodic Processing

 Each node executes the procedure Update_All() periodically, at least
 once every DIFF_UPDATE_INTERVAL seconds, which is typically equal to
 HELLO_INTERVAL. This procedure is defined as follows:

Ogier, et al. Experimental [Page 24]

RFC 3684 TBRPF February 2004

Update_All()
 1. For each interface I, create empty message list msg_list(I).
 2. For each interface I, generate a HELLO message for
 interface I and add it to msg_list(I).
 3. Expire_Links().
 4. Update_Source_Tree().
 5. Update_Routing_Table().
 6. If REPORT_FULL_TREE = 0, execute Update_RN(); otherwise (the
 full source tree is reported) Update_RN_Simple().
 7. If current_time >= next_periodic:
 7.1. Generate_Periodic_Update().
 7.2. Set next_periodic = current_time + PER_UPDATE_INTERVAL.
 8. Else, Generate_Diff_Update().
 9. Generate_Association_Messages().
 10. For each interface I, send the msg_list(I) on interface I.
 11. Set old_T = T and old_RN = RN.

8.4.2. Updating the Source Tree and Topology Graph

 The procedure Update_Source_Tree() is a variant of Dijkstra’s
 algorithm, which is called periodically and in response to topology
 changes, to update the source tree T and the topology graph TG. This
 algorithm computes shortest paths subject to two link cost penalties.
 The penalty NON_REPORT_PENALTY is added to the cost of links (u,v)
 that are not currently reported by the parent p(u) so that, whenever
 possible, a link (u,v) is included in T only if it is currently
 reported by the parent. To allow immediate rerouting when p(u)
 changes, it may be necessary to temporarily use a link (u,v) that is
 not currently reported by the new parent. The penalty
 NON_TREE_PENALTY is added to the cost of links (u,v) that are not
 currently in T, to reduce the number of changes to T. When there
 exist multiple paths of equal cost to a given node, router ID is used
 to break ties.

 The algorithm is defined as follows (where node i is the node
 executing the procedure):

Update_Source_Tree()
 1. For each node v in TT, set d(v) = INFINITY, pred(v) = NULL,
 old_p(v) = p(v), and p(v) = NULL.

 2. Set d(i) = 0, p(i) = i, pred(i) = i.

 3. Set S = {i}. (S is the set of labeled nodes.)

 4. For each node j in N, set d(j) = c(i,j), pred(j) = i,
 and p(j) = j. (If USE_METRICS = 0, then all link costs
 c(i,j) are 1.)

Ogier, et al. Experimental [Page 25]

RFC 3684 TBRPF February 2004

 5. While there exists an unlabeled node u in TT such that
 d(u) < INFINITY:
 5.1. Let u be an unlabeled node in TT with minimum d(u).
 (A heap should be used to find u efficiently.)
 5.2. Add u to S (u becomes labeled).
 5.3. If p(u) is not equal to old_p(u) (parent has changed):
 5.3.1. For each link (u,v) in TG with tail u, if
 reported(u,v) = 1, set reported(u,v) = 0 and set
 nr_expire(u,v) = current_time + PER_UPDATE_INTERVAL.
 5.3.2. If p(u) is in r(u) (p(u) is reporting u):
 5.3.2.1. Set tg_expire(u) = rt_expire(p(u),u).
 5.3.2.2. If p(u) = u (u is a neighbor), remove all links
 (u,v) with tail u from TG.
 5.3.2.3. For each link (u,v) with p(u) in r(u,v):
 5.3.2.3.1. Add (u,v) to TG and set reported(u,v) = 1.
 5.3.2.3.2. Set metric(u,v) = metric(p(u),u,v).
 If USE_METRICS=1, set c(u,v)=metric(u,v).
 5.4. For each node v such that (u,v) is in TG:
 5.4.1. If reported(u,v) = 0,
 set cost = c(u,v) + NON_REPORT_PENALTY.
 (This penalizes (u,v) if not reported by p(u).)
 5.4.2. Else, if p(u) = u AND u is not in r(v),
 set cost = c(u,v) + NON_REPORT_PENALTY.
 (This penalizes (u,v) if u is a neighbor and is not
 reporting v.)
 5.4.3. If (u,v) is not in old_T and p(u) != u,
 set cost = cost + NON_TREE_PENALTY.
 5.4.4. If (d(u) + cost, u) is lexicographically less
 than (d(v), pred(v)), set d(v) = d(u) + c(u,v),
 pred(v) = u, and p(v) = p(u).

 6. Update the source tree T as follows:
 6.1. Remove all links from T.
 6.2. For each node u other than i such that pred(u) is not
 NULL, add the link (pred(u), u) to T.

8.4.3. Updating the Routing Table

 The routing table is updated following any change to the source tree
 or the association tables (interface table, host table, or network
 prefix table). The routing table is updated according to procedure
 Update_Routing_Table(), which is defined as follows:

Update_Routing_Table()

 1. Remove all tuples from the routing table.

Ogier, et al. Experimental [Page 26]

RFC 3684 TBRPF February 2004

 2. For each node u in TT (other than this node) such that p(u) is
 not NULL, add the tuple (rt_dest, rt_next, rt_dist, rt_if_id)
 to the routing table, where:
 rt_dest = u,
 rt_if_id = local_if(p(u)),
 rt_next = nbr_if(p(u)),
 rt_dist = d(u).

 3. For each tuple (if_addr, if_rid, if_expire) in the interface
 table, if a routing table entry (rt_dest, rt_next, rt_dist,
 rt_if_id) exists such that rt_dest = if_rid, add the tuple
 (if_addr, rt_next, rt_dist, rt_if_id) to the routing table.

 4. For each tuple (h_addr, h_rid, h_expire) in the host table, if
 there exists a routing table entry (rt_dest, rt_next, rt_dist,
 rt_if_id) such that rt_dest = h_rid, add the tuple (h_addr,
 rt_next, rt_dist, rt_if_id) to the routing table, unless an
 entry already exists with the same value for h_addr and a
 lexicographically smaller value for (rt_dist, rt_dest).

 5. For each tuple (net_prefix, net_length, net_rid, net_expire)
 in the network prefix table, if there exists a routing table
 entry (rt_dest, rt_next, rt_dist, rt_if_id) such that
 rt_dest = net_rid, add the tuple (net_prefix/net_length,
 rt_next, rt_dist, rt_if_id) to the routing table, unless an
 entry already exists with the same value for
 net_prefix/net_length and a lexicographically smaller value
 for (rt_dist, rt_dest).

8.4.4. Updating the Reported Node Set

 Recall that the reported subtree RT is defined to be the set of links
 (u,v) in T such that u is in the reported node set RN. Each node
 updates its RN immediately before generating periodic or differential
 topology updates.

 If REPORT_FULL_TREE = 1 (so that a node reports its entire source
 tree), then RN simply consists of all reachable nodes, i.e., all
 nodes u such that pred(u) is not NULL. The procedure that computes
 RN in this manner is called Update_RN_Simple(). The rest of this
 section describes how RN is computed assuming REPORT_FULL_TREE = 0.

 A node first determines which of its neighbors belong to RN. Node i
 includes a neighbor j in RN if and only if node i determines that one
 of its neighbors may select i to be its next hop on its shortest path
 to j. To make this determination, node i computes the shortest
 paths, up to 2 hops, from each neighbor to each other neighbor, using
 only neighbors (or node i itself) as an intermediate node, and using

Ogier, et al. Experimental [Page 27]

RFC 3684 TBRPF February 2004

 relay priority and router ID to break ties. If a link metric is
 used, then shortest paths are computed with respect to the link
 metric; otherwise min-hop paths are computed.

 After a node determines which neighbors are in RN, each node u (other
 than node i) in the topology table is included in RN if and only if
 the next hop p(u) to u is in RN. Equivalently, node u is included in
 RN if and only if u is in the subtree of T rooted at some neighbor j
 that is in RN. Thus, the reported subtree RT includes the subtrees
 of T that are rooted at neighbors in RN. Node i also includes itself
 in RN; thus RT also includes all local links (i,j) to neighbors j.

 The precise procedure for updating RN is defined as follows:

Update_RN()
 1. Set RN = empty.
 2. For each neighbor s in N such that s is in r(s), i.e.,
 such that s is reporting itself:
 (Initialize to run Dijkstra for source s, for 2 hops.)
 2.1. For each node j in N+{i}, set dist(j) = INFINITY and
 par(j) = NULL.
 2.2. Set dist(s) = 0 and par(s) = s.
 2.3. For each node j in N+{i} such that (s,j) is in TG:
 2.3.1. Set dist(j) = metric(s,j), par(j) = j.
 2.3.2. For each node k in N such that (j,k) is in TG:
 2.3.2.1. Set cost = metric(j,k).
 2.3.2.2. If (dist(j) + cost, nbr_pri(j), j)
 is lexicographically less than
 (dist(k), nbr_pri(par(k)), par(k)),
 set dist(k) = dist(j) + cost and par(k) = j.
 2.4. For each neighbor j in N, add j to RN if par(j) = i.
 3. Add i to RN. (Node i is always in RN.)
 4. For each node u in the topology table, add u to RN if p(u)
 is in RN.

 In some cases it may be desirable to limit the radius (number of
 hops) that topology information is propagated. Since each TBRPF
 packet is sent only to immediate (1-hop) neighbors, this cannot be
 achieved by using a time-to-live field. Instead, the propagation of
 topology information can be limited to a radius of K hops by limiting
 RN (at all nodes) to include only nodes that are at most K-1 hops
 away. Assuming min-hop routing is used, so that d(u) is the number
 of hops to node u, this can be done by modifying Step 4 of
 Update_RN() as follows:

 4. For each node u in the topology table, add u to RN if p(u)
 is in RN and d(u) <= K-1.

Ogier, et al. Experimental [Page 28]

RFC 3684 TBRPF February 2004

8.4.5. Generating Periodic Updates

 Every PER_UPDATE_INTERVAL seconds, each node generates and transmits,
 on all interfaces, a set of FULL TOPOLOGY UPDATE messages (one
 message for each node in RN that is not a leaf of T), which describes
 the reported subtree RT. Whenever possible, these messages are
 included in a single packet, in order to minimize the number of
 control packets transmitted.

 Each topology update message contains the router IDs for n+1 nodes u,
 v_1,...,v_n, which represent the n links (u,v_1),..., (u,v_n). The n
 head nodes v_1,..., v_n are divided into three lists in order to
 convey additional information and thus reduce the number of messages
 that must be generated. In particular, the first NRL head nodes are
 leaves of T, thus avoiding the need to generate separate topology
 update messages for leaf nodes u. Similarly, the last n-(NRL+NRNL)
 head nodes are not in RN, thus avoiding the need to generate separate
 topology update messages for nodes u that have been removed from RN.

 Periodic update messages are generated according to procedure
 Generate_Periodic_Update(), defined as follows (where node i is the
 node executing the procedure):

 Generate_Periodic_Update()
 For each node u in RN (including node i) that is not a leaf of T,
 add the update (FULL, n, NRL, NRNL, u, v_1,..., v_n)
 to msg_list(I) for each interface I, where:

 (a) v_1,..., v_n are the nodes v such that (u,v) is in T,
 the first NRL of these are nodes in RN that are leaves of T,
 the next NRNL of these are nodes in RN that are not leaves
 of T, and the last n-(NRL+NRNL) of these are not in RN.

 (b) If USE_METRICS = 1, then the M (metrics) bit is set to 1 and
 the link metrics metric(u,v_1),..., metric(u,v_n) are
 included in the message.

8.4.6. Generating Differential Updates

 Every DIFF_UPDATE_INTERVAL seconds, if it is not time to generate a
 periodic update, and if RT has changed since the last time a topology
 update was generated, a set of TOPOLOGY UPDATE messages describing
 the changes to RT is generated and transmitted on all interfaces.
 These messages are constructed according to procedure
 Generate_Differential_Update(), defined as follows:

Ogier, et al. Experimental [Page 29]

RFC 3684 TBRPF February 2004

Generate_Differential_Update()
 For each node u in RN:
 1. If u is not in old_RN (u was added to RN) and is not a leaf
 of T, add the update (FULL, n, NRL, NRNL, u, v_1,..., v_n)
 to msg_list(I) for each I, where:
 (a) v_1,..., v_n, NRL, and NRNL are defined as above for
 periodic updates.
 (b) If USE_METRICS = 1, then the M (metrics) bit is set to 1
 and the link metrics metric(u,v_1),..., metric(u,v_n)
 are included in the message.

 2. Else, if u is in old_RN and is not a leaf of T:
 2.1. Let v_1,..., v_n be the nodes v such that (u,v) is in T
 AND at least one of the following 3 conditions holds:
 (a) (u,v) is not in old_T, or
 (b) v is in old_RN but not in RN, or
 (c) v is a leaf and is in RN but not in old_RN.
 2.2. If this set of nodes is nonempty, add the update
 (ADD, n, NRL, NRNL, u, v_1,..., v_n) to msg_list(I) for
 each interface I, where:
 (a) NRL and NRNL are defined as above.
 (b) If USE_METRICS = 1, then the M (metrics) bit is
 set to 1 and the link metrics metric(u,v_1),...,
 metric(u,v_n) are included in the message.

 3. If u is in old_RN:
 3.1. Let v_1,..., v_n be the nodes v such that (u,v) is in
 old_T but not in TG, and either IMPLICIT_DELETION = 0
 or pred(v) is not in RN (or is NULL).
 (If IMPLICIT_DELETION = 1 and pred(v) is in RN, then
 the deletion of (u,v) is implied by an ADD update for
 another link (w,v).)
 3.2. If this set of nodes is nonempty, add the update
 (DELETE, n, u, v_1,..., v_n) to msg_list(I) for each I.

8.4.7. Processing Topology Updates

 When a packet containing a list (msg_list) of TOPOLOGY UPDATE
 messages is received from node j, the list is processed according to
 the procedure Process_Updates(j, msg_list), defined as follows. In
 particular, this procedure updates TT, TG, and the reporting neighbor
 lists r(u) and r(u,v). If any link in T has been deleted from TG,
 then Update_Source_Tree() and Update_Routing_Table() are called to
 provide immediate rerouting.

Process_Updates(j, msg_list)
 1. For each update = (subtype, n, NRL, NRNL, u, v_1,..., v_n)
 in msg_list:

Ogier, et al. Experimental [Page 30]

RFC 3684 TBRPF February 2004

 1.1. Create an entry for u in TT if it does not exist.
 1.2. If subtype = FULL, Process_Full_Update(j, update).
 1.3. If subtype = ADD, Process_Add_Update(j, update).
 1.4. If subtype = DELETE, Process_Delete_Update(j, update).
 2. If there exists any link in T that is not in TG:
 2.1. Update_Source_Tree().
 2.2. Update_Routing_Table().

Process_Full_Update(j, update)
 1. Add j to r(u).
 2. Set rt_expire(j,u) = current_time + TOP_HOLD_TIME.
 3. For each link (u,v) s.t. j is in r(u,v):
 3.1. Remove j from r(u,v).
 3.2. If pred(j,v) = u, set pred(j,v) = NULL.
 4. If j = p(u) OR p(u) = NULL:
 4.1. Set tg_expire(u) = current_time + TOP_HOLD_TIME.
 4.2. For each v s.t. (u,v) is in TG,
 If reported(u,v) = 1, remove (u,v) from TG.
 5. Process_Add_Update(j, update).

Process_Add_Update(j, update)
 For m = 1,..., n:
 ((u,v_m) is the mth link in update.)
 1. Let v = v_m.
 2. Create an entry for v in TT if it does not exist.
 3. Add j to r(u,v).
 4. If j = p(u) OR p(u) = NULL:
 4.1. Add (u,v) to TG.
 4.2. Set reported(u,v) = 1.
 5. If the M (metrics) bit in update is 1:
 5.1. Set metric(j,u,v) to the m-th metric in the update.
 5.2. If j = p(u) OR p(u) = NULL:
 5.2.1. Set metric(u,v) = metric(j,u,v).
 5.2.2. If USE_METRICS = 1, set c(u,v) = metric(u,v).
 6. If the D (implicit deletion) bit in update is 1:
 6.1. Set w = pred(j,v).
 6.2. If (w != NULL AND w != u):
 6.2.1. Remove j from r(w,v).
 6.2.2. If j = p(w), remove (w,v) from TG.
 7. Set pred(j,v) = u. (Set new predecessor.)
 8. If m <= NRL (v = v_m is a reported leaf):
 8.1. Set leaf_update = (FULL, 0, 0, 0, v).
 8.2. Process_Full_Update(j, leaf_update).
 9. If m > NRL + NRNL (v = v_m is not reported by j):
 9.1. Remove j from r(v).
 9.2. Set rt_expire(j,v) = 0.
 9.3. For each node w s.t. j is in r(v,w),
 remove j from r(v,w).

Ogier, et al. Experimental [Page 31]

RFC 3684 TBRPF February 2004

 9.4. If j = p(v), then for each node w s.t. (v,w) is in TG
 and reported(v,w) = 1, set reported(v,w) = 0 and set
 nr_expire(v,w) = current_time + PER_UPDATE_INTERVAL.

Process_Delete_Update(j, update)
 For m = 1,..., n:
 ((u,v_m) is the mth link in update.)
 1. Let v = v_m.
 2. Remove j from r(u,v).
 3. If pred(j,v) = u, set pred(j,v) = NULL.
 4. If j = p(u), remove (u,v) from TG.

8.4.8. Expiring Topology Information

 Each node periodically checks for outdated topology information based
 on the expiration timers tg_expire(u), rt_expire(j,u), and
 nr_expire(u,v), and removes any expired entries from TG and from the
 lists r(u) and r(u,v). This is done according to the following
 procedure Expire_Links(), which is called periodically just before
 the source tree is updated.

Expire_Links()
 For each node u in TT other than node i:
 1. If tg_expire(u) < current_time, then for each v s.t.
 (u,v) is in TG, remove (u,v) from TG.
 2. Else, for each v s.t. (u,v) is in TG,
 if reported(u,v) = 0 AND nr_expire(u,v) < current_time,
 remove (u,v) from TG.
 3. For each node j in r(u), if rt_expire(j,u) < current_time:
 3.1. Remove j from r(u).
 3.2. For each link (u,v) s.t. j is in r(u,v),
 remove j from r(u,v).

 In addition, the following cleanup steps SHOULD be executed
 periodically to remove unnecessary entries from the topology table
 TT. A link (u,v) should be removed from TT if it is not in TG and
 not in old_T. A node u should be removed from TT if all of the
 following conditions hold: r(u) is empty, r(w,u) is empty for all w,
 and no link of TG has u as either the head or the tail.

8.4.9. Optional Reporting of Redundant Topology Information

 Each node is required to report its reported subtree RT to neighbors.
 However, each node (independently of the other nodes) MAY report
 additional links, e.g., to provide increased robustness in highly
 mobile networks. For example, a node may compute any subgraph H of
 TG that contains T, and may report the "reported subgraph" RH which
 consists of links (u,v) of H such that u is in RN. In this case,

Ogier, et al. Experimental [Page 32]

RFC 3684 TBRPF February 2004

 each periodic update describes RH instead of RT, and each
 differential update describes changes to RH. If this option is used,
 then the parameter IMPLICIT_DELETION MUST be set to 0, since the
 deletion of a link cannot be implied by the addition of another link
 if redundant topology information is reported.

8.4.10. Local Topology Changes

 This section describes the procedures that are followed when the
 neighbor discovery module detects a new link, the loss of a link, or
 a change in the metric for a link.

 When a link (I,J) from a local interface I to a neighbor interface J
 is discovered via the neighbor discovery module, the procedure
 Link_Up(I,J) is executed, as defined below. Letting j be the
 neighbor node associated with interface J, Link_Up(I,J) adds j to N
 (if it does not already belong), updates the preferred local
 interface local_if(j) and neighbor interface nbr_if(j) so that the
 link from local_if(j) to nbr_if(j) has the minimum metric among all
 links from i to j, and updates metric(i,j) to be this minimum metric.

Link_Up(I,J)
 1. Let j = nbr_rid(I,J).
 2. If j is not in N:
 2.1. Add j to N.
 2.2. Add (i,j) to TG.
 2.3. Set reported(i,j) = 1.
 3. If nbr_metric(I,J) < metric(i,j), set local_if(j) = I,
 nbr_if(j) = J, and metric(i,j) = nbr_metric(I,J).
 4. If USE_METRICS = 1, set cost(i,j) = metric(i,j).

 When the loss of a link (I,J) from a local interface I to a neighbor
 interface J is detected via the neighbor discovery module, the
 procedure Link_Down(I,J) is executed, as defined below. Note that
 routes are updated immediately when a link is lost, and if the lost
 link is due to a link-layer failure notification, a differential
 topology update is sent immediately.

Link_Down(I,J)
 1. Let j = nbr_rid(I,J).
 2. If there does not exist a link (K,L) from node i to
 node j with nbr_status(K,L) = 2-WAY:
 2.1. Remove j from N.
 2.2. Remove (i,j) from TG.
 3. If j is in N:
 3.1. Let (K,L) be a link from i to j such that
 nbr_metric(K,L) is the minimum metric among
 all links from i to j.

Ogier, et al. Experimental [Page 33]

RFC 3684 TBRPF February 2004

 3.2. Set local_if(j) = K, nbr_if(j) = L, and
 metric(i,j) = nbr_metric(K,L).
 3.3. If USE_METRICS = 1, set cost(i,j) = metric(i,j).
 5. Update_Source_Tree().
 6. Update_Routing_Table().
 7. If j is not in N and lost link is due to link-layer failure
 notification:
 7.1. If (REPORT_FULL_TREE = 0) Update_RN().
 7.2. Else, Update_RN_Simple().
 7.3. Set msg_list = empty.
 7.4. Generate_Diff_Update().
 7.5. Send msg_list on all interfaces.
 7.6. Set old_T = T and old_RN = RN.

 If the metric of a link (I,J) from a local interface I to a neighbor
 interface J changes via the neighbor discovery module, the following
 procedure Link_Change(I,J) is executed.

Link_Change(I,J)
 1. Let j = nbr_rid(I,J).
 2. Let (K,L) be a link from i to j such that
 nbr_metric(K,L) is the minimum metric among
 all links from i to j.
 3. Set local_if(j) = K, nbr_if(j) = L, and
 metric(i,j) = nbr_metric(K,L).
 4. If USE_METRICS = 1, set cost(i,j) = metric(i,j).

8.4.11. Generating Association Messages

 This section describes the procedures used to generate INTERFACE
 ASSOCIATION, HOST ASSOCIATION, and NETWORK PREFIX ASSOCIATION
 messages. Addresses or prefixes in the interface table, host table,
 and network prefix table are reported to neighbors periodically every
 IA_INTERVAL, HA_INTERVAL, and NPA_INTERVAL seconds, respectively. In
 addition, differential changes to the tables are reported every
 DIFF_UPDATE_INTERVAL seconds if it is not time for a periodic update
 (similar to differential topology updates). Each node reports only
 addresses or prefixes that are associated with nodes in the reported
 node set RN; this ensures the efficient broadcast of all associated
 addresses and prefixes to all nodes in the network.

 The generated messages are sent on each interface. Whenever
 possible, these messages are combined into the same packet, in order
 to minimize the number of control packets transmitted.

Generate_Association_Messages()
 1. Generate_Interface_Association_Messages().
 2. Generate_Host_Association_Messages().

Ogier, et al. Experimental [Page 34]

RFC 3684 TBRPF February 2004

 3. Generate_Network_Prefix_Association_Messages().

Generate_Interface_Association_Messages()
 1. If current_time > next_ia_time:
 1.1. Set next_ia_time = current_time + IA_INTERVAL.
 1.2. For each node u in RN:
 1.2.1. Let addr_1,..., addr_n be the interface IP
 addresses associated with RID u in the current
 interface table.
 1.2.2. If this list is nonempty, add the INTERFACE
 ASSOCIATION message (FULL, n, u, addr_1,..., addr_n)
 to msg_list(I) for each I.

 2. Else, for each node u in RN:
 2.1. Add the INTERFACE ASSOCIATION message (ADD, n, u,
 addr_1,..., addr_n) to msg_list(I) for each I, where
 addr_1,..., addr_n are the interface IP addresses that
 are associated with RID u in the current interface table
 but not in the old interface table.
 2.2. Add the INTERFACE ASSOCIATION message (DELETE, n, u,
 addr_1,..., addr_n) to msg_list(I) for each I, where
 addr_1,..., addr_n are the interface IP addresses that
 are associated with RID u in the old interface table
 but not in the current interface table.

Generate_Host_Association_Messages()
 1. If current_time > next_ha_time:
 1.1. Set next_ha_time = current_time + HA_INTERVAL.
 1.2. For each node u in RN:
 1.2.1. Let addr_1,..., addr_n be the host IP addresses
 associated with RID u in the current host table.
 1.2.2. If this list is nonempty, add the HOST ASSOCIATION
 message (FULL, n, u, addr_1,..., addr_n) to
 msg_list(I) for each I.

 2. Else, for each node u in RN:
 2.1. Add the HOST ASSOCIATION message (ADD, n, u,
 addr_1,..., addr_n) to msg_list(I) for each I, where
 addr_1,..., addr_n are the host IP addresses that
 are associated with RID u in the current host table
 but not in the old host table.
 2.2. Add the HOST ASSOCIATION message (DELETE, n, u,
 addr_1,..., addr_n) to msg_list(I) for each I, where
 addr_1,..., addr_n are the host IP addresses that
 are associated with RID u in the old host table
 but not in the current host table.

Ogier, et al. Experimental [Page 35]

RFC 3684 TBRPF February 2004

Generate_Network_Prefix_Association_Messages()
 1. If current_time > next_npa_time:
 1.1. Set next_npa_time = current_time + NPA_INTERVAL.
 1.2. For each node u in RN:
 1.2.1. Let length_1, prefix_1,..., length_n, prefix_n
 be the network prefix lengths and prefixes associated
 with RID u in the current network prefix table.
 1.2.2. If this list is nonempty, add the NETWORK PREFIX
 ASSOCIATION message (FULL, n, u, length_1, prefix_1,
 ..., length_n, prefix_n) to msg_list(I) for each I.

 2. Else, for each node u in RN:
 2.1. Add the NETWORK PREFIX ASSOCIATION message
 (ADD, n, u, prefix_1,..., prefix_n) to msg_list(I) for
 each I, where prefix_1,..., prefix_n are the network
 prefixes that are associated with RID u in the current
 prefix table but not in the old prefix table.

 2.1. Add the NETWORK PREFIX ASSOCIATION message
 (DELETE, n, u, prefix_1,..., prefix_n) to msg_list(I) for
 each I, where prefix_1,..., prefix_n are the network
 prefixes that are associated with RID u in the old prefix
 table but not in the current prefix table.

8.4.12. Processing Association Messages

 When an INTERFACE ASSOCIATION, HOST ASSOCIATION, or NETWORK PREFIX
 ASSOCIATION message is received from node j, the interface table,
 host table, or network prefix table, respectively, is updated as
 described in the following three procedures.

Process_Interface_Association_Messages(j, msg_list)
 For each message (subtype, n, u, addr_1,..., addr_n) in msg_list
 such that j = p(u):
 1. If subtype = FULL, remove all entries with if_rid = u
 from the interface table.
 2. If subtype = FULL or ADD, then for m = 1,..., n,
 add the tuple (if_addr, if_rid, if_expire) to the
 interface table, where:
 if_addr = addr_m,
 if_rid = u,
 if_expire = current_time + IA_HOLD_TIME.
 3. If subtype = DELETE, then for m = 1,..., n,
 remove the tuple (if_addr, if_rid, if_expire) from the
 interface table, where if_addr = addr_m and if_rid = u.

Ogier, et al. Experimental [Page 36]

RFC 3684 TBRPF February 2004

Process_Host_Association_Messages(j, msg_list)
 For each message (subtype, n, u, addr_1,..., addr_n) in msg_list
 such that j = p(u):
 1. If subtype = FULL, remove all entries with h_rid = u
 from the host table.
 2. If subtype = FULL or ADD, then for m = 1,..., n,
 add the tuple (h_addr, h_rid, h_expire) to the
 host table, where:
 h_addr = addr_m,
 h_rid = u,
 h_expire = current_time + HA_HOLD_TIME.
 3. If subtype = DELETE, then for m = 1,..., n,
 remove the tuple (h_addr, h_rid, h_expire) from the
 host table, where h_addr = addr_m and h_rid = u.

Process_Network_Prefix_Association_Messages(j, msg_list)
 For each message (subtype, n, u, length_1, prefix_1, ...,
 length_n, prefix_n) in msg_list such that j = p(u):
 1. If subtype = FULL, remove all entries with net_rid = u
 from the prefix table.
 2. If subtype = FULL or ADD, then for m = 1,..., n,
 add the tuple (net_prefix, net_length, net_rid,
 net_expire) to the network prefix table, where:
 net_prefix = prefix_m,
 net_length = length_m,
 net_rid = u,
 net_expire = current_time + NPA_HOLD_TIME.
 3. If subtype = DELETE, then for m = 1,..., n,
 remove the tuple (net_prefix, net_length, net_rid,
 net_expire) from the network prefix table, where
 net_prefix = prefix_m, net_length = length_m,
 and net_rid = u.

8.4.13. Non-Relay Operation

 Nodes with relay priority equal to zero are called non-relay nodes,
 and do not forward packets (of any type) that are received from other
 nodes. A non-relay node is implemented simply by not generating or
 transmitting any TOPOLOGY UPDATE messages. A non-relay node may
 report (in association messages) addresses or prefixes that are
 associated with itself, but not those associated with other nodes.
 HELLO messages must be transmitted in order to establish links with
 neighbor nodes. The following procedures can be omitted in non-relay
 nodes: Update_RN(), Generate_Periodic_Update(), and
 Generate_Diff_Update().

Ogier, et al. Experimental [Page 37]

RFC 3684 TBRPF February 2004

8.5. Configurable Parameters

 This section lists the configurable parameters used by the routing
 module, and their proposed default values. All nodes MUST have the
 same value for all of the following parameters except
 REPORT_FULL_TREE and IMPLICIT_DELETION.

 Parameter Name Default Value
 -------------- -------------
 DIFF_UPDATE_INTERVAL 1 second
 PER_UPDATE_INTERVAL 5 seconds
 TOP_HOLD_TIME 15 seconds
 NON_REPORT_PENALTY 1.01
 NON_TREE_PENALTY 0.01
 IA_INTERVAL 10 seconds
 IA_HOLD_TIME 3 * IA_INTERVAL
 HA_INTERVAL 10 seconds
 HA_HOLD_TIME 3 * HA_INTERVAL
 NPA_INTERVAL 10 seconds
 NPA_HOLD_TIME 3 * NPA_INTERVAL
 USE_METRICS 0
 REPORT_FULL_TREE 0
 IMPLICIT_DELETION 1

9. TBRPF Flooding Mechanism

 This section describes a mechanism for the efficient best-effort
 flooding (or network-wide broadcast) of packets to all nodes of a
 connected ad-hoc network. This mechanism can be considered an
 optimization of the classical flooding algorithm in which each packet
 is transmitted by every node of the network. In TBRPF flooding,
 information provided by TBRPF is used to decide whether a given
 received flooded packet should be forwarded. As a result, each
 packet is transmitted by only a relatively small subset of nodes,
 thus consuming much less bandwidth than classical flooding.

 This document specifies that the flooding mechanism use the IPv4
 multicast address 224.0.1.20 (currently assigned by IANA for "any
 private experiment"). Every node maintains a duplicate cache to keep
 track of which flooded packets have already been received. The
 duplicate cache contains, for each received flooded packet, the
 flooded packet identifier (FPI), which for IPv4 is composed of the
 source IP address, the IP identification, and the fragment offset
 values obtained from the IP header [14].

 When a node receives a packet whose destination IP address is the
 flooding address (224.0.1.20), it checks its duplicate cache for an
 entry that matches the packet. If such an entry exists, the node

Ogier, et al. Experimental [Page 38]

RFC 3684 TBRPF February 2004

 silently discards the flooded packet since it has already been
 received. Otherwise, the node retransmits the packet on all
 interfaces (see the exception below) if and only if the following
 conditions hold:

 1. The TBRPF node associated with the source IP address of the packet
 belongs to the set RN of reported nodes computed by TBRPF.

 2. When decremented, the ’ip_ttl’ in the IPv4 packet header
 (respectively, the ’hop_count’ in the IPv6 packet header) is
 greater than zero.

 If the packet is to be retransmitted, it is sent after a small random
 time interval in order to avoid collisions. If the interface on
 which the packet was received is not a MANET interface (see the
 Terminology section), then the packet should not be retransmitted on
 that interface.

10. Operation of TBRPF in Mobile Ad-Hoc Networks

 TBRPF is particularly well suited to MANETs consisting of mobile
 nodes with wireless network interfaces operating in peer-to-peer
 fashion over a multiple access communications channel. Although
 applicable across a much broader field of use, TBRPF is particularly
 well suited for supporting the standard DARPA Internet protocols
 [3][2]. In the following sections, we discuss practical
 considerations for the operation of TBRPF on MANETs.

10.1. Data Link Layer Assumptions

 We assume a MANET data link layer that supports broadcast, multicast
 and unicast addressing with best-effort (not guaranteed) delivery
 services between neighbors (i.e., a pair of nodes within operational
 communications range of one another). We further assume that each
 interface belonging to a node in the MANET is assigned a unicast data
 link layer address that is unique within the MANET’s scope. While
 such uniqueness is not strictly guaranteed, the assumption of
 uniqueness is consistent with current practices for deployment of the
 Internet protocols on specific link layers. Methods for duplicate
 link layer address detection and deconfliction are beyond the scope
 of this document.

10.2. Network Layer Assumptions

 MANETs are formed as collections of routers and non-routing nodes
 that use network layer addresses when calculating the MANET topology.
 We assume that each node has at least one data link layer interface
 (described above) and that each such interface is assigned a network

Ogier, et al. Experimental [Page 39]

RFC 3684 TBRPF February 2004

 layer address that is unique within the MANET. (Methods for network
 layer address assignment and duplicate address detection are beyond
 the scope of this document.) We further assume that each node will
 select a unique Router ID (RID) for use in TBRPF protocol messages,
 whether or not the node acts as a MANET router. Finally, we assume
 that each MANET router supports the multi-hop relay paradigm at the
 network layer; i.e., each router provides an inter-node forwarding
 service via network layer host routes which reflect the current MANET
 topology as perceived by TBRPF.

10.3. Optional Automatic Address Resolution

 TBRPF employs a proactive neighbor discovery protocol at the network
 layer that maintains bi-directional link state for neighboring nodes
 through the periodic transmission of messages. Since TBRPF neighbor
 discovery messages contain both the data link and network layer
 address of the sender, implementations MAY perform automatic
 network-to-data link layer address resolution for the nodes with
 which they form links. An implementation may use such a mechanism to
 avoid additional message overhead and potential for packet loss
 associated with on-demand address resolution mechanisms such as ARP
 [15] or IPv6 Neighbor Discovery [16]. Implementations MUST respond
 to on-demand address resolution requests in the normal manner.

10.4. Support for Multiple Interfaces and/or Alias Addresses

 MANET nodes may comprise multiple interfaces; each with a unique
 network layer address. Additionally, MANET nodes may wish to publish
 alias addresses such as when multiple network layer addresses are
 assigned to the same interface or when the MANET node is serving as a
 Mobile IP [17] home agent. Multiple interfaces and alias addresses
 are advertised in INTERFACE ASSOCIATION messages, which bind each
 such address to the node’s RID.

10.5. Support for Network Prefixes

 MANET routers may advertise network prefixes which the router
 discovered via attached networks, external routes advertised by other
 protocols, or other means. Network prefixes are advertised in
 NETWORK PREFIX ASSOCIATION messages, which bind each such prefix to
 the node’s RID.

10.6. Support for non-MANET Hosts

 Non-MANET hosts may establish connections to MANET routers through
 on-demand mechanisms such as ARP or IPv6 Neighbor Discovery. Such
 connections do not constitute a MANET link and therefore are not
 reported in TBRPF topology updates. Non-MANET hosts are advertised

Ogier, et al. Experimental [Page 40]

RFC 3684 TBRPF February 2004

 in HOST ASSOCIATION messages, which bind the IP address of each host
 to the node’s RID.

10.7. Internet Protocol Considerations

 TBRPF packets are communicated using UDP/IP. Port 712 has been
 assigned by IANA for exclusive use by TBRPF. Implementations in
 private networks MAY employ alternate data delivery services (i.e.,
 raw IP or local data-link encapsulation). The selection of an
 alternate data delivery service MUST be consistent among all MANET
 routers in the private network. In all implementations, the data
 delivery service MUST provide a checksum facility.

 The following sections specify the operation of TBRPF over UDP/IP.

10.7.1. IPv4 Operation

 When IPv4 is used, TBRPF nodes obey IPv4 host and router requirements
 [4][5]. TBRPF packets are sent to the multicast address 224.0.0.2
 (All Routers) and thus reach all TBRPF routers within single-hop
 transmission range of the sender. TBRPF routers MUST NOT forward
 packets sent to this multicast address.

 Since non-negligible packet loss due to link failure, interference,
 etc. can occur, implementations SHOULD avoid IPv4 fragmentation/
 reassembly whenever possible, by splitting large TBRPF protocol
 packets into multiple smaller packets at the application layer. When
 fragmentation is unavoidable, senders SHOULD NOT send TBRPF packets
 that exceed the minimum reassembly buffer size ([4], section 3.3.2)
 for all receivers in the network.

10.7.2. IPv6 Operation

 The specification of TBRPF for IPv6 is the same as for IPv4, except
 that 32-bit IPv4 addresses are replaced by 128-bit IPv6 addresses.
 However, to minimize overhead, router IDs remain at 32 bits, similar
 to OSPF for IPv6 [18].

11. IANA Considerations

 The IANA has assigned port number 712 for TBRPF.

 The TBRPF flooding mechanism specified in this document uses the IPv4
 multicast address 224.0.1.20, which is currently assigned by IANA for
 "any private experiment". In the event that this specification is
 advanced to standards track, a new multicast address assignment would
 be requested for this purpose.

Ogier, et al. Experimental [Page 41]

RFC 3684 TBRPF February 2004

12. Security Considerations

 Wireless networks are vulnerable to a variety of attacks, including
 denial-of-service attacks (e.g., flooding and jamming), man-in-the-
 middle attacks (e.g., interception, insertion, deletion,
 modification, replaying) and service theft. To counter such attacks,
 it is important to prevent the spoofing (impersonation) of TBRPF
 nodes, and to prevent unauthorized nodes from joining the network via
 neighbor discovery. To achieve this, TBRPF packets can be
 authenticated using the IP Authentication Header [19][20]. In
 addition, the Encapsulating Security Payload (ESP) header [21] can be
 used to provide confidentiality (encryption) of TBRPF packets.

 The IETF SEcuring Neighbor Discovery (SEND) Working Group analyzes
 trust models and threats for ad hoc networks [22]. TBRPF can be
 extended in a straightforward manner to use SEND mechanisms, e.g.,
 [23].

13. Acknowledgements

 The authors would like to thank the Army Systems Engineering Office
 (ASEO) for funding part of this work.

 The authors would like to thank several members of the MANET working
 group for many helpful comments and suggestions, including Thomas
 Clausen, Philippe Jacquet, and Joe Macker.

 The authors would like to thank Bhargav Bellur for major
 contributions to the original (full-topology) version of TBRPF,
 Ambatipudi Sastry for his support and advice, and Julie S. Wong for
 developing a new implementation of TBRPF and suggesting several
 clarifications to the TBRPF Routing Operation section.

14. References

14.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

 [3] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.

 [4] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

Ogier, et al. Experimental [Page 42]

RFC 3684 TBRPF February 2004

 [5] Baker, F., Ed., "Requirements for IP Version 4 Routers", RFC
 1812, June 1995.

14.2. Informative References

 [6] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

 [7] Ogier, R., Message in IETF email archive for MANET,
 ftp://ftp.ietf.org/ietf-mail-archive/manet/2002-02.mail,
 February 2002.

 [8] Ogier, R., "Topology Dissemination Based on Reverse-Path
 Forwarding (TBRPF): Correctness and Simulation Evaluation",
 Technical Report, SRI International, October 2003.

 [9] Ogier, R., Message in IETF email archive for MANET,
 ftp://ftp.ietf.org/ietf-mail-archive/manet/2002-03.mail, March
 2002.

 [10] Ogier, R., "Efficient Routing Protocols for Packet-Radio
 Networks Based on Tree Sharing", Proc. Sixth IEEE Intl. Workshop
 on Mobile Multimedia Communications (MOMUC’99), November 1999.

 [11] Bellur, B. and R. Ogier, "A Reliable, Efficient Topology
 Broadcast Protocol for Dynamic Networks", Proc. IEEE INFOCOM
 ’99, New York", March 1999.

 [12] Clausen, T. and P. Jacquet, Eds., "Optimized Link State Routing
 Protocol (OLSR)", RFC 3626, October 2003.

 [13] Bertsekas, D. and R. Gallager, "Data Networks", Prentice-Hall,
 1987.

 [14] Perkins, C., Belding-Royer, E. and S. Das, "IP Flooding in Ad
 Hoc Mobile Networks", Work in Progress, November 2001.

 [15] Plummer, D., "Ethernet Address Resolution Protocol: Or
 converting network protocol addresses to 48.bit Ethernet address
 for transmission on Ethernet hardware", STD 37, RFC 826,
 November 1982.

 [16] Narten, T., Nordmark, E. and W. Simpson, "Neighbor Discovery for
 IP Version 6 (IPv6)", RFC 2461, December 1998.

 [17] Perkins, C., Ed., "IP Mobility Support for IPv4", RFC 3344,
 August 2002.

Ogier, et al. Experimental [Page 43]

RFC 3684 TBRPF February 2004

 [18] Coltun, R., Ferguson, D. and J. Moy, "OSPF for IPv6", RFC 2740,
 December 1999.

 [19] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [20] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402,
 November 1998.

 [21] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998.

 [22] Nikander, P., "IPv6 Neighbor Discovery Trust Models and
 Threats", Work in Progress, April 2003.

 [23] Arkko, J., "SEcure Neighbor Discovery (SEND)", Work in Progress,
 June 2003.

Ogier, et al. Experimental [Page 44]

RFC 3684 TBRPF February 2004

Authors’ Addresses

 Richard G. Ogier
 SRI International
 333 Ravenswood Ave.
 Menlo Park, CA 94025
 USA

 Phone: +1 650 859-4216
 Fax: +1 650 859-4812
 EMail: ogier@erg.sri.com

 Fred L. Templin
 Nokia
 313 Fairchild Drive
 Mountain View, CA 94043
 USA

 Phone: +1 650 625 2331
 Fax: +1 650 625 2502
 EMail: ftemplin@iprg.nokia.com

 Mark G. Lewis
 SRI International
 333 Ravenswood Ave.
 Menlo Park, CA 94025
 USA

 Phone: +1 650 859-4302
 Fax: +1 650 859-4812
 EMail: lewis@erg.sri.com

Ogier, et al. Experimental [Page 45]

RFC 3684 TBRPF February 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78 and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology
 described in this document or the extent to which any license
 under such rights might or might not be available; nor does it
 represent that it has made any independent effort to identify any
 such rights. Information on the procedures with respect to
 rights in RFC documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention
 any copyrights, patents or patent applications, or other
 proprietary rights that may cover technology that may be required
 to implement this standard. Please address the information to the
 IETF at ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ogier, et al. Experimental [Page 46]

