
Network Working Group D. New
Request for Comments: 3620 October 2003
Category: Standards Track

 The TUNNEL Profile

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This memo describes a Blocks Extensible Exchange Protocol (BEEP)
 profile that allows a BEEP peer to serve as an application-layer
 proxy. It allows authorized users to access services through a
 firewall.

Table of Contents

 1. Rationale . 2
 2. Examples . 3
 2.1 One-Hop Example. 3
 2.2 Two-Hop Example. 4
 2.3 Failed Set-Up Example. 5
 2.4 Non-BEEP Example . 5
 2.5 Profile Example. 6
 2.6 Endpoint Example . 8
 3. Message Syntax. . 9
 4. Message Semantics . . 10
 5. Provisioning . 12
 6. Reply Codes. 13
 7. Security Considerations. 14
 8. Normative References . 15
 A. IANA Considerations . 16
 A.1 Registration: BEEP Profile 16
 A.2 Registration: A System (Well-Known) TCP
 port number for TUNNEL 16
 B. Acknowledgements . 17
 Author’s Address . 17
 Full Copyright Statement 18

New Standards Track [Page 1]

RFC 3620 The TUNNEL Profile October 2003

1. Rationale

 The TUNNEL profile provides a mechanism for cooperating BEEP peers to
 form an application-layer tunnel. The peers exchange "tunnel"
 elements that specify a source route, with the outermost element
 being stripped off and used to decide the next hop. The innermost,
 empty "tunnel" element tells the final destination that it is,
 indeed, the final destination. The term "proxy" is used to refer any
 of the BEEP peers other than the initiator and the final destination.

 In one use of this profile, a BEEP peer implementing the TUNNEL
 profile is co-resident with a firewall. An initiating machine inside
 the firewall makes a connection to the proxy, then ask that proxy to
 make a connection to an endpoint outside the firewall. Once this
 connection is established, the proxy tells the outside endpoint that
 it will be tunneling. If the outside machine agrees, the proxy "gets
 out of the way," simply passing octets transparently, and both the
 initiating and terminating machines perform a "tuning reset," not
 unlike the way starting a TLS negotiation discards cached session
 state and starts anew.

 Another use for this profile is to limit connections to outside
 servers based on the user identity negotiated via SASL. For example,
 a manager may connect to a proxy, authenticate herself with SASL,
 then instruct the proxy to tunnel to an information service
 restricted to managers. Since each proxy knows the identity of the
 next proxy being requested, it can refuse to tunnel connections if
 inadequate levels of authorization have been established. It is also
 possible to use the TUNNEL profile to anonymize the true source of a
 BEEP connection, in much the way a NAT translates IP addresses.
 However, detailed discussion of such uses is beyond the scope of this
 document.

 Once both endpoint machines are connected, the tunneling proxy
 machine does no further interpretation of the data. In particular,
 it does not look for any BEEP framing. The two endpoint machines may
 therefore negotiate TLS between them, passing certificates
 appropriate to the endpoints rather than the proxy, with the
 assurance that even the proxy cannot access the information
 exchanged.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119 [1].

New Standards Track [Page 2]

RFC 3620 The TUNNEL Profile October 2003

2. Examples

 While the semantics described in Section 4 may seem complex, the
 results are actually relatively simple. A few examples will show the
 operation and use of this profile. In these examples, the machine
 attempting to establish the connection is named "initial", while the
 intermediate proxies are "proxy1" or "proxy2", and the machine with
 the service that "initial" wishes to access is called "final". The
 examples also assume that the BEEP framework [2] is implemented on
 top of TCP [3], or some other mapping where one transport connection
 carries all channels.

2.1 One-Hop Example

 A simple one-hop connection through a single proxy is illustrated
 first.

 initial proxy1 final
 ----- xport connect ----->
 <------- greeting -------->
 --- start TUNNEL [1] ---->
 ----- xport connect ------>
 <-------- greeting -------->
 ---- start TUNNEL [2] ---->
 <---------- ok ------------
 <------- ok -------------- [3]
 <------------- greeting [4]-------------------------->

 Notes:

 [1] The TUNNEL element looks like this:
 <tunnel fqdn=’final.example.com’ port=’604’>
 <tunnel/>
 </tunnel>

 [2] The TUNNEL element looks like this:
 <tunnel/>

 [3] At this point, immediately after sending the <ok/> element,
 proxy1 starts passing octets transparently. It continues to do
 so until either transport connection is closed, after which it
 closes the other.

 [4] This greeting may include the TLS profile, allowing initial and
 final to communicate without proxy1 understanding or interfering
 without being caught.

New Standards Track [Page 3]

RFC 3620 The TUNNEL Profile October 2003

2.2 Two-Hop Example

 The second example shows the initiator connecting to its proxy, that
 proxy connecting to another, and finally that second proxy finding a
 service outside.

 initial proxy1 proxy2 final
 --- xport connect -->
 <---- greeting ------>
 --start TUNNEL [1]-->
 -- xport connect --->
 <----- greeting ----->
 --start TUNNEL [2]-->
 --- xport connect --->
 <------- greeting ----->
 ---start TUNNEL [3]--->
 <-------- ok ----------
 <------- ok --------- [4]
 <------- ok --------- [5]
 <-------------------------- greeting ---------------------------->

 Notes:

 [1] The TUNNEL element looks like this:
 <tunnel fqdn=’proxy2.example.com’ port=’604’>
 <tunnel fqdn=’final.example.com’ port=’10290’>
 <tunnel/>
 </tunnel>
 </tunnel>

 [2] The TUNNEL element looks like this:
 <tunnel fqdn=’final.example.com’ port=’10290’>
 <tunnel/>
 </tunnel>

 [3] The TUNNEL element looks like this:
 <tunnel/>

 [4] Proxy2 starts passing octets transparently after sending the
 <ok/>.

 [5] Proxy1 starts passing octets transparently after sending the
 <ok/>.

New Standards Track [Page 4]

RFC 3620 The TUNNEL Profile October 2003

2.3 Failed Set-Up Example

 The third example shows the initiator connecting through two proxys,
 the second proxy attempting to connect to the specified service and
 finding the destination is not a BEEP server. (Of course, specifying
 the telnet service can be expected to lead to this error.) The same
 would result if the destination did not support the TUNNEL profile.

 initial proxy1 proxy2 final
 --- xport connect -->
 <---- greeting ------>
 --start TUNNEL [1]-->
 --- xport connect -->
 <----- greeting ----->
 --start TUNNEL [2]-->
 ---- xport connect --->
 <------- login: -------
 ----- xport close ---->
 <---- <error> -------
 --- xport close ---->
 <---- <error> ------
 --- xport close ---> [3]

 Notes:

 [1] The TUNNEL element looks like this:
 <tunnel fqdn=’proxy2.example.com’ port=’604’>
 <tunnel fqdn=’final.example.com’ srv=’_telnet._tcp’>
 <tunnel/>
 </tunnel>
 </tunnel>

 [2] The TUNNEL element looks like this:
 <tunnel fqdn=’final.example.com’ srv=’_telnet._tcp’>
 <tunnel/>
 </tunnel>

 [3] This close is optional. "Initial" may also send another <tunnel>
 element, attempting to contact a different server, for example.

2.4 Non-BEEP Example

 This example shows the initiator connecting through two proxys, the
 second proxy attempting to connect to the specified service and
 accepting that the destination is not a BEEP server. The difference
 at the protocol level is two-fold: The "initial" machine does not
 include the innermost "tunnel" element, and the final proxy
 ("proxy2") therefore does not expect a BEEP greeting.

New Standards Track [Page 5]

RFC 3620 The TUNNEL Profile October 2003

 initial proxy1 proxy2 final
 --- xport connect -->
 <---- greeting ------>
 --start TUNNEL [1]-->
 --- xport connect -->
 <----- greeting ----->
 --start TUNNEL [2]-->
 ---- xport connect --->
 <------- login: -------
 <------ <ok> ------- [3]
 <----- login: ------ [4]
 <------ <ok> --------- [3]
 <----- login: -------- [4] [5]

 Notes:

 [1] The TUNNEL element looks like this:
 <tunnel fqdn=’proxy2.example.com’ port=’604’>
 <tunnel fqdn=’final.example.com’ svc=’_telnet._tcp’>
 </tunnel>
 </tunnel>
 Note the lack of an innermost no-attribute <tunnel> element.

 [2] The TUNNEL element looks like this:
 <tunnel fqdn=’final.example.com’ srv=’_telnet._tcp’>
 </tunnel>
 Note the lack of an innermost no-attribute <tunnel> element.

 [3] Each proxy starts transparently forwarding octets after this
 <ok>.

 [4] Each proxy forwards any data it received from the final host,
 even if that data arrived before the <ok> was sent.

 [5] After receiving the "ok" message, the "initial" peer can expect
 raw, non-BEEP data to be sent to and received from the "final"
 machine.

2.5 Profile Example

 This example shows the initiator connecting through two proxys. The
 initial machine knows there is a server offering the SEP2 profile
 somewhere beyond proxy1, but it need not know where. Proxy1 has been
 locally configured to know that all SEP2 servers are beyond proxy2.
 Proxy2 has been locally configured to chose "final" as the server of
 choice for SEP2 services. Note that "final" does not necessarily
 need to offer the requested profile in its initial greeting.

New Standards Track [Page 6]

RFC 3620 The TUNNEL Profile October 2003

 initial proxy1 proxy2 final
 --- xport connect -->
 <---- greeting ------>
 --start TUNNEL [1]-->
 -- xport connect --->
 <----- greeting ----->
 --start TUNNEL [2]-->
 --- xport connect --->
 <------- greeting ----->
 ---start TUNNEL [3]--->
 <-------- ok ----------
 <------- ok --------- [4]
 <------- ok --------- [5]
 <-------------------------- greeting ---------------------------->

 Notes:

 [1] The TUNNEL element looks like this:
 <tunnel profile="http://xml.resource/org/profiles/SEP2"/>
 Note the lack of an innermost no-attribute <tunnel> element.

 [2] Proxy1 maps this to
 <tunnel fqdn="proxy2.example.com" port="604">
 <tunnel profile="http://xml.resource/org/profiles/SEP2"/>
 </tunnel>
 based on local configuration, then processes the new
 element, stripping off the outer element and routing
 <tunnel profile="http://xml.resource/org/profiles/SEP2"/>
 to proxy2.

 [3] Proxy2 receives the TUNNEL element with simply the SEP2
 URI specified. Local provisioning maps this to
 <tunnel fqdn=’final.example.com’ srv=’_beep._tcp’>
 <tunnel/>
 </tunnel>
 Note the presence of an innermost no-attribute <tunnel> element.
 Proxy2 then strips the outermost element, looking up the
 appropriate address and port, and forwards the <tunnel/>
 element to the final machine.

 [4] Proxy2 starts transparently forwarding octets after this <ok>.

 [5] Proxy1 starts transparently forwarding octets after this <ok>.

New Standards Track [Page 7]

RFC 3620 The TUNNEL Profile October 2003

2.6 Endpoint Example

 This example shows the initiator connecting through two proxys. The
 initial machine knows there is a server known as "operator console"
 somewhere beyond proxy1, but it needs not know where. Proxy1 has
 been locally configured to know that "operator console" is beyond
 proxy2. Proxy2 has been locally configured to use "final" as
 "operator console". This example is almost identical to the previous
 example, except that "endpoint" is intended to route to a particular
 server, while "profile" is intended to route to a particular service.
 Otherwise, these two attributes are very similar.

 initial proxy1 proxy2 final
 --- xport connect -->
 <---- greeting ------>
 --start TUNNEL [1]-->
 -- xport connect --->
 <----- greeting ----->
 --start TUNNEL [2]-->
 --- xport connect --->
 <------- greeting ----->
 ---start TUNNEL [3]--->
 <-------- ok ----------
 <------- ok --------- [4]
 <------- ok --------- [5]
 <-------------------------- greeting ---------------------------->

 Notes:

 [1] The TUNNEL element looks like this:
 <tunnel endpoint="operator console">
 </tunnel>
 Note the lack of an innermost no-attribute <tunnel> element.

 [2] Proxy1 maps this to
 <tunnel fqdn="proxy2.example.com" port="604">
 <tunnel endpoint="operator console">
 </tunnel>
 </tunnel>
 based on local configuration, then processes the new
 element, stripping off the outer element and routing
 <tunnel endpoint="operator console">
 </tunnel>
 to proxy2.

New Standards Track [Page 8]

RFC 3620 The TUNNEL Profile October 2003

 [3] Proxy2 receives the TUNNEL element with simply the endpoint
 specified. Local provisioning maps this to
 <tunnel fqdn=’final.example.com’ srv=’_beep._tcp’>
 <tunnel/>
 </tunnel>
 Note the presence of an innermost no-attribute <tunnel> element.
 Proxy2 then strips the outermost element, looking up the
 appropriate address and port, and forwards the <tunnel/>
 element to the final machine.

 [4] Proxy2 starts transparently forwarding octets after this <ok>.

 [5] Proxy1 starts transparently forwarding octets after this <ok>.

3. Message Syntax

 The only element defined in this profile is the "tunnel" element. It
 is described in the following DTD, with additional limitations as
 described afterwards.

 <!--
 DTD for the TUNNEL Profile, as of 2001-02-03

 Refer to this DTD as:

 <!ENTITY % TUNNEL PUBLIC "-//IETF//DTD TUNNEL//EN" "">
 %TUNNEL;
 -->

 <!--
 TUNNEL messages

 role MSG RPY
 ====== === ===
 I or L TUNNEL +: ok
 -: error
 -->

 <!ELEMENT tunnel (tunnel?)>
 <!ATTLIST tunnel
 fqdn CDATA #IMPLIED
 ip4 CDATA #IMPLIED
 ip6 CDATA #IMPLIED
 port CDATA #IMPLIED
 srv CDATA #IMPLIED
 profile CDATA #IMPLIED
 endpoint CDATA #IMPLIED
 >

New Standards Track [Page 9]

RFC 3620 The TUNNEL Profile October 2003

 The format of the "fqdn" attribute is a fully qualified domain name,
 such as "proxy.example.com". The format of the "ip4" attribute is
 four sets of decimal numbers separated by periods, such as
 "10.23.34.45". The format of the "ip6" attribute is as specified in
 RFC2373 [4]. The format of the "port" attribute is a decimal number
 between one and 65535, inclusive. The format of the "srv" attribute
 is a pair of identifiers each starting with an underline and
 separated by a period, such as "_sep._tcp". The format of the
 "profile" attribute is a URI [5]. The format of the "endpoint"
 attribute is any string that may appear as an attribute value.

 The only allowable combinations of attributes are as follows:

 o fqdn + port;

 o fqdn + srv;

 o fqdn + srv + port;

 o ip4 + port;

 o ip6 + port;

 o profile, but only on the innermost element;

 o endpoint, but only on the innermost element; or,

 o no attributes, but only on the innermost element.

4. Message Semantics

 When a TUNNEL channel is started, the listener expects a "tunnel"
 element from the initiator, either in the "start" element on channel
 zero or on the new channel created. As usual, if it arrives on
 channel zero, it is processed before the reply is returned.

 In either case, the outermost "tunnel" element is examined. If it
 has no attributes, then this peer is hosting the BEEP service that
 the initiator wishes to use. In this case, the listener performs a
 tuning reset:

 o All channels, including channel zero, are implicitly closed.

 o Any previously cached information about the BEEP session is
 discarded.

 o A new plaintext greeting is sent.

New Standards Track [Page 10]

RFC 3620 The TUNNEL Profile October 2003

 If the outermost element has a "port" attribute and an "fqdn"
 attribute but no "srv" attribute, then "fqdn" is looked up as an A
 record via DNS for translation to an IP number. An "ip4" attribute
 is interpreted as the dotted-quad representation of an IPv4 address.
 An "ip6" attribute is interpreted as a text representation of an IPv6
 address. In each of these cases, a transport connection is
 established to the so-identified server. If the outermost element
 has a "srv" attribute, the concatenation of the "srv" attribute and
 the "fqdn" attribute (with a period between) is looked up in the DNS
 for a SRV record [6], and the appropriate server is contacted; if
 that lookup fails and a "port" attribute is present, the connection
 is attempted as if the "srv" attribute were not specified.

 Alternately, if the outermost element has a "profile" attribute, then
 it must have no nested elements. The proxy processing this element
 is responsible for determining the appropriate routing to reach a
 peer serving the BEEP profile indicated by the URI in the attribute’s
 value. Rather than source routing, this provides a hop-by-hop
 routing mechanism to a desired service.

 Similarly, if the outermost element has an "endpoint" attribute, then
 it must have no nested elements. The proxy processing this element
 is responsible for determining the appropriate routing to reach a
 peer indicated by the value of the "endpoint" attribute. Rather than
 source routing, this provides a hop-by-hop routing mechanism to a
 desired machine. There are no restrictions on how machines are
 identified.

 Then, if the outermost element has no nested elements, but it does
 have attributes other than "profile" or "endpoint", then this peer is
 the final BEEP hop. (This corresponds to "proxy2" in the "Non-BEEP"
 example above.) In this case, as soon as the final underlying
 transport connection is established, an "ok" element is returned over
 the listening session, and the tunneling of data starts. No BEEP
 greeting (or indeed any data) from the final hop is expected.
 Starting with the octet following the END(CR)(LF) trailer of the
 frame with the completion flag set (more=".") of the RPY carrying the
 "ok" element, the proxy begins copying octets directly and without
 any interpretation between the two underlying transport connections.

 If the identified server cannot be contacted, an "error" element is
 returned over the listening channel and any connection established as
 an initiator is closed. If there is a nested "tunnel" element, and
 the server that has been contacted does not offer a BEEP greeting, or
 the BEEP greeting offered does not include the TUNNEL profile, then
 this too is treated as an error: the initiating transport connection
 is closed, and an error is returned.

New Standards Track [Page 11]

RFC 3620 The TUNNEL Profile October 2003

 If there is a nested "tunnel" element, and the identified server is
 contacted and offers a BEEP greeting including the TUNNEL profile,
 then the outermost element from the "tunnel" element received is
 stripped off, a new TUNNEL channel is started on the initiating
 session, and the stripped (inner) element is sent to start the next
 hop. In this case, the peer is considered a "proxy" (meaning that
 the next paragraph is applicable).

 Once the proxy has passed the "tunnel" element on the TUNNEL channel,
 it awaits an "error" or an "ok" element in response. If it receives
 an "error" element, it closes the initiated session and its
 underlying transport connection. It then passes the "error" element
 unchanged back on the listening session. If, on the other hand, it
 receives an "ok" element, it passes the "ok" element back on the
 listening session. Starting with the octet following the END(CR)(LF)
 trailer of the frame with the completion flag set (more=".") of the
 RPY carrying the "ok" element, the proxy begins copying octets
 directly and without any interpretation between the two underlying
 transport connections.

5. Provisioning

 While the BEEP Framework [2] is used, the attributes described are
 sufficient for the TCP mapping [3] of BEEP. The attributes on the
 "tunnel" element may need to be extended to handle other transport
 layers.

 In a mapping where multiple underlying transport connections are
 used, once the "ok" element is passed, all channels are closed,
 including channel zero. Thus, only the underlying transport
 connection initially established remains, and all other underlying
 transport connections for the session should be closed as well.

 If a transport security layer (such as TLS) has been negotiated over
 the session, the semantics for the TUNNEL profile are ill-defined.
 The TUNNEL profile MUST NOT be advertised in any greetings after
 transport security has been negotiated.

 An SRV identifier of "_tunnel" is reserved by IANA for use with this
 profile. Hence, the "srv" attribute "_tunnel._tcp" MAY be used as a
 default for finding the appropriate address for tunneling into a
 particular domain.

 System port number 604 has been allocated by the IANA for TUNNEL.

New Standards Track [Page 12]

RFC 3620 The TUNNEL Profile October 2003

6. Reply Codes

 This section lists the three-digit error codes the TUNNEL profile may
 generate.

 code meaning
 ==== =======
 421 Service not available
 (E.g., the proxy does not have sufficient resources.)

 450 Requested action not taken
 (E.g., DNS lookup failed or connection could not
 be established. See too 550.)

 500 General syntax error (E.g., poorly-formed XML)

 501 Syntax error in parameters
 (E.g., non-valid XML, letters in "ip4" attribute, etc.)

 504 Parameter not implemented

 530 Authentication required

 534 Authentication mechanism insufficient
 (E.g., too weak, sequence exhausted, etc.)

 537 Action not authorized for user

 538 Encryption already enabled
 (E.g., TLS already negotiated, or a SASL that
 provides encryption already negotiated.)

 550 Requested action not taken
 (E.g., next hop could be contacted, but
 malformed greeting or no TUNNEL profile advertised.)

 553 Parameter invalid

 554 Transaction failed (E.g., policy violation)

 Note that the 450 error code is appropriate when the destination
 machine could not be contacted, while the 550 error code is
 appropriate when the destination machine could be contacted but the
 next phase of the protocol could not be negotiated. It is suggested
 that the beginning of any reply from the destination machine be
 included as part of the CDATA text of the error element, for
 debugging purposes.

New Standards Track [Page 13]

RFC 3620 The TUNNEL Profile October 2003

7. Security Considerations

 The TUNNEL profile is a profile of BEEP. In BEEP, transport
 security, user authentication, and data exchange are orthogonal.
 Refer to Section 8 of [2] for a discussion of this.

 However, the intent of the TUNNEL profile is to allow bidirectional
 contact between two machines normally separated by a firewall. Since
 TUNNEL allows this connection between BEEP peers, and BEEP peers can
 offer a range of services with appropriate greetings, the TUNNEL
 profile should be configured with care. It is reasonable to strictly
 limit the hosts and services that a proxy is allowed to contact. It
 is also reasonable to limit the use of the TUNNEL profile to
 authorized users, as identified by a SASL profile.

 Negotiation of a TLS profile in an end-to-end manner after a TUNNEL
 has been established will prevent intermediate proxies from observing
 or modifying the cleartext information exchanged, but only if TLS
 certificates are properly configured during the negotiation. The
 proxy could mount a "man in the middle" attack if public key
 infrastructure is not deployed.

 In some environments, it is undesirable to expose the names of
 machines on one side of a firewall in unencrypted messages on the
 other side of that firewall. In this case, source routing (using the
 "fqdn", "ip4", "ip6", "port" and "srv" attributes) can route a
 connection to the firewall proxy, with an innermost "profile" or
 "endpoint" attribute which the firewall proxy understands. Local
 provisioning can allow a proxy to translate a particular "profile"
 or "endpoint" element into a new source route to reach the desired
 service. This can prevents two attacks:

 o Attackers sniffing packets on one side of the firewall cannot see
 IP addresses or FQDNs of machines on the other side of the
 firewall; and,

 o Attackers cannot exhaustively attempt to connect to many FQDNs or
 IP addresses via source routing and use the error messages as an
 indication of whether the queried machine exists. For this attack
 to be prevented, the proxy must allow only "profile" or "endpoint"
 connections, always refusing to even attempt source-routed
 connections. This latter attack can also be thwarted by requiring
 a SASL identification before allowing a TUNNEL channel to be
 started, but this can have higher overhead.

New Standards Track [Page 14]

RFC 3620 The TUNNEL Profile October 2003

8. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rose, M., "The Blocks Extensible Exchange Protocol Core", RFC
 3080, March 2001.

 [3] Rose, M., "Mapping the BEEP Core onto TCP", RFC 3081, March
 2001.

 [4] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

 [5] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
 Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

 [6] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

New Standards Track [Page 15]

RFC 3620 The TUNNEL Profile October 2003

Appendix A. IANA Considerations

A.1 Registration: BEEP Profile

 The IANA has registered the profiles specified in this section and
 has selected an IANA-specific URI: "http://iana.org/beep/TUNNEL".

 Profile identification: http://iana.org/beep/TUNNEL

 Message exchanged during channel creation: "tunnel"

 Messages starting one-to-one exchanges: "tunnel"

 Messages in positive replies: "ok"

 Messages in negative replies: "error"

 Messages in one-to-many exchanges: None.

 Message syntax: See Section 3 of this document.

 Message semantics: See Section 4 of this document.

 Contact information: See the Author’s Address appendix of this
 document.

 Any extensions to this protocol MUST be documented in a Standards
 track RFC.

A.2 Registration: The System (Well-Known) TCP port number for TUNNEL

 A single well-known port, 604, is allocated by the IANA to the TUNNEL
 profile.

 Protocol Number: TCP

 Message Formats, Types, Opcodes, and Sequences: See Section 3.

 Functions: See Section 4.

 Use of Broadcast/Multicast: none

 Proposed Name: TUNNEL Profile

 Short name: tunnel

 Contact Information: See the "Authors’ Addresses" section of this
 memo

New Standards Track [Page 16]

RFC 3620 The TUNNEL Profile October 2003

Appendix B. Acknowledgements

 The author gratefully acknowledges the contributions of Marshall
 Rose, Greg Matthews, and Ben Feinstein.

 Inspiration for this profile comes from the Intrusion Detection
 Working Group of the IETF.

Author’s Address

 Darren New
 5390 Caminito Exquisito
 San Diego, CA 92130
 US

 Phone: +1 858 350 9733
 EMail: dnew@san.rr.com

New Standards Track [Page 17]

RFC 3620 The TUNNEL Profile October 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

New Standards Track [Page 18]

