Net wor k Wor ki ng Group S. Shepl er
Request for Comments: 3530 B. Cal | aghan
bsol etes: 3010 D. Robi nson
Cat egory: Standards Track R Thurl ow

Sun M crosystens, |nc.
C. Beane

Hurmi ngbi rd Ltd.

M Eisler

D. Noveck

Net wor k Appliance, Inc.
April 2003

Network File System (NFS) version 4 Protocol

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zation state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice

Copyright (C The Internet Society (2003). Al Rights Reserved.

Abst r act

The Network File System (NFS) version 4 is a distributed fil esystem
prot ocol which owes heritage to NFS protocol version 2, RFC 1094, and
version 3, RFC 1813. Unlike earlier versions, the NFS version 4
protocol supports traditional file access while integrating support
for file locking and the nount protocol. In addition, support for
strong security (and its negotiation), conpound operations, client
caching, and internationalization have been added. O course,

attention has been applied to naking NFS version 4 operate well in an
I nt ernet environnent.

Thi s docunent replaces RFC 3010 as the definition of the NFS version
4 protocol.

Key Words

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Shepler, et al. St andards Track [Page 1]

RFC 3530 NFS version 4 Protocol April 2003

Tabl e of Contents

1. I ntroduction . . . 8
1.1. Changes since RFC 3010 . 8
1.2. NFS version 4 Goals. . . 9
1.3 I nconsi stencies of this Ebcunent mtth Sectlon 18 . 9
1.4 Overvi ew of NFS version 4 Features 10
1.4.1. RPC and Security . . Coe e 10
1.4.2. Procedure and Cperatlon Structure Coe e 10
1.4.3. Filesystem Mde. . . G e e 11
1.4.3.1. Filehandle Types G e 11
1.4.3.2 Attribute Types. . . . Coe 12

1.4.3.3. Filesystem Replication and
Mgration. 13
1.4.4. OPEN and CLCSE 13
1.4.5 File locking . . . G 13
1.4.6. dient Caching and Delegatlon G 13
1.5. Ceneral Definitions. . . Ce e e 14
2. Protocol Data Types. 16
2.1. Basic Data Typeso 16
2.2. Structured Data Types. 18
3. RPC and Security Flavor. 23
3.1. Ports and Transports . . . e e 23
3.1.1. dient RetransntsS|on BehaV|or G e e 24
3.2. Security Flavors . . . e e e e 25
3.2.1. Security nechanlsns for NFS version 4. . . . 25
3.2.1.1. Kerberos V5 as a security triple . 25
3.2.1.2. LIPKEY as a security triple. . . . 26
3.2.1.3. SPKM3 as a securlty tr|ple S 27
3.3. Security Negotiationo 27
3.3.1. SECINFO.o 28
3.3.2. Security Error 28
3.4. Callback RPC Authentication. 28
4. Filehandles . . . G e e e 30
4.1. (Obtaining the Flrst Fllehandle G e e e 30
4.1.1. Root Filehandle. 31
4.1.2 Public Filehandle. 31
4.2. Filehandle Types 31
4.2.1. Ceneral Properties of a Filehandle 32
4.2.2. Persistent Filehandle. 32
4.2.3 Volatile Filehandle. . . . G e 33

4.2. 4 One Met hod of Constructing a

Vol atile Filehandle. . . . G 34
4.3. Cdient Recovery fromFilehandl e Explratlon Coe e 35
5. File Attributes. . . C e e e 35
5.1. Mandatory Attrlbutes C e e e e 37
5.2. Recommended Attributes o . . L L. 37
5.3. Nanmed Attributes 37

Shepler, et al. St andards Track [Page 2]

RFC 3530 NFS version 4 Protocol

Classification of Attributes
Mandatory Attributes - Definitions .
Recomended Attributes - Definitions
Ti me Access. .

I nterpreting omner and omner group
Character Case Attributes.

Quota Attributes

Access Control Lists

.11, ACE type . . .

11. ACE Access Nhsk

.11, ACE flag .

L11. ACE who . . .

11. Mode Attrlbute. .o .

11. Mode and ACL Attri bute .
L1171, mount ed_on_fil ei d.

esystem M gratlon and Repllcatlon

.1. Replication.

.2. Magration.
. 3.
4.

ororor o1 o1 o1 o1 o1
PR O®~No U A
mor

U1 01 U1 U1 U1 01 0

NoOUAWNE

o
-

Interpretation of the fs Iocatlons Attrlbute

(2Nl Ry

~
e
S

S Server Nane Space

Server Exports

Br owsi ng Exports . .

Server Pseudo F|Iesystew

Mul tiple Roots . .

Fi | ehandl e Volatlllty

Exported Root. . .

Mount Point Crossing .

Security Policy and Nane Space Presentatlon
e Locki ng and Share Reservati ons.

Locki ng.
1

OINNNNNNNN
PN RWNE

dient ID .
Server Rel ease of O |ent|d . .

| ock_owner and stateid Ebflnltlon
Use of the stateid and Locki ng .
Sequenci ng of Lock Requests.
Recovery from Repl ayed Requests.
Rel easing | ock_owner State
weonEnOmﬂrmUon.

Lock Ranges . .

Upgr adi ng and Downgradlng Locks

Bl ocki ng Locks . . .o

Lease Renewal .

Crash Recovery . .

8.6.1. dient Fallure and Recovery

8.6.2. Server Failure and Recovery. .
8.6. 3. Net work Partitions and Recovery.
8.7. Recovery from a Lock Request Tineout or Abort

® 0 00 00 @ 0 0
PRPReE
DN B WNE

@ 0 0 00 o
o UThWN

Shepler, et al. St andards Track

Fi | ehandl e Recovery for M gration or Replication

April 2003

38
39
41
46
47
49
49
50
51
52
54
55
56
57
57
58
58
59
60
61
61
61
62
62
63
63
63
63
64
65
65
66
69
69
71
73
74
74
75
76
76
77
77
78
79
79
81
85

[Page 3]

RFC 3530

©
Q

10.
11.

Shepl er,

© % 00
B ©

12.
. 13.

® @ 0

9. 1.
9. 2.

9. 3.

et al.

NFS version 4 Protocol April 2003

Server Revocation of Locks.

Share Reservations. .

OPEN CLOSE Operations . . .

8.10.1. dose and Retention of St ate
Information. . .

Open Upgrade and Dovvngrade

Short and Long Leases .

O ocks, Propagation Delay, and Cal cul ati ng Lease

Expi rati on.

M gration, Replication and State.

8.14.1. Mgration and State.

8.14.2. Replication and State.

8.14.3. Notification of Mgrated Lease . . .

8.14.4. Mgration and the Lease_tine Attrlbute.

i ent-Side Caching .

Per f or mance Chal I enges for CI i ent Sl de Cachl ng

Del egati on and Cal | backs.

9.2.1. Delegation Recovery .

Data Caching. . . .

.1 Dat a Cachl ng and (PENS .o

.2 Dat a Caching and File Locki ng .

. 3. Data Cachi ng and Mandatory File LOCkI ng

.4 Data Caching and File ldentity . -

nDeIegatlon. . .

Open Del egatl on and Data Cachl ng .

Open Del egation and File Locks .

Handl i ng of CB_CETATTR . .

Recal | of Open Del egati on.

Cients that Fail to Honor

Del egation Recalls .

.4.6. Del egati on Revocati on.

Data Cachi ng and Revocation . .

9.5. 1. Revocati on Recovery for W| te QDen
Del egation . G

Attribute Caching .

©oooogooow©
PRRAPAPOIOWO®

ghwNE

©

Data and Met adata Cach| ng and I\/brrory I\/apped F| I es

Nane Cachi ng .
Di rect ory Caching .

or Versioning . .
ernationalization .

Stringprep proflle for the uthStr cs type
11.1.1. Intended applicability of “the

nfs4 cs _prep profile . .
Character repertoire of nfs4 cs prep .
Mappi ng used by nfs4 _cs_prep . .
Nor mal i zati on used by nfs4_cs_prep .
Prohi bited output for nfs4_cs_prep .
Bi di rectional output for nfs4 _cs _prep.

11.
11.
11.
11.
11.

il
ouhwN

St andards Track

85
86
87

88
88
89

89
90
90
91
92
92
93
93
94
96
98
98
99
101
101
102
104
106
106
109

111
112
112

113
113
115
118
119
120
122
123

123
124
124
124
125
125

[Page 4]

RFC 3530

12.
13.

14.

Shepl er,

NFS version 4 Protocol Ap

11.2. Stringprep profile for the utf8str _cis type .
11.2.1. Intended applicability of “the
nfs4 cis_prep profile.

11. Char act er repertoire of nf s4 cis prep
11. Mappi ng used by nfs4 cis_prep

11. Nor mal i zati on used by nfsd4 cis prep
11. Prohi bited output for nfs4 cis _prep

11.
11.3. Stri
11.

Bi di rectional output for nfs4 cis_prep .
prep profile for the utf8str_nixed type .

I ntended applicability of “the

nfs4_m xed_prep profile.

.“"_!\’!\’!\’!\’!\J
!—‘QmSJ’PP"!\’

11.3.2 Char act er repertoire of nfs4_ mxed prep

11. 3.3 Mappi ng used by nfs4 cis _brep .

11.3. 4 Nor nal i zati on used by nfs4 ni xed_pr ep

11.3.5 Prohi bi ted out put for nf s4_m xed_prep
3. 6.

11.
11.4. UTF-8 Rel ated Errors.
Error Definitions
NFS version 4 Requests .
13.1. Conpound Procedure. .
13.2. Evaluation of a Oorrpound Request
13.3. Synchronous Modi fyi ng Cper ations.
13. 4. Operatr on Val ues. . .
NFS version 4 Procedures . .
14.1. Procedure 0: NULL - No Operatr on . .
14.2. Procedure 1. COVWPOUND - Conpound Operatl ons .
14. 2. 1. Operation 3: ACCESS - Check Access
Rights.
14. 2. 2. Operation 4: CLOSE - Close File .
14. 2. 3. Qperation 5: COM T - Commit
Cached Data
14. 2. 4. Operation 6: CREATE - Create a
Non- Regul ar Fil e Object
14. 2. 5. Operation 7: DELEGPURGE -
Purge Del egations Awaiting Recovery .
14. 2. 6. Qperation 8: DELEGRETURN - Return
Del egati on.

14.2. 7. OQperation 9: GETATTR - Get Attributes .
14. 2. 8. Operation 10: GETFH - Get Current

Fi | ehandl e.
14.2.9. Operation 11: LINK - Create Link to a

File.
14.2.10. Operation 12: LOCK - Create Lock
14.2.11. COperation 13: LOCKT - Test For Lock .
14.2.12. Operation 14: LOCKU - Unlock File . . .
14.2.13. Operation 15: LOOKUP - Lookup Fil enane.
14.2.14. Operation 16: LOOKUPP - Lookup

Parent Directory. .o

et al. St andards Track

Bi di rectional output for nfs4_m xed_prep

ril 2003

125

125
125
125
125
126
126
126

126
126
126
127
127
127
127
128
134
134
135
136
136
136
136
137

140
142

144
147
150

151
152

153
154
156
160
162
163

165

[Page 5]

RFC 3530

15.

Shepl er,

15. 1.
15. 2.

NFS version 4 Protocol

April 2003

14.2.15. Operation 17: NVERI FY - Verify
Difference in Attributes . . 166
14.2.16. Operation 18: OPEN - QDen a Regul ar
File. . 168
14.2.17. Operation 19 (PENATTR - Open Namad
Attribute Directory . . .o 178
14.2.18. Operation 20: OPEN_CONFI RM -
Confirm Qpen . . 180
14.2.19. Operation 21: OPEN DO/\NGRADE -
Reduce Open File Access . 182
14.2.20. Operation 22: PUTFH - Set
Current Filehandle. . . 184
14.2.21. Operation 23: PUTPUBFH -
Set Public Filehandle . . 185
14.2.22. QOperation 24: PUTROOTFH -
Set Root Filehandle 186
14.2.23. Operation 25: READ - Read fromFile . 187
14.2.24. Operation 26: READDI R -
Read Directory. . . 190
14.2.25. Operation 27: READLI NK -
Read Synmbolic Link. . . 193
14.2.26. Operation 28: REMOVE -
Renmove Fil esystem (bj ect. 195
14.2.27. Operation 29: RENAME -
Renane Directory Entry. . 197
14.2.28. (Operation 30: RENEW - Renew a Lease . 200
14.2.29. Operation 31: RESTOREFH -
Restore Saved Fil ehandle. . 201
14.2.30. Operation 32: SAVEFH - Save
Current Filehandle. . . . 202
14.2.31. Operation 33: SECI NFO - Oot a| n
Avail abl e Security. 203
14.2.32. Operation 34: SETATTR - Set Attributes. . 206
14.2.33. Operation 35: SETCLIENTID -
Negotiate Clientid. . . 209
14.2.34. Operation 36: SETCLI ENTI D CC)\IFI RM -
Confirmdientid. . . . G 213
14.2.35. Operation 37: VERI FY -
Verify Sanme Attributes. . . . 217
14.2.36. Operation 38: WRI TE - Wlteto F|Ie . 218
14.2.37. Operation 39: RELEASE_LOCKOMER -
Rel ease Lockowner State . . . 223
14.2.38. Operation 10044: |LLEGAL -
Il egal operation . .o 224
NFS version 4 Call back Procedures . . 225
Procedure 0: CB_NULL - No Cperatl on . 225
Procedure 1: CB_COWPOUND - Conpound
Qper ati ons. . e 226
St andards Track [Page 6]

et al.

RFC 3530

16.
17.

18.
19.
20.

22.

23.

Shepl er,

NFS version 4 Protocol

15.2.1. Operation 3: CB GETATTR - GCet

Attributes . .
15.2.2. Qperation 4: CB RECALL -
Recall an Open Del egati on.

15.2.3. Qperation 10044: CB |LLEGAL -

Il1legal Callback Operation .
Security Considerations Ce
| ANA Consi derations . .

17.1. Naned Attribute Defl n|t| on. . .
17.2. ONC RPC Network ldentifiers (netlds)
RPC definition file

Acknowl edgenents .

Nor mat i ve References .

Informati ve References .

Aut hors’ Information . .

22.1. Editor’s Address. .

22.2. Authors’ Addresses.

Ful | Copyright Statenent

et al. St andards Track

April 2003

228
229

230
231
232
232
232
234
268
268
270
273
273
274
275

[Page 7]

RFC 3530 NFS version 4 Protocol April 2003

1. Introduction
1.1. Changes since RFC 3010

This definition of the NFS version 4 protocol replaces or obsol etes
the definition present in [RFC3010]. Wile portions of the two
docunents have renai ned the sane, there have been substantive changes
in others. The changes nade between [RFC3010] and this docunent
represent inplenentation experience and further review of the
protocol. Wile sonme nodifications were nade for ease of

i npl ementation or clarification, nost updates represent errors or
situations where the [RFC3010] definition were untenable.

The following list is not all inclusive of all changes but presents
sonme of the nobst notabl e changes or additions nade:

o0 The state nodel has added an open_owner4 identifier. This was
done to acconmodat e Posi x based clients and the nodel they use for
file locking. For Posix clients, an open_owner4 would correspond
to a file descriptor potentially shared anongst a set of processes
and the |l ock_owner4 identifier would correspond to a process that
is locking a file.

o Cdarifications and error conditions were added for the handling of
the owner and group attributes. Since these attributes are string
based (as opposed to the nuneric uid/gid of previous versions of
NFS), translations may not be avail abl e and hence t he changes
made.

o Cdarifications for the ACL and node attri butes to address
eval uation and partial support.

o For identifiers that are defined as XDR opaque, linmts were set on
their size.

0 Added the nounted on filed attribute to allow Posix clients to
correctly construct |ocal nounts.

0 Mdified the SETCLI ENTI DY SETCLI ENTI D_CONFI RM oper ations to dea
correctly with confirmation details along with adding the ability
to specify new client callback information. Al so added
clarification of the callback information itself.

0 Added a new operati on LOCKOANER_RELEASE to enable notifying the
server that a |ock_owner4 will no |onger be used by the client.

0 RENEW operation changes to identify the client correctly and all ow
for additional error returns.

Shepler, et al. St andards Track [Page 8]

RFC 3530 NFS version 4 Protocol April 2003

o Verify error return possibilities for all operations.

0 Renove use of the pathnaned4 data type from LOOKUP and OPEN in
favor of having the client construct a sequence of LOOKUP
operations to achieive the sane effect.

o Carification of the internationalization issues and adoption of
the new stringprep profile franmework.

1. 2. NFS Version 4 Goal s

The NFS version 4 protocol is a further revision of the NFS protoco
defined already by versions 2 [RFC1094] and 3 [RFC1813]. It retains
the essential characteristics of previous versions: design for easy
recovery, independent of transport protocols, operating systems and
filesystenms, sinplicity, and good performance. The NFS version 4
revi sion has the foll ow ng goal s:

o |Inproved access and good perfornmance on the |nternet.
The protocol is designed to transit firewalls easily, perform well
where latency is high and bandwidth is |low, and scale to very
| arge nunbers of clients per server

0 Strong security with negotiation built into the protocol
The protocol builds on the work of the ONCRPC working group in
supporting the RPCSEC GSS protocol. Additionally, the NFS version
4 protocol provides a nmechanismto allow clients and servers the
ability to negotiate security and require clients and servers to
support a mininmal set of security schenes.

0 Good cross-platforminteroperability.
The protocol features a filesystem nodel that provides a useful
common set of features that does not unduly favor one fil esystem
or operating system over another

0 Designed for protocol extensions.

The protocol is designed to accept standard extensions that do not
conprom se backward conpatibility.

1.3. Inconsistencies of this Docunent with Section 18
Section 18, RPC Definition File, contains the definitions in XDR

description | anguage of the constructs used by the protocol. Prior
to Section 18, several of the constructs are reproduced for purposes

Shepler, et al. St andards Track [Page 9]

RFC 3530 NFS version 4 Protocol April 2003

of explanation. The reader is warned of the possibility of errors in
t he reproduced constructs outside of Section 18. For any part of the
docunent that is inconsistent with Section 18, Section 18 is to be
considered authoritative.

1.4. Overview of NFS version 4 Features

To provide a reasonable context for the reader, the major features of
NFS version 4 protocol will be reviewed in brief. This will be done
to provide an appropriate context for both the reader who is fanmliar
with the previous versions of the NFS protocol and the reader that is
new to the NFS protocols. For the reader new to the NFS protocols,
there is still a fundanental knowl edge that is expected. The reader
shoul d be famliar with the XDR and RPC protocols as described in

[RFC1831] and [RFC1832]. A basic know edge of filesystens and
distributed filesystens is expected as well

1.4.1. RPC and Security

As with previous versions of NFS, the External Data Representation
(XDR) and Renote Procedure Call (RPC) mechani snms used for the NFS
version 4 protocol are those defined in [RFC1831] and [RFC1832]. To
meet end to end security requirenents, the RPCSEC GSS franework

[RFC2203] will be used to extend the basic RPC security. Wth the
use of RPCSEC GSS, various mechani snms can be provided to offer

aut hentication, integrity, and privacy to the NFS version 4 protocol
Kerberos V5 will be used as described in [RFC1964] to provide one
security framework. The LIPKEY GSS- APl nechani sm described in

[RFC2847] will be used to provide for the use of user password and
server public key by the NFS version 4 protocol. Wth the use of
RPCSEC GSS, ot her nechani sns nay al so be specified and used for NFS
version 4 security.

To enabl e in-band security negotiation, the NFS version 4 protoco
has added a new operation which provides the client a nethod of
querying the server about its policies regardi ng which security
mechani snms nust be used for access to the server’s fil esystem
resources. Wth this, the client can securely nmatch the security
mechani smthat neets the policies specified at both the client and
server.

1.4.2. Procedure and Operation Structure

A significant departure fromthe previous versions of the NFS
protocol is the introduction of the COMPOUND procedure. For the NFS
version 4 protocol, there are two RPC procedures, NULL and COVPOUND
The COVPOUND procedure is defined in terns of operations and these
operations correspond nore closely to the traditional NFS procedures.

Shepler, et al. St andards Track [Page 10]

RFC 3530 NFS version 4 Protocol April 2003

Wth the use of the COVPOUND procedure, the client is able to build
simpl e or conplex requests. These COVWOUND requests allow for a
reduction in the nunber of RPCs needed for logical filesystem
operations. For exanple, w thout previous contact with a server a
client will be able to read data froma file in one request by
conbi ni ng LOOKUP, OPEN, and READ operations in a single COVOUND RPC
Wth previous versions of the NFS protocol, this type of single
request was not possible.

The nodel used for COMWPOUND is very sinple. There is no logical OR
or ANDi ng of operations. The operations conbined within a COVPOUND
request are evaluated in order by the server. Once an operation
returns a failing result, the evaluation ends and the results of al
eval uated operations are returned to the client.

The NFS version 4 protocol continues to have the client refer to a
file or directory at the server by a "filehandl e". The COVPOUND
procedure has a nethod of passing a filehandle fromone operation to
another within the sequence of operations. There is a concept of a
"current filehandl e" and "saved fil ehandl e". Mst operations use the
"current filehandl e" as the filesystem object to operate upon. The
"saved filehandle" is used as tenporary filehandl e storage within a
COVPOUND procedure as well as an additional operand for certain
operations.

1.4.3. Filesystem Mdel

The general filesystem nodel used for the NFS version 4 protocol is
the sane as previous versions. The server filesystemis hierarchica
with the regular files contained within being treated as opaque byte
streans. In a slight departure, file and directory nanmes are encoded
with UTF-8 to deal with the basics of internationalization

The NFS version 4 protocol does not require a separate protocol to
provide for the initial mapping between path nanme and fil ehandl e.

I nstead of using the ol der MOUNT protocol for this nmapping, the
server provides a ROOT filehandl e that represents the | ogical root or
top of the filesystemtree provided by the server. The server
provides multiple filesystens by gluing themtogether with pseudo
filesystenms. These pseudo filesystens provide for potential gaps in
the path nanes between real filesystens.

1.4.3.1. Filehandle Types
In previous versions of the NFS protocol, the fil ehandl e provi ded by
the server was guaranteed to be valid or persistent for the lifetine

of the filesystemobject to which it referred. For some server
i npl enentations, this persistence requirenent has been difficult to

Shepler, et al. St andards Track [Page 11]

RFC 3530 NFS version 4 Protocol April 2003

nmeet. For the NFS version 4 protocol, this requirement has been
rel axed by introduci ng another type of filehandle, volatile. Wth
persistent and volatile filehandl e types, the server inplenentation
can match the abilities of the filesystemat the server along with
the operating environnent. The client will have know edge of the
type of filehandl e being provided by the server and can be prepared
to deal with the semantics of each

1.4.3.2. Attribute Types

The NFS version 4 protocol introduces three classes of filesystem or
file attributes. Like the additional filehandle type, the
classification of file attributes has been done to ease server

i mpl enentations along with extending the overall functionality of the
NFS protocol. This attribute nodel is structured to be extensible
such that new attributes can be introduced in mnor revisions of the
protocol without requiring significant rework.

The three classifications are: mandatory, recommended and naned
attributes. This is a significant departure fromthe previous

attribute nmodel used in the NFS protocol. Previously, the attributes
for the filesystemand file objects were a fixed set of mainly UN X
attributes. |If the server or client did not support a particular

attribute, it would have to sinulate the attribute the best it coul d.

Mandatory attributes are the nminimal set of file or filesystem
attributes that nust be provided by the server and nust be properly
represented by the server. Recomended attributes represent
different filesystemtypes and operating environnents. The
recomended attributes will allow for better interoperability and the
i nclusion of nore operating environnments. The mandatory and
reconmended attribute sets are traditional file or filesystem
attributes. The third type of attribute is the named attribute. A
naned attribute is an opaque byte streamthat is associated with a
directory or file and referred to by a string nane. Naned attributes
are neant to be used by client applications as a nethod to associate
application specific data with a regular file or directory.

One significant addition to the recommrended set of file attributes is
the Access Control List (ACL) attribute. This attribute provides for
directory and file access control beyond the nodel used in previous
versions of the NFS protocol. The ACL definition allows for
specification of user and group |evel access control

Shepler, et al. St andards Track [Page 12]

RFC 3530 NFS version 4 Protocol April 2003

1.4.3.3. Filesystem Replication and Mgration

Wth the use of a special file attribute, the ability to migrate or
replicate server filesystens is enabled within the protocol. The
filesystem | ocations attribute provides a nethod for the client to
probe the server about the location of a filesystem |In the event of
a mgration of a filesystem the client will receive an error when
operating on the filesystemand it can then query as to the new file
systemlocation. Sinilar steps are used for replication, the client
is able to query the server for the nultiple avail able | ocations of a
particular filesystem Fromthis information, the client can use its
own policies to access the appropriate filesystemlocation

1.4.4. OPEN and CLCSE

The NFS version 4 protocol introduces OPEN and CLOSE operations. The
OPEN operation provides a single point where file | ookup, creation,
and share senmantics can be conbined. The CLOSE operation al so
provides for the release of state accunul ated by OPEN

1.4.5. File locking

Wth the NFS version 4 protocol, the support for byte range file
locking is part of the NFS protocol. The file |ocking support is
structured so that an RPC cal | back nechanismis not required. This
is a departure fromthe previous versions of the NFS file | ocking
protocol, Network Lock Manager (NLM. The state associated with file

locks is maintained at the server under a | ease-based nodel. The
server defines a single |lease period for all state held by a NFS
client. |If the client does not renewits |lease within the defined

period, all state associated with the client’'s | ease nmay be rel eased
by the server. The client may renew its | ease with use of the RENEW
operation or inplicitly by use of other operations (primarily READ).

1.4.6. dient Caching and Del egation

The file, attribute, and directory caching for the NFS version 4
protocol is simlar to previous versions. Attributes and directory
i nformati on are cached for a duration determined by the client. At
the end of a predefined timeout, the client will query the server to
see if the related fil esystem obj ect has been updated.

For file data, the client checks its cache validity when the file is
opened. A query is sent to the server to deternmine if the file has
been changed. Based on this information, the client determines if
the data cache for the file should kept or released. Also, when the
file is closed, any nodified data is witten to the server

Shepler, et al. St andards Track [Page 13]

RFC 3530 NFS version 4 Protocol April 2003

If an application wants to serialize access to file data, file
| ocking of the file data ranges in question should be used.

The major addition to NFS version 4 in the area of caching is the
ability of the server to delegate certain responsibilities to the
client. Wen the server grants a delegation for a file to a client,
the client is guaranteed certain senantics with respect to the
sharing of that file with other clients. At OPEN, the server nay
provide the client either a read or wite delegation for the file.
If the client is granted a read delegation, it is assured that no
other client has the ability to wite to the file for the duration of
the delegation. |If the client is granted a wite del egation, the
client is assured that no other client has read or wite access to
the file.

Del egations can be recalled by the server. [If another client
requests access to the file in such a way that the access conflicts
with the granted del egation, the server is able to notify the initial
client and recall the delegation. This requires that a call back path
exi st between the server and client. |If this callback path does not
exi st, then del egations can not be granted. The essence of a
delegation is that it allows the client to locally service operations
such as OPEN, CLOSE, LOCK, LOCKU, READ, WRI TE wi t hout i medi ate
interaction with the server

1.5. GCeneral Definitions

The followi ng definitions are provided for the purpose of providing
an appropriate context for the reader

dient The "client" is the entity that accesses the NFS server’s
resources. The client may be an application which contains
the logic to access the NFS server directly. The client
may al so be the traditional operating systemclient renote
filesystemservices for a set of applications.

In the case of file locking the client is the entity that
mai ntains a set of |ocks on behalf of one or nore
applications. This client is responsible for crash or
failure recovery for those locks it manages.

Note that nultiple clients may share the sane transport and
multiple clients may exist on the sane network node.

Clientid A 64-bit quantity used as a unique, short-hand reference to

a client supplied Verifier and ID. The server is
responsi ble for supplying the dientid.

Shepler, et al. St andards Track [Page 14]

RFC 3530

Lease

Lock

Server

NFS version 4 Protocol April 2003

An interval of time defined by the server for which the
client is irrevocably granted a lock. At the end of a

| ease period the lock may be revoked if the | ease has not
been extended. The |ock nust be revoked if a conflicting
| ock has been granted after the |ease interval

Al'l | eases granted by a server have the sane fixed
interval. Note that the fixed interval was chosen to

all eviate the expense a server would have in naintaining
state about variable length | eases across server failures.

The term"lock" is used to refer to both record (byte-
range) |locks as well as share reservations unl ess
specifically stated otherw se.

The "Server" is the entity responsible for coordinating
client access to a set of filesystens.

Stabl e Storage

Stateid

NFS version 4 servers nust be able to recover w thout data
loss frommultiple power failures (including cascading
power failures, that is, several power failures in quick
succession), operating systemfailures, and hardware
failure of conponents other than the storage nediumitself
(for example, disk, nonvolatile RAM.

Some exanpl es of stable storage that are allowable for an
NFS server include:

1. Media commit of data, that is, the nodified data has
been successfully witten to the disk nedia, for
exanpl e, the disk platter

2. An imedi ate reply disk drive with battery-backed on-
drive internmedi ate storage or uninterruptible power
system (UPS)

3. Server conmit of data with battery-backed internediate
storage and recovery software.

4. Cache conmit with uninterruptible power system (UPS) and
recovery software

A 128-bit quantity returned by a server that uniquely
defines the open and | ocking state provided by the server
for a specific open or |ock owner for a specific file.

Shepler, et al. St andards Track [Page 15]

April 2003

bits 1 have speci al

RFC 3530 NFS version 4 Protoco
Statei ds conposed of all bits 0 or al
neani ng and are reserved val ues.

Verifier A 64-bit quantity generated by the client that the server
can use to deternmine if the client has restarted and | ost
all previous |lock state.

2. Protocol Data Types

2.

Shepl er,

1

The syntax and semantics to describe the data types of the NFS

version 4 protocol
docunent s.
types and structures specific to this protocol.

Basi ¢ Data Types

are defined in the XDR [RFC1832] and RPC [RFC1831]
The next sections build upon the XDR data types to define

Data Type Definition

int32_t typedef int int32_t;

ui nt 32_t t ypedef unsigned int ui nt 32_t;

int64_t typedef hyper int64_t;

ui nt 64 _t t ypedef unsigned hyper uint64_t;

attrlist4 t ypedef opaque attrlistd4<s;
Used for file/directory attributes

bi t rap4 typedef uint32_t bi t map4<>
Used in attribute array encodi ng.

changei d4 t ypedef ui nt 64_t changei d4;
Used in definition of change_info

clientid4 typedef uint64_t clientidd4;

conmponent 4

Shorthand reference to client identification

typedef utf8str_cs conponent 4;
Represents path nane conponents

count 4 typedef uint32_t count 4;
Various count paraneters (READ, WRI TE, COVWM T)
| engt h4 typedef uint64_t | engt h4;
Descri bes LOCK | engt hs
et al. St andards Track [Page 16]

RFC 3530

| i nkt ext 4

node4

nfs_cooki e4

nfs fh4

nfs ftype4d

nf sstat 4

of fset4

pat hnane4

qop4

sec_oi d4

seqi d4

utf8string

utf8str _cis

utf8str_cs

Shepler, et al.

NFS version 4 Protocol April 2003
typedef utf8str_cs I i nkt ext 4;
Synbolic link contents
typedef uint32_t node4;

Mode attribute data type

typedef uint64_t nfs_cooki e4;
Opaque cooki e val ue for READDI R

typedef opaque nfs_f h4<NFS4_FHSI ZE>
Fil ehandl e definition; NFS4 _FHSI ZE is defined as 128

enum nfs_ftype4,;
Various defined file types

enum nf sst at 4;
Return val ue for operations

typedef uint64_t of f set 4;
Various of fset designations (READ, WRI TE,
LOCK, COW T)

typedef conponent 4 pat hnanme4<>;
Represents path nane for LOOKUP, OPEN and others

typedef uint32_t qop4;
Quality of protection designation in SECI NFO

typedef opaque sec_oi d4<>

Security Object ldentifier

The sec_oid4 data type is not really opaque.

I nstead contains an ASN. 1 OBJECT | DENTI FI ER as used
by GSS-API in the nech_type argunment to

GSS Init_sec_context. See [RFC2743] for details.

typedef uint32_t seqi d4;
Sequence identifier used for file |ocking

t ypedef opaque utf 8stri ng<>
UTF-8 encodi ng for strings

t ypedef opaque utf8str _cis
Case-insensitive UTF-8 string

t ypedef opaque utf8str_cs
Case-sensitive UTF-8 string

St andards Track [Page 17]

RFC 3530 NFS version 4 Protocol April 2003

ut f 8str_nmi xed t ypedef opaque ut f 8str_nmi xed
UTF-8 strings with a case sensitive prefix and
a case insensitive suffix.

verifierd typedef opaque verifier4[NFS4_VERI Fl ER_SI ZE] ;
Verifier used for various operations (COW T,
CREATE, OPEN, READDI R, SETCLI ENTI D
SETCLI ENTI D_CONFIRM WRI TE) NFS4_VERI FIER SI ZE is
defined as 8.

2.2. Structured Data Types

nf sti me4
struct nfstinme4d {
int64_t seconds;
ui nt 32_t nseconds;

}

The nfstinme4 structure gives the nunber of seconds and nanoseconds
since mdnight or 0 hour January 1, 1970 Coordinated Universal Tinme
(UTC). Values greater than zero for the seconds field denote dates
after the 0 hour January 1, 1970. Values less than zero for the
seconds field denote dates before the 0 hour January 1, 1970. 1In
both cases, the nseconds field is to be added to the seconds field
for the final tine representation. For exanple, if the tine to be
represented is one-half second before 0 hour January 1, 1970, the
seconds field would have a val ue of negative one (-1) and the
nseconds fields would have a val ue of one-half second (500000000).
Val ues greater than 999, 999,999 for nseconds are considered invalid.

This data type is used to pass tinme and date information. A server
converts to and fromits local representation of tine when processing
time val ues, preserving as nuch accuracy as possible. [If the
precision of tinestanps stored for a fil esystemobject is |less than
defined, |oss of precision can occur. An adjunct time naintenance
protocol is recommended to reduce client and server tine skew.

ti me_howd
enum ti me_howd {

SET_TO_SERVER_TI ME4
SET_TO_CLI ENT_TI ME4

b

Shepler, et al. St andards Track [Page 18]

RFC 3530 NFS version 4 Protocol April 2003

setti ne4

union settinme4 switch (tine_how4 set it) {
case SET_TO CLI ENT_TI ME4:
nfsti me4 time;
def aul t:
voi d;
s

The above definitions are used as the attribute definitions to set
tinme values. If set it is SET_TO SERVER Tl ME4, then the server uses
its local representation of tine for the tine val ue.

specdat a4

struct specdatad {
uint32_t specdatal; /* major device nunber */
uint32_t specdata2; /* minor device nunber */

b

This data type represents additional information for the device file
types NF4ACHR and NF4BLK

fsid4
struct fsid4 {
ui nt 64_t nmaj or ;
ui nt 64 _t m nor ;
i
This type is the filesystemidentifier that is used as a nandatory
attribute.

fs locationd

struct fs_|locationd {
utf8str _cis server <>;
pat hnanme4 r oot pat h;

s
fs |l ocations4
struct fs_locations4d {

pat hnane4 fs_root;
fs locationd |ocations<>;

H

Shepler, et al. St andards Track [Page 19]

RFC 3530 NFS version 4 Protocol April 2003

The fs_locationd4 and fs | ocations4 data types are used for the
fs_locations reconmended attribute which is used for migration and
replication support.

fattr4
struct fattr4 {
bi t map4 attrnask;
attrlist4 attr_vals;

s

The fattr4 structure is used to represent file and directory
attributes

The bitmap is a counted array of 32 bit integers used to contain bit
val ues. The position of the integer in the array that contains bit n

can be conputed fromthe expression (n/ 32) and its bit within that
integer is (n nod 32).

change_i nfo4

struct change_i nfo4 {

bool at om c;
changei d4 bef or e;
changei d4 after

b

This structure is used with the CREATE, LINK, REMOVE, RENAME
operations to let the client know the val ue of the change attribute
for the directory in which the target fil esystem object resides.

clientaddr4

struct clientaddr4 {
/* see struct rpcb in RFC 1833 */
string r_netid<>; /* network id */
string r_addr<>; /* universal address */
i
The clientaddr4 structure is used as part of the SETCLIENTID

operation to either specify the address of the client that is using a
clientid or as part of the callback registration. The

Shepler, et al. St andards Track [Page 20]

RFC 3530 NFS version 4 Protocol April 2003

r netid and r_addr fields are specified in [RFC1833], but they are
underspecified in [RFC1833] as far as what they should | ook like for
speci fic protocols.

For TCP over |IPv4 and for UDP over IPv4, the format of r_addr is the
US- ASCI | string:

h1l. h2. h3. h4. p1. p2

The prefix, "hl.h2.h3.h4", is the standard textual formfor
representing an | Pv4 address, which is always four octets |ong.
Assum ng bi g-endi an ordering, hl, h2, h3, and h4, are respectively,
the first through fourth octets each converted to ASCI|-deci nal.
Assum ng bi g-endi an ordering, pl and p2 are, respectively, the first
and second octets each converted to ASCl|-decinmal. For exanple, if a
host, in big-endian order, has an address of 0x0A010307 and there is
a service listening on, in big endian order, port 0x020F (deci nal
527), then the conplete universal address is "10.1.3.7.2.15"

For TCP over IPv4 the value of r_netid is the string "tcp". For UDP
over |Pv4 the value of r_netid is the string "udp”

For TCP over |IPv6 and for UDP over IPv6, the fornmat of r_addr is the
US-ASCI | string:

x1:x2: x3: x4: X5: x6: x7: x8. pl. p2

The suffix "pl.p2" is the service port, and is conputed the same way
as with universal addresses for TCP and UDP over |Pv4. The prefix,
"x1:x2:x3: x4: x5: x6: x7:x8", is the standard textual formfor
representing an | Pv6 address as defined in Section 2.2 of [RFC2373].
Additionally, the two alternative forns specified in Section 2.2 of
[RFC2373] are al so acceptabl e.

For TCP over IPv6 the value of r_netid is the string "tcp6". For UDP
over | Pv6 the value of r_netid is the string "udp6"

cb client4
struct cb_client4 {

unsigned int cb_program
clientaddr4 cb_location

b

This structure is used by the client to informthe server of its cal
back address; includes the program nunber and client address.

Shepler, et al. St andards Track [Page 21]

RFC 3530 NFS version 4 Protocol April 2003

nfs client _id4

struct nfs_client _id4 {

verifier4d verifier;

opaque i d<NFS4_OPAQUE LI M T>
}

This structure is part of the argunents to the SETCLI ENTI D operati on.
NFS4 _OPAQUE LIMT is defined as 1024.

open_owner 4

struct open_owner4 {

clientid4 clientid;

opaque owner <NFS4_OPAQUE LI M T>
b

This structure is used to identify the owner of open state.
NFS4 OPAQUE LIMT is defined as 1024.

| ock_owner 4
struct | ock_owner4 {
clientid4 clientid;
opaque owner <NFS4_OPAQUE LI M T>;
i

This structure is used to identify the owner of file |locking state.
NFS4 OPAQUE LIMT is defined as 1024.

open_to_| ock_owner 4

struct open_to_I|l ock_owner4 {

seqi d4 open_seqi d;
statei d4 open_statei d;
seqi d4 | ock_seqid;
| ock_owner 4 | ock_owner
H
This structure is used for the first LOCK operation done for an
open_owner4. It provides both the open_stateid and | ock_owner such

that the transition is nmade froma valid open_statei d sequence to
that of the new | ock_stateid sequence. Using this nmechani sm avoids
the confirmation of the | ock owner/lock seqid pair since it is tied
to established state in the formof the open_stateid/open_seqid.

Shepler, et al. St andards Track [Page 22]

RFC 3530 NFS version 4 Protocol April 2003

st at ei d4
struct stateid4 {
ui nt 32_t seqi d;
opaque other[12];

This structure is used for the various state sharing nechani sns
between the client and server. For the client, this data structure
is read-only. The starting value of the seqid field is undefined.
The server is required to increment the seqid field nonotonically at
each transition of the stateid. This is inportant since the client
will inspect the seqid in OPEN stateids to deternine the order of
OPEN processi ng done by the server.

3. RPC and Security Flavor

The NFS version 4 protocol is a Renpbte Procedure Call (RPC)
application that uses RPC version 2 and the correspondi ng eXterna
Dat a Representation (XDR) as defined in [RFC1831] and [RFC1832]. The
RPCSEC_GSS security flavor as defined in [RFC2203] MJUST be used as
the mechanismto deliver stronger security for the NFS version 4

pr ot ocol

3.1. Ports and Transports

Historically, NFS version 2 and version 3 servers have resided on
port 2049. The registered port 2049 [RFC3232] for the NFS protoco
shoul d be the default configuration. Using the registered port for
NFS services neans the NFS client will not need to use the RPC

bi ndi ng protocols as described in [RFC1833]; this will allow NFS to
transit firewalls.

Where an NFS version 4 inplenmentation supports operation over the IP
net wor k protocol, the supported transports between NFS and | P MJUST be
anong the | ETF-approved congestion control transport protocols, which
i nclude TCP and SCTP. To enhance the possibilities for
interoperability, an NFS version 4 inplenentation MJST support
operation over the TCP transport protocol, at least until such time
as a standards track RFC revises this requirenent to use a different

| ETF- approved congestion control transport protocol

If TCP is used as the transport, the client and server SHOULD use
persi stent connections. This will prevent the weakening of TCP' s

congestion control via short |ived connections and will inprove
performance for the WAN environnent by elimnating the need for SYN
handshakes.

Shepler, et al. St andards Track [Page 23]

RFC 3530 NFS version 4 Protocol April 2003

As noted in the Security Considerations section, the authentication
nodel for NFS version 4 has noved from nachi ne-based to principal -
based. However, this nodification of the authentication nodel does
not inply a technical requirement to nove the TCP connection
managenent nodel from whol e nachi ne-based to one based on a per user
nodel . In particular, NFS over TCP client inplenentations have
traditionally nultiplexed traffic for nmultiple users over a comon
TCP connection between an NFS client and server. This has been true,
regardl ess whether the NFS client is using AUTH SYS, AUTH DH,

RPCSEC GSS or any other flavor. Similarly, NFS over TCP server

i npl enent ati ons have assunmed such a nodel and thus scale the

i mpl enent ati on of TCP connecti on managenent in proportion to the
nunber of expected client machines. It is intended that NFS version
4 will not nodify this connection managenment nodel. NFS version 4
clients that violate this assunption can expect scaling issues on the
server and hence reduced service.

Note that for various tiners, the client and server should avoid
i nadvertent synchroni zation of those tinmers. For further discussion
of the general issue refer to [Floyd].

3.1.1. dient Retransm ssi on Behavi or

When processing a request received over a reliable transport such as
TCP, the NFS version 4 server MJST NOT silently drop the request,
except if the transport connection has been broken. G ven such a
contract between NFS version 4 clients and servers, clients MJST NOT
retry a request unless one or both of the followi ng are true:

0 The transport connection has been broken
0 The procedure being retried is the NULL procedure

Since reliable transports, such as TCP, do not always synchronously
i nforma peer when the other peer has broken the connection (for
exanpl e, when an NFS server reboots), the NFS version 4 client may
want to actively "probe" the connection to see if has been broken
Use of the NULL procedure is one reconmended way to do so. So, when
a client experiences a renote procedure call timeout (of sone
arbitrary inplenmentation specific anount), rather than retrying the

renote procedure call, it could instead issue a NULL procedure cal
to the server. |If the server has died, the transport connection
break will eventually be indicated to the NFS version 4 client. The
client can then reconnect, and then retry the original request. |If

the NULL procedure call gets a response, the connection has not
broken. The client can decide to wait |onger for the origina
request’s response, or it can break the transport connection and
reconnect before re-sending the original request.

Shepler, et al. St andards Track [Page 24]

RFC 3530 NFS version 4 Protocol April 2003

For call backs fromthe server to the client, the sane rules apply,
but the server doing the callback becones the client, and the client
receiving the call back becones the server

3.2. Security Flavors

Tradi tional RPC inplenentations have included AUTH NONE, AUTH SYS
AUTH DH, and AUTH KRB4 as security flavors. Wth [RFC2203] an
additional security flavor of RPCSEC GSS has been introduced which
uses the functionality of GSS-API [RFC2743]. This allows for the use
of various security mechanisnms by the RPC | ayer without the

addi tional inplenentation overhead of addi ng RPC security flavors.

For NFS version 4, the RPCSEC GSS security flavor MJUST be used to
enabl e the mandatory security nechanism Qher flavors, such as,
AUTH _NONE, AUTH_SYS, and AUTH DH MAY be inplenented as well.

3.2.1. Security nechanisns for NFS version 4

The use of RPCSEC GSS requires selection of: nechanism quality of
protection, and service (authentication, integrity, privacy). The
remai nder of this document will refer to these three paraneters of
the RPCSEC GSS security as the security triple.

3.2.1.1. Kerberos V5 as a security triple

The Kerberos V5 GSS- APl nechani sm as described in [RFC1964] MJST be
i mpl emrent ed and provide the followi ng security triples.

col umm descri pti ons:

== nunber of pseudo flavor
== nanme of pseudo flavor
mechanisnmis QD

== mechani sm s al gorithm(s)
== RPCSEC GSS service

abrwWwNBE
Il
1l

390003 krb5 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_none
390004 krb5i 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_integrity
390005 krb5p 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_privacy

for integrity,

and 56 bit DES

for privacy.

Note that the pseudo flavor is presented here as a mapping aid to the

i npl ementor. Because this NFS protocol includes a nmethod to
negotiate security and it understands the GSS-API nechanism the

Shepler, et al. St andards Track [Page 25]

RFC 3530 NFS version 4 Protocol April 2003

pseudo flavor is not needed. The pseudo flavor is needed for NFS
version 3 since the security negotiation is done via the MOUNT
pr ot ocol

For a discussion of NFS use of RPCSEC GSS and Kerberos V5, please
see [RFC2623].

Users and inplementors are warned that 56 bit DES is no | onger
considered state of the art in terns of resistance to brute force
attacks. Once a revision to [RFC1964] is available that adds support
for AES, inplenentors are urged to incorporate AES into their NFSv4
over Kerberos V5 protocol stacks, and users are simlarly urged to
mgrate to the use of AES.

3.2.1.2. LIPKEY as a security triple

The LI PKEY GSS- APl nechani sm as described in [RFC2847] MJST be

i npl enented and provide the following security triples. The
definition of the colums natches the previous subsection "Kerberos
V5 as security triple"

1 2 3 4 5

390006 |i pkey 1.3.6.1.5.5.9 negotiated rpc_gss_svc_none
390007 |ipkey-i 1.3.6.1.5.5.9 negotiated rpc_gss_svc integrity
390008 |ipkey-p 1.3.6.1.5.5.9 negotiated rpc_gss_svc_privacy
The mechanismalgorithmis listed as "negotiated". This is because

LIPKEY is layered on SPKM 3 and in SPKM 3 [RFC2847] the
confidentiality and integrity algorithns are negotiated. Since
SPKM 3 specifies HVAC-MD5 for integrity as MANDATORY, 128 bit
cast5CBC for confidentiality for privacy as MANDATORY, and further
specifies that HVAC- MD5 and cast5CBC MJUST be listed first before
weaker al gorithns, specifying "negotiated" in colum 4 does not
inmpair interoperability. 1In the event an SPKM 3 peer does not
support the nandatory al gorithns, the other peer is free to accept or
reject the GSS-API context creation

Because SPKM 3 negotiates the algorithnms, subsequent calls to

LI PKEY' s GSS Wap() and GSS GetM C() by RPCSEC GSS will use a quality
of protection value of 0 (zero). See section 5.2 of [RFC2025] for an
expl anat i on.

LI PKEY uses SPKM 3 to create a secure channel in which to pass a user
name and password fromthe client to the server. Once the user nane
and password have been accepted by the server, calls to the LIPKEY
context are redirected to the SPKM 3 context. See [RFC2847] for nore
details.

Shepler, et al. St andards Track [Page 26]

RFC 3530 NFS version 4 Protocol April 2003

3.2.1.3. SPKM3 as a security triple

The SPKM 3 GSS- APl nechani sm as described in [RFC2847] MJST be

i mpl ement ed and provide the followi ng security triples. The
definition of the columms natches the previous subsection "Kerberos
V5 as security triple"

390009 spknB 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_none
390010 spknBi 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_integrity
390011 spknBp 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_privacy

For a discussion as to why the mechanismalgorithmis listed as
"negoti ated", see the previous section "LIPKEY as a security triple."

Because SPKM 3 negotiates the al gorithnms, subsequent calls to SPKM
3's GSS Wap() and GSS GetM C() by RPCSEC GSS will use a quality of
protection value of 0 (zero). See section 5.2 of [RFC2025] for an
expl anat i on.

Even though LIPKEY is |ayered over SPKM 3, SPKM 3 is specified as a
mandatory set of triples to handle the situations where the initiator
(the client) is anonynous or where the initiator has its own
certificate. |If the initiator is anonynous, there will not be a user
nane and password to send to the target (the server). |f the
initiator has its own certificate, then using passwords is
super f | uous.

3.3. Security Negotiation

Wth the NFS version 4 server potentially offering nultiple security
mechani sms, the client needs a nethod to determine or negotiate which
mechanismis to be used for its communication with the server. The
NFS server may have multiple points within its filesystem nane space
that are available for use by NFS clients. In turn the NFS server
may be configured such that each of these entry points may have
different or multiple security mechani sms in use.

The security negotiation between client and server nust be done with
a secure channel to elimnate the possibility of a third party

i ntercepting the negotiation sequence and forcing the client and
server to choose a |lower level of security than required or desired
See the section "Security Considerations" for further discussion

Shepler, et al. St andards Track [Page 27]

RFC 3530 NFS version 4 Protocol April 2003

3.3.1. SECINFO

The new SECI NFO operation will allow the client to determine, on a
per filehandl e basis, what security triple is to be used for server
access. In general, the client will not have to use the SECI NFO
operation except during initial comunication with the server or when
the client crosses policy boundaries at the server. It is possible
that the server’s policies change during the client’s interaction
therefore forcing the client to negotiate a new security triple.

3.3.2. Security Error

Based on the assunption that each NFS version 4 client and server
nmust support a mninum set of security (i.e., LIPKEY, SPKM 3, and
Ker beros-V5 all under RPCSEC GSS), the NFS client will start its
communi cation with the server with one of the miniml security
triples. During conmunication with the server, the client may
receive an NFS error of NFS4ERR WRONGSEC. This error allows the
server to notify the client that the security triple currently being
used is not appropriate for access to the server’s filesystem
resources. The client is then responsible for deternining what
security triples are available at the server and choose one which is
appropriate for the client. See the section for the "SEC NFO'
operation for further discussion of howthe client will respond to

t he NFS4ERR _WRONGSEC error and use SECI NFO.

3.4. Callback RPC Authentication
Except as noted el sewhere in this section, the callback RPC
(described later) MJUST nutually authenticate the NFS server to the
principal that acquired the clientid (also described later), using
the security flavor the original SETCLIENTID operation used.
For AUTH NONE, there are no principals, so this is a non-issue
AUTH_SYS has no notions of nutual authentication or a server
principal, so the callback fromthe server sinply uses the AUTH SYS
credential that the user used when he set up the del egation

For AUTH DH, one commonly used convention is that the server uses the
credential corresponding to this AUTH DH pri nci pal

uni x. host @omai n
where host and dormain are variabl es corresponding to the nane of

server host and directory services domain in which it lives such as a
Net work I nformation System domain or a DNS domai n.

Shepler, et al. St andards Track [Page 28]

RFC 3530 NFS version 4 Protocol April 2003

Because LIPKEY is |layered over SPKM 3, it is perm ssible for the
server to use SPKM 3 and not LIPKEY for the callback even if the
client used LIPKEY for SETCLI ENTID

Regar dl ess of what security mechani sm under RPCSEC GSS i s being used,
the NFS server, MJST identify itself in GSS-APlI via a
GSS_C_NT_HOSTBASED_SERVI CE nane type. GSS_C_NT_HOSTBASED_ SERVI CE
names are of the form

servi ce@ost nane
For NFS, the "service" elenent is
nfs

| mpl enent ati ons of security mechanisns will convert nfs@ostnane to
various different fornms. For Kerberos V5 and LIPKEY, the follow ng
formis RECOMVENDED:

nf s/ host nane

For Kerberos V5, nfs/hostname would be a server principal in the
Kerberos Key Distribution Center database. This is the same
principal the client acquired a GSS-API context for when it issued
the SETCLI ENTID operation, therefore, the real mnane for the server
principal nmust be the sane for the callback as it was for the
SETCLI ENTI D.

For LIPKEY, this would be the usernane passed to the target (the NFS
version 4 client that receives the call back).

It should be noted that LIPKEY may not work for call backs, since the
LI PKEY client uses a user id/password. |If the NFS client receiving
the cal | back can authenticate the NFS server’s user nane/ password
pair, and if the user that the NFS server is authenticating to has a
public key certificate, then it works.

In situations where the NFS client uses LIPKEY and uses a per-host
principal for the SETCLI ENTI D operation, instead of using LIPKEY for
SETCLIENTID, it is RECOMVENDED that SPKM 3 with nutual authentication
be used. This effectively nmeans that the client will use a
certificate to authenticate and identify the initiator to the target
on the NFS server. Using SPKM 3 and not LIPKEY has the follow ng
advant ages:

o Wen the server does a callback, it nust authenticate to the

principal used in the SETCLIENTID. Even if LIPKEY is used,
because LIPKEY is layered over SPKM 3, the NFS client will need to

Shepler, et al. St andards Track [Page 29]

RFC 3530 NFS version 4 Protocol April 2003

4.

4.

have a certificate that corresponds to the principal used in the
SETCLI ENTI D operation. From an adnministrative perspective, having
a user nane, password, and certificate for both the client and
server is redundant.

0 LIPKEY was intended to minimze additional infrastructure
requi renents beyond a certificate for the target, and the
expectation is that existing password infrastructure can be
| everaged for the initiator. In sone environments, a per-host
password does not exist yet. |If certificates are used for any
per-host principals, then additional password infrastructure is
not needed.

0 |In cases when a host is both an NFS client and server, it can
share the sane per-host certificate.

Fi | ehandl es

The filehandle in the NFS protocol is a per server unique identifier
for a filesystemobject. The contents of the filehandle are opaque
to the client. Therefore, the server is responsible for translating
the filehandle to an internal representation of the fil esystem

obj ect.

1. Obtaining the First Fil ehandle

The operations of the NFS protocol are defined in terns of one or
nore filehandles. Therefore, the client needs a filehandle to
initiate comunication with the server. Wth the NFS version 2
protocol [RFCL094] and the NFS version 3 protocol [RFC1813], there
exists an ancillary protocol to obtain this first filehandle. The
MOUNT protocol, RPC program nunber 100005, provides the nmechani sm of
translating a string based fil esystem path nane to a fil ehandl e which
can then be used by the NFS protocols.

The MOUNT protocol has deficiencies in the area of security and use
via firewalls. This is one reason that the use of the public
filehandl e was introduced in [RFC2054] and [RFC2055]. Wth the use
of the public filehandle in conbination with the LOOKUP operation in
the NFS version 2 and 3 protocols, it has been denonstrated that the
MOUNT protocol is unnecessary for viable interaction between NFS
client and server.

Therefore, the NFS version 4 protocol will not use an ancillary
protocol for translation fromstring based path nanes to a
filehandle. Two special filehandles will be used as starting points
for the NFS client.

Shepler, et al. St andards Track [Page 30]

RFC 3530 NFS version 4 Protocol April 2003

4.1.1. Root Filehandle

The first of the special filehandles is the ROOT filehandle. The
ROOT filehandle is the "conceptual" root of the filesystem name space
at the NFS server. The client uses or starts with the ROOT
filehandl e by enpl oyi ng the PUTROOTFH operation. The PUTROOTFH
operation instructs the server to set the "current”" filehandle to the
ROOT of the server’s file tree. Once this PUTROOTFH operation is
used, the client can then traverse the entirety of the server’'s file
tree with the LOOKUP operation. A conplete discussion of the server
nane space is in the section "NFS Server Nane Space"

4.1.2. Public Filehandle

The second special filehandle is the PUBLIC fil ehandle. Unlike the
ROOT fil ehandl e, the PUBLIC fil ehandl e nay be bound or represent an
arbitrary filesystemobject at the server. The server is responsible
for this binding. It nmay be that the PUBLIC fil ehandl e and the ROOT
filehandl e refer to the sanme fil esystemobject. However, it is up to
the adnministrative software at the server and the policies of the
server administrator to define the binding of the PUBLIC fil ehandl e
and server filesystemobject. The client may not make any
assunptions about this binding. The client uses the PUBLIC
filehandl e via the PUTPUBFH operati on

4.2. Filehandl e Types

In the NFS version 2 and 3 protocols, there was one type of
filehandle with a single set of semantics. This type of filehandle
is terned "persistent” in NFS Version 4. The semantics of a
persistent filehandle renmain the sane as before. A new type of
filehandl e introduced in NFS Version 4 is the "volatile" filehandle,
which attenpts to accommpdate certain server environnents.

The volatile filehandl e type was introduced to address server
functionality or inplenentation issues which nake correct

i npl enentation of a persistent filehandle infeasible. Sone server
environnents do not provide a filesystemlevel invariant that can be
used to construct a persistent filehandle. The underlying server
filesystemmay not provide the invariant or the server’s fil esystem
progranm ng interfaces may not provide access to the needed
invariant. Volatile filehandl es may ease the inplenentation of
server functionality such as hierarchical storage managenent or
filesystemreorgani zation or mgration. However, the volatile
filehandl e increases the inplenmentation burden for the client.

Shepler, et al. St andards Track [Page 31]

RFC 3530 NFS version 4 Protocol April 2003

Since the client will need to handl e persistent and volatile
filehandles differently, a file attribute is defined which may be
used by the client to deternmine the filehandle types being returned
by the server.

4.2.1. Ceneral Properties of a Filehandle

The filehandl e contains all the information the server needs to

di stinguish an individual file. To the client, the filehandle is
opaque. The client stores filehandles for use in a later request and
can conpare two filehandles fromthe same server for equality by
doi ng a byte-by-byte conparison. However, the client MJST NOT
otherwi se interpret the contents of filehandles. [If two filehandles
fromthe sane server are equal, they MIUST refer to the sanme file
Servers SHOULD try to naintain a one-to-one correspondence between
filehandles and files but this is not required. dients MIST use
filehandl e conpari sons only to inprove perfornmance, not for correct
behavior. Al clients need to be prepared for situations in which it
cannot be determ ned whether two fil ehandl es denote the sane object
and in such cases, avoid naking invalid assunptions which m ght cause
i ncorrect behavior. Further discussion of filehandle and attribute
conmparison in the context of data caching is presented in the section
"Data Caching and File ldentity".

As an exanple, in the case that two different path nanes when
traversed at the server term nate at the same fil esystem object, the
server SHOULD return the sane filehandle for each path. This can
occur if a hard link is used to create two file nanmes which refer to
the sane underlying file object and associated data. For exanple, if
paths /a/b/c and /a/d/c refer to the sane file, the server SHOULD
return the sanme filehandl e for both path nanes traversals.

4.2.2. Persistent Fil ehandl e

A persistent filehandle is defined as having a fixed value for the
lifetinme of the filesystemobject to which it refers. Once the
server creates the filehandle for a filesystem object, the server
MJUST accept the sanme filehandle for the object for the lifetime of
the object. |If the server restarts or reboots the NFS server nust
honor the sane filehandle value as it did in the server’s previous
instantiation. Simlarly, if the filesystemis migrated, the new NFS
server nust honor the same filehandl e as the old NFS server

The persistent filehandle will be beconme stale or invalid when the
filesystemobject is removed. Wen the server is presented with a
persistent filehandle that refers to a deleted object, it MJST return
an error of NFSAERR _STALE. A filehandl e may becone stal e when the
filesystemcontaining the object is no longer available. The file

Shepler, et al. St andards Track [Page 32]

RFC 3530 NFS version 4 Protocol April 2003

system nmay beconme unavailable if it exists on renovabl e nedia and the
nmedia is no longer available at the server or the filesystemin whole
has been destroyed or the filesystem has sinply been renoved fromthe
server’s name space (i.e., unmounted in a UNI X environment).

4,.2.3. Volatile Filehandle

A volatile filehandl e does not share the sane | ongevity
characteristics of a persistent filehandle. The server may determ ne
that a volatile filehandle is no longer valid at many different
points intine. |If the server can definitively determne that a
volatile filehandl e refers to an object that has been renoved, the
server should return NFS4ERR STALE to the client (as is the case for
persistent filehandles). |In all other cases where the server
determines that a volatile filehandl e can no | onger be used, it
should return an error of NFS4ERR FHEXPI RED

The mandatory attribute "fh _expire_ type" is used by the client to
determi ne what type of filehandl e the server is providing for a
particular filesystem This attribute is a bitnmask with the
fol l owi ng val ues:

FH4_PERSI STENT
The val ue of FH4_PERSI STENT is used to indicate a
persistent filehandle, which is valid until the object is
removed fromthe filesystem The server will not return
NFS4ERR_FHEXPI RED for this filehandle. FH4_PERSI STENT is
defined as a value in which none of the bits specified
bel ow are set.

FH4_VOLATI LE_ANY
The filehandl e may expire at any tinme, except as
specifically excluded (i.e., FHA_NO EXPI RE_W TH _OPEN)

FH4_NOEXPI RE_W TH_OPEN
May only be set when FH4_VOLATILE ANY is set. |If this bit
is set, then the neaning of FH4_VOLATILE ANY is qualified
to exclude any expiration of the filehandle when it is
open.

FH4_VOL_M GRATI ON
The filehandle will expire as a result of mgration. |If
FHA VOL_ANY is set, FH4 VOL_M GRATION i s redundant.

Shepler, et al. St andards Track [Page 33]

RFC 3530 NFS version 4 Protocol April 2003

FH4_VOL_RENAME
The filehandle will expire during renane. This includes a
renane by the requesting client or a renane by any ot her
client. |If FH4A_VOL ANY is set, FH4 VOL_RENAME i s
r edundant .

Servers which provide volatile filehandl es that nay expire while open
(i.e., if FHA_VOL_M GRATION or FH4_VOL_RENAME is set or if

FH4A_VOLATI LE_ANY is set and FH4_NOEXPI RE_W TH_OPEN not set), should
deny a RENAME or REMOVE that would affect an OPEN file of any of the
components leading to the OPEN file. 1In addition, the server should
deny all RENAME or REMOVE requests during the grace period upon
server restart.

Note that the bits FH4_VOL_M GRATI ON and FH4_VOL_RENAME al | ow t he
client to determ ne that expiration has occurred whenever a specific
event occurs, without an explicit filehandl e expiration error from
the server. FH4_VOL_ANY does not provide this formof information
In situations where the server will expire many, but not al
filehandl es upon migration (e.g., all but those that are open),
FHA_VOLATI LE_ANY (in this case with FHA_NOEXPI RE_ WTH OPEN) is a
better choice since the client may not assune that all filehandles
wi |l expire when migration occurs, and it is likely that additiona
expirations will occur (as a result of file CLOSE) that are separated
intime fromthe mgration event itself.

4.2.4. One Method of Constructing a Volatile Filehandle
A volatile filehandl e, while opaque to the client could contain:
[volatile bit =1 | server boot time | slot | generation nunber]
o slot is an index in the server volatile filehandle table

0 generation nunber is the generation nunber for the table
entry/ sl ot

Wien the client presents a volatile filehandl e, the server makes the
foll owi ng checks, which assunme that the check for the volatile bit
has passed. |If the server boot time is less than the current server
boot tine, return NFSAERR FHEXPIRED. If slot is out of range, return
NFSAERR BADHANDLE. |f the generation nunber does not match, return
NFS4ERR_FHEXPI RED.

Wien the server reboots, the table is gone (it is volatile).

If volatile bit is O, then it is a persistent filehandle with a
different structure following it.

Shepler, et al. St andards Track [Page 34]

RFC 3530 NFS version 4 Protocol April 2003

4.3. dient Recovery from Fil ehandl e Expiration

I f possible, the client SHOULD recover fromthe receipt of an
NFS4ERR FHEXPI RED error. The client nust take on additiona
responsibility so that it may prepare itself to recover fromthe

expiration of a volatile filehandle. |If the server returns
persistent filehandles, the client does not need these additiona

st eps.

For volatile filehandl es, nbst commonly the client will need to store

t he conponent nanes |leading up to and including the fil esystem object
in question. Wth these nanes, the client should be able to recover
by finding a filehandle in the nane space that is still available or
by starting at the root of the server’s fil esystem nane space.

If the expired filehandle refers to an object that has been renoved
fromthe fil esystem obviously the client will not be able to recover
fromthe expired filehandle.

It is also possible that the expired filehandle refers to a file that
has been renanmed. |If the file was renaned by another client, again
it is possible that the original client will not be able to recover.
However, in the case that the client itself is renanming the file and
the file is open, it is possible that the client nmay be able to
recover. The client can determ ne the new path nanme based on the
processing of the rename request. The client can then regenerate the
new fil ehandl e based on the new path nane. The client could also use
t he conpound operation nmechanismto construct a set of operations
l'ike:

RENAME A B

LOOKUP B

GETFH

Not e that the COVPOUND procedure does not provide atomicity. This
exanpl e only reduces the overhead of recovering froman expired
fil ehandl e.

5. File Attributes

To neet the requirenents of extensibility and increased
interoperability with non-UNI X platforns, attributes nust be handl ed
in a flexible manner. The NFS version 3 fattr3 structure contains a
fixed list of attributes that not all clients and servers are able to
support or care about. The fattr3 structure can not be extended as
new needs arise and it provides no way to indicate non-support. Wth
the NFS version 4 protocol, the client is able query what attributes
the server supports and construct requests with only those supported
attributes (or a subset thereof).

Shepler, et al. St andards Track [Page 35]

RFC 3530 NFS version 4 Protocol April 2003

To this end, attributes are divided into three groups: nandatory,
recomended, and naned. Both mandatory and recomended attri butes
are supported in the NFS version 4 protocol by a specific and well -
defined encoding and are identified by nunber. They are requested by
setting a bit in the bit vector sent in the GETATTR request; the
server response includes a bit vector to list what attributes were
returned in the response. New nandatory or recomended attributes
may be added to the NFS protocol between najor revisions by
publishing a standards-track RFC which allocates a new attribute
nunber val ue and defines the encoding for the attribute. See the
section "M nor Versioning" for further discussion

Naned attri butes are accessed by the new OPENATTR operation, which
accesses a hidden directory of attributes associated with a file
system obj ect. OPENATTR takes a filehandle for the object and
returns the filehandle for the attribute hierarchy. The filehandle
for the nanmed attributes is a directory object accessible by LOOKUP
or READDI R and contains files whose nanes represent the naned
attributes and whose data bytes are the value of the attribute. For

exanpl e:
L OOKUP "foo" ; look up file
CETATTR attrbits
OPENATTR ; access foo’'s named attributes
L OOKUP "x11i con" ; look up specific attribute
READ 0, 4096 ; read stream of bytes

Named attributes are intended for data needed by applications rather
than by an NFS client inplenentation. NFS inplenentors are strongly
encouraged to define their new attributes as reconmended attri butes

by bringing themto the | ETF standards-track process.

The set of attributes which are classified as mandatory is
deliberately small since servers nust do whatever it takes to support
them A server should support as many of the reconmended attributes
as possible but by their definition, the server is not required to
support all of them Attributes are deened nmandatory if the data is
bot h needed by a | arge nunber of clients and is not otherw se
reasonably conputable by the client when support is not provided on
the server.

Note that the hidden directory returned by OPENATTR i s a conveni ence
for protocol processing. The client should not nake any assunptions
about the server’s inplenentation of naned attributes and whether the
underlying filesystemat the server has a naned attribute directory
or not. Therefore, operations such as SETATTR and GETATTR on the
naned attribute directory are undefi ned.

Shepler, et al. St andards Track [Page 36]

RFC 3530 NFS version 4 Protocol April 2003

5.1. Mandatory Attributes

These MUST be supported by every NFS version 4 client and server in
order to ensure a mininumlevel of interoperability. The server nust
store and return these attributes and the client nmust be able to
function with an attribute set linmted to these attributes. Wth
just the mandatory attributes sone client functionality may be
inmpaired or limted in sone ways. A client nmay ask for any of these
attributes to be returned by setting a bit in the GETATTR request and
the server nust return their val ue.

5.2. Recommended Attri butes

These attributes are understood well enough to warrant support in the
NFS version 4 protocol. However, they may not be supported on all
clients and servers. A client may ask for any of these attributes to
be returned by setting a bit in the GETATTR request but nust handl e
the case where the server does not return them A client may ask for
the set of attributes the server supports and should not request
attributes the server does not support. A server should be tol erant
of requests for unsupported attributes and sinply not return them

rat her than considering the request an error. It is expected that
servers will support all attributes they confortably can and only
fail to support attributes which are difficult to support in their
operating environnents. A server should provide attributes whenever

they don’t have to "tell lies" to the client. For exanple, a file
nodi fication tine should be either an accurate tinme or should not be
supported by the server. This will not always be confortable to

clients but the client is better positioned deci de whether and how to
fabricate or construct an attri bute or whether to do w thout the
attribute.

5.3. Naned Attributes

These attributes are not supported by direct encoding in the NFS
Version 4 protocol but are accessed by string nanmes rather than
nunbers and correspond to an uninterpreted stream of bytes which are
stored with the filesystem object. The nane space for these
attributes may be accessed by using the OPENATTR operation. The
OPENATTR operation returns a filehandle for a virtual "attribute
directory” and further perusal of the name space may be done using
READDI R and LOOKUP operations on this filehandle. Nanmed attributes
may then be exam ned or changed by nornmal READ and WRI TE and CREATE
operations on the filehandl es returned from READD R and LOOKUP
Nanmed attributes rmay have attributes

Shepler, et al. St andards Track [Page 37]

RFC 3530 NFS version 4 Protocol April 2003

It is reconmended that servers support arbitrary named attributes. A
client should not depend on the ability to store any naned attributes
in the server’'s filesystem |f a server does support naned
attributes, a client which is also able to handl e them shoul d be able
to copy a file's data and neta-data with conpl ete transparency from
one location to another; this would inply that nanmes allowed for
regular directory entries are valid for naned attribute nanes as
wel | .

Names of attributes will not be controlled by this docunent or other
| ETF standards track docunents. See the section "I ANA
Consi derati ons” for further discussion.

5.4. dassification of Attributes

Each of the Mandatory and Recommended attributes can be classified in
one of three categories: per server, per filesystem or per
filesystemobject. Note that it is possible that sone per filesystem
attributes may vary within the filesystem See the "honobgeneous"
attribute for its definition. Note that the attributes
time_access_set and tinme_nodify _set are not listed in this section
because they are wite-only attributes corresponding to tinme_access
and tinme_nodify, and are used in a special instance of SETATTR

0 The per server attribute is:
| ease_tinme
o0 The per filesystemattributes are:

supp_attr, fh expire_type, link support, symink support,
uni que_handl es, acl support, cansettine, case_insensitive,

case_preserving, chown_restricted, files_avail, files_free,
files_total, fs_locations, honbgeneous, naxfil esize, naxnane,
maxread, maxwite, no_trunc, space_avail, space_free, space_total

tine_delta
o0 The per filesystemobject attributes are:

type, change, size, nanmed_attr, fsid, rdattr_error, filehandl e,
ACL, archive, fileid, hidden, maxlink, mnetype, node, numnlinks,
owner, owner_group, rawdev, space_used, system tine_access,

ti me_backup, tinme_create, tinme_netadata, tine_nodify,
nounted_on_fileid

For quota_avail _hard, quota_avail_soft, and quota_used see their
definitions below for the appropriate classification

Shepler, et al. St andards Track [Page 38]

RFC 3530 NFS version 4 Protocol April 2003

5.5. Mandatory Attributes - Definitions

Nare # Dat aType Access Description

supp_attr 0 bi t map READ The bit vector which
woul d retrieve all
mandat ory and
reconmended attri butes
that are supported for
this object. The
scope of this
attribute applies to
all objects with a
mat chi ng fsi d.

type 1 nfs4_ftype READ The type of the object
(file, directory,
symink, etc.)

fh_expire_type 2 ui nt 32 READ Server uses this to
specify fil ehandl e
expiration behavior to
the client. See the
section "Fil ehandl es"
for additiona
description.

change 3 ui nt 64 READ A val ue created by the
server that the client
can use to determ ne
if file data,
directory contents or
attributes of the
obj ect have been
nodi fi ed. The server
may return the
object’s tinme_netadata
attribute for this
attribute’s val ue but
only if the filesystem
obj ect can not be
updat ed nore
frequently than the
resol ution of
ti me_met adat a.

si ze 4 ui nt 64 R'W The size of the object
in bytes.

Shepler, et al. St andards Track [Page 39]

RFC 3530 NFS version 4 Protocol April 2003

i nk_support 5 bool READ True, if the object’s
filesystem supports
hard Iinks.

sym i nk_support 6 bool READ True, if the object’s

filesystem supports
synbolic |inks.

named_attr 7 bool READ True, if this object
has naned attributes.
In other words, object
has a non-enpty naned
attribute directory.

fsid 8 fsidd READ Uni que fil esystem
identifier for the
filesystem hol di ng
this object. fsid
contai ns nmaj or and
m nor conponents each
of which are uint64.

uni que_handl es 9 bool READ True, if two distinct
fil ehandl es guarant eed
to refer to two
different filesystem
obj ect s.

| ease_tine 10 nfs | ease4 READ Duration of |eases at
server in seconds.

rdattr_error 11 enum READ Error returned from
getattr during
readdir.

filehandl e 19 nfs fh4 READ The filehandle of this

object (primarily for
readdir requests).

Shepler, et al. St andards Track [Page 40]

RFC 3530

5.6. Recommended Attributes -

Nane

#

NFS version 4 Protoco

Data Type

Definitions

Access

April 2003

Descri ption

ACL

acl support

ar chi ve

cansettine

case_insensitive

case_preserving

chown_restricted

Shepler, et al.

12

13

14

15

16

17

18

nf saced4<>

ui nt 32

bool

bool

bool

bool

bool

St andards Track

R'W

READ

R'W

READ

READ

READ

READ

The access contro
list for the object.

I ndi cat es what types
of ACLs are
supported on the
current fil esystem

True, if this file
has been archived
since the tinme of

| ast nodification
(deprecated in favor
of tinme_backup).

True, if the server
is able to change
the tines for a
filesystem object as
specified in a
SETATTR operati on.

True, if filenane
comparisons on this
filesystem are case
i nsensitive.

True, if filenanme
case on this
filesystemare
preserved.

If TRUE, the server
will reject any
request to change

ei ther the owner or
the group associ at ed
with a fileif the
caller is not a
privileged user (for
exanple, "root" in
UNI X operating
environnents or in
W ndows 2000 the

[Page 41]

RFC 3530

fileid

files_avail

files free

files total

fs_ | ocations

hi dden

honbgeneous

Shepler, et al.

20

21

22

23

24

25

26

NFS version 4 Protoco

ui nt 64

ui nt 64

ui nt 64

ui nt 64

fs_ | ocations

bool

bool

St andards Track

READ

READ

READ

READ

READ

R'W

READ

April 2003

"Take Oanership"
privilege).

A nunber uni quely
identifying the file
within the
filesystem

File slots avail able
to this user on the
filesystem
containing this
object - this should
be the small est
relevant limt.

Free file slots on
the filesystem
containing this
object - this should
be the small est
relevant limt.

Total file slots on
the filesystem
containing this

obj ect.

Locations where this
filesystem nay be
found. If the
server returns
NFS4ERR_MOVED

as an error, this
attri bute MJST be
support ed.

True, if the file is
consi dered hi dden
with respect to the
W ndows API

True, if this
object’s fil esystem
i s honbgeneous,
i.e., are per
filesystem
attributes the sane

[Page 42]

RFC 3530

maxfil esi ze

max| i nk

maxnamne

maxr ead

maxwrite

m net ype

node

no_trunc

Shepler, et al.

27

28

29

30

31

32

33

34

ui nt 64

ui nt 32

ui nt 32

ui nt 64

ui nt 64

ut f 8<>

node4

bool

St andards Track

NFS version 4 Protoco

READ

READ

READ

READ

READ

R'W

R'W

READ

April 2003

for all filesystenis
obj ect s?

Maxi mum support ed
file size for the
filesystemof this
obj ect.

Maxi mum nunber of
links for this
obj ect.

Maxi mum fi | enane
si ze supported for
this object.

Maxi mum read si ze
supported for this
obj ect.

Maxi mumwite size
supported for this
object. This
attribute SHOULD be
supported if the
fileis witable.
Lack of this
attribute can

lead to the client
ei ther wasting
bandwi dt h or not
recei ving the best
per f or mance.

M ME body
type/ subtype of this
obj ect.

UNI X-styl e node and
perm ssion bits for
this object.

True, if a nanme

| onger than name_max
is used, an error be
returned and nane is
not truncated.

[Page 43]

RFC 3530

num i nks

owner

owner _group

quota_avail _hard

quot a_avail _soft

quot a_used

rawdev

space_avai

space_free

Shepler, et al.

35

36

37

38

39

40

41

42

43

NFS version 4 Protoco

ui nt 32

ut f 8<>

ut f 8<>

ui nt 64

ui nt 64

ui nt 64

specdat a4

ui nt 64

ui nt 64

St andards Track

READ

R'W

R'W

READ

READ

READ

READ

READ

READ

April 2003

Nunmber of hard |inks
to this object.

The string name of
the owner of this
obj ect.

The string nane of
t he group ownership
of this object.

For definition see
"Quota Attributes”
section bel ow

For definition see
"Quota Attributes”
section bel ow

For definition see
"Quota Attributes"”
secti on bel ow

Raw devi ce
identifier. UN X
devi ce nmj or/ m nor
node i nfornation
If the val ue of
type is not

NF4BLK or NF4CHR,
the value return
SHOULD NOT be
consi der ed usef ul

Di sk space in bytes
available to this
user on the
filesystem
containing this
object - this should
be the small est
relevant linmt.

Free di sk space in
bytes on the
filesystem
containing this
object - this should

[Page 44]

RFC 3530

space_tota

space_used

system

ti me_access

ti me_access_set

ti me_backup

tinme_create

tinme_delta

Shepler, et al.

44

45

46

47

48

49

50

51

NFS version 4 Prot

ui nt 64

ui nt 64

bool

nf sti me4

settine4

nf sti nme4

nf sti me4

nf sti me4

St andards Track

ocol

READ

READ

R'W

READ

VRI TE

R'W

R'W

READ

April 2003

be the small est
relevant limt.

Total disk space in
bytes on the
filesystem
containing this

obj ect.

Number of fil esystem
bytes all ocated to
this object.

True, if this file
is a "systent file
with respect to the
W ndows API

The time of |ast
access to the object
by a read that was
satisfied by the
server.

Set the tine of |ast
access to the
object. SETATTR
use only.

The time of |ast
backup of the
obj ect.

The tine of creation
of the object. This
attri bute does not
have any relation to
the traditional UN X
file attribute
"ctinme" or "change
time".

Smal | est usef ul

server tine
granularity.

[Page 45]

RFC 3530 NFS version 4 Protocol April 2003

5.

7.

ti me_net adat a 52 nfsti me4 READ The tine of |ast
net a- dat a
nmodi fication of the
obj ect.

tinme_nodify 53 nfsti me4 READ The tine of |ast
nodi fication to the
obj ect.

time_nodi fy_set 54 settined VWRI TE Set the tine of |ast

nodi fication to the
obj ect. SETATTR use

only.
mounted_on_fileid 55 ui nt 64 READ Like fileid, but if
the target

filehandl e is the
root of a filesystem
return the fileid of
t he underlying
directory.

Ti me Access

As defined above, the tine_access attribute represents the tine of

| ast access to the object by a read that was satisfied by the server
The notion of what is an "access" depends on server’s operating
environnment and/or the server’s filesystem semantics. For exanple,
for servers obeying POSI X semantics, tinme_access woul d be updated
only by the READLI NK, READ, and READDI R operations and not any of the
operations that nodify the content of the object. O course, setting
the corresponding tinme_access_set attribute is another way to nodify
the tine_access attribute.

Whenever the file object resides on a witable filesystem the server
shoul d nmake best efforts to record tine_access into stable storage.
However, to mitigate the performance effects of doing so, and nost
especi al | y whenever the server is satisfying the read of the object’s
content fromits cache, the server MAY cache access tinme updates and
lazily wite themto stable storage. It is also acceptable to give
adm nistrators of the server the option to disable tine_access

updat es.

Shepler, et al. St andards Track [Page 46]

RFC 3530 NFS version 4 Protocol April 2003

5.8. Interpreting owner and owner _group

The recomended attributes "owner" and "owner_group" (and al so users
and groups within the "acl" attribute) are represented in terns of a
UTF-8 string. To avoid a representation that is tied to a particular
underlying inplenentation at the client or server, the use of the
UTF-8 string has been chosen. Note that section 6.1 of [RFC2624]
provides additional rationale. It is expected that the client and
server will have their own |ocal representation of owner and

owner _group that is used for local storage or presentation to the end
user. Therefore, it is expected that when these attributes are
transferred between the client and server that the |oca
representation is translated to a syntax of the form

"user @ns_donain". This will allow for a client and server that do
not use the sanme local representation the ability to translate to a
common syntax that can be interpreted by both.

Simlarly, security principals nmay be represented in different ways
by different security nechanisns. Servers nornally translate these
representations into a common format, generally that used by |oca
storage, to serve as a neans of identifying the users corresponding
to these security principals. Wen these local identifiers are
translated to the formof the owner attribute, associated with files
created by such principals they identify, in a common format, the
users associated with each correspondi ng set of security principals.

The translation used to interpret owner and group strings is not
specified as part of the protocol. This allows various solutions to
be enpl oyed. For example, a local translation table nmay be consulted
that maps between a nuneric id to the user@ns_donmi n syntax. A name
service may al so be used to acconplish the translation. A server nmay
provide a nore general service, not limted by any particul ar
translation (which would only translate a limted set of possible
strings) by storing the owner and owner_group attributes in |oca
storage without any translation or it may augnent a translation

met hod by storing the entire string for attributes for which no
translation is available while using the local representation for
those cases in which a translation is avail able.

Servers that do not provide support for all possible values of the
owner and owner _group attributes, should return an error

(NFS4ERR BADOMWNER) when a string is presented that has no

transl ation, as the value to be set for a SETATTR of the owner
owner _group, or acl attributes. Wen a server does accept an owner
or owner_group value as valid on a SETATTR (and similarly for the
owner and group strings in an acl), it is promsing to return that
same string when a corresponding GETATTR i s done. Configuration
changes and ill-constructed nane translations (those that contain

Shepler, et al. St andards Track [Page 47]

RFC 3530 NFS version 4 Protocol April 2003

al i asing) may nake that prom se inpossible to honor. Servers should
make appropriate efforts to avoid a situation in which these
attributes have their values changed when no real change to ownership
has occurred.

The "dns_donmai n" portion of the owner string is neant to be a DNS
domai n nane. For exanple, user@etf.org. Servers should accept as
valid a set of users for at |east one donain. A server nay treat
ot her domains as having no valid translations. A nore genera
service is provided when a server is capable of accepting users for
mul ti ple domains, or for all domains, subject to security
constraints.

In the case where there is no translation available to the client or
server, the attribute value nust be constructed without the "@.
Therefore, the absence of the @fromthe owner or owner_group
attribute signifies that no translation was avail abl e at the sender
and that the receiver of the attribute should not use that string as
a basis for translation into its owm internal fornmat. Even though
the attribute value can not be translated, it may still be useful

In the case of a client, the attribute string may be used for |oca
di spl ay of ownership.

To provide a greater degree of conpatibility with previous versions
of NFS (i.e., v2 and v3), which identified users and groups by 32-bit
unsigned uid' s and gid' s, owner and group strings that consist of
deci mal nuneric values with no | eading zeros can be given a speci al
interpretation by clients and servers which choose to provide such
support. The receiver may treat such a user or group string as
representing the sane user as would be represented by a v2/v3 uid or
gid having the correspondi ng nuneric value. A server is not
obligated to accept such a string, but may return an NFS4ERR BADOVNER
instead. To avoid this nmechani sm being used to subvert user and
group translation, so that a client mght pass all of the owners and
groups in nuneric form a server SHOULD return an NFS4ERR BADOMNNER
error when there is a valid translation for the user or owner
designated in this way. In that case, the client nust use the
appropriate nane@onmain string and not the special formfor
conpatibility.

The owner string "nobody" may be used to designate an anonynous user

which will be associated with a file created by a security principa
that cannot be nmapped t hrough nornmal neans to the owner attribute.

Shepler, et al. St andards Track [Page 48]

RFC 3530 NFS version 4 Protocol April 2003

5.9. Character Case Attributes

Wth respect to the case_insensitive and case_preserving attributes,
each UCS-4 character (which UTF-8 encodes) has a "long descriptive
nane" [RFC1345] which may or may not included the word " CAPI TAL" or
"SMALL". The presence of SMALL or CAPITAL allows an NFS server to

i mpl enment unanbi guous and efficient table driven mappings for case

i nsensitive conparisons, and non-case-preserving storage. For
general character handling and internationalization issues, see the
section "Internationalization".

5.10. Quota Attributes

For the attributes related to filesystem quotas, the foll ow ng
definitions apply:

quot a_avail _soft
The value in bytes which represents the anount of additiona
di sk space that can be allocated to this file or directory
before the user may reasonably be warned. It is understood
that this space nmay be consunmed by allocations to other files
or directories though there is a rule as to which other files
or directories.

quota_avail _hard
The value in bytes which represent the amount of additiona
di sk space beyond the current allocation that can be all ocated
to this file or directory before further allocations will be
refused. It is understood that this space may be consumed by
allocations to other files or directories.

quot a_used
The value in bytes which represent the anount of disc space
used by this file or directory and possibly a nunber of other
simlar files or directories, where the set of "simlar" neets
at least the criterion that allocating space to any file or
directory in the set will reduce the "quota_avail hard" of
every other file or directory in the set.

Note that there may be a number of distinct but overl apping
sets of files or directories for which a quota_used value is
mai ntained (e.g., "all files with a given owner", "all files
with a given group owner", etc.).

The server is at liberty to choose any of those sets but should

do so in a repeatable way. The rule may be configured per-
filesystemor may be "choose the set with the small est quota”

Shepler, et al. St andards Track [Page 49]

RFC 3530 NFS version 4 Protocol April 2003

5.11. Access Control Lists

The NFS version 4 ACL attribute is an array of access control entries
(ACE). Although, the client can read and wite the ACL attri bute,
the NFSv4 nodel is the server does all access control based on the
server’'s interpretation of the ACL. If at any point the client wants
to check access without issuing an operation that nodifies or reads
data or netadata, the client can use the OPEN and ACCESS operations
to do so. There are various access control entry types, as defined
in the Section "ACE type". The server is able to conmunicate which
ACE types are supported by returning the appropriate value within the
acl support attribute. Each ACE covers one or nore operations on a
file or directory as described in the Section "ACE Access Mask". It
may al so contain one or nore flags that nodify the semantics of the
ACE as defined in the Section "ACE fl ag"

The NFS ACE attribute is defined as foll ows:

typedef uint32_t acet ype4;
typedef uint32_t acef |l ag4;
typedef uint32_t acemask4;
struct nfsace4d {

acetype4d type;

acefl ag4 flag;

acemask4 access_nask;

ut f 8str_mi xed who
b

To determine if a request succeeds, each nfsaced4 entry is processed
in order by the server. Only ACEs which have a "who" that natches
the requester are considered. Each ACE is processed until all of the
bits of the requester’s access have been ALLONED. Once a bit (see
bel ow) has been ALLOAED by an ACCESS ALLOAED ACE, it is no |onger
considered in the processing of later ACEs. |f an ACCESS DEN ED ACE
is encountered where the requester’s access still has unALLOWED bits
in conmon with the "access_mask" of the ACE, the request is denied.
However, unlike the ALLOAED and DEN ED ACE types, the ALARM and AUDI T
ACE types do not affect a requester’s access, and instead are for
triggering events as a result of a requester’s access attenpt.

Therefore, all AUDIT and ALARM ACEs are processed until end of the
ACL. When the ACL is fully processed, if there are bits in
requester’s mask that have not been consi dered whether the server

all ows or denies the access is undefined. |If there is a node
attribute on the file, then this cannot happen, since the node’s
MODE4_*OTH bits will map to EVERYONE@ ACEs t hat unanbi guously specify
the requester’s access.

Shepler, et al. St andards Track [Page 50]

RFC 3530 NFS version 4 Protocol April 2003

The NFS version 4 ACL nodel is quite rich. Sone server platforns nay
provi de access control functionality that goes beyond the UNI X-style
node attribute, but which is not as rich as the NFS ACL nodel. So
that users can take advantage of this nore limted functionality, the
server may indicate that it supports ACLs as long as it follows the
gui del i nes for mappi ng between its ACL nodel and the NFS version 4
ACL nodel .

The situation is conplicated by the fact that a server may have

mul tiple modul es that enforce ACLs. For exanple, the enforcement for
NFS version 4 access may be different fromthe enforcenent for |oca
access, and both nmay be different fromthe enforcenent for access

t hrough ot her protocols such as SMB. So it may be useful for a
server to accept an ACL even if not all of its nodules are able to
support it.

The guiding principle in all cases is that the server nust not accept
ACLs that appear to nake the file nore secure than it really is.

5.11. 1. ACE type

Type Description

ALLOW Explicitly grants the access defined in
acemask4 to the file or directory.

DENY Explicitly denies the access defined in
acemask4 to the file or directory.

AUDI T LOG (system dependent) any access
attenpt to a file or directory which
uses any of the access nethods specified
i n acemask4.

ALARM Cenerate a system ALARM (system
dependent) when any access attenpt is
made to a file or directory for the
access nethods specified in acemask4.

A server need not support all of the above ACE types. The bitmask
constants used to represent the above definitions within the

acl support attribute are as foll ows:

const ACL4_SUPPORT_ALLOW ACL = 0x00000001
const ACL4_SUPPORT_DENY_ACL = 0x00000002;
const ACL4_SUPPORT_AUDI T_ACL = 0x00000004;
const ACL4_SUPPORT_ALARM ACL = 0x00000008;

Shepler, et al. St andards Track [Page 51]

5.11. 2.

Shepl er,

RFC 3530

NFS version 4 Protoco

April 2003

The senantics of the "type" field follow the descriptions provided

above.

The constants used for the type field (acetyped4) are as follows:

const ACE4_ACCESS_ALLOWED_ACE_TYPE = 0x00000000;
const ACE4_ACCESS DEN ED _ACE_TYPE = 0x00000001
const ACE4_ SYSTEM AUDI T_ACE TYPE = 0x00000002;
const ACE4_SYSTEM ALARM ACE TYPE = 0x00000003;

Cients should not attenpt to set an ACE unl ess the server clains

support for that ACE type.
it cannot store,
NFS4ERR_ATTRNOTSUPP

an ACE t hat

t hat

request wi th NFS4AERR _ATTRNOTSUPP

Exanpl e:

on the server,
t he ot her hand,

| ocal

suppose a server can enforce NFS ACLs for
cannot enforce ACLs for
then the server SHOULD NOT indicate ACL support. On

if only trusted adninistrative prograns run locally,

access.

If the server receives a request to set
it MUST reject the request with

If the server receives a request to set an ACE
it can store but cannot enforce,

the server SHOULD reject the

NFS access but
If arbitrary processes can run

then the server may indicate ACL support.

ACE Access Mask

The access_mask field contains val ues based on the follow ng:

Access Description

READ DATA Pernission to read the data of the file

LI ST_DI RECTORY Pernmission to list the contents of a
directory

VRl TE_DATA Permission to nodify the file' s data

ADD FI LE Perm ssion to add a new file to a

APPEND_DATA
ADD_SUBDI RECTORY

READ _NAVED ATTRS
WRI TE_NAVED_ATTRS

EXECUTE
DELETE_CHI LD

READ_ATTRI BUTES

VRI TE_ATTRI BUTES

et al.

directory
Per m ssi on
Per m ssi on
directory
Per mi ssi on
of afile
Per m ssi on
of afile
Per m ssi on
Per m ssi on

to
to

to

to

to
to

append data to a file
create a subdirectory to a

read the naned attri butes
wite the naned attri butes

execute a file
delete a file or directory

within a directory

The ability to read basic attributes
(non-acls) of a file

Perni ssion to change basic attributes

St andards Track

[Page 52]

RFC 3530 NFS version 4 Protocol April 2003

(non-acls) of a file

DELETE Permi ssion to Delete the file

READ_ACL Permi ssion to Read the ACL

VWRI TE_ACL Perm ssion to Wite the ACL

VRl TE_ ONNER Perm ssion to change the owner

SYNCHRONI ZE Permission to access file locally at the

server with synchronous reads and wites

The bitmask constants used for the access nmask field are as foll ows:

const ACE4_READ DATA = 0x00000001;
const ACE4_LI| ST_DI RECTORY = 0x00000001;
const ACE4_WV\RI TE_DATA = 0x00000002;
const ACE4_ADD FI LE = 0x00000002;
const ACE4_APPEND DATA = 0x00000004;
const ACE4_ADD SUBDI RECTORY = 0x00000004;
const ACE4_READ NAMED _ATTRS = 0x00000008;
const ACE4_WRI TE_NAVMVED_ATTRS = 0x00000010;
const ACE4_EXECUTE = 0x00000020;
const ACE4_DELETE CHI LD = 0x00000040;
const ACE4_READ ATTRI BUTES = 0x00000080;
const ACE4_W\RI TE_ATTRI BUTES = 0x00000100;
const ACE4_DELETE = 0x00010000;
const ACE4_READ ACL = 0x00020000;
const ACE4_WRI TE_ACL = 0x00040000;
const ACE4_WRI TE_OMNER = 0x00080000;
const ACE4_SYNCHRON ZE = 0x00100000;

Server inplenentations need not provide the granularity of control
that is inplied by this list of nasks. For exanple, PCSIX-based
systens mi ght not distinguish APPEND DATA (the ability to append to a
file) fromWR TE _DATA (the ability to nodify existing contents); both
masks would be tied to a single "wite" perm ssion. Wen such a
server returns attributes to the client, it would show both

APPEND DATA and WRI TE DATA if and only if the wite permission is
enabl ed.

If a server receives a SETATTR request that it cannot accurately

i mplement, it should error in the direction of nore restricted
access. For exanple, suppose a server cannot distinguish overwiting
data from appendi ng new data, as described in the previous paragraph.
If a client submits an ACE where APPEND DATA is set but WRITE DATA is
not (or vice versa), the server should reject the request with
NFSAERR ATTRNOTSUPP. Nonet hel ess, if the ACE has type DENY, the
server may silently turn on the other bit, so that both APPEND DATA
and VWRI TE_DATA are deni ed.

Shepler, et al. St andards Track [Page 53]

RFC 3530 NFS version 4 Protocol April 2003

5.11.3. ACE flag
The "flag" field contains values based on the foll ow ng descriptions.

ACE4_FI LE_| NHERI T_ACE
Can be placed on a directory and indicates that this ACE should be
added to each new non-directory file created.

ACE4_DI RECTORY_| NHERI T_ACE
Can be placed on a directory and indicates that this ACE should be
added to each new directory created.

ACE4_| NHERI T_ONLY_ACE
Can be placed on a directory but does not apply to the directory,
only to newy created files/directories as specified by the above
two flags.

ACE4_NO_PROPAGATE_| NHERI T_ACE
Can be placed on a directory. Nornmally when a new directory is
created and an ACE exists on the parent directory which is nmarked
ACL4_ DI RECTORY_I NHERI T_ACE, two ACEs are placed on the new
directory. One for the directory itself and one which is an
inheritable ACE for newWwy created directories. This flag tells
the server to not place an ACE on the newly created directory
which is inheritable by subdirectories of the created directory.

ACE4_SUCCESSFUL_ACCESS_ACE_FLAG

ACL4_FAI LED _ACCESS_ACE_FLAG
The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG (SUCCESS) and
ACE4 _FAI LED ACCESS ACE FLAG (FAILED) flag bits relate only to
ACE4_SYSTEM AUDI T_ACE_TYPE (AUDIT) and ACE4_SYSTEM ALARM ACE_TYPE
(ALARM ACE types. If during the processing of the file s ACL,
the server encounters an AUDI T or ALARM ACE that matches the
principal attenpting the OPEN, the server notes that fact, and the
presence, if any, of the SUCCESS and FAILED fl ags encountered in
the AUDIT or ALARM ACE. Once the server conpletes the ACL
processing, and the share reservation processing, and the OPEN
call, it then notes if the OPEN succeeded or failed. |If the OPEN
succeeded, and if the SUCCESS flag was set for a matching AUDI T or
ALARM then the appropriate AUDIT or ALARM event occurs. |If the
OPEN failed, and if the FAILED flag was set for the matching AUDI T
or ALARM then the appropriate AUDIT or ALARM event occurs.
Clearly either or both of the SUCCESS or FAILED can be set, but if
neither is set, the AUDIT or ALARM ACE is not useful.

Shepler, et al. St andards Track [Page 54]

RFC 3530 NFS version 4 Protocol April 2003

The previously described processing applies to that of the ACCESS
operation as well. The difference being that "success" or
"failure" does not nean whether ACCESS returns NFS4_OK or not.
Success nmeans whet her ACCESS returns all requested and supported
bits. Failure neans whether ACCESS failed to return a bit that
was requested and support ed.

ACE4_| DENTI FI ER_GROUP
Indicates that the "who" refers to a GROUP as defined under UNI X.

The bitmask constants used for the flag field are as foll ows:

const ACE4_FI LE I NHERI T_ACE = 0x00000001
const ACE4_DI RECTORY_I NHERI T_ACE = 0x00000002;
const ACE4_NO PROPAGATE_| NHERI T_ACE = 0x00000004;
const ACE4_| NHERI T_ONLY_ACE = 0x00000008
const ACE4_SUCCESSFUL_ACCESS ACE FLAG = 0x00000010;
const ACE4_FAI LED_ACCESS ACE_FLAG = 0x00000020;
const ACE4_| DENTI FI ER_GROUP = 0x00000040
A server need not support any of these flags. |If the server supports

flags that are simlar to, but not exactly the same as, these flags,
the inplenentation nmay define a nmappi ng between the protocol -defined
flags and the inpl enentation-defined flags. Again, the guiding
principle is that the file not appear to be nore secure than it
really is.

For exanple, suppose a client tries to set an ACE with
ACE4_FI LE_I NHERI T_ACE set but not ACE4_DI RECTORY_I NHERI T_ACE. |If the
server does not support any form of ACL inheritance, the server
shoul d reject the request with NFS4ERR ATTRNOTSUPP. |f the server
supports a single "inherit ACE'" flag that applies to both files and
directories, the server may reject the request (i.e., requiring the
client to set both the file and directory inheritance flags). The
server may al so accept the request and silently turn on the

ACE4_Dl RECTORY_| NHERI T_ACE f | ag.

5.11. 4. ACE who

There are several special identifiers ("who") which need to be
understood universally, rather than in the context of a particul ar
DNS domain. Sonme of these identifiers cannot be understood when an
NFS client accesses the server, but have neani ng when a | ocal process
accesses the file. The ability to display and nodify these
permissions is permitted over NFS, even if none of the access nethods
on the server understands the identifiers.

Shepler, et al. St andards Track [Page 55]

RFC 3530 NFS version 4 Protocol April 2003

Who Description

" OMNER' The owner of the file.

" GROUP" The group associated with the file.

" EVERYONE" The worl d.

" | NTERACTI VE" Accessed froman interactive termnal.

" NETVWORK" Accessed vi a the network.

" DI ALUP" Accessed as a dialup user to the server.

" BATCH' Accessed from a batch job.

" ANONYMOUS" Accessed wit hout any authentication.

" AUTHENTI CATED" Any aut henticated user (opposite of
ANONYMOUS)

" SERVI CE" Access froma system servi ce.

To avoid conflict, these special identifiers are distinguish by an
appended "@ and should appear in the form"xxxx@ (note: no domain
nane after the "@). For exanple: ANONYMOUS@

5.11.5. Mbde Attribute

The NFS version 4 node attribute is based on the UNI X node bits. The
followi ng bits are defined:

const MODE4_SUI D
const MODE4_SA D
const MODE4_SVTX
const MODE4_RUSR
const MODE4 WUSR
const MODE4_XUSR
const MODE4_RCRP
const MODE4_WGRP
const MODE4_XCRP
const MODE4_ROTH
const MODE4 WOTH
const MODE4_XOTH

0x800; /* set user id on execution */
0x400; /* set group id on execution */
0x200; /* save text even after use */
0x100; /* read perm ssion: owner */
0x080; /* wite pernission: owner */
0x040; /* execute perm ssion: owner */
0x020; /* read perm ssion: group */
0x010; /* wite pernission: group */
0x008; /* execute perm ssion: group */
0x004; /* read perm ssion: other */
0x002; /* wite permnission: other */
0x001; /* execute perm ssion: other */

Bits MODE4 RUSR, MODE4 WJUSR, and MODE4 XUSR apply to the principal
identified in the owner attribute. Bits MODE4 RCRP, MODE4 WGERP, and

MODE4_XGRP apply to the principals identified in the owner_group
attribute. Bits MODE4_ROTH, MODE4 WOTH, MODE4_XOTH apply to any
principal that does not nmatch that in the owner group, and does not
have a group matching that of the owner _group attribute.

The remaining bits are not defined by this protocol and MJUST NOT be
used. The m nor version nechani sm nust be used to define further bit
usage.

Shepler, et al. St andards Track [Page 56]

RFC 3530 NFS version 4 Protocol April 2003

Note that in UNNX, if a file has the MODE4_SA D bit set and no
MODE4_XCRP bit set, then READ and WRI TE nust use mandatory file
| ocki ng.

5.11. 6. Mode and ACL Attribute

The server that supports both node and ACL nust take care to
synchroni ze the MODE4 *USR, MODE4 *GRP, and MODE4 *OTH bits with the
ACEs whi ch have respective who fields of "OMER@, "CROUP@, and
"EVERYONE@ so that the client can see semantically equival ent access
perm ssions exi st whether the client asks for owner, owner_group and
node attributes, or for just the ACL.

Because the node attribute includes bits (e.g., MODE4_SVTX) that have
nothing to do with ACL semantics, it is permitted for clients to
specify both the ACL attribute and nbode in the same SETATTR
operation. However, because there is no prescribed order for
processing the attributes in a SETATTR, the client nust ensure that
ACL attribute, if specified without node, would produce the desired
node bits, and conversely, the node attribute if specified wthout
ACL, would produce the desired "OMER@, "GROUP@, and "EVERYONE@
ACEs.

5.11.7. nounted on fileid

UNI X- based operating environments connect a filesysteminto the
nanespace by connecting (nounting) the filesystemonto the existing
file object (the mount point, usually a directory) of an existing
filesystem \When the nount point’s parent directory is read via an
APl like readdir(), the return results are directory entries, each
with a conponent nane and a fileid. The fileid of the nount point’s
directory entry will be different fromthe fileid that the stat()
systemcall returns. The stat() systemcall is returning the fileid
of the root of the nounted fil esystem whereas readdir() is returning
the fileid stat() would have returned before any fil esystens were
nount ed on the nount point.

Unli ke NFS version 3, NFS version 4 allows a client’s LOOKUP request
to cross other filesystenms. The client detects the fil esystem
crossi ng whenever the fil ehandl e argument of LOOKUP has an fsid
attribute different fromthat of the fil ehandl e returned by LOOKUP
A UNI X-based client will consider this a "nobunt point crossing"

UNI X has a | egacy schene for allowing a process to deternine its
current working directory. This relies on readdir() of a nount
point’s parent and stat() of the nount point returning fileids as
previously described. The nmounted_on_fileid attribute corresponds to
the fileid that readdir() would have returned as described
previously.

Shepler, et al. St andards Track [Page 57]

RFC 3530 NFS version 4 Protocol April 2003

While the NFS version 4 client could sinply fabricate a fileid
correspondi ng to what nounted on fileid provides (and if the server
does not support nounted_on_fileid, the client has no choice), there
is arisk that the client will generate a fileid that conflicts with
one that is already assigned to another object in the fil esystem
Instead, if the server can provide the nounted on fileid, the
potential for client operational problens in this area is elinnated.

If the server detects that there is no nounted point at the target
file object, then the value for nounted_on_fileid that it returns is
the sane as that of the fileid attribute

The nmounted _on fileid attribute is RECOWENDED, so the server SHOULD
provide it if possible, and for a UNI X-based server, this is
straightforward. Usually, nounted_on_fileid will be requested during
a READDI R operation, in which case it is trivial (at |east for UN X-
based servers) to return nounted_on_fileid since it is equal to the
fileid of a directory entry returned by readdir(). If

mounted_on _fileid is requested in a GETATTR operation, the server
shoul d obey an invariant that has it returning a value that is equa
to the file object’s entry in the object’s parent directory, i.e.

what readdir() would have returned. Sone operating environments
allow a series of two or nore filesystens to be nounted onto a single
mount point. In this case, for the server to obey the aforenentioned
invariant, it will need to find the base nount point, and not the

i nt ermedi at e nmount poi nts.

6. Filesystem Mgration and Replication

Wth the use of the recommended attribute "fs_|ocations", the NFS
version 4 server has a nmethod of providing filesystemmigration or
replication services. For the purposes of migration and replication
a filesystemw |l be defined as all files that share a given fsid
(both major and m nor values are the sane).

The fs_locations attribute provides a list of filesystemlocations.
These | ocations are specified by providing the server nanme (either
DNS domain or | P address) and the path name representing the root of
the filesystem Depending on the type of service being provided, the
list will provide a new location or a set of alternate |ocations for
the filesystem The client will use this information to redirect its
requests to the new server

6.1. Replication
It is expected that filesystemreplication will be used in the case

of read-only data. Typically, the filesystemw || be replicated on
two or nore servers. The fs locations attribute will provide the

Shepler, et al. St andards Track [Page 58]

RFC 3530 NFS version 4 Protocol April 2003

list of these locations to the client. On first access of the
filesystem the client should obtain the value of the fs_|ocations
attribute. If, in the future, the client finds the server
unresponsive, the client may attenpt to use another server specified
by fs_locations.

If applicable, the client nust take the appropriate steps to recover
valid filehandles fromthe new server. This is described in nore
detail in the follow ng sections.

6.2. Magration

Filesystemmigration is used to nove a filesystem from one server to
another. Mgration is typically used for a filesystemthat is
writabl e and has a single copy. The expected use of migration is for
| oad bal anci ng or general resource reallocation. The protocol does
not specify how the filesystemw ||l be noved between servers. This
server-to-server transfer nechanismis left to the server

i mpl ementor. However, the nmethod used to conmunicate the migration
event between client and server is specified here.

Once the servers participating in the nmigration have conpl eted the
move of the filesystem the error NFS4ERR MOVED will be returned for
subsequent requests received by the original server. The

NFSAERR MOVED error is returned for all operations except PUTFH and
CETATTR. Upon receiving the NFS4ERR MOVED error, the client will
obtain the value of the fs_locations attribute. The client will then
use the contents of the attribute to redirect its requests to the
specified server. To facilitate the use of GETATTR, operations such
as PUTFH nust al so be accepted by the server for the migrated file
systenis filehandles. Note that if the server returns NFS4ERR MOVED
the server MUST support the fs_locations attribute.

If the client requests nore attributes than just fs_locations, the
server may return fs_locations only. This is to be expected since
the server has migrated the filesystemand nay not have a nethod of
obt ai ning additional attribute data.

The server inplenentor needs to be careful in developing a nmigration
solution. The server nust consider all of the state information
clients may have outstanding at the server. This includes but is not
limted to | ocking/share state, del egation state, and asynchronous
file wites which are represented by WRITE and COWM T verifiers. The
server should strive to minimze the inpact on its clients during and
after the migration process.

Shepler, et al. St andards Track [Page 59]

RFC 3530 NFS version 4 Protocol April 2003

6.3. Interpretation of the fs |locations Attribute
The fs_location attribute is structured in the follow ng way:

struct fs_location {

utf8str _cis server <>;
pat hnane4 r oot pat h;
i
struct fs_locations {
pat hnane4 fs_root;
fs |l ocation | ocati ons<>;
i

The fs_location struct is used to represent the |ocation of a
filesystemby providing a server nane and the path to the root of the
filesystem For a nulti-honed server or a set of servers that use
the sane rootpath, an array of server nanes may be provided. An
entry in the server array is an UTF8 string and represents one of a
traditional DNS host nane, |Pv4 address, or |IPv6 address. It is not
a requirenment that all servers that share the same rootpath be listed
in one fs_location struct. The array of server nanes is provided for
conveni ence. Servers that share the sanme rootpath may also be listed
in separate fs _|location entries in the fs_|ocations attribute.

The fs_locations struct and attribute then contains an array of

| ocations. Since the nane space of each server may be constructed
differently, the "fs_root" field is provided. The path represented
by fs_root represents the location of the filesystemin the server’s
nane space. Therefore, the fs root path is only associated with the
server fromwhich the fs locations attribute was obtained. The
fs_root path is meant to aid the client in locating the filesystem at
the various servers |isted.

As an exanple, there is a replicated filesystemlocated at two
servers (servA and servB). At servA the filesystemis |located at
path "/a/b/c". At servB the filesystemis located at path "/x/y/z".
In this exanple the client accesses the filesystemfirst at servA
with a multi-conponent |ookup path of "/a/b/c/d". Since the client
used a nulti-conponent |ookup to obtain the filehandle at "/al/b/c/d"
it is unaware that the filesystenis root is located in servA' s name
space at "/al/b/c". Wwen the client switches to servB, it will need
to determine that the directory it first referenced at servA is now
represented by the path "/x/y/z/d" on servB. To facilitate this, the
fs locations attribute provided by servA would have a fs_root val ue
of "/al/b/c" and two entries in fs_location. One entry in fs_|location
will be for itself (servA) and the other will be for servB with a

Shepler, et al. St andards Track [Page 60]

RFC 3530 NFS version 4 Protocol April 2003

path of "/x/ylz". Wth this information, the client is able to
substitute "/x/yl/z" for the "/a/b/c" at the beginning of its access
path and construct "/x/y/z/d" to use for the new server

See the section "Security Considerations” for a discussion on the
recomendations for the security flavor to be used by any GETATTR
operation that requests the "fs |locations" attribute.

6.4. Filehandl e Recovery for Mgration or Replication

7.

7.

Fil ehandles for filesystens that are replicated or mgrated generally
have the sane semantics as for filesystens that are not replicated or
mgrated. For exanple, if a filesystemhas persistent filehandles
and it is mgrated to another server, the fil ehandl e values for the
filesystemw || be valid at the new server

For volatile filehandles, the servers involved |likely do not have a
nmechanismto transfer filehandl e format and content between

t hensel ves. Therefore, a server nmay have difficulty in detern ning
if avolatile filehandle froman old server should return an error of
NFS4ERR_FHEXPI RED. Therefore, the client is informed, with the use
of the fh_expire_type attribute, whether volatile filehandles wll
expire at the mgration or replication event. |If the bit

FHA VOL_ M GRATION is set in the fh_expire type attribute, the client
nmust treat the volatile filehandle as if the server had returned the
NFS4ERR_FHEXPI RED error. At the migration or replication event in
the presence of the FH4_VOL_M GRATION bit, the client will not
present the original or old volatile filehandle to the new server.
The client will start its comunication with the new server by
recovering its filehandles using the saved file nanes.

NFS Server Nane Space
1. Server Exports

On a UNI X server the nanme space describes all the files reachabl e by
pat hnanes under the root directory or "/". On a Wndows NT server
the nane space constitutes all the files on disks named by mapped
disk letters. NFS server adninistrators rarely nmake the entire
server’s filesystem nane space available to NFS clients. Mre often
portions of the name space are nmade avail able via an "export™”
feature. |In previous versions of the NFS protocol, the root
filehandl e for each export is obtained through the MOUNT protocol
the client sends a string that identifies the export of nane space
and the server returns the root filehandle for it. The MOUNT

prot ocol supports an EXPORTS procedure that will enunerate the
server’s exports

Shepler, et al. St andards Track [Page 61]

RFC 3530 NFS version 4 Protocol April 2003

7.2. Browsing Exports

The NFS version 4 protocol provides a root filehandle that clients
can use to obtain filehandles for these exports via a nulti-conponent
LOOKUP. A conmon user experience is to use a graphical user
interface (perhaps a file "Qpen" dialog window) to find a file via
progressive browsing through a directory tree. The client nust be
able to nove fromone export to another export via single-conponent,
progressi ve LOOKUP operations.

This style of browsing is not well supported by the NFS version 2 and
3 protocols. The client expects all LOOKUP operations to renmin
within a single server filesystem For exanple, the device attribute
will not change. This prevents a client fromtaki ng nane space paths
that span exports

An autonmounter on the client can obtain a snapshot of the server’s
nane space using the EXPORTS procedure of the MOUNT protocol. [If it
under stands the server’s pathnane syntax, it can create an i mage of
the server’s nane space on the client. The parts of the name space
that are not exported by the server are filled in with a "pseudo
filesysten that allows the user to browse from one nounted
filesystemto another. There is a drawback to this representation of
the server’s nane space on the client: it is static. |If the server
adm ni strator adds a new export the client will be unaware of it.

7.3. Server Pseudo Fil esystem

NFS version 4 servers avoid this name space inconsistency by
presenting all the exports within the framework of a single server
nane space. An NFS version 4 client uses LOOKUP and READDI R
operations to browse seam essly fromone export to another. Portions
of the server nane space that are not exported are bridged via a
"pseudo fil esysteni that provides a view of exported directories
only. A pseudo filesystemhas a unique fsid and behaves like a
normal, read only fil esystem

Based on the construction of the server’s nane space, it is possible
that multiple pseudo filesystens may exist. For exanple,

/a pseudo fil esystem
/alb real filesystem
/alblc pseudo fil esystem

lalblcld real filesystem

Each of the pseudo filesystens are considered separate entities and
therefore will have a unique fsid.

Shepler, et al. St andards Track [Page 62]

RFC 3530 NFS version 4 Protocol April 2003

7.4. Miltiple Roots

The DOS and W ndows operating environnents are sonetines described as
having "multiple roots". Filesystenms are commonly represented as
disk letters. MacOS represents filesystens as top | evel nanes. NFS
version 4 servers for these platforns can construct a pseudo file
system above these root nanes so that disk letters or vol une nanes
are sinply directory nanes in the pseudo root.

7.5. Filehandle Volatility

The nature of the server’s pseudo filesystemis that it is a logica
representation of filesysten(s) available fromthe server

Therefore, the pseudo filesystemis nost |ikely constructed

dynami cally when the server is first instantiated. It is expected
that the pseudo filesystem nmay not have an on di sk counterpart from
whi ch persistent fil ehandl es could be constructed. Even though it is
preferabl e that the server provide persistent filehandles for the
pseudo filesystem the NFS client should expect that pseudo file
system fil ehandl es are volatile. This can be confirmed by checking
the associated "fh_expire_type" attribute for those filehandles in
question. |If the filehandles are volatile, the NFS client nust be
prepared to recover a filehandl e value (e.g., with a nmulti-conmponent
LOOKUP) when receiving an error of NFS4ERR FHEXPI RED.

7.6. Exported Root
If the server’s root filesystemis exported, one m ght conclude that
a pseudo-filesystemis not needed. This would be wong. Assune the
following fil esystens on a server
/ di skl (exported)
/a di sk2 (not exported)
/alb di sk3 (exported)

Because disk2 is not exported, disk3 cannot be reached with sinple
LOOKUPs. The server nust bridge the gap with a pseudo-fil esystem

7.7. Munt Point Crossing
The server filesystem environnent may be constructed in such a way
that one filesystemcontains a directory which is 'covered or
nmount ed upon by a second filesystem For exanple:

lalb (filesystem 1)
/alblc/d (filesystem 2)

Shepler, et al. St andards Track [Page 63]

RFC 3530 NFS version 4 Protocol April 2003

The pseudo filesystemfor this server may be constructed to | ook

I'ike:

/ (pl ace hol der/ not export ed)

/alb (filesystem1)

lalblcld (filesystem 2)
It is the server's responsibility to present the pseudo fil esystem
that is conplete to the client. |If the client sends a | ookup request
for the path "/al/b/c/d", the server’'s response is the filehandl e of
the filesystem"/al/b/c/d". In previous versions of the NFS protocol

the server would respond with the filehandle of directory "/a/b/c/d"
within the filesystem"/a/b".

The NFS client will be able to determine if it crosses a server nount
poi nt by a change in the value of the "fsid" attribute.

7.8. Security Policy and Name Space Presentation

The application of the server’s security policy needs to be carefully
considered by the inplementor. One may choose to linmit the
viewability of portions of the pseudo fil esystem based on the
server’s perception of the client’s ability to authenticate itself
properly. However, with the support of nultiple security nechani sns
and the ability to negotiate the appropriate use of these nechani sns,
the server is unable to properly deternine if a client will be able
to authenticate itself. |If, based on its policies, the server
chooses to linmt the contents of the pseudo filesystem the server
may effectively hide filesystenms froma client that may otherw se
have | egitinmate access.

As suggested practice, the server should apply the security policy of
a shared resource in the server’s namespace to the conponents of the
resource’s ancestors. For exanple:

/
/[alb
/alblc

The /a/b/c directory is a real filesystemand is the shared resource.
The security policy for /a/b/c is Kerberos with integrity. The
server should apply the sane security policy to /, /a, and /alb.

This allows for the extension of the protection of the server’s
nanespace to the ancestors of the real shared resource

Shepler, et al. St andards Track [Page 64]

RFC 3530 NFS version 4 Protocol April 2003

For the case of the use of multiple, disjoint security nechanisns in
the server’s resources, the security for a particular object in the
server’s nanmespace should be the union of all security mechani sms of
all direct descendants.

8. File Locking and Share Reservations

Integrating locking into the NFS protocol necessarily causes it to be
stateful. Wth the inclusion of share reservations the protoco
becones substantially nore dependent on state than the traditiona
conmbi nation of NFS and NLM [XNFS]. There are three conponents to
maki ng this state nanageabl e:

o Cear division between client and server

0 Ability to reliably detect inconsistency in state between client
and server

o Sinple and robust recovery nechani sns

In this nodel, the server owns the state information. The client
conmuni cates its view of this state to the server as needed. The
client is also able to detect inconsistent state before nodifying a
file.

To support Wn32 share reservations it is necessary to atonmically
OPEN or CREATE files. Having a separate share/unshare operation
woul d not allow correct inplenentation of the Wn32 OpenFile API. In
order to correctly inplenment share semantics, the previous NFS

prot ocol mechani sns used when a file is opened or created (LOOKUP
CREATE, ACCESS) need to be replaced. The NFS version 4 protocol has
an OPEN operation that subsunmes the NFS version 3 nethodol ogy of
LOOKUP, CREATE, and ACCESS. However, because many operations require
a filehandle, the traditional LOOKUP is preserved to map a file nane
to filehandl e without establishing state on the server. The policy
of granting access or nodifying files is nmanaged by the server based
on the client’s state. These nechani sns can i npl enment policy ranging
from advisory only locking to full mandatory | ocki ng.

8.1. Locking

It is assuned that manipulating a lock is rare when conpared to READ
and WRI TE operations. It is also assuned that crashes and network
partitions are relatively rare. Therefore it is inportant that the
READ and WRI TE operations have a |ightweight nmechanismto indicate if
they possess a held lock. A lock request contains the heavywei ght
information required to establish a | ock and uni quely define the Iock
owner .

Shepler, et al. St andards Track [Page 65]

RFC 3530 NFS version 4 Protocol April 2003

The follow ng sections describe the transition fromthe heavy wei ght
information to the eventual stateid used for nost client and server
| ocki ng and | ease interactions.

8.1.1. dient ID
For each LOCK request, the client nust identify itself to the server

This is done in such a way as to allow for correct |ock
identification and crash recovery. A sequence of a SETCLIENTID
operation followed by a SETCLI ENTI D_CONFI RM operation is required to
establish the identification onto the server. Establishnment of
identification by a new incarnation of the client also has the effect
of inmediately breaking any | eased state that a previous incarnation
of the client might have had on the server, as opposed to forcing the
new client incarnation to wait for the | eases to expire. Breaking
the | ease state ampbunts to the server renoving all |ock, share
reservation, and, where the server is not supporting the

CLAI M DELEGATE_PREV claimtype, all delegation state associated with
sane client with the sane identity. For discussion of delegation
state recovery, see the section "Del egati on Recovery"

Client identification is encapsulated in the follow ng structure:

struct nfs client _id4 {

verifier4d verifier;

opaque i d<NFS4_OPAQUE LI M T>
b

The first field, verifier is a client incarnation verifier that is
used to detect client reboots. Only if the verifier is different
fromthat which the server has previously recorded the client (as
identified by the second field of the structure, id) does the server
start the process of canceling the client’s | eased state.

The second field, idis a variable I ength string that uniquely
defines the client.

There are several considerations for how the client generates the id
string:

0 The string should be unique so that nultiple clients do not
present the sane string. The consequences of two clients
presenting the sane string range fromone client getting an error
to one client having its | eased state abruptly and unexpectedly
cancel ed.

Shepler, et al. St andards Track [Page 66]

RFC 3530 NFS version 4 Protocol April 2003

The string should be selected so the subsequent incarnations
(e.g., reboots) of the same client cause the client to present the
same string. The inplementor is cautioned agai nst an approach
that requires the string to be recorded in a local file because
this precludes the use of the inplenmentation in an environnent
where there is no local disk and all file access is froman NFS
version 4 server.

The string should be different for each server network address
that the client accesses, rather than conmon to all server network
addresses. The reason is that it may not be possible for the
client to tell if the same server is listening on nmultiple network
addresses. If the client issues SETCLIENTID with the same id
string to each network address of such a server, the server wll
think it is the same client, and each successive SETCLIENTID wi |
cause the server to begin the process of renoving the client’s
previ ous | eased state.

The al gorithm for generating the string should not assune that the
client’s network address won't change. This includes changes
between client incarnations and even changes while the client is
stilling running in its current incarnation. This neans that if
the client includes just the client’s and server’s network address
inthe id string, there is a real risk, after the client gives up
the network address, that another client, using a simlar

al gorithm for generating the id string, will generate a
conflicting id string.

G ven the above considerations, an exanple of a well generated id
string is one that includes:

(o]

(0]

(0]

The server’s network address.

The client’s network address.

For a user level NFS version 4 client, it should contain
additional information to distinguish the client from other user
level clients running on the sane host, such as a process id or
ot her uni que sequence.

Additional information that tends to be uni que, such as one or
nore of:

- The client machine' s serial nunber (for privacy reasons, it is
best to perform sone one way function on the serial nunber).

- A MAC address.

Shepler, et al. St andards Track [Page 67]

RFC 3530 NFS version 4 Protocol April 2003

- The tinestanp of when the NFS version 4 software was first
installed on the client (though this is subject to the
previously nentioned caution about using information that is
stored in a file, because the file m ght only be accessible
over NFS version 4).

- A true random nunber. However since this nunber ought to be
the sane between client incarnations, this shares the same
problem as that of the using the tinmestanp of the software
i nstal lation.

As a security neasure, the server MJST NOT cancel a client’s |eased
state if the principal established the state for a given id string is
not the sane as the principal issuing the SETCLI ENTI D.

Not e that SETCLI ENTI D and SETCLI ENTI D_CONFI RM has a secondary purpose
of establishing the information the server needs to nmake cal |l backs to
the client for purpose of supporting delegations. It is permtted to
change this information via SETCLI ENTI D and SETCLI ENTI D_CONFI RM
within the sanme incarnation of the client wi thout renoving the
client’s | eased state.

Once a SETCLI ENTI D and SETCLI ENTI D_CONFI RM sequence has successfully
conpl eted, the client uses the shorthand client identifier, of type
clientidd4, instead of the longer and | ess conpact nfs_client _id4
structure. This shorthand client identifier (a clientid) is assigned
by the server and should be chosen so that it will not conflict with
a clientid previously assigned by the server. This applies across
server restarts or reboots. Wen a clientid is presented to a server
and that clientid is not recogni zed, as would happen after a server
reboot, the server will reject the request with the error
NFSA4ERR_STALE_CLI ENTI D. When this happens, the client nust obtain a
new clientid by use of the SETCLI ENTID operation and then proceed to
any ot her necessary recovery for the server reboot case (See the
section "Server Failure and Recovery").

The client nust also enploy the SETCLI ENTI D operation when it
receives a NFS4ERR STALE STATEID error using a stateid derived from
its current clientid, since this also indicates a server reboot which
has invalidated the existing clientid (see the next section

"l ock_owner and stateid Definition" for details).

See the detail ed descriptions of SETCLI ENTI D and SETCLI ENTI D_CONFI RM
for a conplete specification of the operations.

Shepler, et al. St andards Track [Page 68]

RFC 3530 NFS version 4 Protocol April 2003

8.

8.

1

1

2. Server Release of dientid

If the server determines that the client holds no associated state
for its clientid, the server may choose to release the clientid. The
server may make this choice for an inactive client so that resources
are not consuned by those internmittently active clients. |[If the
client contacts the server after this release, the server nust ensure
the client receives the appropriate error so that it will use the
SETCLI ENTI Y SETCLI ENTI D_CONFI RM sequence to establish a new identity.
It should be clear that the server nust be very hesitant to rel ease a
clientid since the resulting work on the client to recover from such
an event will be the same burden as if the server had failed and
restarted. Typically a server would not release a clientid unless
there had been no activity fromthat client for many m nutes.

Note that if the id string in a SETCLI ENTID request is properly
constructed, and if the client takes care to use the sanme principa
for each successive use of SETCLIENTID, then, barring an active
deni al of service attack, NFS4ERR CLID | NUSE shoul d never be
returned.

However, client bugs, server bugs, or perhaps a deliberate change of
the principal owner of the id string (such as the case of a client
that changes security flavors, and under the new flavor, there is no
mappi ng to the previous owner) will in rare cases result in
NFSAERR_CLI D_| NUSE.

In that event, when the server gets a SETCLIENTID for a client id
that currently has no state, or it has state, but the |ease has
expired, rather than returning NFS4ERR CLI D I NUSE, the server MJST
all ow the SETCLIENTID, and confirmthe newclientid if followed by
t he appropriate SETCLI ENTI D_CONFI RM

3. lock owner and stateid Definition

When requesting a lock, the client nust present to the server the
clientid and an identifier for the owner of the requested | ock

These two fields are referred to as the | ock_owner and the definition
of those fields are:

o Aclientid returned by the server as part of the client’s use of
t he SETCLI ENTI D operati on.

o A variable length opagque array used to uni quely define the owner
of a |l ock managed by the client.

This may be a thread id, process id, or other unique val ue.

Shepler, et al. St andards Track [Page 69]

RFC 3530 NFS version 4 Protocol April 2003

When the server grants the lock, it responds with a unique stateid.
The stateid is used as a shorthand reference to the | ock_owner, since
the server will be naintaining the correspondence between them

The server is free to formthe stateid in any manner that it chooses
as long as it is able to recognize invalid and out-of-date stateids.
This requirenment includes those stateids generated by earlier

i nstances of the server. Fromthis, the client can be properly
notified of a server restart. This notification will occur when the
client presents a stateid to the server froma previous

i nstanti ation.

The server nust be able to distinguish the foll ow ng situations and
return the error as specified:

0 The stateid was generated by an earlier server instance (i.e.
before a server reboot). The error NFSAERR STALE_STATEI D shoul d
be returned.

0 The stateid was generated by the current server instance but the
stateid no |l onger designates the current |ocking state for the
| ockowner-file pair in question (i.e., one or nore |ocking
operations has occurred). The error NFS4ERR OLD STATEI D shoul d be
returned.

This error condition will only occur when the client issues a
| ocki ng request which changes a stateid while an 1/0O request that
uses that stateid is outstandi ng.

0 The stateid was generated by the current server instance but the
statei d does not designate a |ocking state for any active
| ockowner-file pair. The error NFS4ERR_BAD STATEI D shoul d be
returned.

This error condition will occur when there has been a logic error
on the part of the client or server. This should not happen

One nechani smthat may be used to satisfy these requirenents is for
the server to,

o divide the "other" field of each stateid into two fields:

- A server verifier which uniquely designates a particular server
i nstanti ation.

- An index into a table of |ocking-state structures.

Shepler, et al. St andards Track [Page 70]

RFC 3530 NFS version 4 Protocol April 2003

o utilize the "seqid" field of each stateid, such that seqid is
nonotoni cally increnented for each stateid that is associated with
the sane index into the |ocking-state table.

By matching the incoming stateid and its field values with the state
held at the server, the server is able to easily determine if a

stateid is valid for its current instantiation and state. If the
stateid is not valid, the appropriate error can be supplied to the
client.

8.1.4. Use of the stateid and Locki ng

Al'l READ, WRI TE and SETATTR operations contain a stateid. For the
purposes of this section, SETATTR operations which change the size
attribute of a file are treated as if they are witing the area
between the old and new size (i.e., the range truncated or added to
the file by means of the SETATTR), even where SETATTR i s not
explicitly mentioned in the text.

If the lock _owner perforns a READ or WRITE in a situation in which it
has established a | ock or share reservation on the server (any OPEN
constitutes a share reservation) the stateid (previously returned by
the server) mnmust be used to indicate what |ocks, including both
record | ocks and share reservations, are held by the | ockowner. |If
no state is established by the client, either record | ock or share
reservation, a stateid of all bits 0 is used. Regardless whether a
stateid of all bits 0, or a stateid returned by the server is used,
if there is a conflicting share reservation or mandatory record | ock
held on the file, the server MIST refuse to service the READ or WRI TE
operation.

Share reservations are established by OPEN operations and by their
nature are mandatory in that when the OPEN deni es READ or WRI TE
operations, that denial results in such operations being rejected
with error NFS4ERR LOCKED. Record |ocks may be inplemented by the
server as either nmandatory or advisory, or the choice of nmandatory or
advi sory behavi or may be deternined by the server on the basis of the
file being accessed (for exanple, some UN X-based servers support a
"mandatory lock bit" on the node attribute such that if set, record

| ocks are required on the file before I/Ois possible). Wen record
| ocks are advisory, they only prevent the granting of conflicting

| ock requests and have no effect on READs or WRI TEs. Mandatory
record | ocks, however, prevent conflicting |I/O operations. Wen they
are attenpted, they are rejected with NFSAERR LOCKED. When the
client gets NFSAERR LOCKED on a file it knows it has the proper share
reservation for, it will need to issue a LOCK request on the region

Shepler, et al. St andards Track [Page 71]

RFC 3530 NFS version 4 Protocol April 2003

of the file that includes the region the I1/O was to be perforned on,
with an appropriate |ocktype (i.e., READ*_LT for a READ operation,
VWRI TE* _LT for a WRI TE operation).

Wth NFS version 3, there was no notion of a stateid so there was no
way to tell if the application process of the client sending the READ
or WRI TE operation had al so acquired the appropriate record | ock on
the file. Thus there was no way to inplenent mandatory | ocking.

Wth the stateid construct, this barrier has been renoved.

Note that for UN X environnents that support mandatory file | ocking,

the distinction between advisory and nandatory locking is subtle. In
fact, advisory and nandatory record | ocks are exactly the same in so
far as the APIs and requirenents on inplenentation. |f the nmandatory

lock attribute is set on the file, the server checks to see if the

| ockowner has an appropriate shared (read) or exclusive (wite)
record lock on the region it wishes to read or wite to. |If there is
no appropriate lock, the server checks if there is a conflicting |ock
(whi ch can be done by attenpting to acquire the conflicting | ock on
the behal f of the | ockowner, and if successful, release the |ock
after the READ or WRITE is done), and if there is, the server returns
NFS4ERR_LOCKED.

For Wndows environnments, there are no advisory record | ocks, so the
server always checks for record | ocks during I/O requests.

Thus, the NFS version 4 LOCK operation does not need to distinguish
bet ween advi sory and mandatory record locks. It is the NFS version 4
server’s processing of the READ and WRI TE operations that introduces
the distinction.

Every stateid other than the special stateid values noted in this
section, whether returned by an OPEN-type operation (i.e., OPEN,
OPEN_DOWNGRADE) , or by a LOCK-type operation (i.e., LOCK or LOCKU)
defines an access node for the file (i.e., READ, WRITE, or READ

VWRI TE) as established by the original OPEN which began the stateid
sequence, and as nodified by subsequent OPENs and OPEN DOANGRADES
within that stateid sequence. Wen a READ, WRI TE, or SETATTR which
specifies the size attribute, is done, the operation is subject to
checki ng agai nst the access node to verify that the operation is
appropriate given the OPEN with which the operation is associ at ed.

In the case of WRITE-type operations (i.e., WRITEs and SETATTRs whi ch
set size), the server nust verify that the access node allows witing
and return an NFS4ERR_OPENMODE error if it does not. In the case, of
READ, the server may performthe correspondi ng check on the access
node, or it may choose to all ow READ on opens for WRITE only, to
acconmodat e clients whose wite inplenmentation nay unavoi dably do

Shepler, et al. St andards Track [Page 72]

RFC 3530 NFS version 4 Protocol April 2003

reads (e.g., due to buffer cache constraints). However, even if
READs are allowed in these circunstances, the server MJIST still check
for locks that conflict with the READ (e.g., another open specify
deni al of READs). Note that a server which does enforce the access
node check on READs need not explicitly check for conflicting share
reservations since the exi stence of OPEN for read access guarant ees
that no conflicting share reservation can exist.

A stateid of all bits 1 (one) MAY all ow READ operations to bypass

| ocki ng checks at the server. However, WRI TE operations with a
stateid with bits all 1 (one) MJST NOT bypass | ocking checks and are
treated exactly the sane as if a stateid of all bits 0 were used.

A lock may not be granted while a READ or WRI TE operation using one
of the special stateids is being perfornmed and the range of the | ock
request conflicts with the range of the READ or WRI TE operation. For
t he purposes of this paragraph, a conflict occurs when a shared | ock
is requested and a WRI TE operation is being perforned, or an
exclusive lock is requested and either a READ or a WRI TE operation is
being performed. A SETATTR that sets size is treated sinilarly to a
VWRI TE as di scussed above.

8.1.5. Sequencing of Lock Requests

Locking is different than nbst NFS operations as it requires "at-
nost - one" semantics that are not provided by ONCRPC. ONCRPC over a
reliable transport is not sufficient because a sequence of | ocking
requests may span nultiple TCP connections. |In the face of

retransm ssion or reordering, |lock or unlock requests nust have a
wel I defined and consi stent behavior. To acconplish this, each |ock
request contains a sequence nunber that is a consecutively increasing
integer. Different |ock_owners have different sequences. The server
mai ntai ns the |ast sequence nunmber (L) received and the response that
was returned. The first request issued for any given | ock _owner is

i ssued with a sequence nunmber of zero.

Note that for requests that contain a sequence nunmber, for each
| ock_owner, there should be no nore than one outstandi ng request.

If a request (r) with a previous sequence nunber (r < L) is received,
it isrejected with the return of error NFS4ERR BAD SEQ D. dGven a
properly-functioning client, the response to (r) nust have been

recei ved before the | ast request (L) was sent. |f a duplicate of

| ast request (r == L) is received, the stored response is returned.

If a request beyond the next sequence (r == L + 2) is received, it is
rejected with the return of error NFS4ERR BAD SEQ D. Sequence
history is reinitialized whenever the SETCLI ENTI DY SETCLI ENTI D_CONFI RM
sequence changes the client verifier

Shepler, et al. St andards Track [Page 73]

RFC 3530 NFS version 4 Protocol April 2003

Since the sequence nunber is represented with an unsigned 32-bit
integer, the arithmetic involved with the sequence nunber is nod
27"32. For an exanple of nodulo arithmetic involving sequence nunbers
see [RFC793].

It is critical the server maintain the |ast response sent to the
client to provide a nore reliable cache of duplicate non-idenpotent
requests than that of the traditional cache described in [Juszczak].
The traditional duplicate request cache uses a |l east recently used
al gorithm for renoving unneeded requests. However, the |ast |ock
request and response on a given |ock_owner nmust be cached as |long as
the lock state exists on the server

The client MJST nonotonically increnent the sequence nunber for the
CLOSE, LOCK, LOCKU, OPEN, OPEN_CONFI RM and OPEN_DOANNGRADE
operations. This is true even in the event that the previous
operation that used the sequence nunber received an error. The only
exception to this rule is if the previous operation received one of
the following errors: NFS4ERR STALE CLI ENTI D, NFS4ERR STALE STATEI D
NFSA4ERR_BAD_STATEI D, NFS4ERR BAD SEQ D, NFS4ERR_BADXDR,
NFS4ERR_RESOURCE, NFS4ERR_NOFI LEHANDLE

8.1.6. Recovery from Repl ayed Requests

As descri bed above, the sequence nunber is per |lock owner. As |ong
as the server maintains the | ast sequence nunber received and foll ows
t he met hods descri bed above, there are no risks of a Byzantine router
re-sending old requests. The server need only maintain the

(1 ock_owner, sequence nunber) state as long as there are open files
or closed files with | ocks outstanding.

LOCK, LOCKU, OPEN, OPEN_DOMNGRADE, and CLOSE each contain a sequence
nunber and therefore the risk of the replay of these operations
resulting in undesired effects is non-existent while the server

mai ntai ns the | ock _owner state.

8.1.7. Releasing | ock_owner State

Wien a particular | ock_owner no | onger holds open or file Iocking
state at the server, the server may choose to rel ease the sequence
nunber state associated with the |ock _owner. The server may nake
this choice based on | ease expiration, for the reclamation of server
menory, or other inplenentation specific details. In any event, the
server is able to do this safely only when the | ock_owner no | onger
is being utilized by the client. The server may choose to hold the
| ock_owner state in the event that retransnmitted requests are

recei ved. However, the period to hold this state is inplenentation
speci fic.

Shepler, et al. St andards Track [Page 74]

RFC 3530 NFS version 4 Protocol April 2003

In the case that a LOCK, LOCKU, OPEN DOANGRADE, or CLCSE is
retransmitted after the server has previously released the | ock_owner
state, the server will find that the | ock_owner has no files open and
an error will be returned to the client. |If the | ock _owner does have
a file open, the stateid will not match and again an error is
returned to the client.

8.1.8. Use of Open Confirmation

In the case that an OPEN is retransnmitted and the | ock_owner is being
used for the first time or the | ock_owner state has been previously
rel eased by the server, the use of the OPEN CONFI RM operation will
prevent incorrect behavior. Wen the server observes the use of the
| ock_owner for the first tine, it will direct the client to perform
the OPEN_CONFIRM for the corresponding OPEN. This sequence

est abli shes the use of an | ock_owner and associ ated sequence numnber.
Si nce the OPEN_CONFI RM sequence connects a new open_owner on the
server with an existing open_owner on a client, the sequence nunber
may have any value. The OPEN_CONFI RM step assures the server that
the value received is the correct one. See the section "OPEN_CONFI RM
- Confirm Open" for further details.

There are a nunber of situations in which the requirenment to confirm
an OPEN woul d pose difficulties for the client and server, in that
they woul d be prevented fromacting in a tinmely fashion on

i nformati on recei ved, because that information would be provisional
subject to deletion upon non-confirmation. Fortunately, these are
situations in which the server can avoid the need for confirmation
when responding to open requests. The two constraints are:

0 The server nust not bestow a del egation for any open which woul d
require confirmation.

0 The server MIUST NOT require confirmation on a reclai mtype open
(i.e., one specifying claimtype CLAI M PREVI QUS or
CLAI M_DELEGATE_PREV)

These constraints are related in that reclaimtype opens are the only
ones in which the server nay be required to send a del egation. For
CLAI M_NULL, sending the delegation is optional while for

CLAI M DELEGATE_CUR, no del egation is sent.

Del egations being sent with an open requiring confirmation are
troubl esone because recovering from non-confirmati on adds undue
conplexity to the protocol while requiring confirmation on reclaim
type opens poses difficulties in that the inability to resolve

Shepler, et al. St andards Track [Page 75]

RFC 3530 NFS version 4 Protocol April 2003

8. 2.

8. 3.

the status of the reclaimuntil |ease expiration nmay nake it
difficult to have tinely determ nation of the set of |ocks being
reclaimed (since the grace period may expire).

Requiring open confirmation on reclaimtype opens is avoi dabl e
because of the nature of the environnents in which such opens are
done. For CLAIM PREVI QUS opens, this is imediately after server
reboot, so there should be no tinme for | ockowners to be created,
found to be unused, and recycled. For CLAI M DELEGATE_PREV opens, we
are dealing with a client reboot situation. A server which supports
del egation can be sure that no | ockowners for that client have been
recycled since client initialization and thus can ensure that
confirmation will not be required.

Lock Ranges

The protocol allows a |l ock owner to request a lock with a byte range
and then either upgrade or unlock a sub-range of the initial |ock.

It is expected that this will be an unconmmon type of request. In any
case, servers or server filesystens may not be able to support sub-
range |l ock semantics. In the event that a server receives a | ocking

request that represents a sub-range of current |ocking state for the
| ock owner, the server is allowed to return the error
NFSAERR LOCK RANGE to signify that it does not support sub-range | ock
operations. Therefore, the client should be prepared to receive this
error and, if appropriate, report the error to the requesting
application.

The client is discouraged from conbining nmultiple independent | ocking
ranges that happen to be adjacent into a single request since the
server nmay not support sub-range requests and for reasons related to
the recovery of file locking state in the event of server failure.

As discussed in the section "Server Failure and Recovery" below, the
server may enploy certain optim zations during recovery that work
effectively only when the client’s behavior during | ock recovery is
simlar to the client’s |ocking behavior prior to server failure.

Upgr adi ng and Downgr adi ng Locks

If aclient has a wite lock on a record, it can request an atonic
downgrade of the lock to a read |ock via the LOCK request, by setting
the type to READ LT. |If the server supports atonic downgrade, the
request will succeed. If not, it will return NFS4ERR LOCK NOTSUPP.
The client should be prepared to receive this error, and if
appropriate, report the error to the requesting application.

Shepler, et al. St andards Track [Page 76]

RFC 3530 NFS version 4 Protocol April 2003

If aclient has a read lock on a record, it can request an atomc
upgrade of the lock to a wite lock via the LOCK request by setting
the type to WRITE LT or WRITEWLT. |If the server does not support
atom c upgrade, it will return NFS4ERR LOCK NOTSUPP. If the upgrade
can be achi eved without an existing conflict, the request will
succeed. Oherwise, the server will return either NFS4ERR DEN ED or
NFSAERR DEADLOCK. The error NFS4ERR DEADLOCK is returned if the
client issued the LOCK request with the type set to WRITEWLT and the
server has detected a deadl ock. The client should be prepared to
recei ve such errors and if appropriate, report the error to the
requesting application

8.4. Bl ocking Locks

Some clients require the support of blocking |ocks. The NFS version
4 protocol nust not rely on a call back mechani smand therefore is
unable to notify a client when a previously denied | ock has been
granted. Cients have no choice but to continually poll for the
lock. This presents a fairness problem Two new | ock types are
added, READW and WRI TEW and are used to indicate to the server that
the client is requesting a blocking lock. The server should maintain
an ordered list of pending blocking | ocks. Wen the conflicting |ock
is released, the server may wait the |l ease period for the first
waiting client to re-request the lock. After the |ease period
expires the next waiting client request is allowed the lock. Cients
are required to poll at an interval sufficiently small that it is
likely to acquire the lock in a timely manner. The server is not
required to maintain a list of pending blocked | ocks as it is used to
i ncrease fairness and not correct operation. Because of the
unordered nature of crash recovery, storing of |lock state to stable
storage woul d be required to guarantee ordered granting of bl ocking

| ocks.

Servers may al so note the | ock types and del ay returning denial of
the request to allow extra tine for a conflicting |ock to be

rel eased, allow ng a successful return. In this way, clients can
avoi d the burden of needlessly frequent polling for blocking |ocks.
The server should take care in the Iength of delay in the event the
client retransnmts the request.

8.5. Lease Renewal
The purpose of a lease is to allow a server to renove stale | ocks
that are held by a client that has crashed or is otherw se

unreachable. It is not a nmechani smfor cache consistency and | ease
renewal s may not be denied if the | ease interval has not expired.

Shepler, et al. St andards Track [Page 77]

RFC 3530 NFS version 4 Protocol April 2003

The following events cause inplicit renewal of all of the | eases for
a given client (i.e., all those sharing a given clientid). Each of

these is a positive indication that the client is still active and
that the associated state held at the server, for the client, is
still valid.

o0 An OPENwith a valid clientid.

0 Any operation made with a valid stateid (CLOSE, DELEGPURGE
DELEGRETURN, LOCK, LOCKU, OPEN, OPEN_CONFI RM OPEN_DOANGRADE
READ, RENEW SETATTR, WRITE). This does not include the special
stateids of all bits O or all bits 1

Note that if the client had restarted or rebooted, the client
woul d not be naking these requests w thout issuing the

SETCLI ENTI Y SETCLI ENTI D_CONFI RM sequence. The use of the

SETCLI ENTI DY SETCLI ENTI D_CONFI RM sequence (one that changes the
client verifier) notifies the server to drop the | ocking state
associated with the client. SETCLIENTI D SETCLI ENTI D_CONFI RM never
renews a | ease

If the server has rebooted, the stateids (NFS4ERR _STALE STATEI D
error) or the clientid (NFS4ERR STALE CLIENTID error) will not be
valid hence preventing spurious renewals.

Thi s approach allows for |ow overhead | ease renewal which scales
well. |In the typical case no extra RPC calls are required for |ease
renewal and in the worst case one RPCis required every | ease period
(i.e., a RENEWoperation). The nunber of |ocks held by the client is
not a factor since all state for the client is involved with the

| ease renewal action.

Since all operations that create a new | ease al so renew exi sting

| eases, the server nust mmintain a common | ease expiration tinme for
all valid leases for a given client. This |ease tine can then be
easily updated upon inplicit |ease renewal actions.

8.6. Crash Recovery

The inmportant requirenment in crash recovery is that both the client
and the server know when the other has failed. Additionally, it is
required that a client sees a consistent view of data across server
restarts or reboots. Al READ and WRI TE operations that nay have
been queued within the client or network buffers nust wait until the
client has successfully recovered the |ocks protecting the READ and
WRI TE operati ons.

Shepler, et al. St andards Track [Page 78]

RFC 3530 NFS version 4 Protocol April 2003

8.6.1. dient Failure and Recovery

In the event that a client fails, the server may recover the client’s
| ocks when the associ ated | eases have expired. Conflicting |ocks
fromanother client may only be granted after this | ease expiration
If the client is able to restart or reinitialize within the |ease
period the client nay be forced to wait the renmai nder of the |ease
period before obtaining new | ocks.

To mnimze client delay upon restart, |ock requests are associ ated
with an instance of the client by a client supplied verifier. This
verifier is part of the initial SETCLIENTID call namde by the client.
The server returns a clientid as a result of the SETCLI ENTID
operation. The client then confirnms the use of the clientid with
SETCLI ENTI D CONFIRM The clientid in conbination with an opaque
owner field is then used by the client to identify the | ock owner for
OPEN. This chain of associations is then used to identify all |ocks
for a particular client.

Since the verifier will be changed by the client upon each
initialization, the server can conpare a new verifier to the verifier
associated with currently held | ocks and deternine that they do not
match. This signifies the client’s new instantiati on and subsequent
|l oss of locking state. As a result, the server is free to rel ease
all locks held which are associated with the old clientid which was
derived fromthe old verifier.

Note that the verifier nust have the sane uni queness properties of
the verifier for the COWM T operation

8.6.2. Server Failure and Recovery

If the server loses locking state (usually as a result of a restart
or reboot), it must allowclients tinme to discover this fact and re-
establish the lost |locking state. The client nust be able to re-
establish the |ocking state w thout having the server deny valid
requests because the server has granted conflicting access to another
client. Likewise, if there is the possibility that clients have not
yet re-established their | ocking state for a file, the server nust

di sal | ow READ and WRI TE operations for that file. The duration of
this recovery period is equal to the duration of the | ease period.

A client can determine that server failure (and thus |oss of |ocking
state) has occurred, when it receives one of two errors. The
NFSA4ERR_STALE_STATEID error indicates a stateid invalidated by a
reboot or restart. The NFS4ERR STALE CLIENTID error indicates a

Shepler, et al. St andards Track [Page 79]

RFC 3530 NFS version 4 Protocol April 2003

clientid invalidated by reboot or restart. Wen either of these are
received, the client nmust establish a newclientid (See the section
"Cient ID') and re-establish the | ocking state as di scussed bel ow.

The period of special handling of |ocking and READs and WRI TEs, equa
in duration to the lease period, is referred to as the "grace
period". During the grace period, clients recover |ocks and the
associ ated state by reclaimtype | ocking requests (i.e., LOCK
requests with reclaimset to true and OPEN operations with a claim
type of CLAIM PREVIQUS). During the grace period, the server nust
rej ect READ and WRI TE operations and non-recl ai mlocking requests
(i.e., other LOCK and OPEN operations) with an error of
NFS4ERR_CRACE

If the server can reliably deternmine that granting a non-reclaim
request will not conflict with reclamation of |ocks by other clients,
the NFS4ERR GRACE error does not have to be returned and the non-
reclaimclient request can be serviced. For the server to be able to
service READ and WRI TE operations during the grace period, it nust
again be able to guarantee that no possible conflict could arise

bet ween an i npendi ng reclai mlocking request and the READ or WRI TE
operation. |If the server is unable to offer that guarantee, the
NFS4ERR _GRACE error rnust be returned to the client.

For a server to provide sinple, valid handling during the grace
period, the easiest nethod is to sinply reject all non-reclaim

| ocki ng requests and READ and WRI TE operations by returning the
NFSAERR _GRACE error. However, a server may keep information about
granted locks in stable storage. Wth this information, the server
could determine if a regular |lock or READ or WRI TE operation can be
safely processed.

For exanple, if a count of locks on a given file is available in
stabl e storage, the server can track reclained |locks for the file and
when all reclainms have been processed, non-reclai mlocking requests
may be processed. This way the server can ensure that non-reclai m

| ocking requests will not conflict with potential reclaimrequests.
Wth respect to I/Orequests, if the server is able to determine that
there are no outstanding reclaimrequests for a file by information
fromstable storage or another simlar mechani sm the processing of
I/ O requests could proceed normally for the file.

To reiterate, for a server that allows non-reclaimlock and I/0
requests to be processed during the grace period, it MJST deternine
that no | ock subsequently reclained will be rejected and that no | ock
subsequently recl ai red woul d have prevented any I/ O operation
processed during the grace period.

Shepler, et al. St andards Track [Page 80]

RFC 3530 NFS version 4 Protocol April 2003

Aients should be prepared for the return of NFS4ERR GRACE errors for
non-reclaimlock and 1/O requests. 1In this case the client should
enploy a retry mechanismfor the request. A delay (on the order of
several seconds) between retries should be used to avoid overwhel m ng
the server. Further discussion of the general issue is included in
[Floyd]. The client nmust account for the server that is able to
perform1/0O and non-reclai mlocking requests within the grace period
as well as those that can not do so.

A reclai mtype | ocking request outside the server’'s grace period can
only succeed if the server can guarantee that no conflicting |ock or
I/ O request has been granted since reboot or restart.

A server may, upon restart, establish a new value for the |ease
period. Therefore, clients should, once a newclientid is
established, refetch the lease tine attribute and use it as the basis
for | ease renewal for the | ease associated with that server

However, the server nust establish, for this restart event, a grace
period at least as long as the | ease period for the previous server
instantiation. This allows the client state obtained during the
previous server instance to be reliably re-established.

8.6.3. Network Partitions and Recovery

If the duration of a network partition is greater than the |ease
period provided by the server, the server will have not received a

| ease renewal fromthe client. |If this occurs, the server may free
all locks held for the client. As a result, all stateids held by the
client will becone invalid or stale. Once the client is able to
reach the server after such a network partition, all 1/O submtted by

the client with the nowinvalid stateids will fail with the server
returning the error NFS4ERR EXPI RED. Once this error is received,
the client will suitably notify the application that held the |ock

As a courtesy to the client or as an optim zation, the server may
continue to hold | ocks on behalf of a client for which recent

communi cati on has extended beyond the | ease period. |If the server
receives a lock or /O request that conflicts with one of these
courtesy | ocks, the server nust free the courtesy |ock and grant the
new request.

When a network partition is conbined with a server reboot, there are
edge conditions that place requirenents on the server in order to
avoid silent data corruption followi ng the server reboot. Two of

t hese edge conditions are known, and are discussed bel ow

Shepler, et al. St andards Track [Page 81]

RFC 3530 NFS version 4 Protocol April 2003

The first edge condition has the follow ng scenari o:
1. dient A acquires a |ock.

2. Oient A and server experience nmutual network partition, such
that client Ais unable to renewits |ease.

3. CUient A's | ease expires, so server releases |ock.

4. dient B acquires a lock that would have conflicted with that
of Client A

5. Cient B releases the |ock
6. Server reboots
7. Network partition between client A and server heals.

8. Cient A issues a RENEWoperation, and gets back a
NFSA4ERR_STALE _CLI ENTI D.

9. Cdient Areclainms its lock within the server’s grace period.
Thus, at the final step, the server has erroneously granted client
A's lock reclaim If client B nodified the object the | ock was
protecting, client A wll experience object corruption.

The second known edge condition foll ows:

1. dient A acquires a |ock.

2. Server reboots.

3. dient A and server experience nmutual network partition, such

that client Ais unable to reclaimits lock within the grace

peri od.

4. Server’'s reclaimgrace period ends. dient A has no | ocks
recorded on server.

5. dient B acquires a |l ock that would have conflicted with that
of dient A

6. Cient B rel eases the | ock.
7. Server reboots a second tine.

8. Network partition between client A and server heals.

Shepler, et al. St andards Track [Page 82]

RFC 3530 NFS version 4 Protocol April 2003

9. Cient A issues a RENEWoperation, and gets back a
NFSA4ERR_STALE _CLI ENTI D.

10. dient Areclains its lock within the server’s grace period.

As with the first edge condition, the final step of the scenario of
the second edge condition has the server erroneously granting client
A's lock reclaim

Solving the first and second edge conditions requires that the server
either assunme after it reboots that edge condition occurs, and thus
return NFS4AERR NO GRACE for all reclaimattenpts, or that the server
record sone information stable storage. The anpbunt of information
the server records in stable storage is in inverse proportion to how
harsh the server wants to be whenever the edge conditions occur. The
server that is conpletely tolerant of all edge conditions will record
in stable storage every lock that is acquired, renoving the |ock
record fromstable storage only when the lock is unlocked by the
client and the | ock’s | ockowner advances the sequence nunber such
that the lock release is not the |ast stateful event for the

| ockowner’ s sequence. For the two aforenmentioned edge conditions,
the harshest a server can be, and still support a grace period for
reclains, requires that the server record in stable storage
informati on sone minimal information. For exanple, a server

i mpl enentation could, for each client, save in stable storage a
record contai ni ng:

o the client’s id string

0 a boolean that indicates if the client’s |lease expired or if there
was adninistrative intervention (see the section, Server
Revocation of Locks) to revoke a record | ock, share reservation
or del egation

0o atimestanp that is updated the first tine after a server boot or
reboot the client acquires record | ocking, share reservation, or
del egation state on the server. The tinmestanp need not be updated
on subsequent |ock requests until the server reboots.

The server inplenentation would also record in the stable storage the
timestanps fromthe two nost recent server reboots.

Assum ng the above record keeping, for the first edge condition

after the server reboots, the record that client A's | ease expired
nmeans that another client could have acquired a conflicting record

| ock, share reservation, or delegation. Hence the server nust reject
areclaimfromclient Awith the error NFS4ERR NO GRACE.

Shepler, et al. St andards Track [Page 83]

RFC 3530 NFS version 4 Protocol April 2003

For the second edge condition, after the server reboots for a second
time, the record that the client had an unexpired record | ock, share
reservation, or delegation established before the server’s previous

i ncarnati on neans that the server nust reject a reclaimfromclient A
with the error NFS4ERR NO GRACE.

Regardl ess of the | evel and approach to record keepi ng, the server
MUST i npl enent one of the followi ng strategies (which apply to
reclaims of share reservations, record | ocks, and del egati ons):

1. Reject all reclains with NFSAERR NO GRACE. This is superharsh
but necessary if the server does not want to record | ock state
in stabl e storage.

2. Record sufficient state in stable storage such that all known
edge conditions involving server reboot, including the two
noted in this section, are detected. False positives are
acceptable. Note that at this tine, it is not knowm if there
are other edge conditions.

In the event, after a server reboot, the server determn nes that
there is unrecoverabl e damage or corruption to the the stable
storage, then for all clients and/or |ocks affected, the server
MUST return NFS4ERR _NO _GRACE.

A mandate for the client’s handling of the NFSAERR NO GRACE error is
out side the scope of this specification, since the strategies for
such handling are very dependent on the client’s operating
environnment. However, one potential approach is described bel ow.

When the client receives NFS4ERR NO GRACE, it coul d exam ne the
change attribute of the objects the client is trying to reclaimstate
for, and use that to determine whether to re-establish the state via
normal OPEN or LOCK requests. This is acceptable provided the
client’s operating environment allows it. In otherwords, the client
i npl ementor is advised to docunent for his users the behavior. The
client could also informthe application that its record | ock or
share reservations (whether they were del egated or not) have been

I ost, such as via a UNIX signal, a GUJ pop-up wi ndow, etc. See the
section, "Data Caching and Revocation" for a discussion of what the
client should do for dealing with unreclai med del egati ons on client
st at e.

For further discussion of revocation of | ocks see the section "Server
Revocati on of Locks".

Shepler, et al. St andards Track [Page 84]

RFC 3530 NFS version 4 Protocol April 2003

8.7. Recovery froma Lock Request Tinmeout or Abort

In the event a lock request tinmes out, a client nmay decide to not
retry the request. The client may al so abort the request when the
process for which it was issued is termnated (e.g., in UNIX due to a
signal). It is possible though that the server received the request
and acted upon it. This would change the state on the server w thout
the client being aware of the change. It is paranount that the
client re-synchronize state with server before it attenpts any other
operation that takes a seqid and/or a stateid with the same

| ock_owner. This is straightforward to do without a special re-
synchroni ze operation.

Since the server nmaintains the | ast |ock request and response
received on the | ock_owner, for each | ock_owner, the client should
cache the last lock request it sent such that the | ock request did
not receive a response. Fromthis, the next time the client does a
| ock operation for the lock owner, it can send the cached request, if
there is one, and if the request was one that established state
(e.g., a LOCK or OPEN operation), the server will return the cached
result or if never saw the request, performit. The client can
follow up with a request to renove the state (e.g., a LOCKU or CLCSE
operation). Wth this approach, the sequencing and stateid
information on the client and server for the given | ock _owner will
re-synchronize and in turn the lock state will re-synchronize.

8.8. Server Revocation of Locks

At any point, the server can revoke |locks held by a client and the
client nust be prepared for this event. Wen the client detects that
its |l ocks have been or nay have been revoked, the client is
responsi ble for validating the state informati on between itself and
the server. Validating |locking state for the client neans that it
must verify or reclaimstate for each lock currently held.

The first instance of lock revocation is upon server reboot or re-
initialization. In this instance the client will receive an error
(NFS4ERR_STALE STATEI D or NFSAERR STALE CLIENTID) and the client will
proceed with normal crash recovery as described in the previous
section.

The second | ock revocation event is the inability to renew the | ease
before expiration. Wile this is considered a rare or unusual event,
the client nust be prepared to recover. Both the server and client
will be able to detect the failure to renew the | ease and are capable
of recovering without data corruption. For the server, it tracks the
| ast renewal event serviced for the client and knows when the | ease
will expire. Sinmlarly, the client nust track operations which wll

Shepler, et al. St andards Track [Page 85]

RFC 3530 NFS version 4 Protocol April 2003

renew the | ease period. Using the tinme that each such request was
sent and the tinme that the corresponding reply was received, the
client should bound the tinme that the correspondi ng renewal could
have occurred on the server and thus determine if it is possible that
a |l ease period expiration could have occurred.

The third | ock revocation event can occur as a result of
administrative intervention within the | ease period. While this is
considered a rare event, it is possible that the server’s

adm ni strator has decided to rel ease or revoke a particular |ock held
by the client. As a result of revocation, the client will receive an
error of NFSAERR ADM N REVOKED. 1In this instance the client may
assune that only the lock owner’s | ocks have been lost. The client
notifies the I ock hol der appropriately. The client nay not assume
the | ease period has been renewed as a result of failed operation

When the client determ nes the | ease period may have expired, the
client nmust mark all locks held for the associ ated | ease as

"unval idated". This means the client has been unable to re-establish
or confirmthe appropriate lock state with the server. As described
in the previous section on crash recovery, there are scenarios in
whi ch the server may grant conflicting | ocks after the | ease period
has expired for a client. Wen it is possible that the | ease period
has expired, the client nust validate each lock currently held to
ensure that a conflicting |l ock has not been granted. The client may
acconplish this task by issuing an 1/ O request, either a pending I/0O
or a zero-length read, specifying the stateid associated with the
lock in question. |If the response to the request is success, the
client has validated all of the | ocks governed by that stateid and
re-established the appropriate state between itself and the server

If the I/Orequest is not successful, then one or nore of the |ocks
associated with the stateid was revoked by the server and the client
must notify the owner.

8.9. Share Reservations

A share reservation is a nechanismto control access to a file. It
is a separate and i ndependent mechani smfromrecord | ocking. Wen a
client opens a file, it issues an OPEN operation to the server

speci fying the type of access required (READ, WRI TE, or BOTH) and the
type of access to deny others (deny NONE, READ, WRITE, or BOTH). If
the OPEN fails the client will fail the application’s open request.

Pseudo-code definition of the semantics:

if (request.access == 0)
return (NFS4ERR | NVAL)

Shepler, et al. St andards Track [Page 86]

RFC 3530 NFS version 4 Protocol April 2003

el se
if ((request.access & file_state.deny)) ||
(request.deny & file_state.access))
return (NFS4ERR_DENI ED)

This checking of share reservations on OPEN is done with no exception
for an existing OPEN for the same open_owner.

The constants used for the OPEN and OPEN_DOANNGRADE operations for the
access and deny fields are as foll ows:

const OPEN4_SHARE_ACCESS READ = 0x00000001;
const OPEN4_SHARE ACCESS WRI TE = 0x00000002;
const OPEN4_SHARE ACCESS BOTH = 0x00000003;
const OPEN4_SHARE DENY_NONE = 0x00000000;
const OPEN4_SHARE DENY_READ = 0x00000001;
const OPENA_SHARE DENY_WRI TE = 0x00000002;
const OPEN4_SHARE DENY_BOTH = 0x00000003;

8.10. OPEN CLCSE Operations

To provide correct share semantics, a client MJST use the OPEN
operation to obtain the initial filehandl e and indicate the desired
access and what if any access to deny. Even if the client intends to
use a stateid of all 0's or all 1's, it nust still obtain the
filehandl e for the regular file with the OPEN operation so the
appropriate share semantics can be applied. For clients that do not
have a deny node built into their open progranm ng interfaces, deny
equal to NONE shoul d be used.

The OPEN operation with the CREATE flag, al so subsunmes the CREATE
operation for regular files as used in previous versions of the NFS
protocol. This allows a create with a share to be done atom cally.

The CLCSE operation renoves all share reservations held by the

| ock_owner on that file. |If record |ocks are held, the client SHOULD
rel ease all |ocks before issuing a CLOSE. The server MAY free all

out standi ng | ocks on CLOSE but some servers may not support the CLOSE
of a file that still has record | ocks held. The server MJST return
failure, NFSAERR _LOCKS HELD, if any |ocks would exist after the
CLOSE.

The LOOKUP operation will return a filehandl e w thout establishing

any lock state on the server. Wthout a valid stateid, the server
will assunme the client has the | east access. For exanple, a file

Shepler, et al. St andards Track [Page 87]

RFC 3530 NFS version 4 Protocol April 2003

opened wi th deny READWRI TE cannot be accessed using a fil ehandl e
obt ai ned t hrough LOOKUP because it would not have a valid stateid
(i.e., using a stateid of all bits 0 or all bits 1).

8.10.1. dose and Retention of State Infornmation

8.

Since a CLCSE operation requests deallocation of a stateid, dealing
with retransmni ssion of the CLOSE, may pose special difficulties
since the state information, which nornmally would be used to
determne the state of the open file being designated, m ght be
deal | ocated, resulting in an NFS4ERR BAD STATEI D error

Servers may deal with this problemin a nunber of ways. To provide
the greatest degree assurance that the protocol is being used
properly, a server should, rather than deallocate the stateid, nmark
it as close-pending, and retain the stateid with this status, unti

| ater deallocation. 1In this way, a retransmtted CLOSE can be
recogni zed since the stateid points to state information with this
distinctive status, so that it can be handled w thout error

When adopting this strategy, a server should retain the state
information until the earliest of:

0 Another validly sequenced request for the sane | ockowner, that is
not a retransni ssion.

o The tine that a | ockowner is freed by the server due to period
with no activity.

o Al locks for the client are freed as a result of a SETCLI ENTI D

Servers may avoid this conplexity, at the cost of |less conplete
protocol error checking, by sinply responding NFS4_OK in the event of
a CLCSE for a deallocated stateid, on the assunption that this case
nmust be caused by a retransmitted close. Wen adopting this
approach, it is desirable to at least log an error when returning a
no-error indication in this situation. |If the server maintains a
reply-cache nmechanism it can verify the CLOSE is indeed a

retransm ssion and avoid error logging in nost cases.

11. Open Upgrade and Downgr ade

When an OPEN is done for a file and the | ockowner for which the open
i s being done already has the file open, the result is to upgrade the
open file status naintai ned on the server to include the access and
deny bits specified by the new OPEN as well as those for the existing
OPEN. The result is that there is one open file, as far as the
protocol is concerned, and it includes the union of the access and

Shepler, et al. St andards Track [Page 88]

RFC 3530 NFS version 4 Protocol April 2003

deny bits for all of the OPEN requests conpleted. Only a single
CLOCSE will be done to reset the effects of both OPENs. Note that the
client, when issuing the OPEN, may not know that the same file is in
fact being opened. The above only applies if both OPENs result in
the OPENed obj ect being designated by the sane fil ehandl e.

When the server chooses to export multiple filehandles correspondi ng
to the sanme file object and returns different fil ehandl es on two
different OPENs of the sane file object, the server MJST NOT "OR'
toget her the access and deny bits and coal esce the two open files.
Instead the server must maintain separate OPENs with separate
stateids and will require separate CLOSEs to free them

Wien nultiple open files on the client are nmerged into a single open
file object on the server, the close of one of the open files (on the
client) may necessitate change of the access and deny status of the
open file on the server. This is because the union of the access and
deny bits for the remaining opens nmay be smaller (i.e., a proper
subset) than previously. The OPEN_DOMGRADE operation is used to
make t he necessary change and the client should use it to update the
server so that share reservation requests by other clients are
handl ed properly.

8.12. Short and Long Leases

Wien deternining the time period for the server |ease, the usua

| ease tradeoffs apply. Short |eases are good for fast server
recovery at a cost of increased RENEWor READ (with zero | ength)
requests. Longer |eases are certainly kinder and gentler to servers
trying to handle very large nunbers of clients. The nunber of RENEW
requests drop in proportion to the lease tinme. The di sadvantages of
Il ong | eases are slower recovery after server failure (the server nust
wait for the | eases to expire and the grace period to el apse before
granting new | ock requests) and increased file contention (if client
fails to transmt an unl ock request then server nust wait for |ease
expiration before granting new | ocks).

Long | eases are usable if the server is able to store lease state in
non-vol atile menory. Upon recovery, the server can reconstruct the
| ease state fromits non-volatile nmenory and continue operation with
its clients and therefore I ong | eases would not be an issue.

8.13. O ocks, Propagation Delay, and Cal cul ati ng Lease Expiration
To avoid the need for synchroni zed cl ocks, | ease tinmes are granted by
the server as a tinme delta. However, there is a requirenent that the

client and server clocks do not drift excessively over the duration
of the lock. There is also the issue of propagation delay across the

Shepler, et al. St andards Track [Page 89]

RFC 3530 NFS version 4 Protocol April 2003

networ k which could easily be several hundred milliseconds as well as
the possibility that requests will be lost and need to be
retransmtted

To take propagation delay into account, the client should subtract it

fromlease tines (e.g., if the client estimtes the one-way
propagati on delay as 200 nsec, then it can assune that the |lease is
al ready 200 nsec old when it gets it). |In addition, it will take

anot her 200 nsec to get a response back to the server. So the client
must send a lock renewal or wite data back to the server 400 nsec
before the | ease woul d expire.

The server’s | ease period configuration should take into account the
network di stance of the clients that will be accessing the server’s
resources. It is expected that the |ease period will take into
account the network propagation delays and ot her network del ay
factors for the client population. Since the protocol does not allow
for an automatic nethod to determ ne an appropriate | ease period, the
server’s adm ni strator may have to tune the | ease period

8.14. Mgration, Replication and State

When responsibility for handling a given file systemis transferred
to a new server (mgration) or the client chooses to use an alternate

server (e.g., in response to server unresponsiveness) in the context
of file systemreplication, the appropriate handling of state shared
between the client and server (i.e., locks, |eases, stateids, and

clientids) is as described below. The handling differs between
mgration and replication. For related discussion of file server
state and recover of such see the sections under "File Locking and
Share Reservations"

If server replica or a server inmrigrating a filesystem agrees to, or
is expected to, accept opaque values fromthe client that originated
fromanother server, then it is a wise inplenmentation practice for
the servers to encode the "opaque" values in network byte order

This way, servers acting as replicas or immgrating filesystens wll
be able to parse values |like stateids, directory cookies,
filehandl es, etc. even if their native byte order is different from
other servers cooperating in the replication and mgration of the
filesystem

8.14.1. Mgration and State
In the case of migration, the servers involved in the mgration of a
filesystem SHOULD transfer all server state fromthe original to the

new server. This nust be done in a way that is transparent to the
client. This state transfer will ease the client’s transition when a

Shepler, et al. St andards Track [Page 90]

RFC 3530 NFS version 4 Protocol April 2003

filesystemmgration occurs. |If the servers are successful in
transferring all state, the client will continue to use stateids
assigned by the original server. Therefore the new server nust
recogni ze these stateids as valid. This holds true for the clientid
as well. Since responsibility for an entire filesystemis
transferred with a nmigration event, there is no possibility that
conflicts will arise on the new server as a result of the transfer of
| ocks.

As part of the transfer of information between servers, |eases would
be transferred as well. The |eases being transferred to the new
server will typically have a different expiration time fromthose for
the sane client, previously on the old server. To naintain the
property that all |eases on a given server for a given client expire
at the sane tine, the server should advance the expiration tine to
the later of the | eases being transferred or the | eases already
present. This allows the client to maintain | ease renewal of both

cl asses w thout special effort.

The servers may choose not to transfer the state information upon
mgration. However, this choice is discouraged. |In this case, when
the client presents state information fromthe original server, the
client nmust be prepared to receive either NFS4ERR STALE CLI ENTID or
NFSAERR _STALE STATEID fromthe new server. The client should then
recover its state infornation as it nornmally would in response to a
server failure. The new server nust take care to allow for the
recovery of state information as it would in the event of server
restart.

8.14.2. Replication and State

Since client switch-over in the case of replication is not under
server control, the handling of state is different. |In this case

| eases, stateids and clientids do not have validity across a
transition fromone server to another. The client nust re-establish
its locks on the new server. This can be conpared to the re-
establ i shnent of |ocks by neans of reclaimtype requests after a
server reboot. The difference is that the server has no provision to
di stingui sh requests reclaimng |ocks fromthose obtaining new | ocks
or to defer the latter. Thus, a client re-establishing a | ock on the
new server (by neans of a LOCK or OPEN request), may have the
requests denied due to a conflicting lock. Since replication is

i ntended for read-only use of filesystens, such denial of |ocks
shoul d not pose large difficulties in practice. Wen an attenpt to
re-establish a lock on a new server is denied, the client should
treat the situation as if his original |ock had been revoked.

Shepler, et al. St andards Track [Page 91]

RFC 3530 NFS version 4 Protocol April 2003

8.14.3. Notification of Mgrated Lease

In the case of |ease renewal, the client may not be subnmitting
requests for a filesystemthat has been migrated to another server.
This can occur because of the inplicit |ease renewal nechanism The
client renews | eases for all filesystens when subnitting a request to
any one fil esystemat the server.

In order for the client to schedule renewal of |eases that may have
been rel ocated to the new server, the client nmust find out about

| ease rel ocation before those | eases expire. To acconplish this, all
operations which inplicitly renew |l eases for a client (i.e., OPEN,
CLCSE, READ, WRI TE, RENEW LOCK, LOCKT, LOCKU), will return the error
NFS4ERR_LEASE MOVED i f responsibility for any of the | eases to be
renewed has been transferred to a new server. This condition will
continue until the client receives an NFS4ERR MOVED error and the
server receives the subsequent GETATTR(fs_locations) for an access to
each filesystemfor which a | ease has been noved to a new server

Wien a client receives an NFS4ERR LEASE MOVED error, it should
perform an operation on each filesystem associated with the server in
question. \When the client receives an NFS4ERR MOVED error, the
client can follow the normal process to obtain the new server
information (through the fs |locations attribute) and performrenewal
of those | eases on the new server. |f the server has not had state
transferred to it transparently, the client will receive either
NFS4ERR_STALE_CLI ENTI D or NFS4ERR _STALE STATEID fromthe new server,
as described above, and the client can then recover state information
as it does in the event of server failure.

8.14.4. Mgration and the Lease tine Attribute

In order that the client may appropriately nmanage its |leases in the
case of migration, the destination server nmust establish proper
val ues for the lease tine attribute.

When state is transferred transparently, that state should include
the correct value of the lease tinme attribute. The lease tine
attribute on the destination server nust never be less than that on
the source since this would result in premature expiration of |eases
granted by the source server. Upon migration in which state is
transferred transparently, the client is under no obligation to re-
fetch the lease tinme attribute and nmay continue to use the val ue
previously fetched (on the source server).

If state has not been transferred transparently (i.e., the client

sees a real or sinulated server reboot), the client should fetch the
val ue of lease tinme on the new (i.e., destination) server, and use it

Shepler, et al. St andards Track [Page 92]

RFC 3530 NFS version 4 Protocol April 2003

for subsequent |ocking requests. However the server nust respect a
grace period at least as long as the lease time on the source server
in order to ensure that clients have anple tinme to reclaimtheir

| ocks before potentially conflicting non-reclained | ocks are granted.
The means by which the new server obtains the value of |ease_tine on
the old server is left to the server inplenentations. It is not
specified by the NFS version 4 protocol

9. dient-Side Caching

Cient-side caching of data, of file attributes, and of file nanes is
essential to providing good perfornmance with the NFS protocol

Provi ding distributed cache coherence is a difficult problem and
previ ous versions of the NFS protocol have not attenpted it.

I nstead, several NFS client inplenentation techni ques have been used
to reduce the problens that a | ack of coherence poses for users.
These techni ques have not been clearly defined by earlier protoco
specifications and it is often unclear what is valid or invalid
client behavior.

The NFS version 4 protocol uses nany techniques sinmlar to those that
have been used in previous protocol versions. The NFS version 4

prot ocol does not provide distributed cache coherence. However, it
defines a nore linited set of caching guarantees to all ow | ocks and
share reservations to be used wi thout destructive interference from
client side caching.

In addition, the NFS version 4 protocol introduces a del egation
mechani sm whi ch al |l ows many deci sions nornmally made by the server to
be made locally by clients. This mechani sm provides efficient
support of the conmon cases where sharing is infrequent or where
sharing is read-only.

9.1. Performance Chall enges for Cient-Side Caching

Cachi ng techni ques used in previous versions of the NFS protocol have
been successful in providing good perfornmance. However, severa
scalability challenges can arise when those techni ques are used with
very large nunbers of clients. This is particularly true when
clients are geographically distributed which classically increases
the | atency for cache revalidation requests.

The previous versions of the NFS protocol repeat their file data
cache validation requests at the tinme the file is opened. This
behavi or can have serious performance drawbacks. A conmon case is
one in which a file is only accessed by a single client. Therefore,
sharing is infrequent.

Shepler, et al. St andards Track [Page 93]

RFC 3530 NFS version 4 Protocol April 2003

In this case, repeated reference to the server to find that no
conflicts exist is expensive. A better option with regards to
performance is to allow a client that repeatedly opens a file to do
so without reference to the server. This is done until potentially
conflicting operations fromanother client actually occur

A simlar situation arises in connection with file locking. Sending
file lock and unl ock requests to the server as well as the read and
write requests necessary to nake data caching consistent with the

| ocki ng semantics (see the section "Data Caching and File Locking")
can severely limt performance. Wen locking is used to provide
protection against infrequent conflicts, a large penalty is incurred.
This penalty may di scourage the use of file |ocking by applications.

The NFS version 4 protocol provides nore aggressive caching
strategies with the foll owi ng desi gn goal s:

0 Conpatibility with a large range of server semantics

o Provide the sane caching benefits as previous versions of the NFS
protocol when unable to provide the nore aggressive nodel

0 Requirements for aggressive caching are organized so that a |l arge
portion of the benefit can be obtai ned even when not all of the
requi renents can be net.

The appropriate requirenents for the server are discussed in later
sections in which specific forns of caching are covered. (see the
section "QOpen Del egation").

9.2. Delegation and Cal | backs

Recal | abl e del egati on of server responsibilities for a file to a
client inproves perfornmance by avoiding repeated requests to the
server in the absence of inter-client conflict. Wth the use of a
"cal | back" RPC from server to client, a server recalls del egated
responsi bilities when another client engages in sharing of a

del egated file.

A del egation is passed fromthe server to the client, specifying the
obj ect of the delegation and the type of delegation. There are
different types of delegations but each type contains a stateid to be
used to represent the del egati on when perfornm ng operations that
depend on the delegation. This stateid is simlar to those

associ ated with |l ocks and share reservations but differs in that the
stateid for a delegation is associated with a clientid and may be

Shepler, et al. St andards Track [Page 94]

RFC 3530 NFS version 4 Protocol April 2003

used on behal f of all the open_owners for the given client. A
del egation is nade to the client as a whole and not to any specific
process or thread of control within it

Because cal | back RPCs may not work in all environnments (due to
firewalls, for exanple), correct protocol operation does not depend
on them Prelimnary testing of callback functionality by neans of a
CB_NULL procedure deternines whether callbacks can be supported. The
CB_NULL procedure checks the continuity of the callback path. A
server makes a prelimnminary assessnent of callback availability to a
given client and avoids del egating responsibilities until it has
determ ned that call backs are supported. Because the granting of a
del egation is always conditional upon the absence of conflicting
access, clients nmust not assume that a delegation will be granted and
they must al ways be prepared for OPENs to be processed without any
del egati ons bei ng granted.

Once granted, a del egati on behaves in nost ways |like a |lock. There
is an associated |lease that is subject to renewal together with al
of the other |eases held by that client.

Unli ke | ocks, an operation by a second client to a delegated file
wi |l cause the server to recall a delegation through a call back

On recall, the client holding the del egation nust flush nodified
state (such as nodified data) to the server and return the

del egation. The conflicting request will not receive a response
until the recall is conplete. The recall is considered conplete when
the client returns the del egation or the server tines out on the
recall and revokes the delegation as a result of the tineout.
Fol I owi ng the resolution of the recall, the server has the

i nformati on necessary to grant or deny the second client’s request.

At the time the client receives a delegation recall, it may have
substantial state that needs to be flushed to the server. Therefore,
the server should allow sufficient tine for the del egation to be
returned since it nmay involve nunerous RPCs to the server. |If the
server is able to deternine that the client is diligently flushing
state to the server as a result of the recall, the server may extend
the usual time allowed for a recall. However, the tine allowed for
recall conpletion should not be unbounded.

An exanple of this is when responsibility to nediate opens on a given
file is delegated to a client (see the section "Open Del egation").
The server will not know what opens are in effect on the client.
Wthout this know edge the server will be unable to deternmine if the
access and deny state for the file allows any particul ar open unti
the delegation for the file has been returned.

Shepler, et al. St andards Track [Page 95]

RFC 3530 NFS version 4 Protocol April 2003

Aclient failure or a network partition can result in failure to

respond to a recall callback. 1In this case, the server will revoke
the del egation which in turn will render useless any nodified state
still on the client.

9.2.1. Delegation Recovery
There are three situations that del egation recovery nmust deal with
0 Cient reboot or restart
0 Server reboot or restart
o] Network partition (full or callback-only)

In the event the client reboots or restarts, the failure to renew
leases will result in the revocation of record | ocks and share
reservations. Delegations, however, nmay be treated a bit
differently.

There will be situations in which delegations will need to be
reestablished after a client reboots or restarts. The reason for
this is the client may have file data stored locally and this data
was associated with the previously held delegations. The client will
need to reestablish the appropriate file state on the server

To allow for this type of client recovery, the server MAY extend the
period for del egation recovery beyond the typical |ease expiration
period. This inplies that requests fromother clients that conflict
with these delegations will need to wait. Because the nornal recal
process may require significant time for the client to flush changed
state to the server, other clients need be prepared for delays that
occur because of a conflicting delegation. This |longer interva
woul d i ncrease the window for clients to reboot and consult stable
storage so that the del egati ons can be reclainmed. For open

del egati ons, such delegations are reclained using OPEN with a claim
type of CLAI M DELEGATE PREV. (See the sections on "Data Caching and
Revocation" and "Operation 18: OPEN' for discussion of open

del egation and the details of OPEN respectively).

A server MAY support a claimtype of CLAI M DELEGATE PREV, but if it
does, it MUST NOT renove del egati ons upon SETCLI ENTI D CONFI RM and

i nstead MJUST, for a period of tinme no less than that of the value of
the lease_time attribute, maintain the client’s delegations to allow
time for the client to i ssue CLAI M DELEGATE _PREV requests. The
server that supports CLAI M DELEGATE _PREV MUST support the DELEGPURCGE
operati on.

Shepler, et al. St andards Track [Page 96]

RFC 3530 NFS version 4 Protocol April 2003

When the server reboots or restarts, delegations are reclained (using
the OPEN operation with CLAIMPREVIOUS) in a simlar fashion to
record | ocks and share reservations. However, there is a slight
semantic difference. In the normal case if the server decides that a
del egation should not be granted, it perforns the requested action
(e.g., OPEN) without granting any delegation. For reclaim the
server grants the delegation but a special designation is applied so
that the client treats the del egation as having been granted but
recalled by the server. Because of this, the client has the duty to
wite all nodified state to the server and then return the

del egation. This process of handling del egation reclaimreconciles
three principles of the NFS version 4 protocol

o Upon reclaim a client reporting resources assigned to it by an
earlier server instance nust be granted those resources.

0o The server has unquestionable authority to detern ne whether
del egations are to be granted and, once granted, whether they are
to be continued.

0 The use of callbacks is not to be depended upon until the client
has proven its ability to receive them

When a network partition occurs, delegations are subject to freeing
by the server when the | ease renewal period expires. This is simlar
to the behavior for |ocks and share reservations. For del egations,
however, the server may extend the period in which conflicting
requests are held off. Eventually the occurrence of a conflicting
request from another client will cause revocation of the del egation
A loss of the callback path (e.g., by later network configuration
change) will have the sanme effect. A recall request will fail and
revocation of the delegation will result.

A client normally finds out about revocation of a del egation when it
uses a stateid associated with a del egation and receives the error
NFSAERR EXPIRED. It also may find out about del egation revocation
after a client reboot when it attenpts to reclaima del egation and
receives that same error. Note that in the case of a revoked wite
open del egation, there are issues because data rmay have been nodified
by the client whose delegation is revoked and separately by other
clients. See the section "Revocation Recovery for Wite Open

Del egation” for a discussion of such issues. Note also that when
del egations are revoked, infornmation about the revoked del egation
will be witten by the server to stable storage (as described in the
section "Crash Recovery"). This is done to deal with the case in
whi ch a server reboots after revoking a del egation but before the
client holding the revoked delegation is notified about the
revocati on.

Shepler, et al. St andards Track [Page 97]

RFC 3530 NFS version 4 Protocol April 2003

9.3. Data Caching

When applications share access to a set of files, they need to be

i npl emented so as to take account of the possibility of conflicting
access by another application. This is true whether the applications
in question execute on different clients or reside on the sanme
client.

Share reservations and record |ocks are the facilities the NFS
version 4 protocol provides to allow applications to coordinate
access by providing nutual exclusion facilities. The NFS version 4
protocol's data caching nust be inplenented such that it does not

i nval i date the assunptions that those using these facilities depend
upon.

9.3.1. Data Caching and OPENs

In order to avoid invalidating the sharing assunptions that
applications rely on, NFS version 4 clients should not provide cached
data to applications or nodify it on behalf of an application when it
woul d not be valid to obtain or nodify that same data via a READ or
VWRI TE operation

Furthernore, in the absence of open del egation (see the section "Open
Del egation”) two additional rules apply. Note that these rules are
obeyed in practice by many NFS version 2 and version 3 clients.

o First, cached data present on a client nust be revalidated after
doing an OPEN. Revalidating nmeans that the client fetches the
change attribute fromthe server, conpares it with the cached
change attribute, and if different, declares the cached data (as
well as the cached attributes) as invalid. This is to ensure that
the data for the OPENed file is still correctly reflected in the
client’s cache. This validation nust be done at |east when the
client’s OPEN operation includes DENY=WRI TE or BOTH t hus
termnating a period in which other clients may have had the
opportunity to open the file with WRITE access. Cients nmay
choose to do the revalidation nore often (i.e., at OPENs
speci fying DENY=NONE) to parallel the NFS version 3 protocol’s
practice for the benefit of users assuming this degree of cache
reval i dati on.

Since the change attribute is updated for data and netadata

nmodi fications, sonme client inplenmentors nmay be tenpted to use the
time_nodify attribute and not change to validate cached data, so
that metadata changes do not spuriously invalidate clean data.
The inplementor is cautioned in this approach. The change
attribute is guaranteed to change for each update to the file,

Shepler, et al. St andards Track [Page 98]

RFC 3530 NFS version 4 Protocol April 2003

9.

3.

whereas tinme_nodify is guaranteed to change only at the
granularity of the time_delta attribute. Use by the client’s data
cache validation logic of time_nodify and not change runs the risk
of the client incorrectly marking stale data as valid.

0 Second, nodified data nust be flushed to the server before closing
a file OPENed for wite. This is conplenentary to the first rule.
If the data is not flushed at CLOSE, the revalidation done after
client OPENs as file is unable to achieve its purpose. The other
aspect to flushing the data before close is that the data nmust be
committed to stable storage, at the server, before the CLOSE
operation is requested by the client. 1In the case of a server
reboot or restart and a CLOSEd file, it may not be possible to
retransnmit the data to be witten to the file. Hence, this
requirenent.

2. Data Caching and File Locking

For those applications that choose to use file |ocking instead of
share reservations to exclude inconsistent file access, there is an
anal ogous set of constraints that apply to client side data caching.
These rules are effective only if the file locking is used in a way
that matches in an equival ent way the actual READ and WRI TE
operations executed. This is as opposed to file locking that is
based on pure convention. For exanple, it is possible to manipulate
a two-negabyte file by dividing the file into two one-negabyte

regi ons and protecting access to the two regions by file | ocks on
bytes zero and one. A lock for wite on byte zero of the file would
represent the right to do READ and WRI TE operations on the first
region. A lock for wite on byte one of the file would represent the
right to do READ and WRI TE operations on the second region. As |ong
as all applications manipulating the file obey this convention, they
will work on a local filesystem However, they may not work with the
NFS version 4 protocol unless clients refrain from data cachi ng.

The rules for data caching in the file |ocking environnent are:

o First, when a client obtains a file lock for a particular region
the data cache corresponding to that region (if any cached data
exi sts) nust be revalidated. |If the change attribute indicates
that the file may have been updated since the cached data was
obt ai ned, the client nust flush or invalidate the cached data for
the newly |l ocked region. A client night choose to invalidate al
of non-nodified cached data that it has for the file but the only
requi renent for correct operation is to invalidate all of the data
in the newy | ocked region

Shepler, et al. St andards Track [Page 99]

RFC 3530 NFS version 4 Protocol April 2003

0 Second, before releasing a wite lock for a region, all nodified
data for that region nust be flushed to the server. The nodified
data nust also be witten to stable storage.

Note that flushing data to the server and the invalidation of cached
data nust reflect the actual byte ranges | ocked or unl ocked.
Roundi ng these up or down to reflect client cache bl ock boundaries
will cause problens if not carefully done. For exanple, witing a
nodi fied bl ock when only half of that block is within an area being
unl ocked may cause invalid nodification to the regi on outside the
unl ocked area. This, in turn, may be part of a region | ocked by
another client. dients can avoid this situation by synchronously
performng portions of wite operations that overlap that portion
(initial or final) that is not a full block. Simlarly, invalidating
a |l ocked area which is not an integral nunmber of full buffer blocks
woul d require the client to read one or two partial blocks fromthe
server if the revalidation procedure shows that the data which the
client possesses nay not be valid.

The data that is witten to the server as a prerequisite to the

unl ocki ng of a region nust be witten, at the server, to stable
storage. The client may acconplish this either with synchronous
writes or by follow ng asynchronous wites with a COWM T operation
This is required because retransnission of the nodified data after a
server reboot mght conflict with a | ock held by another client.

A client inplenentation may choose to accomodate applications which
use record | ocking in non-standard ways (e.g., using a record | ock as
a gl obal semaphore) by flushing to the server nore data upon an LOCKU
than is covered by the | ocked range. This may include nodified data
within files other than the one for which the unl ocks are bei ng done.
In such cases, the client nust not interfere with applications whose
READs and WRI TEs are being done only within the bounds of record

| ocks which the application holds. For exanple, an application |ocks
a single byte of a file and proceeds to wite that single byte. A
client that chose to handle a LOCKU by flushing all nodified data to
the server could validly wite that single byte in response to an
unrel ated unl ock. However, it would not be valid to wite the entire
bl ock in which that single witten byte was |ocated since it includes
an area that is not |ocked and m ght be | ocked by another client.
Cient inplenentations can avoid this problemby dividing files with
nodi fied data into those for which all nodifications are done to
areas covered by an appropriate record |l ock and those for which there
are nodifications not covered by a record | ock. Any wites done for
the former class of files must not include areas not |ocked and thus
not nodified on the client.

Shepler, et al. St andards Track [Page 100]

RFC 3530 NFS version 4 Protocol April 2003

9.3.3. Data Caching and Mandatory File Locking

Client side data caching needs to respect nmandatory file | ocking when
it isin effect. The presence of mandatory file locking for a given
file is indicated when the client gets back NFS4ERR LOCKED from a
READ or WRITE on a file it has an appropriate share reservation for.
When mandatory locking is in effect for a file, the client nust check

for an appropriate file lock for data being read or witten. If a
| ock exists for the range being read or witten, the client may
satisfy the request using the client’s validated cache. |If an

appropriate file lock is not held for the range of the read or wite,
the read or wite request nmust not be satisfied by the client’s cache
and the request nmust be sent to the server for processing. Wen a
read or wite request partially overlaps a | ocked region, the request
shoul d be subdivided into nultiple pieces with each region (locked or
not) treated appropriately.

9.3.4. Data Caching and File Identity

Wien clients cache data, the file data needs to be organized
according to the filesystemobject to which the data bel ongs. For
NFS version 3 clients, the typical practice has been to assune for
t he purpose of caching that distinct filehandl es represent distinct
filesystemobjects. The client then has the choice to organi ze and
mai ntain the data cache on this basis.

In the NFS version 4 protocol, there is now the possibility to have
significant deviations froma "one fil ehandl e per object" node
because a fil ehandl e may be constructed on the basis of the object’s
pat hnane. Therefore, clients need a reliable nethod to deternmine if
two filehandl es designate the sane filesystemobject. |If clients
were sinply to assume that all distinct filehandl es denote distinct
obj ects and proceed to do data caching on this basis, caching

i nconsi stencies would arise between the distinct client side objects
whi ch mapped to the sanme server side object.

By providing a nethod to differentiate fil ehandles, the NFS version 4
protocol alleviates a potential functional regression in conparison
with the NFS version 3 protocol. Wthout this nethod, caching

i nconsistencies within the same client could occur and this has not
been present in previous versions of the NFS protocol. Note that it
is possible to have such inconsistencies with applications executing
on multiple clients but that is not the issue being addressed here.

For the purposes of data caching, the follow ng steps allow an NFS

version 4 client to determ ne whether two distinct fil ehandl es denote
the sane server side object:

Shepler, et al. St andards Track [Page 101]

RFC 3530 NFS version 4 Protocol April 2003

o |If GETATTR directed to two filehandles returns different val ues of
the fsid attribute, then the filehandl es represent distinct
obj ect s.

o |If GETATTR for any file with an fsid that matches the fsid of the
two filehandles in question returns a unique_handles attribute
with a value of TRUE, then the two objects are distinct.

o |If GETATTR directed to the two fil ehandl es does not return the
fileid attribute for both of the handles, then it cannot be
determ ned whether the two objects are the sane. Therefore,
operations which depend on that knowl edge (e.g., client side data
cachi ng) cannot be done reliably.

o |If GETATTR directed to the two filehandles returns different
values for the fileid attribute, then they are distinct objects.

0 Oherwi se they are the sane object.
Open Del egati on

When a file is being OPENed, the server may del egate further handling
of opens and closes for that file to the opening client. Any such
del egation is recallable, since the circunstances that all owed for
the del egation are subject to change. |n particular, the server nay
receive a conflicting OPEN from another client, the server nust
recall the del egation before deciding whether the OPEN fromthe other
client may be granted. Making a delegation is up to the server and
clients should not assume that any particular OPEN either will or
will not result in an open delegation. The following is a typica

set of conditions that servers night use in deciding whether OPEN
shoul d be del egat ed:

o0 The client nust be able to respond to the server’s call back
requests. The server will use the CB_NULL procedure for a test of
cal | back ability.

o The client nust have responded properly to previous recalls.

o There nust be no current open conflicting with the requested
del egati on.

0 There should be no current delegation that conflicts with the
del egati on bei ng request ed.

0 The probability of future conflicting open requests should be | ow
based on the recent history of the file.

Shepler, et al. St andards Track [Page 102]

RFC 3530 NFS version 4 Protocol April 2003

0 The existence of any server-specific semantics of OPEN CLOSE t hat
woul d make the required handling inconpatible with the prescribed
handl i ng that the del egated client would apply (see bel ow).

There are two types of open del egations, read and wite. A read open
del egation allows a client to handle, on its own, requests to open a
file for reading that do not deny read access to others. Miltiple
read open del egati ons may be outstandi ng sinultaneously and do not
conflict. A wite open delegation allows the client to handle, on
its own, all opens. Only one wite open delegation may exist for a
given file at a given time and it is inconsistent with any read open
del egati ons.

When a client has a read open delegation, it nay not nake any changes
to the contents or attributes of the file but it is assured that no
other client may do so. Wen a client has a wite open del egation

it my nodify the file data since no other client will be accessing
the file's data. The client holding a wite del egation may only
affect file attributes which are intimately connected with the file
data: size, tinme_nodify, change

When a client has an open del egation, it does not send OPENs or
CLOSEs to the server but updates the appropriate status internally.
For a read open del egation, opens that cannot be handled |ocally
(opens for wite or that deny read access) nust be sent to the
server.

When an open del egation is nmade, the response to the OPEN contains an
open del egation structure which specifies the foll ow ng:

o the type of delegation (read or wite)

0 space limtation information to control flushing of data on cl ose
(wite open delegation only, see the section "Open Del egati on and
Dat a Cachi ng")

o an nfsace4 specifying read and wite perm ssions

0 a stateid to represent the del egation for READ and WRI TE

The del egation stateid is separate and distinct fromthe stateid for

the OPEN proper. The standard stateid, unlike the del egation

stateid, is associated with a particular | ock ower and will continue

to be valid after the delegation is recalled and the file remains
open.

Shepler, et al. St andards Track [Page 103]

RFC 3530 NFS version 4 Protocol April 2003

9. 4.

She

When a request internal to the client is nade to open a file and open
del egation is in effect, it will be accepted or rejected solely on
the basis of the follow ng conditions. Any requirenment for other
checks to be nmade by the del egate should result in open del egation
bei ng deni ed so that the checks can be nade by the server itself.

0 The access and deny bits for the request and the file as described
in the section "Share Reservations"

0 The read and wite pernissions as deternined bel ow

The nfsaced4 passed with del egation can be used to avoid frequent
ACCESS calls. The perm ssion check should be as foll ows:

o |If the nfsaced4 indicates that the open may be done, then it should
be granted w thout reference to the server.

o |If the nfsaced indicates that the open nay not be done, then an
ACCESS request nust be sent to the server to obtain the definitive
answer .

The server may return an nfsaced4 that is nore restrictive than the
actual ACL of the file. This includes an nfsace4 that specifies
denial of all access. Note that sone common practices such as
mappi ng the traditional user "root" to the user "nobody" nay nmake it
incorrect to return the actual ACL of the file in the del egation
response.

The use of delegation together with various other forns of caching
creates the possibility that no server authentication will ever be
performed for a given user since all of the user’s requests mght be
satisfied locally. Were the client is depending on the server for
aut hentication, the client should be sure authentication occurs for
each user by use of the ACCESS operation. This should be the case
even if an ACCESS operation would not be required otherw se. As
menti oned before, the server may enforce frequent authentication by
returning an nfsaced4 denying all access with every open del egation

1. Open Delegation and Data Caching

OPEN del egation allows much of the nessage overhead associated with
the opening and closing files to be elimnated. An open when an open
del egation is in effect does not require that a validation nessage be
sent to the server. The continued endurance of the "read open

del egation" provides a guarantee that no OPEN for wite and thus no
write has occurred. Simlarly, when closing a file opened for wite
and if wite open delegation is in effect, the data witten does not
have to be flushed to the server until the open delegation is

pler, et al. St andards Track [Page 104]

RFC 3530 NFS version 4 Protocol April 2003

recall ed. The continued endurance of the open del egation provides a
guarantee that no open and thus no read or wite has been done by
anot her client.

For the purposes of open del egati on, READs and WRI TEs done w t hout an
OPEN are treated as the functional equivalents of a corresponding
type of OPEN. This refers to the READs and WRI TEs t hat use the
special stateids consisting of all zero bits or all one bits.
Therefore, READs or WRITEs with a special stateid done by another
client will force the server to recall a wite open delegation. A
WRITE with a special stateid done by another client will force a
recall of read open del egations.

Wth delegations, a client is able to avoid witing data to the
server when the CLOSE of a file is serviced. The file close system
call is the usual point at which the client is notified of a | ack of
stable storage for the nodified file data generated by the
application. At the close, file data is witten to the server and

t hrough nornmal accounting the server is able to deternine if the
avail able fil esystem space for the data has been exceeded (i.e.
server returns NFS4ERR _NOSPC or NFS4ERR DQUOT). This accounting

i ncludes quotas. The introduction of delegations requires that a
alternative nethod be in place for the sane type of conmunication to
occur between client and server

In the del egati on response, the server provides either the limt of
the size of the file or the nunber of nodified bl ocks and associ ated
bl ock size. The server nust ensure that the client will be able to
flush data to the server of a size equal to that provided in the
original delegation. The server nust nake this assurance for al

out st andi ng del egations. Therefore, the server nust be careful in
its managenent of avail able space for new or nodified data taking
into account available fil esystem space and any applicabl e quotas.
The server can recall delegations as a result of managi ng the

avail able fil esystem space. The client should abide by the server’s
state space limts for delegations. |If the client exceeds the stated
limts for the delegation, the server’s behavior is undefined.

Based on server conditions, quotas or available filesystem space, the
server may grant wite open del egations with very restrictive space
limtations. The limtations may be defined in a way that will

al ways force nodified data to be flushed to the server on close

Wth respect to authentication, flushing nodified data to the server
after a CLOSE has occurred may be problematic. For exanple, the user
of the application may have | ogged off the client and unexpired

aut hentication credentials may not be present. In this case, the
client may need to take special care to ensure that |ocal unexpired

Shepler, et al. St andards Track [Page 105]

RFC 3530 NFS version 4 Protocol April 2003

credentials will in fact be available. This may be acconplished by
tracking the expiration tine of credentials and flushing data well in
advance of their expiration or by nmaking private copies of
credentials to assure their availability when needed.

9.4.2. (Qpen Delegation and File Locks

When a client holds a wite open del egation, |ock operations nay be
performed locally. This includes those required for nmandatory file
| ocking. This can be done since the delegation inplies that there
can be no conflicting locks. Simlarly, all of the revalidations
that would nornally be associated with obtaining | ocks and the
flushing of data associated with the rel easing of |ocks need not be
done.

When a client holds a read open del egation, |ock operations are not
performed locally. Al |ock operations, including those requesting
non- excl usive | ocks, are sent to the server for resolution

9.4.3. Handling of CB_GETATTR

The server needs to enploy special handling for a GETATTR where the
target is a file that has a wite open delegation in effect. The
reason for this is that the client holding the wite del egati on may
have nodified the data and the server needs to reflect this change to
the second client that subnmitted the GETATTR. Therefore, the client
hol ding the wite del egation needs to be interrogated. The server
will use the CB_GETATTR operation. The only attributes that the
server can reliably query via CB_GETATTR are size and change

Since CB GETATTR is being used to satisfy another client’s GETATTR
request, the server only needs to know if the client holding the

del egation has a nodified version of the file. |If the client’s copy
of the delegated file is not nodified (data or size), the server can
satisfy the second client’s GETATTR request fromthe attributes
stored locally at the server. |If the file is nodified, the server
only needs to know about this nodified state. |f the server
deternmines that the file is currently nodified, it will respond to
the second client’s CETATTR as if the file had been nodified |ocally
at the server.

Since the formof the change attribute is deternined by the server
and is opaque to the client, the client and server need to agree on a
met hod of communi cating the nodified state of the file. For the size
attribute, the client will report its current view of the file size.

For the change attribute, the handling is nore involved.

Shepler, et al. St andards Track [Page 106]

RFC 3530 NFS version 4 Protocol April 2003

For the client, the following steps will be taken when receiving a
wite del egation

o The value of the change attribute will be obtained fromthe server
and cached. Let this value be represented by c.

0o The client will create a value greater than ¢ that will be used
for conmunicating nodified data is held at the client. Let this
val ue be represented by d.

o When the client is queried via CB _GETATTR for the change

attribute, it checks to see if it holds nodified data. |f the
file is nodified, the value d is returned for the change attribute
value. If this file is not currently nodified, the client returns

the value ¢ for the change attribute.

For simplicity of inplenmentation, the client MAY for each CB_GETATTR
return the same value d. This is true even if, between successive
CB CETATTR operations, the client again nodifies in the file's data
or metadata in its cache. The client can return the same val ue
because the only requirenent is that the client be able to indicate
to the server that the client holds nodified data. Therefore, the
value of d may always be ¢ + 1

Wil e the change attribute is opaque to the client in the sense that
it has no idea what units of tine, if any, the server is counting
change with, it is not opaque in that the client has to treat it as
an unsigned integer, and the server has to be able to see the results
of the client’s changes to that integer. Therefore, the server MJST
encode the change attribute in network order when sending it to the
client. The client MJST decode it fromnetwork order to its native
order when receiving it and the client MJUST encode it network order
when sending it to the server. For this reason, change is defined as
an unsigned integer rather than an opaque array of octets.

For the server, the following steps will be taken when providing a
wite del egation

o Upon providing a wite delegation, the server will cache a copy of
the change attribute in the data structure it uses to record the
del egation. Let this value be represented by sc.

0 Wien a second client sends a GETATTR operation on the sanme file to

the server, the server obtains the change attribute fromthe first
client. Let this value be cc.

Shepler, et al. St andards Track [Page 107]

RFC 3530 NFS version 4 Protocol April 2003

o If the value cc is equal to sc, the file is not nodified and the
server returns the current values for change, tine_netadata, and
time_nodify (for exanple) to the second client.

o If the value cc is NOT equal to sc, the file is currently nodified
at the first client and nost likely will be nodified at the server
at a future tine. The server then uses its current tine to
construct attribute values for time_netadata and time_nodify. A
new val ue of sc, which we will call nsc, is conputed by the
server, such that nsc >= sc + 1. The server then returns the
constructed tine_netadata, tinme_nodify, and nsc values to the
requester. The server replaces sc in the delegation record with
nsc. To prevent the possibility of tine_nodify, tinme_netadata,
and change from appearing to go backward (whi ch woul d happen i f
the client holding the delegation fails to wite its nodified data
to the server before the delegation is revoked or returned), the
server SHOULD update the file's netadata record with the
constructed attribute values. For reasons of reasonable
performance, conmitting the constructed attribute values to stable
storage i s OPTI ONAL.

As discussed earlier in this section, the client MAY return the
same cc val ue on subsequent CB GETATTR calls, even if the file was
nodified in the client’s cache yet again between successive

CB CETATTR calls. Therefore, the server nust assunme that the file
has been nodi fied yet again, and MJST take care to ensure that the
new nsc it constructs and returns is greater than the previous nsc
it returned. An exanple inplenmentation’s del egation record woul d
satisfy this mandate by including a boolean field (let us call it
"nodified") that is set to false when the del egation is granted,
and an sc value set at the tinme of grant to the change attribute
value. The nodified field would be set to true the first time cc
= sc, and would stay true until the delegation is returned or
revoked. The processing for constructing nsc, tine_nodify, and

ti me_metadata woul d use this pseudo code

if (!nodified) {
do CB _CGETATTR for change and size

if (cc = sc)
nmodi fi ed = TRUE;
} else {
do CB _GETATTR for size
}

if (nodified) {
sc = sc + 1;
tinme_nodify = tine_netadata = current _tine;

Shepler, et al. St andards Track [Page 108]

RFC 3530 NFS version 4 Protocol April 2003

update sc, tinme_nodify, tinme_netadata into file' s netadata

}

return to client (that sent GETATTR) the attributes
it requested, but make sure size conmes from what
CB CETATTR returned. Do not update the file' s netadata
with the client’s nodified size.

0 In the case that the file attribute size is different than the
server’'s current value, the server treats this as a nodification
regardl ess of the value of the change attribute retrieved via
CB CETATTR and responds to the second client as in the |last step.

Thi s met hodol ogy resol ves issues of clock differences between client
and server and other scenarios where the use of CB_GETATTR break
down.

It should be noted that the server is under no obligation to use
CB CETATTR and therefore the server MAY sinply recall the del egation
to avoid its use.

9.4.4. Recall of Open Del egation
The followi ng events necessitate recall of an open del egation

o Potentially conflicting OPEN request (or READ/WRI TE done with
"special" stateid)

0 SETATTR i ssued by another client
o0 REMOVE request for the file

0 RENAME request for the file as either source or target of the
RENAME

Whet her a RENAMVE of a directory in the path leading to the file
results in recall of an open del egation depends on the senantics of
the server filesystem |If that filesystem denies such RENAMES when a
file is open, the recall nust be performed to determn ne whether the
file in question is, in fact, open

In addition to the situations above, the server may choose to recal
open del egations at any tine if resource constraints nake it
advisable to do so. dients should always be prepared for the
possibility of recall

Shepler, et al. St andards Track [Page 109]

RFC 3530 NFS version 4 Protocol April 2003

When a client receives a recall for an open delegation, it needs to
update state on the server before returning the del egation. These
sanme updates nust be done whenever a client chooses to return a

del egation voluntarily. The following items of state need to be
dealt with:

o If the file associated with the delegation is no |onger open and
no previous CLOSE operation has been sent to the server, a CLOSE
operation nmust be sent to the server

o If afile has other open references at the client, then OPEN
operations nust be sent to the server. The appropriate stateids
will be provided by the server for subsequent use by the client
since the delegation stateid will not l[onger be valid. These OPEN
requests are done with the claimtype of CLAI M DELEGATE _CUR. This
will allowthe presentation of the delegation stateid so that the
client can establish the appropriate rights to performthe OPEN
(see the section "Operation 18: OPEN' for details.)

o |If there are granted file |ocks, the correspondi ng LOCK operations
need to be performed. This applies to the wite open del egation
case only.

0 For a wite open delegation, if at the tinme of recall the file is
not open for wite, all nodified data for the file nust be flushed
to the server. |If the delegation had not existed, the client
woul d have done this data flush before the CLOSE operation

o For a wite open del egation when a file is still open at the tine
of recall, any nodified data for the file needs to be flushed to
t he server.

0 Wth the wite open delegation in place, it is possible that the
file was truncated during the duration of the delegation. For
exanpl e, the truncation could have occurred as a result of an OPEN
UNCHECKED wi th a size attribute value of zero. Therefore, if a
truncation of the file has occurred and this operation has not
been propagated to the server, the truncation nust occur before
any nodified data is witten to the server

In the case of wite open delegation, file |ocking i nposes sone
additional requirenents. To precisely naintain the associated
invariant, it is required to flush any nodified data in any region
for which a wite lock was rel eased while the wite delegation was in
effect. However, because the wite open del egation inplies no other

| ocking by other clients, a sinpler inplenentation is to flush all
nodi fied data for the file (as described just above) if any wite

| ock has been rel eased while the wite open del egation was in effect.

Shepler, et al. St andards Track [Page 110]

RFC 3530 NFS version 4 Protocol April 2003

An i nmpl enentation need not wait until delegation recall (or deciding
to voluntarily return a delegation) to performany of the above
actions, if inplenmentation considerations (e.g., resource
availability constraints) nmake that desirable. Generally, however,
the fact that the actual open state of the file nay continue to
change nakes it not worthwhile to send i nformati on about opens and
closes to the server, except as part of delegation return. Only in
the case of closing the open that resulted in obtaining the

del egation would clients be likely to do this early, since, in that
case, the close once done will not be undone. Regardless of the
client’s choices on scheduling these actions, all nust be perforned
before the delegation is returned, including (when applicable) the
cl ose that corresponds to the open that resulted in the del egation
These actions can be performed either in previous requests or in
previous operations in the same COVPOUND request .

9.4.5. dients that Fail to Honor Del egation Recalls

Aclient may fail to respond to a recall for various reasons, such as
a failure of the callback path fromserver to the client. The client
may be unaware of a failure in the callback path. This Iack of
awareness could result in the client finding out |long after the
failure that its del egati on has been revoked, and another client has
nodi fied the data for which the client had a delegation. This is
especially a problemfor the client that held a wite del egation

The server also has a dilemma in that the client that fails to
respond to the recall mght al so be sending other NFS requests,

i ncluding those that renew the | ease before the | ease expires.
Wthout returning an error for those | ease renew ng operations, the
server leads the client to believe that the delegation it has is in
force.

This difficulty is solved by the follow ng rules:

0 Wien the callback path is down, the server MJUST NOT revoke the
del egation if one of the foll owi ng occurs:

- The client has issued a RENEW operation and the server has
returned an NFS4ERR CB PATH DOWN error. The server MJST renew
the |l ease for any record | ocks and share reservations the
client has that the server has known about (as opposed to those
| ocks and share reservations the client has established but not
yet sent to the server, due to the delegation). The server
SHOULD give the client a reasonable tine to return its
del egations to the server before revoking the client’s
del egati ons.

Shepler, et al. St andards Track [Page 111]

RFC 3530 NFS version 4 Protocol April 2003

- The client has not issued a RENEW operation for sone period of
time after the server attenpted to recall the delegation. This
period of time MJST NOT be | ess than the value of the
| ease tinme attribute.

0 Wien the client holds a delegation, it can not rely on operations,
except for RENEW that take a stateid, to renew del egation | eases
across cal | back path failures. The client that wants to keep
del egations in force across call back path failures nust use RENEW
to do so.

9.4.6. Delegation Revocation

At the point a delegation is revoked, if there are associ ated opens
on the client, the applications holding these opens need to be
notified. This notification usually occurs by returning errors for
READ/ WRI TE operations or when a close is attenpted for the open file.

If no opens exist for the file at the point the delegation is
revoked, then notification of the revocation is unnecessary.

However, if there is nodified data present at the client for the
file, the user of the application should be notified. Unfortunately,
it may not be possible to notify the user since active applications
may not be present at the client. See the section "Revocation
Recovery for Wite Qpen Del egation" for additional details.

9.5. Data Caching and Revocation

When | ocks and del egati ons are revoked, the assunptions upon which
successful caching depend are no | onger guaranteed. For any |ocks or
share reservations that have been revoked, the correspondi ng owner
needs to be notified. This notification includes applications with a
file open that has a correspondi ng del egati on whi ch has been revoked.
Cached data associated with the revocati on nust be renmoved fromthe
client. In the case of nodified data existing in the client’s cache,
that data nust be renoved fromthe client without it being witten to
the server. As nentioned, the assunptions nade by the client are no
I onger valid at the point when a | ock or del egation has been revoked.
For exanpl e, another client nmay have been granted a conflicting | ock
after the revocation of the lock at the first client. Therefore, the
data within the | ock range may have been nodified by the other

client. CObviously, the first client is unable to guarantee to the
application what has occurred to the file in the case of revocation.

Notification to a lock owner will in many cases consist of sinply
returning an error on the next and all subsequent READs/WRI TEs to the
open file or on the close. Were the nethods available to a client
make such notification inpossible because errors for certain

Shepler, et al. St andards Track [Page 112]

RFC 3530 NFS version 4 Protocol April 2003

operations may not be returned, nore drastic action such as signals
or process termnation may be appropriate. The justification for
this is that an invariant for which an application depends on nmay be
viol ated. Depending on how errors are typically treated for the
client operating environnment, further levels of notification

i ncludi ng | oggi ng, consol e nessages, and GUJ pop-ups nmay be

appropri ate.

9.5.1. Revocation Recovery for Wite Open Del egation

Revocation recovery for a wite open del egati on poses the specia

i ssue of nodified data in the client cache while the file is not
open. In this situation, any client which does not flush nodified
data to the server on each close nmust ensure that the user receives
appropriate notification of the failure as a result of the
revocation. Since such situations may require human action to
correct problens, notification schenes in which the appropriate user
or administrator is notified nmay be necessary. Logging and consol e
messages are typi cal exanpl es

If there is nodified data on the client, it nust not be flushed
normally to the server. A client may attenpt to provide a copy of
the file data as nodified during the del egati on under a different
nane in the filesystem nane space to ease recovery. Note that when
the client can deternine that the file has not been nodified by any
other client, or when the client has a conplete cached copy of file
in question, such a saved copy of the client’s view of the file may
be of particular value for recovery. |In other case, recovery using a
copy of the file based partially on the client’s cached data and
partially on the server copy as nodified by other clients, will be
anyt hi ng but straightforward, so clients may avoid saving file
contents in these situations or mark the results specially to warn
users of possible problens.

Saving of such nodified data in delegation revocation situations may
be limted to files of a certain size or mght be used only when
sufficient disk space is available within the target fil esystem
Such saving nay also be restricted to situations when the client has
sufficient buffering resources to keep the cached copy avail abl e
until it is properly stored to the target fil esystem

9.6. Attribute Caching
The attributes discussed in this section do not include naned

attributes. Individual naned attributes are anal ogous to files and
caching of the data for these needs to be handled just as data

Shepler, et al. St andards Track [Page 113]

RFC 3530 NFS version 4 Protocol April 2003

caching is for ordinary files. Similarly, LOXKUP results froman
OPENATTR directory are to be cached on the sane basis as any other
pat hnanmes and sinmilarly for directory contents.

Cients may cache file attributes obtained fromthe server and use
themto avoid subsequent GETATTR requests. Such caching is wite
through in that nodification to file attributes is always done by
nmeans of requests to the server and should not be done |ocally and
cached. The exception to this are nodifications to attributes that
are intimately connected with data caching. Therefore, extending a
file by witing data to the local data cache is reflected i mediately
in the size as seen on the client without this change being

i mediately reflected on the server. Nornally such changes are not
propagated directly to the server but when the nodified data is
flushed to the server, anal ogous attribute changes are nmade on the
server. \Wen open delegation is in effect, the nodified attributes
may be returned to the server in the response to a CB_RECALL call

The result of local caching of attributes is that the attribute
caches nmmi ntained on individual clients will not be coherent.
Changes made in one order on the server may be seen in a different
order on one client and in a third order on a different client.

The typical filesystemapplication progranm ng interfaces do not
provide nmeans to atomically nodify or interrogate attributes for
multiple files at the same tinme. The follow ng rules provide an
envi ronnment where the potential incoherences nentioned above can be
reasonably managed. These rules are derived fromthe practice of
previ ous NFS protocol s.

o Al attributes for a given file (per-fsid attributes excepted) are
cached as a unit at the client so that no non-serializability can
arise within the context of a single file.

0 An upper tine boundary is naintained on how long a client cache
entry can be kept w thout being refreshed fromthe server

0 \When operations are performed that change attributes at the
server, the updated attribute set is requested as part of the
contai ning RPC. This includes directory operations that update
attributes indirectly. This is acconplished by follow ng the
nodi fyi ng operation with a GETATTR operation and then using the
results of the GETATTR to update the client’s cached attri butes.

Note that if the full set of attributes to be cached is requested by

READDI R, the results can be cached by the client on the same basis as
attributes obtained via GETATTR

Shepler, et al. St andards Track [Page 114]

RFC 3530 NFS version 4 Protocol April 2003

A client may validate its cached version of attributes for a file by
fetching just both the change and tinme_access attributes and assum ng
that if the change attribute has the same value as it did when the
attributes were cached, then no attributes other than tine_access
have changed. The reason why tinme_access is also fetched is because
many servers operate in environnents where the operation that updates
change does not update tine_access. For exanmple, PCSIX file
semantics do not update access time when a file is nodified by the
wite systemcall. Therefore, the client that wants a current

ti me_access value should fetch it with change during the attribute
cache validation processing and update its cached tine_access.

The client nmay nmaintain a cache of nodified attributes for those
attributes intimately connected with data of nodified regular files
(size, time_nodify, and change). Oher than those three attributes,
the client MUST NOT maintain a cache of nodified attributes.
Instead, attribute changes are imedi ately sent to the server

In sone operating environnments, the equivalent to tine_access is
expected to be inplicitly updated by each read of the content of the
file object. If an NFS client is caching the content of a file
object, whether it is a regular file, directory, or synbolic link
the client SHOULD NOT update the time_access attribute (via SETATTR
or a snmall READ or READDIR request) on the server with each read that
is satisfied fromcache. The reason is that this can defeat the
performance benefits of caching content, especially since an explicit
SETATTR of tinme_access may alter the change attribute on the server
If the change attribute changes, clients that are caching the content
will think the content has changed, and will re-read unnodified data
fromthe server. Nor is the client encouraged to naintain a nodified
version of tinme_access in its cache, since this would nean that the
client will either eventually have to wite the access tinme to the
server with bad performance effects, or it would never update the
server’s time_access, thereby resulting in a situation where an
application that caches access tine between a close and open of the
sanme file observes the access tine oscillating between the past and
present. The tinme_access attribute always neans the tine of |ast
access to a file by a read that was satisfied by the server. This
way clients will tend to see only tinme_access changes that go forward
in tine.

9.7. Data and Metadata Caching and Menory Mapped Files
Sone operating environnents include the capability for an application
to map a file's content into the application’ s address space. Each
time the application accesses a nenory |location that corresponds to a

bl ock that has not been |oaded into the address space, a page fault
occurs and the file is read (or if the block does not exist in the

Shepler, et al. St andards Track [Page 115]

RFC 3530 NFS version 4 Protocol April 2003

file, the block is allocated and then instantiated in the
application’s address space).

As | ong as each nenory mapped access to the file requires a page
fault, the relevant attributes of the file that are used to detect
access and nodification (tine_access, tine_netadata, tinme_nodify, and
change) will be updated. However, in nany operating environnents,
when page faults are not required these attributes will not be
updated on reads or updates to the file via nenory access (regardl ess
whet her the file is local file or is being access renotely). A
client or server MAY fail to update attributes of a file that is
bei ng accessed via nenory nmapped I/ O This has several inplications:

o If there is an application on the server that has nenory nmapped a
file that a client is also accessing, the client may not be able
to get a consistent value of the change attribute to determ ne
whet her its cache is stale or not. A server that knows that the
file is nmenory nmapped coul d al ways pessinistically return updated
val ues for change so as to force the application to always get the
nost up to date data and netadata for the file. However, due to
t he negative perfornance inplications of this, such behavior is
OPTI ONAL.

o If the menory napped file is not being nodified on the server, and
instead is just being read by an application via the nmenory nmapped
interface, the client will not see an updated tine_access
attribute. However, in many operating environnents, neither will
any process running on the server. Thus NFS clients are at no
di sadvantage with respect to | ocal processes.

o If there is another client that is nenory mapping the file, and if
that client is holding a wite del egation, the sane set of issues
as discussed in the previous two bullet itenms apply. So, when a
server does a CB CETATTR to a file that the client has nodified in
its cache, the response from CB_GETATTR will not necessarily be
accurate. As discussed earlier, the client’s obligation is to
report that the file has been nodified since the del egati on was
granted, not whether it has been nodified again between successive
CB_GETATTR cal | s, and the server MJST assune that any file the
client has nodified in cache has been nodified agai n between
successi ve CB _GETATTR calls. Depending on the nature of the
client’s nenory managenent system this weak obligation may not be
possible. A client MAY return stale information in CB _GETATTR
whenever the file is nenory mapped.

0 The mixture of menory mapping and file |l ocking on the sane file is

probl ematic. Consider the follow ng scenario, where the page size
on each client is 8192 bytes.

Shepler, et al. St andards Track [Page 116]

RFC 3530 NFS version 4 Protocol April 2003

- Cdient A nenory maps first page (8192 bytes) of file X
- Cdient B nenory maps first page (8192 bytes) of file X
- Cient Awite locks first 4096 bytes

- Cient Bwite |ocks second 4096 bytes

- Cdient A via a STORE instruction nodifies part of its |ocked
regi on.

- Sinmultaneous to client A client B issues a STORE on part of
its | ocked region.

Here the challenge is for each client to resynchronize to get a
correct view of the first page. In many operating environnments, the
virtual nenory managenent systenms on each client only know a page is
nodi fied, not that a subset of the page corresponding to the
respective lock regions has been nodified. So it is not possible for
each client to do the right thing, which is to only wite to the
server that portion of the page that is |ocked. For exanple, if
client Asinply wites out the page, and then client B wites out the
page, client A's data is |ost.

Moreover, if nmandatory locking is enabled on the file, then we have a
different problem Wen clients A and B issue the STORE
instructions, the resulting page faults require a record | ock on the
entire page. Each client then tries to extend their |ocked range to
the entire page, which results in a deadl ock

Communi cating the NFS4ERR DEADLOCK error to a STORE instruction is
difficult at best.

If aclient is locking the entire nenory mapped file, there is no
problem w th advisory or mandatory record | ocking, at |east until the
client unlocks a region in the nmddle of the file.

G ven the above issues the following are permtted:

- Cdients and servers MAY deny nenory mapping a file they know there
are record | ocks for.

- Cdients and servers MAY deny a record lock on a file they knowis
menory napped.

Shepler, et al. St andards Track [Page 117]

RFC 3530 NFS version 4 Protocol April 2003

- Aclient MAY deny nenory nmapping a file that it knows requires
mandatory locking for /O |If mandatory locking is enabled after
the file is opened and mapped, the client MAY deny the application
further access to its mapped file.

9.8. Nane Caching

The results of LOOKUP and READDI R operations nmay be cached to avoid
the cost of subsequent LOOKUP operations. Just as in the case of
attribute caching, inconsistencies may arise anong the various client
caches. To nmitigate the effects of these inconsistencies and given
the context of typical filesystem APls, an upper tinme boundary is

mai nt ai ned on how long a client name cache entry can be kept wi thout
verifying that the entry has not been nmade invalid by a directory
change operation perfornmed by another client.

When a client is not making changes to a directory for which there
exi st nane cache entries, the client needs to periodically fetch
attributes for that directory to ensure that it is not being

nmodi fied. After determi ning that no nodification has occurred, the
expiration time for the associ ated name cache entries may be updated
to be the current time plus the nanme cache stal eness bound.

When a client is making changes to a given directory, it needs to

det ermi ne whet her there have been changes nade to the directory by
other clients. It does this by using the change attribute as
reported before and after the directory operation in the associated
change_i nfo4 value returned for the operation. The server is able to
communi cate to the client whether the change_info4 data is provided
atomically with respect to the directory operation. |f the change
val ues are provided atomically, the client is then able to conpare
the pre-operation change value with the change value in the client’s

nane cache. |f the conparison indicates that the directory was
updat ed by another client, the nane cache associated with the
nmodi fied directory is purged fromthe client. |If the conparison

i ndi cates no nodification, the nane cache can be updated on the
client to reflect the directory operation and the associated tinmeout
extended. The post-operation change val ue needs to be saved as the
basis for future change_i nfo4 conparisons

As denonstrated by the scenario above, name caching requires that the
client revalidate nane cache data by inspecting the change attribute
of a directory at the point when the nane cache itemwas cached

This requires that the server update the change attribute for
directories when the contents of the corresponding directory is

nmodi fied. For a client to use the change_info4 information
appropriately and correctly, the server nust report the pre and post
operation change attribute values atomcally. Wen the server is

Shepler, et al. St andards Track [Page 118]

RFC 3530 NFS version 4 Protocol April 2003

unable to report the before and after values atomically with respect
to the directory operation, the server nust indicate that fact in the
change_info4 return value. Wen the information is not atonically
reported, the client should not assune that other clients have not
changed the directory.

9.9. Directory Caching

The results of READD R operations may be used to avoid subsequent
READDI R operations. Just as in the cases of attribute and name
caching, inconsistencies may arise anong the various client caches.
To mitigate the effects of these inconsistencies, and given the
context of typical filesystem APls, the follow ng rules should be
fol | owed:

0 Cached READDIR information for a directory which is not obtained
in a single READDIR operation nust always be a consi stent snapshot
of directory contents. This is determ ned by using a GETATTR
before the first READDIR and after the | ast of READDI R t hat
contributes to the cache.

0 An upper tine boundary is nmaintained to indicate the | ength of
time a directory cache entry is considered valid before the client
nust revalidate the cached information

The revalidation technique parallels that discussed in the case of
name caching. When the client is not changing the directory in
question, checking the change attribute of the directory with GETATTR
is adequate. The lifetime of the cache entry can be extended at

t hese checkpoints. Wen a client is nodifying the directory, the
client needs to use the change_info4 data to deternine whether there
are other clients nodifying the directory. |If it is determ ned that
no other client nodifications are occurring, the client may update
its directory cache to reflect its own changes.

As denonstrated previously, directory caching requires that the
client revalidate directory cache data by inspecting the change
attribute of a directory at the point when the directory was cached.
This requires that the server update the change attribute for
directories when the contents of the corresponding directory is

nmodi fied. For a client to use the change_info4 information
appropriately and correctly, the server nust report the pre and post
operation change attribute values atomically. Wen the server is
unable to report the before and after values atomically with respect
to the directory operation, the server nmust indicate that fact in the
change_info4 return value. Wen the information is not atomically
reported, the client should not assune that other clients have not
changed the directory.

Shepler, et al. St andards Track [Page 119]

RFC 3530 NFS version 4 Protocol April 2003

10.

M nor Ver si oni ng

To address the requirenent of an NFS protocol that can evolve as the
need arises, the NFS version 4 protocol contains the rules and
framework to allow for future m nor changes or versioning.

The base assunption with respect to minor versioning is that any
future accepted minor version nust follow the | ETF process and be
docunmented in a standards track RFC. Therefore, each minor version
nunber will correspond to an RFC. M nor version zero of the NFS
version 4 protocol is represented by this RFC. The COVOUND
procedure will support the encoding of the minor version being
requested by the client.

The following itens represent the basic rules for the devel opnent of
m nor versions. Note that a future nminor version may decide to
nmodify or add to the following rules as part of the m nor version
definition.

1. Procedures are not added or del eted

To maintain the general RPC nodel, NFS version 4 minor versions
will not add to or delete procedures fromthe NFS program

2. Mnor versions may add operations to the COVMPOUND and
CB_COVPOUND pr ocedures.

The addition of operations to the COMPOUND and CB_COVPOUND
procedures does not affect the RPC nodel.

2.1 Mnor versions may append attributes to GETATTR4args, bitmap4,
and GETATTRAr es.

This allows for the expansion of the attribute nodel to all ow
for future growth or adaptation

2.2 Mnor version X nust append any new attributes after the |ast
docunented attribute.

Since attribute results are specified as an opaque array of
per-attribute XDR encoded results, the conplexity of addi ng new
attributes in the mdst of the current definitions will be too
bur densone.

3. Mnor versions nust not nodify the structure of an existing
operation’s argunments or results.

Shepler, et al. St andards Track [Page 120]

RFC 3530 NFS version 4 Protocol April 2003

Again the conplexity of handling nultiple structure definitions
for a single operation is too burdensone. New operations should
be added instead of nodifying existing structures for a minor
ver si on.

This rule does not preclude the followi ng adaptations in a ninor
ver si on.

0 adding bits to flag fields such as new attributes to GETATTR s
bi t map4 data type

0 adding bits to existing attributes |ike ACLs that have flag
wor ds

o extending enunerated types (including NFS4ERR *) with new
val ues

4. Mnor versions nay not nodify the structure of existing
attributes

5. Mnor versions may not del ete operations.

This prevents the potential reuse of a particul ar operation
"slot" in a future mnor version

6. Mnor versions may not delete attributes.
7. Mnor versions may not delete flag bits or enuneration val ues.

8. Mnor versions may declare an operation as nmandatory to NOT
i mpl enent .

Speci fying an operation as "nmandatory to not inplenment" is

equi val ent to obsoleting an operation. For the client, it neans
that the operation should not be sent to the server. For the
server, an NFS error can be returned as opposed to "droppi ng"
the request as an XDR decode error. This approach allows for

t he obsol escence of an operation while maintaining its structure
so that a future minor version can reintroduce the operation

8.1 Mnor versions may declare attributes mandatory to NOT
i mpl enent .

8.2 Mnor versions may declare flag bits or enumeration val ues as
mandat ory to NOT i npl enment.

9. Mnor versions may downgrade features from mandatory to
recommended, or recomrended to optional

Shepler, et al. St andards Track [Page 121]

RFC 3530 NFS version 4 Protocol April 2003

11.

10. M nor versions nmay upgrade features fromoptional to recomended
or reconmended to nandatory.

11. A client and server that support mnor version X rmust support
m nor versions O (zero) through X-1 as well

12. No new features may be introduced as mandatory in a mnor
versi on.

This rule allows for the introduction of new functionality and
forces the use of inplenentation experience before designating a
feature as nmandatory.

13. Aclient MJUST NOT attenpt to use a stateid, filehandle, or
simlar returned object fromthe COVPOUND procedure w th m nor
version X for another COVPOUND procedure with mnor version Y,
where X I=Y.

I nternationalization

The primary issue in which NFS version 4 needs to deal with

i nternationalization, or 118N, is with respect to file nanes and
other strings as used within the protocol. The choice of string
representation nust allow reasonabl e nane/string access to clients
whi ch use various | anguages. The UTF-8 encodi ng of the UCS as
defined by [1S0OL0646] allows for this type of access and foll ows the
policy described in "I ETF Policy on Character Sets and Languages"

[RFC2277] .

[RFC3454], otherw se know as "stringprep", docunents a framework for
usi ng Uni code/ UTF-8 in networking protocols, so as "to increase the
likelihood that string input and string conparison work in ways that

make sense for typical users throughout the world." A protocol nust
define a profile of stringprep "in order to fully specify the
processing options."” The remainder of this Internationalization

section defines the NFS version 4 stringprep profiles. Mich of
term nol ogy used for the renainder of this section conmes from
stringprep

There are three UTF-8 string types defined for NFS version 4:
utf8str_cs, utf8str_cis, and utf8str_m xed. Separate profiles are
defined for each. Each profile defines the followi ng, as required by
stringprep

0 The intended applicability of the profile

Shepler, et al. St andards Track [Page 122]

RFC 3530 NFS version 4 Protocol April 2003

11.

11.

0 The character repertoire that is the input and output to
stringprep (which is Unicode 3.2 for referenced version of

stringprep)

o The mapping tables fromstringprep used (as described in section 3
of stringprep)

0 Any additional mapping tables specific to the profile

0 The Unicode normalization used, if any (as described in section 4
of stringprep)

0o The tables fromstringprep listing of characters that are
prohi bited as output (as described in section 5 of stringprep)

o0 The bidirectional string testing used, if any (as described in
section 6 of stringprep)

0 Any additional characters that are prohibited as output specific
to the profile

Stringprep discusses Uni code characters, whereas NFS version 4
renders UTF-8 characters. Since there is a one to one mapping from
UTF-8 to Unicode, where ever the remainder of this docunent refers to
to Unicode, the reader should assume UTF-8.

Much of the text for the profiles cones from[RFC3454].
1. Stringprep profile for the utf8str_cs type

Every use of the utf8str_cs type definition in the NFS version 4
protocol specification follows the profile named nfs4_cs_prep

1.1. Intended applicability of the nfs4 _cs_prep profile

The utf8str_cs type is a case sensitive string of UTF-8 characters.
Its primary use in NFS Version 4 is for naning conponents and

pat hnanes. Conponents and pathnanes are stored on the server’'s
filesystem Two valid distinct UTF-8 strings mght be the sane after
processing via the utf8str_cs profile. |If the strings are two nanes
inside a directory, the NFS version 4 server will need to either

o disallowthe creation of a second nane if it’'s post processed form
collides with that of an existing nanme, or

o allowthe creation of the second nane, but arrange so that after
post processing, the second nane is different than the post
processed form of the first nane.

Shepler, et al. St andards Track [Page 123]

RFC 3530 NFS version 4 Protocol April 2003

11.1.2. Character repertoire of nfs4 _cs prep

The nfs4_cs_prep profile uses Unicode 3.2, as defined in stringprep’s
Appendi x A1

11.1.3. Mapping used by nfs4 _cs prep

The nfs4_cs_prep profile specifies mapping using the follow ng tables
from stringprep

Table B. 1

Table B.2 is nornmally not part of the nfs4 cs prep profile as it is
primarily for dealing with case-insensitive conparisons. However, if
the NFS version 4 file server supports the case_insensitive
filesystemattribute, and if case_insensitive is true, the NFS
version 4 server MJST use Table B.2 (in addition to Table Bl) when
processing utf8str_cs strings, and the NFS version 4 client MJST
assune Table B.2 (in addition to Table B.1) are being used.

If the case_preserving attribute is present and set to false, then
the NFS version 4 server MJST use table B.2 to map case when
processing utf8str_cs strings. Wether the server maps fromlower to
upper case or the upper to lower case is an inplenentation
dependency.

11.1.4. Nornualization used by nfs4 _cs_prep

The nfs4_cs_prep profile does not specify a normalization form A
later revision of this specification may specify a particul ar
normalization form Therefore, the server and client can expect that
they may receive unnornmalized characters within protocol requests and
responses. |If the operating environnent requires normalization, then
the inplenentation nust normalize utf8str_cs strings within the
protocol before presenting the information to an application (at the
client) or local filesystem (at the server).

Shepler, et al. St andards Track [Page 124]

RFC 3530 NFS version 4 Protocol April 2003

11.

11.

11.

11.

11.

11.

11.

1.5. Prohibited output for nfs4 _cs prep

The nfs4 _cs_prep profile specifies prohibiting using the foll ow ng
tables from stringprep

Table C. 3
Table C. 4
Table C. 5
Table C. 6
Table C. 7
Table C 8

C 9

Tabl e
1.6. Bidirectional output for nfs4 cs prep

The nfs4_cs_prep profile does not specify any checking of
bi directional strings.

2. Stringprep profile for the utf8str_cis type

Every use of the utf8str_cis type definition in the NFS version 4
protocol specification follows the profile named nfs4 _cis_prep

2.1. Intended applicability of the nfs4 cis prep profile

The utf8str _cis type is a case insensitive string of UTF-8
characters. |Its primary use in NFS Version 4 is for namng NFS
servers.

2.2. Character repertoire of nfs4 cis _prep

The nfs4 cis prep profile uses Unicode 3.2, as defined in
stringprep’s Appendix A 1

2.3. Mapping used by nfs4 cis_prep

The nfs4 cis _prep profile specifies mapping using the foll ow ng
tabl es from stringprep:

Table B. 1
Table B. 2

2.4. Nornumlization used by nfs4 cis_prep

The nfs4 _cis_prep profile specifies using Unicode normalization form
KC, as described in stringprep

Shepler, et al. St andards Track [Page 125]

RFC 3530 NFS version 4 Protocol April 2003

11.

11.

11.

11.

11.

11.

2.5. Prohibited output for nfs4 cis _prep

The nfs4 _cis_prep profile specifies prohibiting using the foll ow ng
tables from stringprep

Tabl e
Tabl e
Tabl e
Tabl e
Tabl e
Tabl e
Tabl e
Tabl e
Tabl e

NN

000000000
©O~NOUTAWNR

2.6. Bidirectional output for nfs4 _cis_prep

The nfs4 cis prep profile specifies checking bidirectional strings as
described in stringprep’s section 6.

3. Stringprep profile for the utf8str_nixed type

Every use of the utf8str_mixed type definition in the NFS version 4
protocol specification follows the profile naned nfs4_m xed_prep

3.1. Intended applicability of the nfs4 nixed prep profile

The utf8str_mixed type is a string of UTF-8 characters, with a prefix
that is case sensitive, a separator equal to '@, and a suffix that
is fully qualified domain nane. |Its prinmary use in NFS Version 4 is
for naming principals identified in an Access Control Entry.

3.2. Character repertoire of nfs4_m xed_prep

The nfs4_m xed_prep profile uses Unicode 3.2, as defined in
stringprep’s Appendix A 1

3.3. Mapping used by nfs4 cis_prep

For the prefix and the separator of a utf8str_mixed string, the
nfs4_m xed_prep profile specifies mapping using the follow ng table
fromstringprep

Table B. 1

For the suffix of a utf8str_mxed string, the nfs4_mi xed_prep profile
speci fies mapping using the following tables fromstringprep

Shepler, et al. St andards Track [Page 126]

RFC 3530 NFS version 4 Protocol April 2003

Table B. 1
Table B. 2

11.3.4. Nornalization used by nfs4_m xed_prep

The nfs4 _mxed prep profile specifies using Unicode nornalization
form KC, as described in stringprep

11.3.5. Prohibited output for nfs4_m xed_prep

The nfs4_m xed_prep profile specifies prohibiting using the follow ng
tabl es from stringprep:

Tabl e
Tabl e
Tabl e
Tabl e
Tabl e
Tabl e
Tabl e
Tabl e
Tabl e

NN

OO00000000
©O~NOUTAWNP

11.3.6. Bidirectional output for nfs4 mxed prep

The nfs4_mi xed_prep profile specifies checking bidirectional strings
as described in stringprep’s section 6.

11. 4. UTF-8 Rel ated Errors

Where the client sends an invalid UTF-8 string, the server should
return an NFS4ERR I NVAL error. This includes cases in which

i nappropriate prefixes are detected and where the count includes
trailing bytes that do not constitute a full UCS character.

Where the client supplied string is valid UTF-8 but contains
characters that are not supported by the server as a value for that
string (e.g., names containing characters that have nore than two
octets on a filesystemthat supports Uni code characters only), the
server should return an NFS4ERR BADCHAR error.

Where a UTF-8 string is used as a file nane, and the fil esystem
whil e supporting all of the characters within the nanme, does not

all ow that particular name to be used, the server should return the
error NFS4ERR_BADNAME. This includes situations in which the server
filesysteminposes a nornalization constraint on nanme strings, but

Shepler, et al. St andards Track [Page 127]

RFC 3530 NFS version 4 Protocol April 2003

12.

will also include such situations as filesystem prohibitions of
and ".." as file nanes for certain operations, and other such
constraints.

Error Definitions

NFS error nunbers are assigned to failed operations within a conpound
request. A conmpound request contains a number of NFS operations that
have their results encoded in sequence in a conpound reply. The
results of successful operations will consist of an NFS4_OK status
foll owed by the encoded results of the operation. |If an NFS
operation fails, an error status will be entered in the reply and the
conmpound request will be term nated.

A description of each defined error follows:

NFS4A K I ndi cates the operation conpl eted successfully.

NFS4ERR_ACCESS Perm ssion denied. The caller does not have the
correct permssion to performthe requested
operation. Contrast this with NFSAERR PERM
which restricts itself to owner or privileged
user permni ssion failures.

NFSAERR ATTRNOTSUPP An attribute specified is not supported by the
server. Does not apply to the GETATTR
operati on.

NFSAERR ADM N _REVCOKED Due to adm nistrator intervention, the
| ockowner’ s record | ocks, share reservations,
and del egati ons have been revoked by the
server.

NFSAERR_BADCHAR A UTF-8 string contains a character which is
not supported by the server in the context in
which it being used.

NFS4ERR_BAD COOKI E READDI R cookie is stale.

NFSAERR_BADHANDLE Illegal NFS filehandle. The filehandl e failed
i nternal consistency checks.

NFSAERR _BADNANME A name string in a request consists of valid
UTF-8 characters supported by the server but
the nane is not supported by the server as a
valid nane for current operation

Shepler, et al. St andards Track [Page 128]

RFC 3530

NFS4ERR_BADOMNER

NFS4ERR_BADTYPE

NFS4ERR_BAD_RANGE

NFS4ERR_BAD_SEQ D

NFS4ERR_BAD_STATEI D

NFS4ERR_BADXDR

NFSAERR_CLI D_I NUSE

NFS4ERR_DEADLOCK

NFSAERR_DELAY

NFS4ERR_DENI ED

Shepler, et al.

NFS version 4 Protocol April 2003

An owner, owner_group, or ACL attribute val ue
can not be translated to | ocal representation

An attenpt was nmade to create an object of a
type not supported by the server.

The range for a LOCK, LOCKT, or LOCKU operation
is not appropriate to the all owabl e range of
of fsets for the server

The sequence nunber in a | ocking request is
neither the next expected nunber or the |ast
nunber processed.

A stateid generated by the current server

i nstance, but which does not designate any

| ocking state (either current or superseded)
for a current |ockowner-file pair, was used.

The server encountered an XDR decodi ng error
whi | e processing an operation

The SETCLI ENTI D operation has found that a
client idis already in use by another client.

The server has been able to determine a file
| ocki ng deadl ock condition for a blocking |ock
request.

The server initiated the request, but was not
able to conplete it in a tinely fashion. The
client should wait and then try the request
with a new RPC transaction I D. For exanpl e,
this error should be returned froma server
that supports hierarchical storage and receives
a request to process a file that has been
mgrated. In this case, the server should start
the imrigration process and respond to client
with this error. This error nmay al so occur
when a necessary del egation recall makes
processing a request in a tinely fashion

i mpossi bl e.

An attenpt to lock a file is denied. Since
this may be a tenporary condition, the client
is encouraged to retry the |l ock request unti
the I ock is accepted.

St andards Track [Page 129]

RFC 3530

NFS4ERR_DQUOT

NFSAERR_EXI ST

NFS4ERR_EXPI RED

NFS4ERR_FBI G

NFS4ERR_FHEXPI RED

NFS4ERR_FI LE_OPEN

NFS4ERR_GRACE

NFSAERR | NVAL

NFS4ERR | O

NFS4ERR | SDI R

NFS4ERR_LEASE_MOVED

NFSAERR_LOCKED

NFS4ERR LOCK_NOTSUPP

Shepl er,

et al.

NFS version 4 Protocol April 2003

Resource (quota) hard linmt exceeded. The
user’s resource limt on the server has been
exceeded.

File exists. The file specified already exists.

A |l ease has expired that is being used in the
current operation

File too large. The operation woul d have caused
a file to grow beyond the server’s limt.

The filehandl e provided is volatile and has
expired at the server

The operation can not be successfully processed
because a file involved in the operation is
currently open.

The server is in its recovery or grace period
whi ch should match the | ease period of the
server.

I nvalid argunent or unsupported argunent for an
operation. Two exanples are attenpting a
READLI NK on an object other than a synbolic
link or specifying a value for an enumfield
that is not defined in the protocol (e.g.
nfs_ftyped).

I/Oerror. A hard error (for exanple, a disk
error) occurred while processing the requested
operati on.

Is a directory. The caller specified a
directory in a non-directory operation

A |l ease being renewed is associated with a
filesystemthat has been nmigrated to a new
server.

A read or wite operation was attenpted on a
| ocked file.

Server does not support atom c upgrade or
downgr ade of | ocks.

St andards Track [Page 130]

RFC 3530

NFS4ERR LOCK_RANGE

NFSAERR_LOCKS_HELD

NFS version 4 Protocol April 2003

A lock request is operating on a sub-range of a
current lock for the | ock owner and the server
does not support this type of request.

A CLCSE was attenpted and file | ocks woul d
exi st after the CLOSE.

NFS4ERR M NOR_VERS_M SMATCH

NFSAERR_ML_I NK

NFS4ERR_MOVED

NFS4ERR_NAMETOOLONG

NFS4ERR_NOENT

NFSAERR_NCFI LEHANDLE

NFS4ERR _NO_GRACE

NFS4ERR _NOSPC

NFS4ERR_NOTDI R

Shepl er,

et al.

The server has received a request that

speci fies an unsupported ninor version. The
server nust return a COMPOUNDAres with a zero
| ength operations result array.

Too many hard |inks.

The fil esystem which contains the current
filehandl e obj ect has been rel ocated or
mgrated to another server. The client nay
obtain the new filesystem | ocation by obtaining
the "fs locations" attribute for the current
filehandl e. For further discussion, refer to
the section "Filesystem M gration or

Rel ocati on”.

The filenanme in an operati on was too | ong.

No such file or directory. The file or
directory nane specified does not exist.

The |l ogical current filehandle value (or, in
the case of RESTOREFH, the saved fil ehandl e
val ue) has not been set properly. This nay be
a result of a nalformed COMPOUND operation
(i.e., no PUTFH or PUTROOTFH before an
operation that requires the current filehandle
be set).

A reclaimof client state has fallen outside of
the grace period of the server. As a result,
the server can not guarantee that conflicting
state has not been provided to another client.

No space left on device. The operation would
have caused the server’'s filesystemto exceed
its limt.

Not a directory. The caller specified a non-
directory in a directory operation

St andards Track [Page 131]

RFC 3530

NFS4ERR_NOTEMPTY

NFS4ERR_NOTSUPP

NFS4ERR_NOT_SAVE

NFS4ERR_NXI O

NFS4ERR_OLD_STATEI D

NFS4ERR_OPENMODE

NFSAERR_OP_| LLEGAL

NFS4ERR_PERM

NFS4ERR_RECLAI M_BAD

NFS version 4 Protocol April 2003

An attenpt was nade to renove a directory that
was not enpty.

Qperation is not supported.

This error is returned by the VERI FY operation
to signify that the attributes conpared were
not the sane as provided in the client’s
request.

I/O error. No such device or address.

A stateid which designates the | ocking state
for a lockowner-file at an earlier tine was
used.

The client attenpted a READ, WRI TE, LOCK or
SETATTR operation not sanctioned by the stateid
passed (e.g., witing to a file opened only for
read).

An illegal operation value has been specified
in the argop field of a COVWOUND or CB_COVPOUND
procedur e.

Not owner. The operation was not all owed
because the caller is either not a privileged
user (root) or not the owner of the target of
t he operation.

The reclai mprovided by the client does not
mat ch any of the server’s state consistency
checks and is bad.

NFSAERR_RECLAI M_CONFLI CT

NFS4ERR_RESOURCE

Shepler, et al.

The reclai mprovided by the client has
encountered a conflict and can not be provided.
Potentially indicates a m sbehaving client.

For the processing of the COMPOUND procedure,
the server may exhaust avail abl e resources and
can not continue processing operations within
the COVPOUND procedure. This error will be
returned fromthe server in those instances of
resource exhaustion related to the processing
of the COWPOUND procedure

St andards Track [Page 132]

RFC 3530

NFS4ERR_RESTOREFH

NFS4ERR_ROFS

NFS4ERR_SAME

NFSAERR_SERVERFAULT

NFSAERR_SHARE_DENI ED

NFS4AERR_STALE

NFS version 4 Protocol April 2003

The RESTOREFH operati on does not have a saved
filehandl e (identified by SAVEFH) to operate
upon.

Read-only filesystem A nodifying operation was
attenpted on a read-only fil esystem

This error is returned by the NVERI FY operation
to signify that the attributes conpared were
the sane as provided in the client’s request.

An error occurred on the server which does not
map to any of the legal NFS version 4 protoco
error values. The client should translate this
into an appropriate error. UN X clients may
choose to translate this to El O

An attenpt to OPEN a file with a share
reservation has fail ed because of a share
conflict.

Invalid filehandle. The filehandl e given in the
argunents was invalid. The file referred to by
that filehandl e no | onger exists or access to
it has been revoked.

NFS4ERR_STALE _CLIENTID A clientid not recognized by the server was

used in a locking or SETCLI ENTI D_CONFI RM
request.

NFSAERR STALE STATEID A stateid generated by an earlier server

NFSAERR_SYM.I NK

NFS4ERR_TOOSMALL

NFS4ERR_VRONGSEC

Shepl er,

et al.

i nstance was used.

The current filehandl e provided for a LOOKUP is
not a directory but a synbolic Iink. Al so used
if the final conponent of the OPEN path is a
synbolic |ink.

The encoded response to a READDI R request
exceeds the size limt set by the initia
request.

The security mechani sm being used by the client
for the operation does not match the server’s
security policy. The client should change the
security nechani smbeing used and retry the
operati on.

St andards Track [Page 133]

RFC 3530 NFS version 4 Protocol April 2003

13.

13.

NFS4ERR _XDEV Attenpt to do an operation between different
fsids.

NFS version 4 Requests

For the NFS version 4 RPC program there are two traditional RPC
procedures: NULL and COVPOUND. All other functionality is defined as
a set of operations and these operations are defined in nornal

XDR/ RPC syntax and semantics. However, these operations are

encapsul ated within the COMPOUND procedure. This requires that the
client conbine one or nore of the NFS version 4 operations into a
singl e request.

The NFS4_CALLBACK programis used to provide server to client
signaling and is constructed in a sinilar fashion as the NFS version
4 program The procedures CB _NULL and CB_COVWOUND are defined in the
same way as NULL and COMPOUND are within the NFS program The
CB_COVPOUND request al so encapsul ates the renmi ning operations of the
NFS4 CALLBACK program There is no predefined RPC program nunber for
the NFS4_CALLBACK program It is up to the client to specify a
program nunber in the "transient" programrange. The program and
port nunber of the NFS4_CALLBACK program are provided by the client
as part of the SETCLIENTI DY SETCLI ENTI D_CONFI RM sequence. The program
and port can be changed by anot her SETCLI ENTI D/ SETCLI ENTI D_CONFI RM
sequence, and it is possible to use the sequence to change t hem
within a client incarnation w thout renoving relevant |eased client
stat e.

1. Conpound Procedure

The COVPOUND procedure provides the opportunity for better
performance within high | atency networks. The client can avoid

cunul ative latency of nultiple RPCs by combining multiple dependent
operations into a single COWOUND procedure. A conpound operation
may provide for protocol sinplification by allowing the client to
conbi ne basic procedures into a single request that is custon zed for
the client’s environnent.

The CB_COVPOUND procedure precisely parallels the features of
COVPOUND as descri bed above.

The basic structure of the COVMPOUND procedure is:

Shepler, et al. St andards Track [Page 134]

RFC 3530 NFS version 4 Protocol April 2003

13.

and the reply's structure is:

The nunops and nunres fields, used in the depiction above, represent
the count for the counted array encoding use to signify the nunber of
argunents or results encoded in the request and response. As per the
XDR encodi ng, these counts nust match exactly the nunber of operation
argunents or results encoded

2. Evaluation of a Conpound Request

The server will process the COMPOUND procedure by eval uati ng each of
the operations within the COM/OUND procedure in order. Each
conmponent operation consists of a 32 bit operation code, followed by
the argunent of length deternined by the type of operation. The
results of each operation are encoded in sequence into a reply
buffer. The results of each operation are preceded by the opcode and
a status code (normally zero). |If an operation results in a non-zero
status code, the status will be encoded and eval uati on of the
compound sequence will halt and the reply will be returned. Note
that eval uati on stops even in the event of "non error" conditions
such as NFS4ERR SAME

There are no atomicity requirenments for the operations contained

wi thin the COVWOUND procedure. The operations being eval uated as
part of a COVMPOUND request may be eval uated sinultaneously w th other
COVMPOUND requests that the server receives.

It is the client’s responsibility for recovering fromany partially
conpl eted COMPOUND procedure. Partially conpleted COVOUND
procedures may occur at any point due to errors such as
NFSAERR_RESOURCE and NFSAERR _DELAY. This may occur even given an
otherwi se valid operation string. Further, a server reboot which
occurs in the mddle of processing a COWPPOUND procedure nay | eave the
client with the difficult task of deternining how far COVPOUND
processi ng has proceeded. Therefore, the client should avoid overly
conmpl ex COMPOUND procedures in the event of the failure of an
operation within the procedure.

Each operation assunmes a "current" and "saved" filehandle that is
avai l abl e as part of the execution context of the conpound request.
Operations may set, change, or return the current filehandle. The
"saved" filehandle is used for tenporary storage of a filehandle
val ue and as operands for the RENAME and LI NK operations.

Shepler, et al. St andards Track [Page 135]

RFC 3530 NFS version 4 Protocol April 2003

13.

13.

14.

14.

3. Synchronous Modi fying Operations

NFS version 4 operations that nodify the filesystem are synchronous.
When an operation is successfully conpleted at the server, the client
can depend that any data associated with the request is now on stable
storage (the one exception is in the case of the file data in a WRITE
operation with the UNSTABLE option specified).

This inplies that any previous operations within the same conmpound
request are also reflected in stable storage. This behavior enables
the client’s ability to recover froma partially executed conpound
request which may resulted fromthe failure of the server. For
exanpl e, if a conmpound request contains operations A and B and the
server is unable to send a response to the client, depending on the
progress the server made in servicing the request the result of both
operations may be reflected in stable storage or just operation A may
be reflected. The server nmust not have just the results of operation
B in stable storage.

4. Operation Val ues
The operations encoded in the COVPOUND procedure are identified by
operation values. To avoid overlap with the RPC procedure nunbers,
operations 0 (zero) and 1 are not defined. Operation 2 is not
defined but reserved for future use with minor versioning.

NFS version 4 Procedures
1. Procedure O0: NULL - No Operation
SYNOPSI S

<nul | >
ARGUMENT

voi d;
RESULT

voi d;

Shepler, et al. St andards Track [Page 136]

RFC 3530 NFS version 4 Protocol April 2003

DESCRI PTI ON
Standard NULL procedure. Void argunent, void response. This
procedure has no functionality associated with it. Because of
this it is sonmetimes used to neasure the overhead of processing a
service request. Therefore, the server should ensure that no
unnecessary work is done in servicing this procedure.

ERRORS
None.

14.2. Procedure 1: COVWOQUND - Conpound QOperations

SYNCPSI S

compoundar gs -> conpoundr es

ARGUMENT

uni on nfs_argop4 switch (nfs_opnumd argop) {
case <OPCODE>: <argunent >;

s
struct COVPOUND4args {
utf8str_cs t ag;
uint32_t m norver si on;
nfs_ar gop4 argarray<>;
s
RESULT

union nfs_resop4 switch (nfs_opnund resop){
case <OPCODE>: <result>;

b
struct COVPOUND4res {
nf sstat 4 st at us;
utf8str_cs t ag;
nfs resop4 resarray<>;
b

Shepler, et al. St andards Track [Page 137]

RFC 3530 NFS version 4 Protocol April 2003

DESCRI PTI ON

The COVPOUND procedure is used to conbi ne one or nore of the NFS
operations into a single RPC request. The main NFS RPC program has
two main procedures: NULL and COVPOUND. All other operations use the
COVPOUND procedure as a w apper.

The COVPOUND procedure is used to conbi ne individual operations into
a single RPC request. The server interprets each of the operations
inturn. |If an operation is executed by the server and the status of
that operation is NFS4_OK, then the next operation in the COVOUND
procedure is executed. The server continues this process until there
are no nore operations to be executed or one of the operations has a
status val ue other than NFS4_CK

In the processing of the COMPOUND procedure, the server may find that
it does not have the avail able resources to execute any or all of the
operations within the CO/WPOUND sequence. |n this case, the error
NFSAERR RESOURCE will be returned for the particular operation within
t he COVPOUND procedure where the resource exhaustion occurred. This
assunes that all previous operations within the CO/POUND sequence
have been eval uated successfully. The results for all of the

eval uated operations nust be returned to the client.

The server will generally choose between two net hods of decoding the
client’s request. The first would be the traditional one-pass XDR
decode, in which decoding of the entire COVMPOUND precedes execution
of any operation withinit. |If there is an XDR decoding error in
this case, an RPC XDR decode error would be returned. The second
met hod woul d be to naeke an initial pass to decode the basi c COVPOUND
request and then to XDR decode each of the individual operations, as

the server is ready to execute it. |In this case, the server may
encounter an XDR decode error during such an operation decode, after
previ ous operations within the COWOUND have been executed. |In this

case, the server would return the error NFS4ERR BADXDR to signify the
decode error.

The COVPOUND arguments contain a "mnorversion" field. The initial
and default value for this field is 0 (zero). This field will be
used by future m nor versions such that the client can conmunicate to
the server what mnor version is being requested. |If the server

recei ves a COVPOUND procedure with a minorversion field value that it
does not support, the server MJST return an error of

NFS4ERR_M NOR_VERS M SMATCH and a zero length resultdata array.

Contained within the COWPOUND results is a "status" field. If the

results array length is non-zero, this status nust be equivalent to
the status of the last operation that was executed within the

Shepler, et al. St andards Track [Page 138]

RFC 3530 NFS version 4 Protocol April 2003

COVMPOUND procedure. Therefore, if an operation incurred an error
then the "status" value will be the sane error value as is being
returned for the operation that failed.

Note that operations, O (zero) and 1 (one) are not defined for the
COVMPOUND procedure. Qperation 2 is not defined but reserved for
future definition and use with minor versioning. |If the server
receives a operation array that contains operation 2 and the

m norversion field has a value of 0 (zero), an error of
NFSAERR OP_| LLEGAL, as described in the next paragraph, is returned
to the client. |If an operation array contains an operation 2 and the
m norversion field is non-zero and the server does not support the
nm nor version, the server returns an error of

NFS4ERR_M NOR_VERS M SMATCH. Therefore, the

NFS4ERR_M NOR_VERS_M SMATCH error takes precedence over all other
errors.

It is possible that the server receives a request that contains an
operation that is less than the first |egal operation (OP_ACCESS) or
greater than the |last |egal operation (OP_RELEASE LOCKOANER)

In this case, the server’s response will encode the opcode OP_I LLEGAL
rather than the illegal opcode of the request. The status field in
the ILLEGAL return results will set to NFS4ERR OP I LLEGAL. The
COVMPOUND procedure’'s return results will also be NFS4ERR OP | LLEGAL.

The definition of the "tag" in the request is left to the

i npl ementor. It may be used to summarize the content of the compound
request for the benefit of packet sniffers and engi neers debuggi ng

i mpl enent ati ons. However, the value of "tag" in the response SHOULD
be the sanme value as provided in the request. This applies to the
tag field of the CB_ COVPOUND procedure as well.

| MPLEMENTATI ON

Since an error of any type may occur after only a portion of the
operations have been eval uated, the client nust be prepared to
recover fromany failure. |If the source of an NFS4ERR_RESCURCE error
was a conplex or lengthy set of operations, it is likely that if the
nunber of operations were reduced the server would be able to

eval uate them successfully. Therefore, the client is responsible for
dealing with this type of conplexity in recovery.

ERRCRS

Al'l errors defined in the protocol

Shepler, et al. St andards Track [Page 139]

RFC 3530 NFS version 4 Protocol April 2003

14.2.1. Operation 3: ACCESS - Check Access Rights
SYNCPSI S

(cfh), accessreq -> supported, accessrights

ARGUVENT
const ACCESS4_READ = 0x00000001;
const ACCESS4_LOOKUP = 0x00000002;
const ACCESS4_MODI FY = 0x00000004;
const ACCESS4_EXTEND = 0x00000008;
const ACCESS4_DELETE = 0x00000010;
const ACCESS4_EXECUTE = 0x00000020;

struct ACCESS4args {
/* CURRENT_FH: object */

uint32_t access;
i
RESULT
struct ACCESS4resok {
uint32_t support ed;
uint32_t access;

s

uni on ACCESS4res switch (nfsstat4 status) {
case NF4_ XX
ACCESS4r esok r esok4;
def aul t:
voi d;
i

DESCRI PTI ON

ACCESS determ nes the access rights that a user, as identified by the
credentials in the RPC request, has with respect to the file system
obj ect specified by the current filehandle. The client encodes the
set of access rights that are to be checked in the bit mask "access"
The server checks the perm ssions encoded in the bit mask. [If a
status of NFS4 OK is returned, two bit nasks are included in the
response. The first, "supported", represents the access rights for
whi ch the server can verify reliably. The second, "access"
represents the access rights available to the user for the filehandle
provided. On success, the current filehandle retains its val ue.

Shepler, et al. St andards Track [Page 140]

RFC 3530 NFS version 4 Protocol April 2003

Note that the supported field will contain only as nmany val ues as
were originally sent in the arguments. For exanple, if the client
sends an ACCESS operation with only the ACCESS4_READ val ue set and
the server supports this value, the server will return only
ACCESS4_READ even if it could have reliably checked ot her val ues.

The results of this operation are necessarily advisory in nature. A
return status of NFS4_OK and the appropriate bit set in the bit nmask
does not inmply that such access will be allowed to the file system
object in the future. This is because access rights can be revoked by
the server at any tine.

The followi ng access permi ssions nmay be requested:

ACCESS4_READ Read data fromfile or read a directory.

ACCESS4_LOCKUP Look up a nanme in a directory (no neaning for non-
directory objects).

ACCESS4_MODIFY Rewrite existing file data or nodify existing
directory entries.

ACCESS4_EXTEND Wite new data or add directory entries.

ACCESS4 DELETE Delete an existing directory entry.

ACCESS4_EXECUTE Execute file (no neaning for a directory).

On success, the current filehandle retains its val ue.

| MPLEMENTATI ON

In general, it is not sufficient for the client to attenpt to deduce
access permi ssions by inspecting the uid, gid, and node fields in the

file attributes or by attenpting to interpret the contents of the ACL
attribute. This is because the server nmay performuid or gid mappi ng

or enforce additional access control restrictions. It is also
possi ble that the server may not be in the sane | D space as the
client. |In these cases (and perhaps others), the client can not

reliably performan access check with only current file attributes.

In the NFS version 2 protocol, the only reliable way to determn ne
whet her an operation was allowed was to try it and see if it
succeeded or failed. Using the ACCESS operation in the NFS version 4
protocol, the client can ask the server to indicate whether or not
one or nore classes of operations are pernitted. The ACCESS
operation is provided to allow clients to check before doing a series
of operations which will result in an access failure. The OPEN

Shepler, et al. St andards Track [Page 141]

RFC 3530 NFS version 4 Protocol April 2003

operation provides a point where the server can verify access to the
file object and method to return that information to the client. The
ACCESS operation is still useful for directory operations or for use
in the case the UNI X APl "access" is used on the client.

The information returned by the server in response to an ACCESS cal
is not pernanent. It was correct at the exact tine that the server
performed the checks, but not necessarily afterwards. The server can
revoke access pernission at any tine.

The client should use the effective credentials of the user to build
the authentication information in the ACCESS request used to
determine access rights. It is the effective user and group
credentials that are used in subsequent read and wite operations.

Many i npl enentations do not directly support the ACCESS4 DELETE

perm ssion. Operating systens like UNNX will ignore the
ACCESS4 DELETE bit if set on an access request on a non-directory
object. In these systens, delete permission on a file is determ ned

by the access permissions on the directory in which the file resides,
i nstead of being determ ned by the permi ssions of the file itself.
Therefore, the mask returned enunerating which access rights can be
determ ned will have the ACCESS4 DELETE value set to 0. This
indicates to the client that the server was unable to check that
particul ar access right. The ACCESS4 DELETE bit in the access nask
returned will then be ignored by the client.

ERRORS

NFSAERR_ACCESS
NFS4ERR_BADHANDLE
NFS4ERR_BADXDR
NFS4AERR_DELAY
NFS4ERR_FHEXPI RED
NFSAERR | NVAL
NFSAERR | O
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFSAERR_STALE

14.2.2. QOperation 4: CLOSE - Cose File
SYNCPSI S

(cfh), seqid, open_stateid -> open_stateid

Shepler, et al. St andards Track [Page 142]

RFC 3530 NFS version 4 Protocol April 2003

ARGUMENT

struct CLOSE4args {
/* CURRENT_FH object */
seqi d4 seqi d
statei d4 open_statei d;

b
RESULT

uni on CLOSE4res switch (nfsstat4 status) {
case NF4_ XX
statei d4 open_statei d;
defaul t:
voi d;
s

DESCRI PTI ON

The CLOSE operation rel eases share reservations for the regular or
naned attribute file as specified by the current filehandle. The
share reservations and other state information rel eased at the server
as a result of this CLOSE is only associated with the supplied
stateid. The sequence id provides for the correct ordering. State
associ ated with other OPENs is not affected.

If record locks are held, the client SHOULD rel ease all |ocks before
issuing a CLOSE. The server MAY free all outstanding | ocks on CLOSE
but sonme servers may not support the CLOSE of a file that still has

record | ocks held. The server MIST return failure if any | ocks would
exist after the CLOSE

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

Even though CLOSE returns a stateid, this stateid is not useful to
the client and should be treated as deprecated. CLOSE "shuts down"
the state associated with all OPENs for the file by a single
open_owner. As noted above, CLOSE will either release all file

| ocking state or return an error. Therefore, the stateid returned by
CLCSE is not useful for operations that follow.

ERRCRS
NFS4ERR_ADM N_REVOKED

NFS4ERR_BADHANDLE
NFS4ERR_BAD_SEQ D

Shepler, et al. St andards Track [Page 143]

RFC 3530 NFS version 4 Protocol April 2003

NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_EXP| RED
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR_| SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_LOCKS_HELD
NFS4ERR_MOVED
NFS4ERR_NOF| LEHANDLE
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D

14.2.3. Qperation 5;: COMT - Commit Cached Data
SYNOPSI S
(cfh), offset, count -> verifier
ARGUVENT

struct COW T4args {
/* CURRENT_FH: file */
of fset4 of f set;
count4 count;

b
RESULT

struct COW T4resok {
verifier4d witeverf;
b

union COM T4res switch (nfsstat4 status) {
case NF4_XK
COW T4r esok resok4;
defaul t:
voi d;
s

Shepler, et al. St andards Track [Page 144]

RFC 3530 NFS version 4 Protocol April 2003

DESCRI PTI ON

The COW T operation forces or flushes data to stable storage for the
file specified by the current filehandle. The flushed data is that
whi ch was previously witten with a WRI TE operati on which had the
stable field set to UNSTABLEA4.

The of fset specifies the position within the file where the flush is
to begin. An offset value of 0 (zero) means to flush data starting
at the beginning of the file. The count specifies the nunber of
bytes of data to flush. |If count is O (zero), a flush fromoffset to
the end of the file is done.

The server returns a wite verifier upon successful conpletion of the
COM T. The wite verifier is used by the client to determine if the
server has restarted or rebooted between the initial WRITE(s) and the
COM T. The client does this by conparing the wite verifier
returned fromthe initial wites and the verifier returned by the
COM T operation. The server nust vary the value of the wite
verifier at each server event or instantiation that may lead to a

| oss of unconmmitted data. Mbst commonly this occurs when the server

i s rebooted; however, other events at the server may result in
uncomritted data | oss as well.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

The COW T operation is simlar in operation and semantics to the
PCSI X fsync(2) systemcall that synchronizes a file's state with the
disk (file data and netadata is flushed to disk or stable storage).
COW T performs the sane operation for a client, flushing any
unsynchroni zed data and netadata on the server to the server’s disk
or stable storage for the specified file. Like fsync(2), it may be
that there is sone nodified data or no nodified data to synchroni ze.
The data may have been synchroni zed by the server’s nornmal periodic
buffer synchronization activity. COVW T should return NFS4 K

unl ess there has been an unexpected error

COM T differs fromfsync(2) in that it is possible for the client to
flush a range of the file (nost likely triggered by a buffer-

recl amati on schene on the client before file has been conpletely
witten).

The server inplementation of COMT is reasonably sinple. |If the
server receives a full file COWMT request, that is starting at
offset 0 and count 0O, it should do the equivalent of fsync()'ing the
file. Oherwise, it should arrange to have the cached data in the

Shepler, et al. St andards Track [Page 145]

RFC 3530 NFS version 4 Protocol April 2003

range specified by offset and count to be flushed to stable storage.
In both cases, any netadata associated with the file nmust be flushed
to stable storage before returning. It is not an error for there to
be nothing to flush on the server. This neans that the data and

nmet adata that needed to be flushed have al ready been flushed or | ost
during the last server failure.

The client inplementation of COMT is a little nore conplex. There
are two reasons for wanting to commit a client buffer to stable
storage. The first is that the client wants to reuse a buffer. In
this case, the offset and count of the buffer are sent to the server
in the COMT request. The server then flushes any cached data based
on the offset and count, and flushes any netadata associated with the

file. 1t then returns the status of the flush and the wite
verifier. The other reason for the client to generate a COMT is
for a full file flush, such as may be done at close. 1In this case,

the client would gather all of the buffers for this file that contain
uncomitted data, do the COWM T operation with an offset of 0 and
count of 0, and then free all of those buffers. Any other dirty
buffers would be sent to the server in the nornmal fashion

After a buffer is witten by the client with the stable paraneter set
to UNSTABLE4, the buffer nmust be considered as nodified by the client
until the buffer has either been flushed via a COWM T operation or
witten via a WRITE operation with stable parameter set to FILE SYNC4
or DATA SYNC4. This is done to prevent the buffer from being freed
and reused before the data can be flushed to stable storage on the
server.

When a response is returned fromeither a WRITE or a COWM T operation
and it contains a wite verifier that is different than previously
returned by the server, the client will need to retransnit all of the
buffers containing unconmitted cached data to the server. How this

is to be done is up to the inplenmentor. |If there is only one buffer
of interest, then it should probably be sent back over in a WRITE
request with the appropriate stable paraneter. |f there is nore than

one buffer, it mght be worthwhile retransmitting all of the buffers
in WRITE requests with the stable paraneter set to UNSTABLE4 and then
retransmitting the COM T operation to flush all of the data on the
server to stable storage. The tinming of these retransnissions is
left to the inplenentor

The above description applies to page-cache-based systens as well as

buf f er-cache- based systens. In those systens, the virtual nenory
systemw |l need to be nodified instead of the buffer cache.

Shepler, et al. St andards Track [Page 146]

RFC 3530

ERRORS

NFS4ERR ACCESS
NFS4ERR_BADHANDLE
NFS4ERR_BADXDR
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR | SDI R
NFS4ERR_MOVED
NFS4ERR_NOF| LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

14. 2. 4.
SYNOPSI S

(cfh), nane,

type,
ARGUMENT

uni on
case NF4LNK:
| i nkt ext 4
NF4BLK:
NF4CHR:
specdat a4
NF4 SOCK:
NF4FI FO.
NF4DI R

voi d;

case
case

case

case
case

i
struct CREATE4args {

/* CURRENT FH:

createtype4
conmponent 4
fattr4

H
RESULT
struct CREATE4resok {

change_i nf o4
bi t rap4

Shepler, et al.

NFS version 4 Protocol

Operation 6: CREATE -

attrs -> (cfh),

April

Create a Non-Regul ar File nject

change_info, attrs_set

createtyped switch (nfs ftyped type) {

| i nkdat a;

devdat a;

directory for creation */
obj type;

obj nane;

Createattrs;

ci nfo;

attrset; [* attributes set */

St andards Track

2003

[Page 147]

RFC 3530 NFS version 4 Protocol April 2003

b

uni on CREATE4res switch (nfsstat4 status) {
case NF4_ XX
CREATEA4r esok resok4;
defaul t:
voi d;
s

DESCRI PTI ON

The CREATE operation creates a non-regular file object in a directory
with a given nane. The OPEN operation MJST be used to create a
regular file.

The obj nane specifies the name for the new object. The objtype
determ nes the type of object to be created: directory, symink, etc.

If an object of the sane nane already exists in the directory, the
server will return the error NFS4ERR _EXI ST.

For the directory where the new file object was created, the server
returns change_info4 information in cinfo. Wth the atomic field of
the change_info4 struct, the server will indicate if the before and
after change attributes were obtained atonically with respect to the
file object creation.

If the objnanme has a length of O (zero), or if objnane does not obey
the UTF-8 definition, the error NFS4ERR I NVAL will be returned

The current filehandle is replaced by that of the new object.

The createattrs specifies the initial set of attributes for the
object. The set of attributes may include any witable attribute
valid for the object type. Wen the operation is successful, the
server will return to the client an attribute mask signifying which
attributes were successfully set for the object.

If createattrs includes neither the owner attribute nor an ACL with
an ACE for the owner, and if the server’s filesystem both supports
and requires an owner attribute (or an owner ACE) then the server
MUST derive the owner (or the owner ACE). This would typically be
fromthe principal indicated in the RPC credentials of the call, but
the server’s operating environnment or filesystem semantics may
dictate other nethods of derivation. Sinmilarly, if createattrs

i ncludes neither the group attribute nor a group ACE, and if the
server’s filesystem both supports and requires the notion of a group
attribute (or group ACE), the server MJST derive the group attribute

Shepler, et al. St andards Track [Page 148]

RFC 3530 NFS version 4 Protocol April 2003

(or the correspondi ng owner ACE) for the file. This could be fromthe
RPC call’'s credentials, such as the group principal if the
credentials include it (such as with AUTH SYS), fromthe group
identifier associated with the principal in the credentials (for

e.g., POSI X systens have a passwd dat abase that has the group
identifier for every user identifier), inherited fromdirectory the
object is created in, or whatever else the server’'s operating
environnent or filesystemsenantics dictate. This applies to the OPEN
operation too.

Conversely, it is possible the client will specify in createattrs an
owner attribute or group attribute or ACL that the principa

i ndicated the RPC call’s credentials does not have permissions to
create files for. The error to be returned in this instance is
NFS4ERR_PERM This applies to the OPEN operation too.

| MPLEMENTATI ON

If the client desires to set attribute values after the create, a
SETATTR operation can be added to the COMPOUND request so that the
appropriate attributes will be set.

ERRORS

NFS4ERR_ACCESS
NFS4ERR_ATTRNOTSUPP
NFS4ERR_BADCHAR
NFS4ERR_BADHANDLE
NFS4ERR_BADNANME
NFS4ERR_BADOWKER
NFS4ERR_BADTYPE
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_DQUOT
NFS4ERR_EXI ST
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NAMETOOLONG
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NOTDI R
NFS4ERR_PERM
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

Shepler, et al. St andards Track [Page 149]

RFC 3530 NFS version 4 Protocol April 2003

14.2.5. CQOperation 7: DELEGPURGE - Purge Del egations Awaiting Recovery
SYNCPSI S

clientid ->

ARGUVENT
struct DELEGPURGE4args {
clientid4 clientid;
H
RESULT
struct DELEGPURGE4res {
nf sstat 4 st at us;
H
DESCRI PTI ON

Purges all of the delegations awaiting recovery for a given client.
This is useful for clients which do not conmt del egation information
to stable storage to indicate that conflicting requests need not be
del ayed by the server awaiting recovery of delegation infornation

This operation should be used by clients that record del egati on

i nformati on on stable storage on the client. In this case,
DELEGPURGE shoul d be issued inmediately after doing del egation
recovery on all delegations known to the client. Doing so will
notify the server that no additional delegations for the client will
be recovered allowing it to free resources, and avoi d del ayi ng ot her
clients who nmake requests that conflict with the unrecovered

del egations. The set of del egations known to the server and the
client may be different. The reason for this is that a client may
fail after naking a request which resulted in del egation but before
it received the results and coimmitted themto the client’s stable
st or age.

The server MAY support DELEGPURCGE, but if it does not, it MJST NOT
support CLAI M DELEGATE_PREV.

ERRORS

NFS4ERR_BADXDR
NFS4ERR_NOTSUPP
NFS4ERR_LEASE_MOVED
NFSAERR_MOVED
NFSAERR _RESOURCE

Shepler, et al. St andards Track [Page 150]

RFC 3530 NFS version 4 Protocol April 2003
NFS4ERR_SERVERFAULT
NFSA4ERR_STALE CLI ENTI D
14.2.6. Operation 8: DELEGRETURN - Return Del egation
SYNOPSI S
(cfh), stateid ->
ARGUVENT

struct DELEGRETURN4args {
/* CURRENT_FH. del egated file */

st atei d4 stateid;
b
RESULT
struct DELEGRETURN4res {
nf sst at 4 st at us;
b
DESCRI PTI ON

Returns the del egati on represented by the current filehandl e and
statei d.

Del egations may be returned when recalled or voluntarily (i.e.

before the server has recalled them. 1In either case the client nust
properly propagate state changed under the context of the del egation
to the server before returning the del egation

ERRCRS

NFS4ERR_ADM N_REVOKED
NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFS4ERR_EXP| RED
NFS4ERR_| NVAL
NFS4ERR_LEASE_MOVED
NFS4ERR_MOVED
NFS4ERR_NOF| LEHANDLE
NFS4ERR_NOTSUPP
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D

Shepler, et al. St andards Track [Page 151]

RFC 3530 NFS version 4 Protocol April 2003

14.2.7. Operation 9: CGETATTR - Get Attributes
SYNCPSI S
(cfh), attrbits -> attrbits, attrvals
ARGUMENT

struct GETATTR4args {
/* CURRENT_FH: directory or file */
bi t map4 attr_request;

b
RESULT

struct GETATTR4resok {
fattr4 obj _attributes;
i

uni on CETATTR4res switch (nfsstat4 status) {
case NFH4_X
GETATTR4r esok resok4;
defaul t:
voi d;
}s

DESCRI PTI ON

The GETATTR operation will obtain attributes for the fil esystem

obj ect specified by the current filehandle. The client sets a bit in
the bitmap argunent for each attribute value that it would like the
server to return. The server returns an attribute bitmap that

i ndicates the attribute values for which it was able to return
followed by the attribute values ordered | owest attribute nunber
first.

The server nust return a value for each attribute that the client
requests if the attribute is supported by the server. |f the server
does not support an attribute or cannot approxinmate a useful value
then it nust not return the attribute value and nust not set the
attribute bit in the result bitmap. The server nust return an error
if it supports an attribute but cannot obtain its value. |In that
case no attribute values will be returned.

Al'l servers must support the mandatory attributes as specified in the
section "File Attributes”

On success, the current filehandle retains its val ue.

Shepler, et al. St andards Track [Page 152]

RFC 3530 NFS version 4 Protocol April 2003

| MPLEMENTATI ON
ERRCRS

NFS4ERR_ACCESS
NFS4ERR_BADHANDLE
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOF| LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

14.2.8. Qperation 10: GETFH - Get Current Filehandle
SYNCPSI S
(cfh) -> filehandle
ARGUVENT
/* CURRENT_FH */
voi d;
RESULT
struct GETFH4resok {

nfs _fh4 obj ect;
b

uni on CETFH4res switch (nfsstat4 status) {
case NF4_K
GETFH4r esok resok4;
defaul t:
voi d;
i
DESCRI PTI ON
This operation returns the current filehandl e val ue.

On success, the current filehandle retains its val ue.

Shepler, et al. St andards Track [Page 153]

RFC 3530 NFS version 4 Protocol April 2003

| MPLEMENTATI ON

Operations that change the current filehandl e |ike LOOKUP or CREATE
do not automatically return the new filehandle as a result. For
instance, if a client needs to | ookup a directory entry and obtain
its filehandl e then the follow ng request is needed.

PUTFH (directory filehandl e)
LOOKUP (entry nane)
GETFH

ERRORS

NFS4ERR_BADHANDLE
NFS4ERR_FHEXPI RED
NFS4ERR_MOVED
NFSAERR_NOFI LEHANDLE
NFSAERR_RESOURCE
NFS4ERR_SERVERFAULT
NFSAERR_STALE

14.2.9. COperation 11: LINK - Create Link to a File
SYNOPSI S
(sfh), (cfh), newnane -> (cfh), change_info
ARGUVENT
struct LI NKdargs {

/* SAVED FH:. source object */
/* CURRENT _FH target directory */

conponent 4 newnaneg;
b
RESULT
struct LI NK4resok {
change_i nf o4 ci nf o;
b
union LINK4res switch (nfsstat4 status) {
case NFS4_OK:
LI NK4resok resok4;
defaul t:
voi d;
1

Shepler, et al. St andards Track [Page 154]

RFC 3530 NFS version 4 Protocol April 2003

DESCRI PTI ON

The LINK operation creates an additional newname for the file
represented by the saved filehandl e, as set by the SAVEFH operation
in the directory represented by the current filehandle. The existing
file and the target directory nust reside within the sane fil esystem
on the server. On success, the current filehandle will continue to
be the target directory. |If an object exists in the target directory
with the same nane as newnane, the server mnust return NFS4ERR EXI ST

For the target directory, the server returns change_info4 information
incinfo. Wth the atonic field of the change_info4 struct, the
server will indicate if the before and after change attributes were
obtained atonmically with respect to the link creation

If the newnane has a length of O (zero), or if newnane does not obey
the UTF-8 definition, the error NFS4ERR I NVAL will be returned

| MPLEMENTATI ON

Changes to any property of the "hard" linked files are reflected in
all of the linked files. Wwen alink is nade to a file, the
attributes for the file should have a value for numinks that is one
greater than the value before the LINK operation.

The statenent "file and the target directory nust reside within the
sanme filesystemon the server" neans that the fsid fields in the
attributes for the objects are the same. If they reside on different
filesystens, the error, NFSAERR XDEV, is returned. On sone servers
the filenanes, "." and "..", are illegal as newnane.

In the case that newnane is already linked to the file represented by
the saved filehandl e, the server will return NFS4ERR_EXI ST.

Note that synbolic links are created with the CREATE operation
ERRORS

NFS4ERR ACCESS
NFS4ERR_BADCHAR
NFS4ERR_BADHANDL E
NFS4ERR_BADNANE
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_DQUOT
NFS4ERR_EXI ST
NFS4ERR_FHEXPI RED
NFS4ERR_FI LE_OPEN

Shepler, et al. St andards Track [Page 155]

RFC 3530 NFS version 4 Protoco

NFS4ERR | NVAL
NFS4ERR | O

NFS4ERR | SDI R
NFS4ERR_MLI NK
NFS4ERR_MOVED
NFS4ERR_NAMETOOLONG
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NOTDI R
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WWRONGSEC
NFS4ERR_XDEV

14.2.10. Operation 12: LOCK - Create Lock
SYNCPSI S

(cfh) locktype, reclaim offset, |length, |ocker

ARGUVENT
struct open_to_I|l ock_owner4 {
seqi d4 open_seqi d;
Sstatei d4 open_statei d;
seqi d4 | ock_seqid;
| ock_owner 4 | ock_owner
i
struct exist_|ock_owner4 {
st at ei d4 | ock_stateid;
seqi d4 | ock_seqid;
i
uni on | ocker4 switch (bool new_| ock_owner) {
case TRUE:
open_t o_| ock_owner 4 open_owner
case FALSE:
exi st _| ock_owner4 | ock_owner;
i
enum nfs_| ock_typed {
READ LT =1,
VWRI TE_LT =2

Shepler, et al. St andards Track

Apri

-> stateid

2003

[Page 156]

RFC 3530 NFS version 4 Protocol April 2003

READW LT
WRI TEW LT

3, /* bl ocking read */
4 /* blocking wite */

b

struct LOCK4args {
/* CURRENT_FH:. file */
nfs | ock typed4 | ocktype;

bool reclaim
of fset4 of f set;
| engt h4 | engt h;
| ocker4 | ocker;
}
RESULT
struct LOCK4deni ed {
of fset4 of f set;
| engt h4 | engt h;
nfs | ock typed4 | ocktype;
| ock_owner 4 owner ;
}
struct LOCKA4resok {
statei d4 | ock_stateid;
}s

uni on LOCK4res switch (nfsstat4 status) {
case NF4_ XX
LOCK4r esok resok4;
case NFS4ERR DEN ED
LOCK4deni ed deni ed;
defaul t:
voi d;
s

DESCRI PTI ON

The LOCK operation requests a record |ock for the byte range
specified by the offset and | ength paraneters. The lock type is also
specified to be one of the nfs_lock typeds. |If this is a reclaim
request, the reclaimparaneter will be TRUE

Bytes in a file may be | ocked even if those bytes are not currently
allocated to the file. To lock the file froma specific offset
through the end-of-file (no matter how long the file actually is) use
alength field with all bits set to 1 (one). |If the length is zero,

Shepler, et al. St andards Track [Page 157]

RFC 3530 NFS version 4 Protocol April 2003

or if alength which is not all bits set to one is specified, and
| engt h when added to the of fset exceeds the maxi num 64-bit unsigned
i nteger value, the error NFSAERR INVAL will result.

Some servers may only support |locking for byte offsets that fit
within 32 bits. |If the client specifies a range that includes a byte
beyond the last byte offset of the 32-bit range, but does not include
the | ast byte offset of the 32-bit and all of the byte offsets beyond
it, up to the end of the valid 64-bit range, such a 32-bit server
MUST return the error NFS4ERR BAD RANGE.

In the case that the lock is denied, the owner, offset, and | ength of
a conflicting lock are returned.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

If the server is unable to determ ne the exact offset and | ength of
the conflicting |l ock, the sanme offset and |l ength that were provided
in the argunents should be returned in the denied results. The File
Locki ng section contains a full description of this and the other
file |l ocking operations.

LOCK operations are subject to perm ssion checks and to checks

agai nst the access type of the associated file. However, the
specific right and nodes required for various type of |ocks, reflect
the semantics of the server-exported filesystem and are not

specified by the protocol. For exanple, Wndows 2000 allows a wite
lock of a file open for READ, while a PGCSI X-conpliant system does
not .

When the client nakes a | ock request that corresponds to a range that
the | ockowner has | ocked already (with the sane or different |ock
type), or to a sub-region of such a range, or to a region which
includes multiple |ocks already granted to that | ockowner, in whole
or in part, and the server does not support such | ocking operations
(i.e., does not support POSI X | ocki ng semantics), the server will
return the error NFSAERR LOCK RANGE. |In that case, the client nay
return an error, or it may enul ate the required operations, using
only LOCK for ranges that do not include any bytes already | ocked by
that | ock_owner and LOCKU of |ocks held by that | ock _owner
(specifying an exactly-nmatching range and type). Sinilarly, when the
client makes a | ock request that anounts to upgrading (changing from
a read lock to a wite lock) or downgrading (changing fromwite |ock
to a read |l ock) an existing record | ock, and the server does not

Shepler, et al. St andards Track [Page 158]

RFC 3530 NFS version 4 Protocol April 2003

support such a lock, the server will return NFS4ERR LOCK NOTSUPP
Such operations may not perfectly reflect the required semantics in
the face of conflicting |ock requests fromother clients.

The | ocker argunent specifies the | ock_owner that is associated wth
the LOCK request. The locker4 structure is a switched union that

i ndi cates whether the | ock _owner is known to the server or if the

| ock_owner is newto the server. |In the case that the | ock_owner is
known to the server and has an established | ock_seqid, the argunent
is just the |l ock_owner and lock_seqid. |In the case that the

| ock_owner is not known to the server, the argunent contains not only
the | ock_owner and | ock _seqid but also the open_stateid and
open_seqid. The new | ock_owner case covers the very first |ock done
by the | ock _owner and offers a nethod to use the established state of
the open_stateid to transition to the use of the | ock_owner

ERRORS

NFS4ERR_ACCESS
NFS4ERR_ADM N_REVOKED
NFS4ERR_BADHANDLE
NFS4ERR_BAD_RANGE
NFS4ERR_BAD_SEQ D
NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFS4ERR_DEADLOCK
NFS4ERR_DELAY
NFS4ERR_DENI ED
NFS4ERR_EXP| RED
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR_| SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_LOCK_NOTSUPP
NFS4ERR_LOCK_RANGE
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NO_GRACE
NFS4ERR_OLD_STATEI D
NFS4ERR_OPENMODE
NFS4ERR_RECLAI M_BAD
NFS4ERR_RECLAI M_CONFLI CT
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_CLI ENTI D
NFS4ERR_STALE_STATEI D

Shepler, et al. St andards Track [Page 159]

RFC 3530 NFS version 4 Protocol April 2003

14.2.11. Operation 13: LOCKT - Test For Lock
SYNCPSI S

(cfh) locktype, offset, length owner -> {void, NFS4ERR DEN ED - >
owner }

ARGUMENT
struct LOCKT4args {

/* CURRENT_FH: file */
nfs |ock typed4 | ocktype;

of fset4 of f set;
| engt h4 | engt h;
| ock_owner 4 owner ;

s

RESULT

struct LOCK4denied {
of fset4 of f set;
| engt h4 | engt h;
nfs_ | ock_typed |ocktype;
| ock_owner 4 owner ;

b

uni on LOCKT4res switch (nfsstat4 status) {

case NFS4ERR _DEN ED:
LOCK4deni ed deni ed;

case NF4_XX
voi d;

defaul t:
voi d;

b

DESCRI PTI ON

The LOCKT operation tests the | ock as specified in the argunents. |f
a conflicting | ock exists, the owner, offset, length, and type of the
conflicting lock are returned; if no lock is held, nothing other than
NFS4 K is returned. Lock types READ LT and READW LT are processed
in the same way in that a conflicting lock test is done w thout
regard to bl ocking or non-blocking. The sane is true for WRITE LT
and WRI TEW LT.

The ranges are specified as for LOCK. The NFS4ERR_|I NVAL and

NFS4ERR BAD RANGE errors are returned under the sane circunstances as
for LOCK

Shepler, et al. St andards Track [Page 160]

RFC 3530 NFS version 4 Protocol April 2003

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

If the server is unable to determ ne the exact offset and | ength of
the conflicting lock, the sane offset and |l ength that were provided
in the argunents should be returned in the denied results. The File
Locki ng section contains further discussion of the file |ocking
nmechani sns.

LOCKT uses a |lock _owner4 rather a stateid4, as is used in LOCK to
identify the owner. This is because the client does not have to open
the file to test for the existence of a lock, so a stateid may not be
avai | abl e.

The test for conflicting | ocks shoul d exclude | ocks for the current

| ockowner. Note that since such | ocks are not exam ned the possible
exi stence of overlapping ranges may not affect the results of LOCKT
If the server does exanine |ocks that match the | ockowner for the
pur pose of range checki ng, NFS4ERR LOCK RANGE nmay be returned.. In
the event that it returns NFS4_OK, clients may do a LOCK and receive
NFSAERR LOCK RANGE on the LOCK request because of the flexibility
provided to the server.

ERRORS

NFS4ERR ACCESS
NFS4ERR_BADHANDLE
NFS4ERR_BAD_RANGE
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_DENI ED
NFS4ERR_FHEXPI RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR | SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_LOCK_RANGE
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_CLI ENTI D

Shepler, et al. St andards Track [Page 161]

RFC 3530 NFS version 4 Protocol April 2003

14.2.12. Operation 14: LOCKU - Unlock File
SYNCPSI S
(cfh) type, seqid, stateid, offset, length -> stateid
ARGUMENT
struct LOCKWargs {

/* CURRENT_FH: file */
nfs_ | ock_typed |ocktype;

seqi d4 seqi d;
st atei d4 stateid;
of fset4 of f set;
| engt h4 | engt h;
s
RESULT

uni on LOCKU4res switch (nfsstat4 status) {
case NFS4_OK:
st at ei d4 st at ei d;
defaul t:
voi d;
s

DESCRI PTI ON

The LOCKU operation unlocks the record | ock specified by the
paraneters. The client nay set the |locktype field to any val ue that
is legal for the nfs_|ock typed4 enunerated type, and the server MJST
accept any legal value for |ocktype. Any |legal value for |ocktype has
no effect on the success or failure of the LOCKU operation

The ranges are specified as for LOCK. The NFS4ERR_|I NVAL and
NFSAERR BAD RANGE errors are returned under the sanme circunstances as
for LOCK

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

If the area to be unl ocked does not correspond exactly to a | ock
actually held by the | ockowner the server nmay return the error
NFS4ERR_LOCK_RANGE. This includes the case in which the area is not
| ocked, where the area is a sub-range of the area |ocked, where it
overlaps the area | ocked w thout matching exactly or the area
specified includes nultiple | ocks held by the | ockowner. In all of

Shepler, et al. St andards Track [Page 162]

RFC 3530 NFS version 4 Protocol April 2003

t hese cases, allowed by PCSI X | ocking senantics, a client receiving
this error, should if it desires support for such operations,

simul ate the operation using LOCKU on ranges corresponding to | ocks
it actually holds, possibly followed by LOCK requests for the sub-
ranges not bei ng unl ocked.

ERRORS

NFS4ERR ACCESS
NFS4ERR_ADM N_REVOKED
NFS4ERR_BADHANDLE
NFS4ERR_BAD_RANGE
NFS4ERR_BAD_SEQ D
NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFS4ERR_EXPI RED
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR_| SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_LOCK_RANGE
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D

14.2.13. Operation 15: LOOKUP - Lookup Fil enane
SYNCPSI S
(cfh), conponent -> (cfh)
ARGUMENT
struct LOOKUP4args {

/* CURRENT_FH directory */
component 4 obj nane;

b

Shepler, et al. St andards Track [Page 163]

RFC 3530 NFS version 4 Protocol April 2003

RESULT

struct LOOKUP4res {
/* CURRENT_FH object */
nf sstat 4 st at us;

b
DESCRI PTI ON

This operation LOOKUPs or finds a filesystem object using the
directory specified by the current filehandle. LOOKUP eval uates the
conponent and if the object exists the current filehandle is replaced
with the conponent’s filehandl e.

I f the conponent cannot be eval uated either because it does not exist
or because the client does not have permission to evaluate the
component, then an error will be returned and the current filehandle
wi | | be unchanged.

If the conponent is a zero length string or if any conponent does not
obey the UTF-8 definition, the error NFS4ERR INVAL wi |l be returned.

| MPLEMENTATI ON

If the client wants to achieve the effect of a nulti-conponent

| ookup, it may construct a COVPOUND request such as (and obtain each
fil ehandl e):

PUTFH (directory fil ehandl e)

LOOKUP " pub”
GETFH
LOOKUP " f 00"
GETFH
LOOKUP " bar "
GETFH

NFS version 4 servers depart fromthe semantics of previous NFS
versions in allowi ng LOOKUP requests to cross nountpoints on the
server. The client can detect a nountpoint crossing by conparing the
fsid attribute of the directory with the fsid attribute of the
directory | ooked up. |If the fsids are different then the new
directory is a server nountpoint. UN X clients that detect a

nmount poi nt crossing will need to nount the server’'s filesystem This
needs to be done to maintain the file object identity checking
mechani sms conmon to UNI X clients.

Shepler, et al. St andards Track [Page 164]

RFC 3530 NFS version 4 Protocol April 2003

Servers that limt NFS access to "shares" or "exported" filesystens
shoul d provide a pseudo-filesysteminto which the exported
filesystens can be integrated, so that clients can browse the
server’s name space. The clients’ view of a pseudo filesystemwill
be limted to paths that |lead to exported fil esystens.

Not e: previous versions of the protocol assigned special semantics to
the nanes "." and ".. NFS version 4 assigns no special semantics
to these nanes. The LOOKUPP operator nust be used to | ookup a parent
directory.

Note that this operation does not follow synbolic Iinks. The client
is responsible for all parsing of filenanes including filenanmes that
are nodified by synbolic Iinks encountered during the | ookup process.

If the current filehandl e supplied is not a directory but a symbolic
link, the error NFSAERR SYMLINK is returned as the error. For al
other non-directory file types, the error NFS4ERR NOTDI R i s returned.

ERRCRS

NFS4ERR_ACCESS
NFS4ERR_BADCHAR
NFS4ERR_BADHANDLE
NFS4ERR_BADNANVE
NFS4ERR_BADXDR
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NAVETOOLONG
NFS4ERR_NOENT
NFS4ERR_NOF| LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_SYMLI NK
NFS4ERR_WRONGSEC

14.2.14. (Operation 16: LOOKUPP - Lookup Parent Directory
SYNOPSI S

(cfh) -> (cfh)

Shepler, et al. St andards Track [Page 165]

RFC 3530 NFS version 4 Protocol April 2003

ARGUMENT

/* CURRENT_FH: object */
voi d;

RESULT

struct LOOKUPP4res {
/* CURRENT_FH. directory */
nfsstat4 st at us;

b
DESCRI PTI ON

The current filehandle is assuned to refer to a regular directory
or a naned attribute directory. LOOKUPP assigns the filehandle for
its parent directory to be the current filehandle. |If there is no
parent directory an NFS4ERR NCENT error nust be returned.

Theref ore, NFSAERR NCENT wi Il be returned by the server when the
current filehandle is at the root or top of the server's file tree.

| MPLEMENTATI ON
As for LOOKUP, LOOKUPP will also cross nountpoints.

If the current filehandle is not a directory or naned attribute
directory, the error NFS4ERR _NOTDIR is returned.

ERRORS

NFS4ERR ACCESS
NFS4ERR_BADHANDLE
NFS4ERR_FHEXPI RED
NFS4ERR_| O
NFS4ERR_MOVED
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

14.2.15. Operation 17: NVERIFY - Verify Difference in Attributes
SYNCPSI S

(cfh), fattr -> -

Shepler, et al. St andards Track [Page 166]

RFC 3530 NFS version 4 Protocol April 2003

ARGUMENT

struct NVERI Fydargs {
/* CURRENT_FH object */

fattr4 obj _attributes;
i
RESULT
struct NVERI FY4res {
nf sstat 4 st at us;
i
DESCRI PTI ON

This operation is used to prefix a sequence of operations to be
performed if one or nore attributes have changed on sone fil esystem
object. If all the attributes match then the error NFS4ERR SAME nust
be returned.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

This operation is useful as a cache validation operator. |If the
object to which the attributes bel ong has changed then the follow ng
operations may obtain new data associated with that object. For
instance, to check if a file has been changed and obtain new data if
it has:

PUTFH (public)

LOOKUP "f oobar"
NVERI FY attrbits attrs
READ 0 32767

In the case that a recomended attribute is specified in the NVER FY
operation and the server does not support that attribute for the
filesystemobject, the error NFSAERR ATTRNOTSUPP is returned to the
client.

When the attribute rdattr_error or any wite-only attribute (e.qg.

tinme_nodify set) is specified, the error NFS4ERR INVAL is returned to
the client.

Shepler, et al. St andards Track [Page 167]

RFC 3530

ERRORS

NFS4ERR ACCESS
NFS4ERR_ATTRNOTSUPP
NFS4ERR_BADCHAR
NFS4ERR_BADHANDL E
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOF| LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SANE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

NFS version 4 Protocol

April 2003

14.2.16. Operation 18: OPEN - Open a Regular File
SYNOPSI S
(cfh), seqid, share_access, share_deny, owner, openhow, claim->
(cfh), stateid, cinfo, rflags, open_confirm attrset del egation
ARGUVMENT
struct OPEMargs {
seqi d4 seqi d;
uint32_t share_access;
uint32_t share_deny;
open_owner 4 owner ;
openfl ag4 openhow;
open_cl ai n4 claim
i
enum cr eat ennded {
UNCHECKED4 = 0,
GUARDED4 =1,
EXCLUSI VE4 =2
i
uni on createhow4 switch (createnoded4 node) {
case UNCHECKED4:
case GUARDEDA4:
fattr4 Createattrs;
case EXCLUSI VE4:
verifier4 createverf;
Shepler, et al. St andards Track [Page 168]

RFC 3530 NFS version 4 Protocol April 2003

b

enum opent yped {
OPEN4_NOCREATE
OPEN4_CREATE

b

uni on openflag4 switch (opentype4 opentype) {
case OPEN4_CREATE:
cr eat ehow4 how;
defaul t:
voi d;
s

/* Next definitions used for OPEN del egation */
enum limt_by4 {

NFS LIM T_SI ZE =1,
NFS_LI M T_BLOCKS =2
/* others as needed */
s
struct nfs_nodified limt4 {
uint32_t num bl ocks;
uint32_t byt es_per bl ock;
s

union nfs_space_limt4 switch (linmt_by4 limtby) {
/* limt specified as file size */
case NFS_LIMT_SI ZE:
ui nt 64 _t filesize;
/* Ilimt specified by nunber of blocks */
case NFS LI M T_BLOCKS:
nfs_nodified_linmt4 nod_Dbl ocks;
b

enum open_del egation_type4d {
OPEN_DELEGATE_NONE
OPEN_DELEGATE_READ
OPEN_DELEGATE_WRI TE

I
N = O

s

enum open_cl aimtyped {
CLAI M_NULL
CLAI M_PREVI QUS
CLAI M DELEGATE_CUR
CLAI M _DELEGATE_PREV

WN PO

Shepler, et al. St andards Track [Page 169]

RFC 3530 NFS version 4 Protocol April 2003

struct open_clai mdel egate cur4 {

statei d4 del egat e_st at ei d;
conmponent 4 file;
s
uni on open_clainmd switch (open_claimtyped4 clainm {
/*
* No special rights to file. Ordinary OPEN of the specified file.
*/

case CLAI M _NULL:
/* CURRENT_FH. directory */
conponent 4 file;

/*
* Right to the file established by an open previous to server
* reboot. File identified by filehandl e obtained at that tinme
* rather than by nane.
*/
case CLAI M _PREVI QUS

/* CURRENT_FH. file being reclaimed */

open_del egati on_t ype4 del egat e_t ype;

/*
* Right to file based on a del egation granted by the server
* File is specified by nane.
*/
case CLAI M DELEGATE_CUR:
/* CURRENT_FH directory */
open_cl ai m del egate_cur4 del egate_cur _i nfo;

/* Right to file based on a delegation granted to a previous boot
* instance of the client. File is specified by nane.
*/
case CLAI M DELEGATE_PREV:
/* CURRENT_FH. directory */

conponent 4 file_del egate prev;
i
RESULT
struct open_read_del egationd {
statei d4 stateid; /* Stateid for del egation*/
bool recal | ; /* Pre-recalled flag for

del egati ons obt ai ned
by reclaim
(CLAI M _PREVI QUS) */

nf sace4 per m ssi ons; /* Defines users who don’t
need an ACCESS call to

Shepler, et al. St andards Track [Page 170]

RFC 3530 NFS version 4 Protocol April 2003

open for read */

s

struct open_write_del egationd {

Sstatei d4 stateid; /* Stateid for del egation*/

bool recal | ; /* Pre-recalled flag for
del egati ons obt ai ned
by reclaim
(CLAI M _PREVI QUS) */

nfs_space limt4 space limt; /* Defines condition that
the client nust check to
det ermi ne whet her the
file needs to be flushed
to the server on close
*/

nf sace4 per m ssi ons; /* Defines users who don’t
need an ACCESS call as
part of a del egated
open. */

s

uni on open_del egati on4
swi tch (open_del egation_type4 del egation_type) {
case OPEN_DELEGATE_NONE:
voi d;
case OPEN_DELEGATE_READ:
open_r ead_del egati on4 read;
case OPEN _DELEGATE WRI TE
open_wite_delegationd wite;

b

const OPEN4_RESULT_CONFI RM = 0x00000002;
const OPENA_RESULT_LOCKTYPE_POSI X = 0x00000004;

struct OPEMNresok {

statei d4 stateid; /* Stateid for open */
change_i nfo4 ci nfo; /* Directory Change Info */
uint32_t rflags; /* Result flags */

bi t map4 attrset; /* attributes on create */
open_del egati on4 del egati on; /* Info on any open

del egation */

b

uni on OPENdres switch (nfsstat4 status) {
case NF4_X
/* CURRENT_FH: opened file */
OPEN4r esok r esok4;
def aul t:

Shepler, et al. St andards Track [Page 171]

RFC 3530 NFS version 4 Protocol April 2003

voi d;

b
WARNI NG TO CLI ENT | MPLENENTORS

OPEN resenbles LOOKUP in that it generates a filehandle for the
client to use. Unlike LOOKUP though, OPEN creates server state on
the filehandle. 1In normal circunstances, the client can only rel ease
this state with a CLOSE operation. CLOSE uses the current filehandle
to deternine which file to close. Therefore the client MJST foll ow
every OPEN operation with a GETFH operation in the same COVPOUND
procedure. This will supply the client with the filehandl e such that
CLCSE can be used appropriately.

Sinmply waiting for the lease on the file to expire is insufficient
because the server may maintain the state indefinitely as long as
anot her client does not attenpt to nmake a conflicting access to the
same file.

DESCRI PTI ON

The OPEN operation creates and/or opens a regular file in a directory
with the provided nane. |If the file does not exist at the server and
creation is desired, specification of the nethod of creation is

provi ded by the openhow paraneter. The client has the choice of
three creation methods: UNCHECKED, GUARDED, or EXCLUSI VE

If the current filehandle is a naned attribute directory, OPEN wi |l
then create or open a naned attribute file. Note that exclusive
create of a naned attribute is not supported. |If the createnode is
EXCLUSI VE4 and the current filehandle is a naned attribute directory,
the server will return ElI NVAL.

UNCHECKED neans that the file should be created if a file of that
nane does not exist and encountering an existing regular file of that
nane is not an error. For this type of create, createattrs specifies
the initial set of attributes for the file. The set of attributes
may include any witable attribute valid for regular files. Wen an
UNCHECKED create encounters an existing file, the attributes
specified by createattrs are not used, except that when an size of
zero is specified, the existing file is truncated. |f GUARDED is
specified, the server checks for the presence of a duplicate object
by nanme before performng the create. |If a duplicate exists, an
error of NFS4ERR EXI ST is returned as the status. |f the object does
not exist, the request is performed as described for UNCHECKED. For

Shepler, et al. St andards Track [Page 172]

RFC 3530 NFS version 4 Protocol April 2003

each of these cases (UNCHECKED and GUARDED) where the operation is
successful, the server will return to the client an attribute nask
signifying which attributes were successfully set for the object.

EXCLUSI VE specifies that the server is to foll ow exclusive creation
semantics, using the verifier to ensure exclusive creation of the
target. The server should check for the presence of a duplicate

obj ect by nane. |If the object does not exist, the server creates the
object and stores the verifier with the object. |If the object does
exi st and the stored verifier matches the client provided verifier,
the server uses the existing object as the newly created object. |If
the stored verifier does not match, then an error of NFS4ERR EXI ST is
returned. No attributes may be provided in this case, since the
server nmay use an attribute of the target object to store the
verifier. |If the server uses an attribute to store the exclusive
create verifier, it will signify which attribute by setting the
appropriate bit in the attribute mask that is returned in the
results.

For the target directory, the server returns change_info4 information
incinfo. Wth the atonic field of the change_info4 struct, the
server will indicate if the before and after change attributes were
obtained atomically with respect to the link creation

Upon successful creation, the current filehandle is replaced by that
of the new object.

The OPEN operation provides for Wndows share reservation capability
with the use of the share_access and share_deny fields of the OPEN
argunents. The client specifies at OPEN the required share_access
and share_deny nodes. For clients that do not directly support
SHAREs (i.e., UNIX), the expected deny value is DENY NONE. In the
case that there is a existing SHARE reservation that conflicts with
the OPEN request, the server returns the error NFS4ERR SHARE DEN ED
For a conpl ete SHARE request, the client nmust provide values for the
owner and seqid fields for the OPEN argunent. For additiona

di scussi on of SHARE senantics see the section on ’Share

Reservati ons’

In the case that the client is recovering state froma server
failure, the claimfield of the OPEN argunent is used to signify that
the request is neant to reclaimstate previously held.

The "clainm field of the OPEN argunment is used to specify the file to
be opened and the state information which the client clains to
possess. There are four basic claimtypes which cover the various
situations for an OPEN. They are as foll ows:

Shepler, et al. St andards Track [Page 173]

RFC 3530 NFS version 4 Protocol April 2003

CLAI M_NULL
For the client, this is a new OPEN
request and there is no previous state
associate with the file for the client.

CLAI M_PREVI QUS
The client is claimng basic OPEN state
for a file that was held previous to a
server reboot. Cenerally used when a
server is returning persistent
filehandl es; the client may not have the
file name to reclaimthe OPEN

CLAI M _DELEGATE_CUR
The client is clainng a delegation for
OPEN as granted by the server.
Cenerally this is done as part of
recalling a del egation.

CLAI M DELEGATE_PREV
The client is claimng a del egation
granted to a previous client instance;
used after the client reboots. The
server MAY support CLAI M DELEGATE_PREV.
If it does support CLAI M DELEGATE PREV,
SETCLI ENTI D_CONFI RM MUST NOT renove the
client’s delegation state, and the
server MJST support the DELEGPURGE
operati on.

For OPEN requests whose claimtype is other than CLAI M PREVI QUS
(i.e., requests other than those devoted to reclaimnmng opens after a
server reboot) that reach the server during its grace or |ease
expiration period, the server returns an error of NFS4ERR GRACE

For any OPEN request, the server may return an open del egation, which
all ows further opens and closes to be handled locally on the client
as described in the section Qpen Del egation. Note that delegation is
up to the server to decide. The client should never assune that

del egation will or will not be granted in a particular instance. It
shoul d al ways be prepared for either case. A partial exception is
the reclaim (CLAIM PREVI QUS) case, in which a delegation type is

clained. In this case, delegation will always be granted, although
the server may specify an inmediate recall in the del egation
structure.

The rflags returned by a successful OPEN allow the server to return
i nformati on governing how the open file is to be handl ed.

Shepler, et al. St andards Track [Page 174]

RFC 3530 NFS version 4 Protocol April 2003

OPEN4_RESULT_CONFI RM i ndi cates that the client MJST execute an
OPEN_CONFI RM oper ati on before using the open file.
OPEN4_RESULT_LOCKTYPE_PCsSI X i ndi cates the server’s file | ocking
behavi or supports the conplete set of Posix |ocking techniques. From
this the client can choose to manage file locking state in a way to
handle a mis-match of file |ocking managenent.

If the conponent is of zero length, NFSAERR_INVAL will be returned.
The conponent is also subject to the normal UTF-8, character support,
and nane checks. See the section "UTF-8 Related Errors" for further
di scussi on.

When an OPEN i s done and the specified | ockowner already has the
resulting filehandle open, the result is to "OR' together the new
share and deny status together with the existing status. |In this
case, only a single CLCSE need be done, even though multiple OPENs
were conpleted. Wen such an OPEN i s done, checking of share
reservations for the new OPEN proceeds nornally, with no exception
for the existing OPEN held by the sanme | ockowner.

If the underlying filesystemat the server is only accessible in a
read-only node and the OPEN request has specified ACCESS WRI TE or
ACCESS BOTH, the server will return NFS4ERR ROFS to indicate a read-
only fil esystem

As with the CREATE operation, the server MJST derive the owner, owner
ACE, group, or group ACE if any of the four attributes are required
and supported by the server’s filesystem For an OPEN with the
EXCLUSI VE4 createnode, the server has no choice, since such OPEN
calls do not include the createattrs field. Conversely, if
createattrs is specified, and includes owner or group (or
correspondi ng ACEs) that the principal in the RPC call’s credentials
does not have authorization to create files for, then the server nay
return NFS4ERR PERM

In the case of a OPEN which specifies a size of zero (e.g.
truncation) and the file has naned attributes, the nanmed attributes
are left as is. They are not renoved.

| MPLEMENTATI ON

The OPEN operation contains support for EXCLUSI VE create. The
mechanismis simlar to the support in NFS version 3 [RFCL813]. As
in NFS version 3, this nechani sm provides reliable exclusive
creation. Exclusive create is invoked when the how paraneter is
EXCLUSIVE. In this case, the client provides a verifier that can
reasonably be expected to be unique. A conbination of a client

Shepler, et al. St andards Track [Page 175]

RFC 3530 NFS version 4 Protocol April 2003

identifier, perhaps the client network address, and a uni que nunber
generated by the client, perhaps the RPC transaction identifier, may
be appropri ate.

If the object does not exist, the server creates the object and
stores the verifier in stable storage. For filesystens that do not
provide a nechanismfor the storage of arbitrary file attributes, the
server nmay use one or nore elenents of the object neta-data to store
the verifier. The verifier nust be stored in stable storage to
prevent erroneous failure on retransnission of the request. It is
assuned that an exclusive create is being perforned because excl usive
semantics are critical to the application. Because of the expected
usage, exclusive CREATE does not rely solely on the nornmally volatile
duplicate request cache for storage of the verifier. The duplicate
request cache in volatile storage does not survive a crash and may
actually flush on a long network partition, opening failure w ndows.
In the UNl X I ocal filesystem environnent, the expected storage

| ocation for the verifier on creation is the neta-data (tine stanps)
of the object. For this reason, an exclusive object create nmay not
include initial attributes because the server woul d have nowhere to
store the verifier.

If the server can not support these exclusive create senantics

possi bly because of the requirenent to conmit the verifier to stable
storage, it should fail the OPEN request with the error
NFS4ERR_NOTSUPP.

Duri ng an excl usi ve CREATE request, if the object already exists, the
server reconstructs the object’s verifier and conpares it with the
verifier in the request. If they match, the server treats the request
as a success. The request is presuned to be a duplicate of an
earlier, successful request for which the reply was |l ost and that the
server duplicate request cache nechanismdid not detect. |If the
verifiers do not match, the request is rejected with the status,
NFS4ERR_EXI ST.

Once the client has perforned a successful exclusive create, it nust
i ssue a SETATTR to set the correct object attributes. Until it does
so, it should not rely upon any of the object attributes, since the
server inplenentation my need to overload object neta-data to store
the verifier. The subsequent SETATTR nmust not occur in the sane
COVPOUND request as the OPEN. This separation will guarantee that
the exclusive create nechanismw ||l continue to function properly in
the face of retransm ssion of the request.

Use of the GUARDED attribute does not provide exactly-once semantics.

In particular, if areply is lost and the server does not detect the
retransm ssion of the request, the operation can fail with

Shepler, et al. St andards Track [Page 176]

RFC 3530 NFS version 4 Protocol April 2003

NFSAERR _EXI ST, even though the create was perfornmed successfully.

The client would use this behavior in the case that the application
has not requested an exclusive create but has asked to have the file
truncated when the file is opened. |In the case of the client tining
out and retransmtting the create request, the client can use GUARDED
to prevent against a sequence like: create, wite, create
(retransmtted) from occurring.

For SHARE reservations, the client must specify a value for
share_access that is one of READ, WRITE, or BOTH. For share_deny,
the client nust specify one of NONE, READ, WRITE, or BOTH If the
client fails to do this, the server nust return NFS4ERR | NVAL.

Based on the share_access val ue (READ, WRITE, or BOTH) the client
shoul d check that the requester has the proper access rights to
performthe specified operation. This would generally be the results
of applying the ACL access rules to the file for the current
requester. However, just as with the ACCESS operation, the client
shoul d not attenpt to second-guess the server’s decisions, as access
rights may change and may be subject to server admnistrative
controls outside the ACL framework. |f the requester is not

aut horized to READ or WRI TE (dependi ng on the share_access val ue),
the server nust return NFS4ERR ACCESS. Note that since the NFS
versi on 4 protocol does not inpose any requirenent that READs and
WRI TEs i ssued for an open file have the sane credentials as the OPEN
itself, the server still nust do appropriate access checking on the
READs and WRI TEs t hensel ves.

If the conmponent provided to OPEN is a synmbolic link, the error
NFSAERR SYMLINK will be returned to the client. [|f the current
filehandle is not a directory, the error NFS4ERR NOTDIR wi || be
returned.

ERRORS

NFS4ERR _ACCESS
NFS4ERR_ADM N_REVOKED
NFS4ERR_ATTRNOTSUPP
NFS4ERR_BADCHAR
NFS4ERR_BADHANDLE
NFS4ERR_BADNAVE
NFS4ERR_BADOWKER
NFS4ERR_BAD_SEQ D
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_DQUOT
NFS4ERR_EXI ST
NFS4ERR_EXPI RED

Shepler, et al. St andards Track [Page 177]

RFC 3530

NFS4ERR_FHEXP| RED
NFS4ERR_GRACE

NFS4ERR | O

NFS4ERR_| NVAL

NFS4ERR | SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_MOVED
NFS4ERR_NAMETOOLONG
NFS4ERR_NOENT
NFS4ERR_NOF| LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NOTDI R
NFS4ERR_NOTSUPP
NFS4ERR_NO_GRACE
NFS4ERR_PERM
NFS4ERR_RECLAI M _BAD
NFS4ERR_RECLAI M_CONFLI CT
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_SHARE_DENI ED
NFS4ERR_STALE
NFS4ERR_STALE_CLI ENTI D
NFS4ERR_SYMLI NK
NFS4ERR_WWRONGSEC

14.2.17. Operation 19: OPENATTR -

SYNOPSI S
(cfh) createdir -> (cfh)
ARGUVENT
struct OPENATTR4args {
/* CURRENT_FH. obj ect

bool createdir;

s
RESULT
struct OPENATTR4res {

/* CURRENT_FH:
nf sst at 4

b

Shepler, et al.

NFS version 4 Protocol

St andards Track

April 2003

Open Nanmed Attribute Directory

*/

naned attr directory*/
st at us;

[Page 178]

RFC 3530 NFS version 4 Protocol April 2003

DESCRI PTI ON

The OPENATTR operation is used to obtain the filehandl e of the naned
attribute directory associated with the current filehandle. The
result of the OPENATTR will be a filehandl e to an object of type
NFAATTRDIR. Fromthis filehandl e, READDI R and LOOKUP operations can
be used to obtain filehandles for the various named attri butes
associated with the original filesystemobject. Filehandles returned
within the naned attribute directory will have a type of

NF4NAVEDATTR.

The createdir argunment allows the client to signify if a naned
attribute directory should be created as a result of the OPENATTR
operation. Sone clients nay use the OPENATTR operation with a val ue
of FALSE for createdir to determne if any named attributes exist for
the object. If none exist, then NFS4ERR NOENT will be returned. |If
createdir has a value of TRUE and no naned attribute directory
exists, one is created. The creation of a naned attribute directory
assunes that the server has inplenented naned attribute support in
this fashion and is not required to do so by this definition

| MPLEMENTATI ON

If the server does not support naned attributes for the current
filehandl e, an error of NFS4ERR NOTSUPP will be returned to the
client.

ERRORS

NFS4ERR _ACCESS
NFS4ERR_BADHANDLE
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_DQUOT
NFS4ERR_FHEXPI RED
NFS4ERR_| O
NFS4ERR_MOVED
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

Shepler, et al. St andards Track [Page 179]

RFC 3530 NFS version 4 Protocol April 2003

14.2.18. Operation 20: OPEN _CONFIRM - Confirm Open
SYNCPSI S
(cfh), seqid, stateid-> stateid
ARGUMENT

struct OPEN_CONFI RMiargs {
/* CURRENT_FH: opened file */
Sstatei d4 open_statei d;
seqi d4 seqi d;

i

RESULT

struct OPEN_CONFI RMAr esok {
statei d4 open_statei d;
i

uni on OPEN_CONFI RMAres switch (nfsstat4 status) {
case NF4_ XK
OPEN_CONFI RMAr esok resok4;
def aul t:
voi d;
s

DESCRI PTI ON

This operation is used to confirmthe sequence id usage for the first
time that a open_owner is used by a client. The stateid returned
fromthe OPEN operation is used as the argunent for this operation
along with the next sequence id for the open_owner. The sequence id
passed to the OPEN_CONFI RM nmust be 1 (one) greater than the seqid
passed to the OPEN operation from which the open_confirm val ue was
obtained. |If the server receives an unexpected sequence id with
respect to the original open, then the server assunes that the client
will not confirmthe original OPEN and all state associated with the
original OPEN is rel eased by the server.

On success, the current filehandle retains its val ue.

| MPLEMENTATI ON

A given client night generate many open_owner4 data structures for a
given clientid. The client will periodically either dispose of its

open_owner4s or stop using themfor indefinite periods of time. The
latter situation is why the NFS version 4 protocol does not have an

Shepler, et al. St andards Track [Page 180]

RFC 3530 NFS version 4 Protocol April 2003

explicit operation to exit an open_owner4: such an operation is of no
use in that situation. Instead, to avoid unbounded nmenory use, the
server needs to inplenent a strategy for disposing of open_owner4s
that have no current |ock, open, or delegation state for any files
and have not been used recently. The tine period used to determ ne
when to di spose of open_owner4s is an inplenentation choice. The
tinme period should certainly be no Il ess than the | ease tine plus any
grace period the server wishes to inplenent beyond a | ease tine. The
OPEN_CONFI RM operation allows the server to safely di spose of unused
open_owner 4 data structures.

In the case that a client issues an OPEN operation and the server no
| onger has a record of the open_owner4, the server needs to ensure
that this is a new OPEN and not a replay or retransni ssion

Servers rmust not require confirmati on on OPENs that grant del egations
or are doing reclaimoperations. See section "Use of Open
Confirmation" for details. The server can easily avoid this by
noti ng whether it has disposed of one open_owner4 for the given
clientid. |If the server does not support delegation, it might sinply
maintain a single bit that notes whether any open_owner4 (for any
client) has been di sposed of.

The server nust hold unconfirned OPEN state until one of three events
occur. First, the client sends an OPEN_CONFI RM request with the
appropriate sequence id and stateid within the lease period. 1In this
case, the OPEN state on the server goes to confirned, and the
open_owner4 on the server is fully established.

Second, the client sends another OPEN request with a sequence id that
is incorrect for the open_owner4 (out of sequence). |In this case,
the server assunes the second OPEN request is valid and the first one
is areplay. The server cancels the OPEN state of the first OPEN
request, establishes an unconfirmed OPEN state for the second OPEN
request, and responds to the second OPEN request with an indication
that an OPEN_CONFIRM i s needed. The process then repeats itself.
Wiile there is a potential for a denial of service attack on the
client, it is mtigated if the client and server require the use of a
security flavor based on Kerberos V5, LIPKEY, or sone other flavor
that uses cryptography.

What if the server is in the unconfirned OPEN state for a given
open_owner4, and it receives an operation on the open_owner4 that has
a stateid but the operation is not OPEN, or it is OPEN _CONFI RM but
with the wong stateid? Then, even if the seqid is correct, the

Shepler, et al. St andards Track [Page 181]

RFC 3530 NFS version 4 Protocol April 2003

server returns NFS4ERR BAD STATEI D, because the server assunes the
operation is a replay: if the server has no established OPEN state,
then there is no way, for exanple, a LOCK operation could be valid.

Third, neither of the two aforenentioned events occur for the
open_owner4 within the | ease period. In this case, the OPEN state is
cancel ed and di sposal of the open_owner4 can occur

ERRCRS

NFS4ERR_ADM N_REVOKED
NFS4ERR_BADHANDLE
NFS4ERR_BAD_SEQ D
NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFS4ERR_EXPI RED
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | SDI R
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D

14.2.19. Operation 21: OPEN _DOANGRADE - Reduce Open File Access
SYNOPSI S
(cfh), stateid, seqid, access, deny -> stateid
ARGUVENT

struct OPEN DOWGRADE4ar gs {
/* CURRENT_FH. opened file */

statei d4 open_statei d;
seqi d4 seqi d;
uint32_t share_access;
uint32_t shar e_deny;
s
RESULT

struct OPEN_DOMNGRADE4r esok {
statei d4 open_statei d;
i

Shepler, et al. St andards Track [Page 182]

RFC 3530 NFS version 4 Protocol April 2003

uni on OPEN_DOMNNGRADE4r es switch(nfsstat4 status) {
case NFH4_X
OPEN_DOWNGRADE4r esok r esok4;
defaul t:
voi d;
s

DESCRI PTI ON

This operation is used to adjust the share_access and share_deny bits
for a given open. This is necessary when a gi ven openowner opens the
same file nultiple tinmes with different share_access and share_deny
flags. In this situation, a close of one of the opens may change the
appropriate share_access and share_deny flags to renove bits

associ ated with opens no longer in effect.

The share_access and share_deny bits specified in this operation
replace the current ones for the specified open file. The
share_access and share_deny bits specified nust be exactly equal to
the union of the share_access and share _deny bits specified for sone
subset of the OPENs in effect for current openowner on the current
file. If that constraint is not respected, the error NFS4ERR | NVAL
shoul d be returned. Since share_access and share_deny bits are
subsets of those already granted, it is not possible for this request
to be deni ed because of conflicting share reservations.

On success, the current filehandle retains its val ue.
ERRCRS

NFS4ERR_ADM N_REVOKED
NFS4ERR_BADHANDLE
NFS4ERR_BAD_SEQ D
NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFS4ERR_EXP| RED
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D

Shepler, et al. St andards Track [Page 183]

RFC 3530 NFS version 4 Protocol April 2003

14.2.20. Operation 22: PUTFH - Set Current Fil ehandl e
SYNCPSI S

filehandl e -> (cfh)

ARGUMENT
struct PUTFH4args {
nfs_fh4 obj ect;
b
RESULT

struct PUTFH4res {
/* CURRENT_FH */
nf sstat 4 st at us;

b
DESCRI PTI ON

Repl aces the current filehandle with the fil ehandl e provided as an
ar gunent .

If the security nechani smused by the requester does not neet the
requirenents of the filehandl e provided to this operation, the server
MUST return NFS4ERR WRONGSEC.

| MPLEMENTATI ON

Commonly used as the first operator in an NFS request to set the
context for follow ng operations.

ERRORS

NFSAERR_BADHANDLE
NFS4ERR_BADXDR
NFS4ERR_FHEXPI RED
NFS4ERR_MOVED
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFSAERR_STALE
NFS4ERR_VRONGSEC

Shepler, et al. St andards Track [Page 184]

RFC 3530 NFS version 4 Protocol April 2003

14.2.21. Operation 23: PUTPUBFH - Set Public Filehandl e
SYNCPSI S
- -> (cfh)
ARGUMENT
voi d;
RESULT

struct PUTPUBFH4res {
/* CURRENT_FH. public fh */
nf sstat 4 st at us;

s
DESCRI PTI ON

Repl aces the current filehandle with the filehandl e that represents
the public filehandl e of the server’s nane space. This filehandle
may be different fromthe "root" filehandl e which may be associ at ed
with some other directory on the server

The public filehandl e represents the concepts enbodied in [RFC2054],

[RFC2055], [RFC2224]. The intent for NFS version 4 is that the
public filehandl e (represented by the PUTPUBFH operation) be used as
a met hod of providing WebNFS server conpatibility with NFS versions 2
and 3.

The public filehandl e and the root filehandl e (represented by the
PUTROOTFH operation) should be equivalent. |If the public and root
filehandl es are not equivalent, then the public filehandle MJST be a
descendant of the root fil ehandle.

| MPLEMENTATI ON

Used as the first operator in an NFS request to set the context for
foll owi ng operati ons.

Wth the NFS version 2 and 3 public filehandle, the client is able to
specify whether the path nane provided in the LOOKUP shoul d be

eval uated as either an absolute path relative to the server’s root or
relative to the public filehandle. [RFC2224] contains further

di scussion of the functionality. Wth NFS version 4, that type of
specification is not directly available in the LOOKUP operation. The
reason for this is because the conponent separators needed to specify
absolute vs. relative are not allowed in NFS version 4. Therefore,

Shepler, et al. St andards Track [Page 185]

RFC 3530 NFS version 4 Protocol April 2003

the client is responsible for constructing its request such that the
use of either PUTROOTFH or PUTPUBFH are used to signify absolute or
relative evaluation of an NFS URL respectively.

Note that there are warnings nentioned in [RFC2224] with respect to
the use of absolute evaluation and the restrictions the server may

pl ace on that evaluation with respect to how nuch of its nanespace
has been nmade avail able. These same warnings apply to NFS version 4.
It is likely, therefore that because of server inplenentation
details, an NFS version 3 absolute public filehandl e | ookup may
behave differently than an NFS version 4 absolute resolution

There is a formof security negotiation as described in [RFC2755]
that uses the public filehandl e a nethod of enploying SNEGO This
nmet hod is not available with NFS version 4 as fil ehandl es are not
overl oaded with special nmeaning and therefore do not provide the same
framework as NFS versions 2 and 3. Cdients should therefore use the
security negotiation nmechani snms described in this RFC
ERRORS
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_WRONGSEC
14.2.22. Operation 24: PUTROOTFH - Set Root Fil ehandl e
SYNOPSI S
- -> (cfh)
ARGUVMENT
voi d;
RESULT
struct PUTROOTFH4res {

/* CURRENT_FH. root fh */
nf sstat 4 st at us;

H

Shepler, et al. St andards Track [Page 186]

RFC 3530 NFS version 4 Protocol April 2003

14.

DESCRI PTI ON

Repl aces the current filehandle with the filehandl e that represents
the root of the server’s nane space. Fromthis filehandle a LOOKUP
operation can | ocate any other filehandle on the server. This
filehandle may be different fromthe "public" filehandl e which may be
associated with sone other directory on the server.

| MPLEMENTATI ON

Commonly used as the first operator in an NFS request to set the
context for follow ng operations.

ERRCRS
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_WRONGSEC
2.23. Operation 25: READ - Read fromFile
SYNOPSI S
(cfh), stateid, offset, count -> eof, data

ARGUMENT

struct READdargs {
/* CURRENT_FH: file */

st at ei d4 stateid;
of fset4 of f set;
count4 count;

b

RESULT

struct READ4resok {
bool eof ;
opaque dat a<>;

s

uni on READ4res switch (nfsstat4 status) {
case NFS4_OK:
READ4r esok r esok4;
defaul t:
voi d;
1

Shepler, et al. St andards Track [Page 187]

RFC 3530 NFS version 4 Protocol April 2003

DESCRI PTI ON

The READ operation reads data fromthe regular file identified by the
current filehandl e.

The client provides an offset of where the READ is to start and a
count of how nmany bytes are to be read. An offset of 0 (zero) neans
to read data starting at the beginning of the file. |If offset is
greater than or equal to the size of the file, the status, NFS4_OK,
is returned with a data length set to O (zero) and eof is set to
TRUE. The READ i s subject to access perni ssions checking.

If the client specifies a count value of 0 (zero), the READ succeeds
and returns 0 (zero) bytes of data again subject to access

per m ssions checking. The server may choose to return fewer bytes
than specified by the client. The client needs to check for this
condition and handl e the condition appropriately.

The stateid value for a READ request represents a value returned from
a previous record |ock or share reservation request. The stateid is
used by the server to verify that the associated share reservation
and any record locks are still valid and to update | ease tineouts for
the client.

If the read ended at the end-of-file (formally, in a correctly forned
READ request, if offset + count is equal to the size of the file), or
the read request extends beyond the size of the file (if offset +
count is greater than the size of the file), eof is returned as TRUE
otherwise it is FALSE. A successful READ of an enpty file will

al ways return eof as TRUE.

If the current filehandle is not a regular file, an error will be
returned to the client. |In the case the current filehandle
represents a directory, NFSAERR ISDIR is return; otherw se,
NFSA4ERR | NVAL is returned

For a READ with a stateid value of all bits 0, the server MAY all ow
the READ to be serviced subject to nandatory file | ocks or the
current share deny nodes for the file. For a READ with a stateid
value of all bits 1, the server MAY all ow READ operations to bypass
| ocki ng checks at the server

On success, the current filehandle retains its val ue.

Shepler, et al. St andards Track [Page 188]

RFC 3530 NFS version 4 Protocol April 2003

| MPLEMENTATI ON

It is possible for the server to return fewer than count bytes of
data. |If the server returns less than the count requested and eof is
set to FALSE, the client should issue another READ to get the

remai ning data. A server nmay return |l ess data than requested under
several circunstances. The file nay have been truncated by another
client or perhaps on the server itself, changing the file size from
what the requesting client believes to be the case. This would
reduce the actual anount of data available to the client. It is
possi bl e that the server may back off the transfer size and reduce
the read request return. Server resource exhaustion nay al so occur
necessitating a smaller read return

If mandatory file locking is on for the file, and if the region
corresponding to the data to be read fromfile is wite |ocked by an
owner not associated the stateid, the server will return the
NFSAERR LOCKED error. The client should try to get the appropriate
read record lock via the LOCK operation before re-attenpting the
READ. Wien the READ conpletes, the client should rel ease the record
| ock via LOCKU.

ERRORS

NFS4ERR ACCESS
NFS4ERR_ADM N_REVOKED
NFS4ERR_BADHANDLE
NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_EXP| RED
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR | O

NFS4ERR_| NVAL
NFS4ERR | SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_LOCKED
NFS4ERR_MOVED
NFS4ERR_NOF| LEHANDLE
NFS4ERR_NXI O
NFS4ERR_OLD_STATEI D
NFS4ERR_OPENVODE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D

Shepler, et al. St andards Track [Page 189]

RFC 3530 NFS version 4 Protocol April 2003
14.2.24. Operation 26: READDIR - Read Directory
SYNCPSI S
(cfh), cookie, cookieverf, dircount, maxcount, attr_request ->
cooki everf { cookie, name, attrs }
ARGUMENT
struct READDI Rdargs {

/* CURRENT_FH directory */

nfs_cooki e4 cooki e;
verifier4d cooki everf;
count 4 di rcount;
count 4 maxcount ;
bi t map4 attr_request;

b

RESULT

struct entry4 {
nfs_cooki e4 cooki e;
conmponent 4 name;
fattr4 attrs
entry4 *nextentry,

s

struct dirlist4 {
entry4 *entries;
bool eof ;

s

struct READDI R4resok {
verifier4d cooki everf;
dirlist4 reply;

1

uni on READDI R4res switch (nfsstat4 status) {
case NF4_X
READDI R4r esok
defaul t:
voi d;
s

resok4;

Shepler, et al. St andards Track [Page 190]

RFC 3530 NFS version 4 Protocol April 2003

DESCRI PTI ON

The READDI R operation retrieves a variable nunber of entries froma
filesystemdirectory and returns client requested attributes for each
entry along with information to allow the client to request

additional directory entries in a subsequent READD R

The arguments contain a cookie value that represents where the
READDI R should start within the directory. A value of 0 (zero) for
the cookie is used to start reading at the begi nning of the
directory. For subsequent READDIR requests, the client specifies a
cookie value that is provided by the server on a previ ous READDI R
request.

The cooki everf val ue should be set to 0 (zero) when the cookie val ue
is O (zero) (first directory read). On subsequent requests, it
shoul d be a cookieverf as returned by the server. The cookieverf
nmust nmatch that returned by the READDIR in which the cookie was
acquired. |If the server determ nes that the cookieverf is no |onger
valid for the directory, the error NFS4ERR NOT_SAME nust be returned.

The dircount portion of the argunent is a hint of the maxi num nunber
of bytes of directory information that should be returned. This

val ue represents the length of the nanes of the directory entries and
the cookie value for these entries. This length represents the XDR
encodi ng of the data (names and cookies) and not the length in the
native format of the server.

The maxcount val ue of the argunment is the maxi mum nunber of bytes for
the result. This maxi num size represents all of the data being
returned wi thin the READDI R4resok structure and includes the XDR
overhead. The server may return less data. |f the server is unable
to return a single directory entry within the maxcount limt, the
error NFS4ERR TOOSMALL will be returned to the client.

Finally, attr_request represents the list of attributes to be
returned for each directory entry supplied by the server

On successful return, the server’s response will provide a list of
directory entries. Each of these entries contains the name of the
directory entry, a cookie value for that entry, and the associ ated
attributes as requested. The "eof" flag has a value of TRUE if there
are no nore entries in the directory.

The cookie value is only neaningful to the server and is used as a
"bookmar k" for the directory entry. As nmentioned, this cookie is
used by the client for subsequent READDI R operations so that it may
continue reading a directory. The cookie is simlar in concept to a

Shepler, et al. St andards Track [Page 191]

RFC 3530 NFS version 4 Protocol April 2003

READ of fset but should not be interpreted as such by the client.
I deal |y, the cookie value should not change if the directory is
nmodi fied since the client may be caching these val ues.

In sone cases, the server may encounter an error while obtaining the

attributes for a directory entry. |Instead of returning an error for
the entire READDIR operation, the server can instead return the
attribute "fattr4 rdattr_error’. Wth this, the server is able to

conmuni cate the failure to the client and not fail the entire
operation in the instance of what might be a transient failure.
Qobviously, the client nust request the fattr4 rdattr_error attribute
for this method to work properly. |If the client does not request the
attribute, the server has no choice but to return failure for the
entire READDI R operati on.

For some filesystemenvironnments, the directory entries and "..
have special nmeaning and in other environnents, they may not. |If the
server supports these special entries within a directory, they should
not be returned to the client as part of the READDI R response. To
enabl e some client environnents, the cookie values of 0, 1, and 2 are
to be considered reserved. Note that the UNIX client will use these
val ues when conbi ning the server’s response and | ocal representations
to enable a fully forned UNI X directory presentation to the
application.

For READDI R argunents, cookie values of 1 and 2 should not be used
and for READDIR results cookie values of 0, 1, and 2 should not be
r et ur ned.

On success, the current filehandle retains its val ue.

| MPLEMENTATI ON

The server’s filesystemdirectory representations can differ greatly.
A client’s programmng interfaces may al so be bound to the | oca

operating environnent in a way that does not translate well into the
NFS protocol. Therefore the use of the dircount and nmaxcount fields
are provided to allow the client the ability to provide guidelines to
the server. |If the client is aggressive about attribute collection

during a READDIR, the server has an idea of howto limt the encoded
response. The dircount field provides a hint on the nunber of
entries based solely on the nanes of the directory entries. Since it
is a hint, it may be possible that a dircount value is zero. In this
case, the server is free to ignore the dircount value and return
directory information based on the specified maxcount val ue.

Shepler, et al. St andards Track [Page 192]

RFC 3530 NFS version 4 Protocol April 2003

The cooki everf nmay be used by the server to hel p nanage cooki e val ues
that may becone stale. It should be a rare occurrence that a server
is unable to continue properly reading a directory with the provided
cooki e/ cooki everf pair. The server should nake every effort to avoid
this condition since the application at the client may not be able to
properly handle this type of failure.

The use of the cookieverf will also protect the client from using
READDI R cooki e values that may be stale. For exanple, if the file
system has been migrated, the server may or may not be able to use
the sane cookie values to service READDI R as the previous server

used. Wth the client providing the cookieverf, the server is able
to provide the appropriate response to the client. This prevents the
case where the server may accept a cookie value but the underlying
directory has changed and the response is invalid fromthe client’s
context of its previous READD R

Since sone servers will not be returning "." and ".." entries as has

been done with previous versions of the NFS protocol, the client that
requires these entries be present in READD R responses nust fabricate
t hem

ERRORS

NFS4ERR_ACCESS
NFS4ERR_BADHANDLE
NFS4ERR_BAD_COOKI E
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_TOOSMALL

14.2.25. Operation 27: READLINK - Read Synbolic Link
SYNOPSI S

(cfh) -> linktext

Shepler, et al. St andards Track [Page 193]

RFC 3530 NFS version 4 Protocol April 2003

ARGUMENT

/* CURRENT_FH. synlink */
voi d;

RESULT

struct READLI NK4resok {
| i nkt ext 4 i nk;
};

uni on READLI NK4res switch (nfsstat4 status) {
case NF4_K
READL| NK4r esok resok4;
defaul t:
voi d;
1

DESCRI PTI ON

READLI NK reads the data associated with a synbolic link. The data is
a UTF-8 string that is opaque to the server. That is, whether
created by an NFS client or created locally on the server, the data
in a synbolic link is not interpreted when created, but is sinply
st or ed.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

A synbolic link is nominally a pointer to another file. The data is
not necessarily interpreted by the server, just stored in the file.
It is possible for a client inplenentation to store a path name that
is not neaningful to the server operating systemin a synbolic |ink
A READLI NK operation returns the data to the client for
interpretation. If different inplenmentations want to share access to
synbolic links, then they nust agree on the interpretation of the
data in the synbolic link.

The READLINK operation is only all owed on objects of type NF4LNK
The server should return the error, NFS4ERR INVAL, if the object is
not of type, NF4LNK
ERRORS

NFS4ERR_ACCESS

NFSAERR_BADHANDLE
NFSAERR_DELAY

Shepler, et al. St andards Track [Page 194]

RFC 3530 NFS version 4 Protocol April 2003

NFS4ERR_FHEXPI RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR | SDI R
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

14.2.26. Operation 28: REMOVE - Renove Fil esystem (bj ect
SYNOPSI S
(cfh), filename -> change_info
ARGUVENT

struct REMOVE4args {
/* CURRENT_FH. directory */
conmponent 4 target;

b
RESULT

struct REMOVE4resok {
change_i nf o4 ci nf o;
}

uni on REMOVE4res switch (nfsstat4 status) {
case NF4_XK
REMOVE4r esok r esok4;
defaul t:
voi d;
}

DESCRI PTI ON
The REMOVE operation renoves (deletes) a directory entry named by
filenane fromthe directory corresponding to the current fil ehandle.

If the entry in the directory was the last reference to the
correspondi ng fil esystem object, the object nmay be destroyed.

Shepler, et al. St andards Track [Page 195]

RFC 3530 NFS version 4 Protocol April 2003

For the directory where the filenane was renoved, the server returns
change_info4 information in cinfo. Wth the atomc field of the

change_i nfo4 struct, the server will indicate if the before and after
change attributes were obtained atomically with respect to the
renmoval .

If the target has a length of 0 (zero), or if target does not obey
the UTF-8 definition, the error NFS4ERR INVAL will be returned.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

NFS versions 2 and 3 required a different operator RVDIR for
directory renoval and REMOVE for non-directory renoval. This all owed
clients to skip checking the file type when being passed a non-
directory delete systemcall (e.g., unlink() in POSIX) to renove a
directory, as well as the converse (e.g., a rndir() on a non-
directory) because they knew the server would check the file type.
NFS version 4 REMOVE can be used to delete any directory entry

i ndependent of its file type. The inplenentor of an NFS version 4
client’s entry points fromthe unlink() and rndir() systemcalls
shoul d first check the file type against the types the systemcall is
all owed to renove before issuing a REMOVE. Alternatively, the

i mpl ement or can produce a COVPOUND call that includes a LOOKUP/ VERI FY
sequence to verify the file type before a REMOVE operation in the
sane COVPOUND cal | .

The concept of last reference is server specific. However, if the
numinks field in the previous attributes of the object had the val ue
1, the client should not rely on referring to the object via a
filehandle. Likewi se, the client should not rely on the resources
(di sk space, directory entry, and so on) fornerly associated with the
obj ect becomi ng inmedi ately available. Thus, if a client needs to be
able to continue to access a file after using REMOVE to renove it,
the client should take steps to nake sure that the file will still be
accessi ble. The usual nmechanismused is to RENAME the file fromits
old nane to a new hi dden nane.

If the server finds that the file is still open when the REMOVE
arrives:

0 The server SHOULD NOT delete the file's directory entry if the

file was opened with OPENA_ SHARE DENY WRI TE or
OPEN4_SHARE DENY_BOTH.

Shepler, et al. St andards Track [Page 196]

RFC 3530 NFS version 4 Protocol Apri

(o]

If the file was not opened with OPENA_SHARE DENY WRI TE or
OPEN4_SHARE_DENY_BOTH, the server SHOULD delete the file's
directory entry. However, until last CLOSE of the file, the
server MAY continue to allow access to the file via its

fil ehandl e.

ERRORS

14. 2.

NFS4ERR ACCESS
NFS4ERR_BADCHAR
NFS4ERR_BADHANDL E
NFS4ERR_BADNANE
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_FHEXPI RED
NFS4ERR_FI LE_OPEN
NFS4ERR_| NVAL
NFS4ERR_| O
NFS4ERR_MOVED
NFS4ERR_NAMETOOLONG
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_NOTEMPTY
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

27. QOperation 29: RENAME - Renane Directory Entry

SYNOPSI S

(sfh), oldnane, (cfh), newnane -> source_change_info
t arget _change_i nfo

ARGUMENT

struct RENAME4args {
/* SAVED FH. source directory */

component 4 ol dnane;
/* CURRENT_FH. target directory */
conponent 4 newnamne;

2003

Shepler, et al. St andards Track [Page 197]

RFC 3530 NFS version 4 Protocol April 2003

RESULT
struct RENAME4resok {
change_i nf o4 sour ce_ci nfo;
change_i nf o4 target _cinfo;

b

uni on RENAVE4res switch (nfsstat4 status) {
case NFH4_X
RENAME4r esok resok4;
defaul t:
voi d;
s

DESCRI PTI ON

The RENAME operation renames the object identified by oldname in the
source directory corresponding to the saved fil ehandl e, as set by the
SAVEFH operation, to newnane in the target directory corresponding to
the current filehandle. The operation is required to be atomic to
the client. Source and target directories nmust reside on the same
filesystemon the server. On success, the current filehandle wll
continue to be the target directory.

If the target directory already contains an entry with the naneg,
newnane, the source object nust be conpatible with the target:
either both are non-directories or both are directories and the
target nmust be enpty. |If conpatible, the existing target is renoved
before the renane occurs (See the | MPLEMENTATI ON subsection of the
section "Operation 28: REMOVE - Renove Fil esystem Cbject" for client
and server actions whenever a target is renoved). |If they are not
conpatible or if the target is a directory but not enpty, the server
Will return the error, NFS4ERR EXI ST.

I f ol dnane and newnane both refer to the same file (they m ght be
hard |inks of each other), then RENAVE shoul d performno action and
return success.

For both directories involved in the RENAME, the server returns
change_info4 information. Wth the atonmic field of the change_info4
struct, the server will indicate if the before and after change
attributes were obtained atomcally with respect to the renane.

If the oldnane refers to a naned attribute and the saved and current
filehandles refer to different fil esystem objects, the server wll
return NFSAERR XDEV just as if the saved and current filehandl es
represented directories on different fil esystens.

Shepler, et al. St andards Track [Page 198]

RFC 3530 NFS version 4 Protocol April 2003

If the ol dnanme or newnane has a length of 0 (zero), or if oldnanme or
newname does not obey the UTF-8 definition, the error NFS4ERR | NVAL
will be returned.

| MPLEMENTATI ON

The RENAME operation nust be atonmic to the client. The statenent
"source and target directories nmust reside on the sanme fil esystem on
the server" means that the fsid fields in the attributes for the
directories are the sane. If they reside on different fil esystens,
the error, NFS4ERR XDEV, is returned

Based on the value of the fh _expire type attribute for the object,
the filehandle may or may not expire on a RENAME. However, server

i npl ementors are strongly encouraged to attenpt to keep fil ehandl es
fromexpiring in this fashion

On sone servers, the file nanes and ".." are illegal as either

ol dnane or newnane, and will result in the error NFS4ERR BADNAME. In
addition, on many servers the case of ol dnane or newnane being an
alias for the source directory will be checked for. Such servers

W ll return the error NFS4ERR I NVAL in these cases.

If either of the source or target filehandles are not directories,
the server will return NFS4ERR NOTDI R

ERRCRS

NFS4ERR ACCESS
NFS4ERR_BADCHAR
NFS4ERR_BADHANDL E
NFS4ERR_BADNAVE
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_DQUOT
NFS4ERR_EXI ST
NFS4ERR_FHEXP| RED
NFS4ERR_FI LE_OPEN
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NAMETOOLONG
NFS4ERR_NOENT
NFS4ERR_NOF| LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NOTDI R
NFS4ERR_NOTEMPTY
NFS4ERR_RESOURCE

Shepler, et al. St andards Track [Page 199]

RFC 3530 NFS version 4 Protocol April 2003

NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WWRONGSEC
NFS4ERR_XDEV

14.2.28. Operation 30: RENEW- Renew a Lease
SYNOPSI S

clientid -> ()

ARGUVENT
struct RENEWlargs {
clientid4 clientid;
i
RESULT
struct RENEWires {
nf sstat 4 st at us;
i
DESCRI PTI ON
The RENEW operation is used by the client to renew | eases which it
currently holds at a server. In processing the RENEWrequest, the
server renews all |eases associated with the client. The associated
| eases are deternined by the clientid provided via the SETCLI ENTI D
operation.

| MPLEMENTATI ON

When the client holds del egations, it needs to use RENEWto detect
when the server has deternmined that the callback path is dowmn. Wen
the server has nmade such a determination, only the RENEW operati on
will renew the | ease on delegations. |If the server deternmines the
cal I back path is down, it returns NFS4ERR_CB_PATH DOMN. Even though
it returns NFS4ERR CB PATH DOWN, the server MJST renew the | ease on
the record | ocks and share reservations that the client has
established on the server. |f for sonme reason the | ock and share
reservation | ease cannot be renewed, then the server MJST return an
error other than NFS4ERR _CB PATH DOMN, even if the callback path is
al so down.

Shepler, et al. St andards Track [Page 200]

RFC 3530 NFS version 4 Protocol April 2003

The client that issues RENEW MJUST choose the principal, RPC security
flavor, and if applicable, GSS-API nmechani smand service via one of
the followi ng al gorithns:

o The client uses the sane principal, RPC security flavor -- and if
the flavor was RPCSEC GSS -- the sane nechani sm and service that
was used when the client id was established via
SETCLI ENTI D_CONFI RM

o The client uses any principal, RPC security flavor mechani sm and
service conmbination that currently has an OPEN file on the server.
I.e., the sane principal had a successful OPEN operation, the
file is still open by that principal, and the flavor, nechani sm
and service of RENEW match that of the previous OPEN

The server MUST reject a RENEWthat does not use one the
af orementi oned algorithms, with the error NFS4ERR _ACCESS

ERRORS

NFS4ERR ACCESS
NFS4ERR_ADM N_REVOKED
NFS4ERR_BADXDR
NFS4ERR_CB_PATH_DOWN
NFS4ERR_EXP| RED
NFS4ERR_LEASE_MOVED
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE_CLI ENTI D

14.2.29. Operation 31: RESTOREFH - Restore Saved Fil ehandl e
SYNCPSI S
(sfh)y -> (cfh)
ARGUMENT

/* SAVED FH. */
voi d;

RESULT
struct RESTOREFH4res {

/* CURRENT_FH: val ue of saved fh */
nf sstat 4 st at us;

H

Shepler, et al. St andards Track [Page 201]

RFC 3530 NFS version 4 Protocol April 2003

DESCRI PTI ON

Set the current filehandle to the value in the saved filehandle. |If
there is no saved filehandl e then return the error NFS4ERR RESTOREFH.

| MPLEMENTATI ON

OQperations |ike OPEN and LOOKUP use the current filehandle to
represent a directory and replace it with a new fil ehandle. Assuning
the previous filehandl e was saved with a SAVEFH operator, the
previous filehandl e can be restored as the current filehandle. This
is commonly used to obtain post-operation attributes for the
directory, e.g.,

PUTFH (directory fil ehandl e)

SAVEFH

CETATTR attrbits (pre-op dir attrs)

CREATE opthits "foo" attrs

CETATTR attrbits (file attributes)

RESTOREFH

CETATTR attrbits (post-op dir attrs)
ERRORS

NFS4ERR_BADHANDLE
NFS4ERR_FHEXP| RED
NFS4ERR_MOVED
NFS4ERR_RESOURCE
NFS4ERR_RESTOREFH
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.30. Operation 32: SAVEFH - Save Current Filehandl e
SYNOPSI S
(cfh) -> (sfh)
ARGUVENT

/* CURRENT_FH. */
voi d;

Shepler, et al. St andards Track [Page 202]

RFC 3530 NFS version 4 Protocol

14.

RESULT

struct SAVEFH4res {
/* SAVED FH:. val ue of current fh */

April 2003

nf sstat 4 st at us;
i
DESCRI PTI ON
Save the current filehandle. |If a previous filehandl e was saved then

it is no longer accessible. The saved fil ehandl e can be restored as

the current filehandle with the RESTOREFH oper at or.
On success, the current filehandle retains its val ue.
| MPLEMENTATI ON
ERRORS
NFS4ERR_BADHANDLE
NFS4ERR_FHEXPI RED
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFSA4ERR_STALE
2.31. Operation 33: SECINFO - ntain Avail able Security
SYNOPSI S
(cfh), name -> { secinfo }
ARGUVENT
struct SECI NFO4args {

/* CURRENT_FH. directory */
conponent 4 nanme;

b
RESULT

enum rpc_gss_svc_t {/* From RFC 2203 */

RPC_GSS_SVC_NONE =1,
RPC_GSS_SVC_INTEGRITY = 2,
RPC_GSS_SVC_PRI VACY =3

Shepler, et al. St andards Track

[Page 203]

RFC 3530 NFS version 4 Protocol April 2003

struct rpcsec_gss_info {
sec_oi d4 oi d;
gop4 qop;
rpc_gss_svc_t servi ce;

H

union secinfo4 switch (uint32_t flavor) {
case RPCSEC GSS:
rpcsec_gss_info flavor _i nfo;
defaul t:
voi d;
s

typedef secinfo4 SECI NFO4r esok<>;

uni on SECI NFO4res switch (nfsstat4 status) {
case NF4_ XX
SECI NFO4r esok resok4;
def aul t:
voi d;
i

DESCRI PTI ON

The SECI NFO operation is used by the client to obtain a list of valid
RPC aut hentication flavors for a specific directory filehandle, file
nane pair. SECI NFO should apply the sanme access nethodol ogy used for
LOOKUP when eval uating the nane. Therefore, if the requester does
not have the appropriate access to LOOKUP the nanme then SECI NFO nust
behave the same way and return NFS4ERR_ACCESS.

The result will contain an array which represents the security
mechani sns avail able, with an order corresponding to server’s
preferences, the nost preferred being first in the array. The client
is free to pick whatever security nmechanismit both desires and
supports, or to pick in the server’'s preference order the first one
it supports. The array entries are represented by the secinfo4
structure. The field 'flavor’ will contain a value of AUTH NONE
AUTH_SYS (as defined in [RFC1831]), or RPCSEC GSS (as defined in

[RFC2203]).

For the flavors AUTH NONE and AUTH_SYS, no additional security
information is returned. For a return value of RPCSEC GSS, a
security triple is returned that contains the nechanismobject id (as
defined in [RFC2743]), the quality of protection (as defined in

[RFC2743]) and the service type (as defined in [RFC2203]). It is
possible for SECCNFO to return nultiple entries with flavor equal to
RPCSEC GSS with different security triple val ues.

Shepler, et al. St andards Track [Page 204]

RFC 3530 NFS version 4 Protocol April 2003

On success, the current filehandle retains its val ue.

If the name has a length of 0 (zero), or if name does not obey the
UTF-8 definition, the error NFSAERR I NVAL will be returned.

| MPLEMENTATI ON

The SECI NFO operation is expected to be used by the NFS client when
the error value of NFSAERR WRONGSEC is returned from anot her NFS
operation. This signifies to the client that the server’'s security
policy is different fromwhat the client is currently using. At this
point, the client is expected to obtain a |list of possible security
flavors and choose what best suits its policies.

As nentioned, the server’s security policies will determ ne when a
client request receives NFS4ERR WRONGSEC. The operati ons whi ch may
receive this error are: LINK, LOOKUP, OPEN, PUTFH, PUTPUBFH
PUTROOTFH, RESTOREFH, RENAME, and indirectly READDIR. LINK and
RENAME wi Il only receive this error if the security used for the
operation is inappropriate for saved filehandle. Wth the exception
of READDI R, these operations represent the point at which the client
can instantiate a filehandle into the "current fil ehandl e" at the
server. The filehandle is either provided by the client (PUTFH
PUTPUBFH, PUTROOTFH) or generated as a result of a name to fil ehandle
translation (LOOKUP and OPEN). RESTOREFH is different because the
filehandle is a result of a previous SAVEFH Even though the
filehandl e, for RESTOREFH, ni ght have previously passed the server’s
i nspection for a security match, the server will check it again on
RESTOREFH to ensure that the security policy has not changed.

If the client wants to resolve an error return of NFS4ERR WRONGSEC
the following will occur:

0 For LOOKUP and OPEN, the client will use SECINFO with the sane
current filehandl e and nane as provided in the original LOOKUP or
OPEN to enunerate the available security triples.

o For LINK, PUTFH, RENAME, and RESTOREFH, the client will use
SECI NFO and provide the parent directory filehandl e and obj ect
nane whi ch corresponds to the filehandl e originally provided by
the PUTFH RESTOREFH, or for LINK and RENAME, the SAVEFH

o For PUTROOTFH and PUTPUBFH, the client will be unable to use the
SECI NFO operation since SECINFO requires a current filehandl e and
none exi st for these two operations. Therefore, the client nust
iterate through the security triples available at the client and
reattenpt the PUTROOTFH or PUTPUBFH operation. In the unfortunate
event none of the MANDATORY security triples are supported by the

Shepler, et al. St andards Track [Page 205]

RFC 3530 NFS version 4 Protocol April 2003

client and server, the client SHOULD try using others that support
integrity. Failing that, the client can try using AUTH NONE, but
because such forms lack integrity checks, this puts the client at
risk. Nonetheless, the server SHOULD allow the client to use

what ever security formthe client requests and the server
supports, since the risks of doing so are on the client.

The READDI R operation will not directly return the NFS4ERR WRONGSEC
error. However, if the READDI R request included a request for
attributes, it is possible that the READDI R request’s security triple
does not match that of a directory entry. |If this is the case and
the client has requested the rdattr_error attribute, the server wll
return the NFS4ERR WRONGSEC error in rdattr_error for the entry.

See the section "Security Considerations" for a discussion on the
recomendations for security flavor used by SECI NFO.

ERRORS

NFS4ERR_ACCESS
NFS4ERR_BADCHAR
NFS4ERR_BADHANDLE
NFS4ERR_BADNANVE
NFS4ERR_BADXDR
NFS4ERR_FHEXPI| RED
NFS4ERR_| NVAL
NFS4ERR_MOVED
NFS4ERR_NAVETOOLONG
NFS4ERR_NCENT
NFS4ERR_NOF| LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

14.2.32. Operation 34: SETATTR - Set Attributes
SYNOPSI S
(cfh), stateid, attrnask, attr_vals -> attrsset
ARGUVENT
struct SETATTR4args {
/* CURRENT_FH target object */

st atei d4 stateid,;
fattr4 obj _attributes;

Shepler, et al. St andards Track [Page 206]

RFC 3530 NFS version 4 Protocol April 2003

RESULT
struct SETATTR4res {
nfsstat4 st at us;
bi t map4 attrsset;
s
DESCRI PTI ON

The SETATTR operation changes one or nore of the attributes of a
filesystemobject. The new attributes are specified with a bitmap
and the attributes that follow the bitnmap in bit order.

The stateid argument for SETATTR is used to provide file |ocking
context that is necessary for SETATTR requests that set the size
attribute. Since setting the size attribute nodifies the file's
data, it has the sane | ocking requirenents as a correspondi ng WRI TE.
Any SETATTR that sets the size attribute is inconpatible with a share
reservation that specifies DENY WRITE. The area between the old
end-of -file and the new end-of-file is considered to be nodified just
as woul d have been the case had the area in question been specified
as the target of WRITE, for the purpose of checking conflicts with
record | ocks, for those cases in which a server is inplenmenting
mandat ory record | ocking behavior. A valid stateid should al ways be
specified. Wen the file size attribute is not set, the special
stateid consisting of all bits zero should be passed.

On either success or failure of the operation, the server will return
the attrsset bitmask to represent what (if any) attributes were
successfully set. The attrsset in the response is a subset of the
bitmap4 that is part of the obj _attributes in the argunent.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

If the request specifies the owner attribute to be set, the server
shoul d all ow the operation to succeed if the current owner of the

obj ect matches the value specified in the request. Sonme servers may
be inplemented in a way as to prohibit the setting of the owner
attribute unless the requester has privilege to do so. |If the server
is lenient in this one case of natching owner val ues, the client

i npl enentation nay be sinplified in cases of creation of an object
foll owed by a SETATTR.

The file size attribute is used to request changes to the size of a

file. Avalue of O (zero) causes the file to be truncated, a val ue
|l ess than the current size of the file causes data from new size to

Shepler, et al. St andards Track [Page 207]

RFC 3530 NFS version 4 Protocol April 2003

the end of the file to be discarded, and a size greater than the
current size of the file causes logically zeroed data bytes to be
added to the end of the file. Servers are free to inplenment this
usi ng hol es or actual zero data bytes. Cients should not nmake any
assunptions regarding a server’s inplenentation of this feature,
beyond that the bytes returned will be zeroed. Servers nust support
extending the file size via SETATTR

SETATTR is not guaranteed atonmic. A failed SETATTR may partially
change a file' s attributes.

Changing the size of a file with SETATTR i ndirectly changes the
time_nmodify. A client nust account for this as size changes can
result in data deletion

The attributes tinme_access_set and tine_nodify _set are wite-only
attri butes constructed as a switched union so the client can direct

the server in setting the tine values. |If the switched union
specifies SET _TO CLIENT_TIME4, the client has provided an nfstined to
be used for the operation. |If the switch union does not specify

SET_TO CLIENT_TIME4, the server is to use its current tine for the
SETATTR operati on.

If server and client tines differ, prograns that conpare client tine
to file tinmes can break. A tine naintenance protocol should be used
tolimt client/server tinme skew.

Use of a COVPOUND contai ning a VERI FY operation specifying only the
change attribute, immediately followed by a SETATTR, provides a neans
whereby a client nmay specify a request that enul ates the
functionality of the SETATTR guard nechani sm of NFS version 3. Since
the function of the guard nmechanismis to avoid changes to the file
attributes based on stale information, delays between checking of the
guard condition and the setting of the attributes have the potentia
to conpronmise this function, as would the corresponding delay in the
NFS version 4 enmulation. Therefore, NFS version 4 servers should
take care to avoid such delays, to the degree possible, when
executing such a request.

If the server does not support an attribute as requested by the
client, the server should return NFS4ERR_ATTRNOTSUPP

A mask of the attributes actually set is returned by SETATTR in all
cases. That mask nmust not include attributes bits not requested to
be set by the client, and nmust be equal to the mask of attributes
requested to be set only if the SETATTR conpl etes w t hout error.

Shepler, et al. St andards Track [Page 208]

RFC 3530 NFS version 4 Protocol April 2003

ERRORS

NFS4ERR ACCESS
NFS4ERR_ADM N_REVOKED
NFS4ERR_ATTRNOTSUPP
NFS4ERR_BADCHAR
NFS4ERR_BADHANDLE
NFS4ERR_BADOWKER
NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_DQUOT
NFS4ERR_EXPI RED
NFS4ERR_FBI G
NFS4ERR_FHEXPI RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR_| O

NFS4ERR | SDI R
NFS4ERR_LOCKED
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_OLD_STATEI D
NFS4ERR_OPENVODE
NFS4ERR_PERM
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D

14.2.33. Operation 35: SETCLIENTID - Negotiate Clientid
SYNOPSI S
client, callback, callback ident -> clientid, setclientid confirm
ARGUVENT
struct SETCLI ENTI D4args {
nfs client_id4 client;

cb _client4 cal | back;
ui nt 32_t cal | back_i dent;

Shepler, et al. St andards Track [Page 209]

RFC 3530 NFS version 4 Protocol April 2003

RESULT
struct SETCLI ENTI D4r esok {
clientid4 clientid;
verifier4d setclientid _confirm

b

uni on SETCLI ENTI D4res switch (nfsstat4 status) {
case NFH4_X

SETCLI ENTI D4r esok resok4;
case NFS4ERR CLI D | NUSE:
clientaddr4 client _using;
def aul t:
voi d;
b
DESCRI PTI ON

The client uses the SETCLIENTID operation to notify the server of its
intention to use a particular client identifier, callback, and

cal | back_ident for subsequent requests that entail creating |ock
share reservation, and del egation state on the server. Upon
successful conpletion the server will return a shorthand clientid
which, if confirnmed via a separate step, will be used in subsequent
file locking and file open requests. Confirmation of the clientid
nmust be done via the SETCLI ENTI D_CONFI RM operation to return the
clientid and setclientid_confirmvalues, as verifiers, to the server
The reason why two verifiers are necessary is that it is possible to
use SETCLI ENTI D and SETCLI ENTI D CONFIRM to nodi fy the call back and

cal | back_ident information but not the shorthand clientid. |In that
event, the setclientid confirmvalue is effectively the only
verifier.

The cal | back information provided in this operation will be used if

the client is provided an open del egation at a future point.
Therefore, the client nust correctly reflect the program and port
nunbers for the callback programat the time SETCLIENTID is used.

The cal | back_i dent value is used by the server on the callback. The
client can | everage the callback_ident to elimnate the need for nore
than one cal | back RPC program nunber, while still being able to
determ ne which server is initiating the callback

Shepler, et al. St andards Track [Page 210]

RFC 3530 NFS version 4 Protocol April 2003

| MPLEMENTATI ON

To understand how to inplenment SETCLI ENTID, make the follow ng
not ations. Let:

X be the value of the client.id subfield of the SETCLI ENTI D4ar gs
structure.

v be the value of the client.verifier subfield of the
SETCLI ENTI D4args structure.

c be the value of the clientid field returned in the
SETCLI ENTI D4r esok structure.

k represent the value conbination of the fields callback and
cal | back_ident fields of the SETCLI ENTI D4args structure.

s be the setclientid confirmvalue returned in the
SETCLI ENTI D4r esok structure.

{ v, x, ¢, k, s}
be a quintuple for a client record. Aclient record is
confirmed if there has been a SETCLI ENTI D_CONFI RM operation to
confirmit. Oherwise it is unconfirned. An unconfirned
record is established by a SETCLI ENTID call

Since SETCLIENTID is a non-idenpotent operation, |let us assune that
the server is inplenenting the duplicate request cache (DRC).

When the server gets a SETCLIENTID { v, x, k } request, it processes
it in the foll owi ng nanner.

o It first looks up the request in the DRC. If there is a hit, it
returns the result cached in the DRC. The server does NOT renove
client state (locks, shares, del egations) nor does it nodify any
recorded cal |l back and cal |l back_ident information for client { x }.

For any DRC miss, the server takes the client id string x, and
searches for client records for x that the server nay have
recorded from previous SETCLI ENTID calls. For any confirned record
with the same id string x, if the recorded principal does not
match that of SETCLIENTID call, then the server returns a
NFSA4ERR _CLI D I NUSE error

For brevity of discussion, the remaining description of the
processi ng assunes that there was a DRC miss, and that where the
server has previously recorded a confirnmed record for client x,
the af orenentioned principal check has successfully passed.

Shepler, et al. St andards Track [Page 211]

RFC 3530 NFS version 4 Protocol April 2003

o The server checks if it has recorded a confirned record for { v,
X, ¢, I, s}, where | may or may not equal k. If so, and since the
id verifier v of the request matches that which is confirmed and
recorded, the server treats this as a probable call back
i nformati on update and records an unconfirmed { v, x, ¢, k, t }
and | eaves the confirned { v, x, ¢, I, s} in place, such that t
l=s. It does not matter if k equals | or not. Any pre-existing
unconfirmed { v, x, ¢, *, * } is renoved.

The server returns { ¢, t }. It is indeed returning the old
clientid4 value c, because the client apparently only wants to
update cal l back value k to value |. It’s possible this request is
one fromthe Byzantine router that has stale call back infornmation,
but this is not a problem The callback information update is
only confirmed if followed up by a SETCLIENTID CONFIRM{ ¢, t }.

The server awaits confirmation of k via
SETCLIENTID CONFIRM { ¢, t }.

The server does NOT renove client (lock/share/delegation) state
for x.

o The server has previously recorded a confirnmed { u, x, ¢, |, s}
record such that v !'=u, | may or may not equal k, and has not
recorded any unconfirmed { *, x, *, *, * } record for x. The
server records an unconfirmed { v, x, d, k, t } (d!=¢c, t I=39).
The server returns { d, t }.

The server awaits confirmation of { d, k } via SETCLI ENTI D_CONFI RM

{ d, t }.
The server does NOT renove client (lock/share/delegation) state
for x.

0 The server has previously recorded a confirned { u, x, ¢, |, s}
record such that v !'=u, | may or may not equal k, and recorded an
unconfirmed { w, x, d, m t } record such that ¢ !=d, t !'=s, m
may or nmay not equal k, mmay or nmay not equal |, and k may or may
not equal |. Whether w==v or w!= v nakes no difference. The

server sinply renoves the unconfirmed { w, x, d, m t } record and
replaces it with an unconfirned { v, x, e, k, r } record, such
that e !=d, el!=¢, r !=1t, r !=s.

The server returns { e, r }.

The server awaits confirmation of { e, k } via
SETCLI ENTID_CONFIRM { e, r }.

Shepler, et al. St andards Track [Page 212]

RFC 3530 NFS version 4 Protocol April 2003

The server does NOT renove client (lock/share/delegation) state
for x.

o The server has no confirned { *, x, *, *, * } for x. It may or may

not have recorded an unconfirmed { u, x, ¢, |, s}, where | my or
may not equal k, and u nay or may not equal v. Any unconfirnmed
record { u, x, ¢, I, * 1}, regardless whether u ==v or | ==k, is
replaced with an unconfirmed record { v, x, d, k, t } where d !=
c, t I=s.

The server returns { d, t }.

The server awaits confirmation of { d, k } via SETCLI ENTI D_CONFI RM
{ d, t }. The server does NOT renove client
(1 ock/ share/ del egation) state for x.

The server generates the clientid and setclientid_confirmval ues and
nmust take care to ensure that these values are extrenely unlikely to
ever be regenerated.
ERRCRS
NFS4ERR_BADXDR
NFS4ERR_CLI D_| NUSE
NFSAERR_|I NVAL
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
14.2.34. Operation 36: SETCLIENTID CONFIRM - Confirmddientid
SYNOPSI S

clientid, verifier -> -

ARGUVENT
struct SETCLI ENTI D_CONFI RMAar gs {
clientid4 clientid;
verifier4d setclientid_confirm
};
RESULT

struct SETCLI ENTI D_CONFI RM4res {
nf sst at 4 st at us;
s

Shepler, et al. St andards Track [Page 213]

RFC 3530 NFS version 4 Protocol April 2003

DESCRI PTI ON

This operation is used by the client to confirmthe results froma
previous call to SETCLIENTID. The client provides the server
supplied (froma SETCLI ENTID response) clientid. The server responds
with a sinple status of success or failure.

| MPLEMENTATI ON

The client nust use the SETCLI ENTI D_CONFI RM operation to confirmthe
followi ng two distinct cases:

o The client’s use of a new shorthand client identifier (as returned
fromthe server in the response to SETCLIENTID), a new call back
val ue (as specified in the argunments to SETCLI ENTI D) and a new
cal | back_ident (as specified in the arguments to SETCLI ENTI D)
value. The client’s use of SETCLIENTID CONFIRMin this case al so
confirns the renoval of any of the client’s previous rel evant
| eased state. Relevant |eased client state includes record | ocks,
share reservations, and where the server does not support the
CLAI M_DELEGATE_PREV cl ai mtype, delegations. |If the server
supports CLAI M DELEGATE_PREV, then SETCLI ENTI D_CONFI RM MJST NOT
renove del egations for this client; relevant |eased client state
woul d then just include record | ocks and share reservati ons.

o0 The client’s re-use of an old, previously confirned, shorthand
client identifier, a new callback value, and a new cal | back_i dent
value. The client’s use of SETCLIENTID CONFIRMin this case MJST
NOT result in the renoval of any previous | eased state (Il ocks,
share reservations, and del egati ons)

We use the sane notation and definitions for v, x, ¢, k, s, and
unconfirmed and confirmed client records as introduced in the
description of the SETCLI ENTID operation. The arguments to
SETCLI ENTI D_CONFI RM are indicated by the notation { ¢, s }, where c
is a value of type clientid4, and s is a value of type verifier4d
corresponding to the setclientid confirmfield.

As wi th SETCLI ENTI D, SETCLI ENTI D_CONFI RM i s a non-i denpot ent
operation, and we assune that the server is inplenenting the
duplicate request cache (DRC).

When the server gets a SETCLIENTID CONFIRM { c, s } request, it
processes it in the foll ow ng manner.

Shepler, et al. St andards Track [Page 214]

RFC 3530 NFS version 4 Protocol April 2003

o It first looks up the request in the DRC. If there is a hit, it
returns the result cached in the DRC. The server does not renove
any relevant |leased client state nor does it nmodify any recorded
cal | back and cal | back_ident information for client { x } as
represented by the shorthand val ue c.

For a DRC miss, the server checks for client records that match the
short hand value c¢c. The processing cases are as foll ows:

0 The server has recorded an unconfirned { v, x, ¢, k, s } record
and a confirmed { v, x, ¢, |, t } record, such that s !'=1t. |If
the principals of the records do not match that of the
SETCLI ENTI D_ CONFI RM the server returns NFS4ERR CLI D | NUSE, and no
rel evant |eased client state is renmoved and no recorded cal | back
and cal I back_ident information for client { x } is changed.

O herwi se, the confirmed { v, x, ¢, I, t } record is renoved and
the unconfirmed { v, x, ¢, k, s} is marked as confirned, thereby
nodi fyi ng recorded and confirned cal |l back and cal | back_i dent
information for client { x }.

The server does not renove any rel evant |eased client state.
The server returns NFS4_ K

o The server has not recorded an unconfirmed { v, x, ¢, *, * } and
has recorded a confirmed { v, x, ¢, *, s }. If the principals of
the record and of SETCLI ENTI D_CONFI RM do not natch, the server
returns NFS4ERR CLI D I NUSE wi t hout renoving any rel evant | eased
client state and without changing recorded call back and
cal | back_ident values for client { x }.

If the principals match, then what has |ikely happened is that the
client never got the response fromthe SETCLI ENTI D_CONFI RM and
the DRC entry has been purged. Whatever the scenario, since the
principals match, as well as { ¢, s } matching a confirnmed record
the server leaves client x's relevant |eased client state intact,

| eaves its call back and cal | back_ident val ues unnodified, and
returns NFS4_OK.

0 The server has not recorded a confirmed { *, *, ¢, *, * }, and has
recorded an unconfirned { *, x, ¢, k, s}. Evenif thisis a
retry fromclient, nonetheless the client’s first
SETCLI ENTI D_CONFI RM at t enpt was not received by the server. Retry
or not, the server doesn’t know, but it processes it as if were a
first try. |If the principal of the unconfirmed { *, x, ¢, k, s}
record m smatches that of the SETCLI ENTI D_CONFI RM request the
server returns NFS4ERR CLID I NUSE w t hout renpoving any rel evant
| eased client state.

Shepler, et al. St andards Track [Page 215]

RFC 3530 NFS version 4 Protocol April 2003

O herwi se, the server records a confirned { *, x, ¢, k, s }. If
there is also a confirnmed { *, x, d, *, t }, the server MJST
renove the client x's relevant leased client state, and overwite
the call back state with k. The confirned record { *, x, d, *, t }
i s renoved.

Server returns NFS4_OK.

o The server has no record of a confirmed or unconfirmed { *, *, c,
* s }. The server returns NFS4ERR STALE CLIENTID. The server
does not renove any relevant |eased client state, nor does it
nodi fy any recorded cal |l back and cal | back_i dent information for
any client.

The server needs to cache unconfirmed { v, x, ¢, k, s} client
records and await for some time their confirmation. As should be
clear fromthe record processing discussions for SETCLIENTID and
SETCLI ENTI D CONFI RM there are cases where the server does not
determnistically renove unconfirmed client records. To avoid
runni ng out of resources, the server is not required to hold
unconfirmed records indefinitely. One strategy the server m ght use
istoset alimt on how many unconfirned client records it wll

mai ntain, and then when the limt would be exceeded, renpve the

ol dest record. Another strategy might be to renobve an unconfirned
record when sone anount of time has el apsed. The choice of the anmpunt
of time is fairly arbitrary but it is surely no higher than the
server’s |lease tine period. Consider that |eases need to be renewed
before the lease tinme expires via an operation fromthe client. |If
the client cannot issue a SETCLIENTID CONFI RM after a SETCLI ENTI D
before a period of tinme equal to that of a | ease expires, then the
client is unlikely to be able naintain state on the server during
steady state operation

If the client does send a SETCLIENTI D CONFI RM for an unconfirned
record that the server has already deleted, the client will get
NFSAERR _STALE CLIENTID back. |If so, the client should then start
over, and send SETCLIENTID to reestablish an unconfirmed client
record and get back an unconfirned clientid and setclientid_confirm
verifier. The client should then send the SETCLI ENTI D_CONFI RM t o
confirmthe clientid.

SETCLI ENTI D_CONFI RM does not establish or renew a | ease. However, if
SETCLI ENTI D_CONFI RM renoves rel evant | eased client state, and that
state does not include existing delegations, the server MIUST al | ow
the client a period of tine no |less than the value of |ease_tine
attribute, to reclaim (via the CLAI M DELEGATE PREV cl ai mtype of the
OPEN operation) its del egati ons before renoving unrecl ai ned

del egati ons.

Shepler, et al. St andards Track [Page 216]

RFC 3530 NFS version 4 Protocol April 2003

ERRORS
NFS4ERR_BADXDR
NFS4ERR_CLI D_I NUSE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFSA4ERR_STALE_CLI ENTI D
14.2.35. Operation 37: VERIFY - Verify Same Attributes
SYNOPSI S
(cfh), fattr -> -
ARGUVMENT

struct VERI FY4args {
/* CURRENT_FH: object */

fattr4 obj attributes;
s
RESULT
struct VERI FY4res {
nfsstat4 st at us;
s
DESCRI PTI ON

The VERI FY operation is used to verify that attributes have a val ue
assuned by the client before proceeding with follow ng operations in
t he conpound request. |f any of the attributes do not match then the
error NFS4ERR NOT_SAME nmust be returned. The current filehandle
retains its value after successful conpletion of the operation.

| MPLEMENTATI ON

One possible use of the VERI FY operation is the follow ng conpound
sequence. Wth this the client is attenpting to verify that the file
being removed will match what the client expects to be renpved. This
sequence can help prevent the unintended deletion of a file.

PUTFH (directory fil ehandl e)
LOOKUP (file nane)

VERI FY (filehandl e == fh)
PUTFH (directory fil ehandl e)
REMOVE (fil e nane)

Shepler, et al. St andards Track [Page 217]

RFC 3530 NFS version 4 Protocol April 2003

Thi s sequence does not prevent a second client fromrenoving and
creating a new file in the mddle of this sequence but it does help
avoi d the unintended result.

In the case that a recommended attribute is specified in the VER FY
operation and the server does not support that attribute for the
filesystemobject, the error NFS4AERR ATTRNOTSUPP is returned to the
client.

When the attribute rdattr_error or any wite-only attribute (e.qg.
time_nodify _set) is specified, the error NFS4ERR INVAL is returned to
the client.

ERRCRS

NFS4ERR_ACCESS
NFS4ERR_ATTRNOTSUPP
NFS4ERR_BADCHAR
NFS4ERR_BADHANDLE
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR_MOVED
NFS4ERR_NOF| LEHANDLE
NFS4ERR_NOT_SAME
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE

14.2.36. Operation 38: WRITE - Wite to File

SYNOPSI S

(cfh), stateid, offset, stable, data -> count, conmtted, witeverf

ARGUVENT
enum st abl e_how4 {
UNSTABLE4 = 0,
DATA_SYNC4 =1,
FI LE_SYNC4 =2

b

struct WRI TE4args {
/* CURRENT FH file */
st at ei d4 st at ei d;
of fset4 of f set;

Shepler, et al. St andards Track [Page 218]

RFC 3530 NFS version 4 Protocol April 2003

stabl e_how4 st abl e;
opaque dat a<>;

b

RESULT

struct WRI TE4resok {
count4 count;
st abl e_how4 committed;
verifier4d witeverf;

H

uni on WRI TE4res switch (nfsstat4 status) {
case NFH4_X
WRI TE4r esok r esok4;
defaul t:
voi d;
s

DESCRI PTI ON

The WRI TE operation is used to wite data to a regular file. The
target file is specified by the current filehandle. The offset
specifies the offset where the data should be witten. An offset of
0 (zero) specifies that the wite should start at the begi nning of
the file. The count, as encoded as part of the opaque data
paraneter, represents the nunber of bytes of data that are to be
witten. |If the count is O (zero), the WRITE will succeed and return
a count of O (zero) subject to perm ssions checking. The server may
choose to wite fewer bytes than requested by the client.

Part of the wite request is a specification of howthe wite is to
be performed. The client specifies with the stable paranmeter the

nmet hod of how the data is to be processed by the server. |If stable
is FILE_SYNC4, the server nust conmit the data witten plus al
filesystemnetadata to stable storage before returning results. This
corresponds to the NFS version 2 protocol senmantics. Any other
behavi or constitutes a protocol violation. |If stable is DATA SYN4,
then the server nust commit all of the data to stable storage and
enough of the netadata to retrieve the data before returning. The
server inplenmentor is free to inplenent DATA SYNC4 in the sane
fashion as FILE SYNC4, but with a possible performance drop. |If
stable is UNSTABLE4, the server is free to commit any part of the
data and the netadata to stable storage, including all or none,
before returning a reply to the client. There is no guarantee whether
or when any uncommitted data will subsequently be commtted to stable
storage. The only guarantees made by the server are that it will not

Shepler, et al. St andards Track [Page 219]

RFC 3530 NFS version 4 Protocol April 2003

destroy any data wi thout changing the value of verf and that it wll
not commt the data and netadata at a level less than that requested
by the client.

The stateid value for a WRITE request represents a val ue returned
froma previous record |l ock or share reservation request. The
stateid is used by the server to verify that the associated share
reservation and any record locks are still valid and to update |ease
timeouts for the client.

Upon successful conpletion, the following results are returned. The
count result is the nunber of bytes of data witten to the file. The
server may wite fewer bytes than requested. |If so, the actual nunber
of bytes witten starting at location, offset, is returned.

The server also returns an indication of the |evel of conmitnent of
the data and netadata via commtted. If the server conmtted all data
and netadata to stable storage, committed should be set to

FILE SYNC4. |If the | evel of commitnent was at |east as strong as
DATA_SYNC4, then committed should be set to DATA SYNC4A. O herw se,
conmitted nust be returned as UNSTABLE4. |f stable was FILE4_SYNC
then commtted nmust al so be FILE SYNC4: anything el se constitutes a
protocol violation. If stable was DATA SYNC4, then committed may be
FI LE_ SYNC4 or DATA SYNC4: anything el se constitutes a protoco
violation. If stable was UNSTABLE4, then conmitted nay be either

FI LE_SYNC4, DATA SYNC4, or UNSTABLE4.

The final portion of the result is the wite verifier. The wite
verifier is a cookie that the client can use to determ ne whether the
server has changed i nstance (boot) state between a call to WRI TE and
a subsequent call to either WRITE or COWM T. This cookie nust be
consistent during a single instance of the NFS version 4 protocol
service and nust be uni que between instances of the NFS version 4
protocol server, where uncomitted data may be | ost.

If aclient wites data to the server with the stable argunent set to
UNSTABLE4 and the reply yields a conmtted response of DATA SYNC4 or
UNSTABLE4, the client will follow up sonme tine in the future with a
COM T operation to synchroni ze outstandi ng asynchronous data and
nmetadata with the server’s stable storage, barring client error. It
is possible that due to client crash or other error that a subsequent
COM T will not be received by the server

For a WRITE with a stateid value of all bits 0, the server MAY all ow

the WRITE to be serviced subject to mandatory file | ocks or the
current share deny nodes for the file. For a WRITE with a stateid

Shepler, et al. St andards Track [Page 220]

RFC 3530 NFS version 4 Protocol April 2003

value of all bits 1, the server MUST NOT allow the WRI TE operation to
bypass | ocki ng checks at the server and are treated exactly the sane
as if a stateid of all bits 0 were used.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

It is possible for the server to wite fewer bytes of data than
requested by the client. 1In this case, the server should not return
an error unless no data was witten at all. |If the server wites

| ess than the nunber of bytes specified, the client should issue
another WRITE to wite the remai ning data.

It is assuned that the act of witing data to a file will cause the
time_nodified of the file to be updated. However, the tinme_nodified
of the file should not be changed unless the contents of the file are
changed. Thus, a WRI TE request with count set to O should not cause
the tine_nodified of the file to be updated.

The definition of stable storage has been historically a point of
contention. The follow ng expected properties of stable storage may
hel p in resolving design issues in the inplenentation. Stable storage
is persistent storage that survives:

1. Repeated power failures
2. Hardware failures (of any board, power supply, etc.).
3. Repeated software crashes, including reboot cycle.

This definition does not address failure of the stable storage nodul e
itself.

The verifier is defined to allow a client to detect different

i nstances of an NFS version 4 protocol server over which cached,
uncomritted data may be lost. In the nost |ikely case, the verifier
allows the client to detect server reboots. This information is
required so that the client can safely deternm ne whether the server
coul d have | ost cached data. |If the server fails unexpectedly and
the client has unconmitted data from previ ous WRI TE requests (done
with the stable argument set to UNSTABLE4 and in which the result
committed was returned as UNSTABLE4 as well) it nmay not have flushed
cached data to stable storage. The burden of recovery is on the
client and the client will need to retransnit the data to the server

A suggested verifier would be to use the tine that the server was

booted or the time the server was last started (if restarting the
server without a reboot results in lost buffers).

Shepler, et al. St andards Track [Page 221]

RFC 3530 NFS version 4 Protocol April 2003

The conmitted field in the results allows the client to do nore

ef fective caching. |If the server is commtting all WRI TE requests to
stable storage, then it should return with committed set to

FI LE_SYNC4, regardl ess of the value of the stable field in the
argunents. A server that uses an NVRAM accel erator may choose to

i mpl ement this policy. The client can use this to increase the

ef fecti veness of the cache by discardi ng cached data that has al ready
been conmmitted on the server.

Some inplementations may return NFS4ERR _NOSPC i nst ead of

NFSAERR DQUOT when a user’s quota is exceeded. |In the case that the
current filehandle is a directory, the server will return
NFSAERR I SDIR. If the current filehandle is not a regular file or a
directory, the server will return NFSA4ERR_|I NVAL.

If mandatory file locking is on for the file, and correspondi ng
record of the data to be witten file is read or wite | ocked by an
owner that is not associated with the stateid, the server will return
NFSAERR LOCKED. If so, the client nust check if the owner
corresponding to the stateid used with the WRITE operation has a
conflicting read | ock that overlaps with the region that was to be
witten. If the stateid s owner has no conflicting read |ock, then
the client should try to get the appropriate wite record |ock via
the LOCK operation before re-attenpting the WRITE. Wien the WRI TE
conpl etes, the client should rel ease the record | ock via LOCKU.

If the stateid’ s owner had a conflicting read |ock, then the client
has no choice but to return an error to the application that
attenpted the WRITE. The reason is that since the stateid s owner had
a read lock, the server either attenpted to tenporarily effectively
upgrade this read lock to a wite |l ock, or the server has no upgrade
capability. If the server attenpted to upgrade the read | ock and
failed, it is pointless for the client to re-attenpt the upgrade via
the LOCK operation, because there m ght be another client also trying
to upgrade. |If two clients are bl ocked trying upgrade the sane |ock
the clients deadlock. |If the server has no upgrade capability, then
it is pointless to try a LOCK operation to upgrade.

ERRCRS

NFS4ERR_ACCESS
NFS4ERR_ADM N_REVOKED
NFS4ERR_BADHANDLE
NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFS4ERR_DELAY
NFS4ERR_DQUOT
NFS4ERR_EXPI RED

Shepler, et al. St andards Track [Page 222]

RFC 3530

NFS4ERR FBI G
NFS4ERR_FHEXPI RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR_| O
NFS4ERR | SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_LOCKED
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NXI O
NFS4ERR_OLD_STATEI D
NFS4ERR_OPENMODE
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D

14. 2. 37.
SYNOPSI S

| ockowner -> ()

NFS version 4 Protoco

Operation 39: RELEASE LOCKOMER -

April 2003

Rel ease Lockowner State

ARGUMENT
struct RELEASE LOCKOANER4ar gs {
| ock_owner 4 | ock_owner
i
RESULT
struct RELEASE_LOCKOANER4res {
nfsstat4 st at us;
i
DESCRI PTI ON

This operation is used to notify the server that the | ock_owner is no

| onger in use by the client.

associ ated with the | ock_owner,
NFS4ERR_LOCKS HELD will be retur
t aken.

Shepler, et al. St andar

This allows the server to rel ease
cached state related to the specified | ock_owner

If file |ocks,
are held at the server, the error
ned and no further action will be

ds Track [Page 223]

RFC 3530 NFS version 4 Protocol April 2003

| MPLEMENTATI ON

The client may choose to use this operation to ease the anount of
server state that is held. Depending on behavior of applications at
the client, it nmay be inportant for the client to use this operation
since the server has certain obligations with respect to holding a
reference to a | ock_owner as long as the associated file is open
Therefore, if the client knows for certain that the | ock_owner will
no | onger be used under the context of the associated open_owner4, it
shoul d use RELEASE LOCKOWNER.

ERRORS

NFS4ERR_ADM N_REVOKED
NFS4ERR_BADXDR
NFS4ERR_EXP| RED
NFS4ERR_LEASE_MOVED
NFS4ERR_LOCKS_HELD
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE_CLI ENTI D

14.2.38. Operation 10044: |LLEGAL - Illegal operation
SYNOPSI S

<nul 1> -> ()

ARGUVENT
voi d;
RESULT
struct |LLEGAL4res {
nf sst at 4 st at us;
b
DESCRI PTI ON

This operation is a placeholder for encoding a result to handle the
case of the client sending an operation code within COWOUND that is
not supported. See the COVPOUND procedure description for nore
details.

The status field of |ILLEGAL4res MJUST be set to NFS4ERR OP | LLEGAL.

Shepler, et al. St andards Track [Page 224]

RFC 3530 NFS version 4 Protocol April 2003

| MPLEMENTATI ON
A client will probably not send an operation with code OP_I LLEGAL but
if it does, the response will be ILLEGAL4res just as it would be with
any other invalid operation code. Note that if the server gets an
illegal operation code that is not OP_ILLEGAL, and if the server
checks for |egal operation codes during the XDR decode phase, then
the | LLEGAL4res woul d not be returned.
ERRORS
NFS4ERR_OP_| LLEGAL
15. NFS version 4 Call back Procedures
The procedures used for callbacks are defined in the foll ow ng
sections. In the interest of clarity, the ternms "client" and
"server" refer to NFS clients and servers, despite the fact that for
an individual callback RPC, the sense of these terns would be
preci sely the opposite.
15.1. Procedure 0: CB_NULL - No Operation

SYNOPSI S

<nul | >
ARGUMENT

voi d;
RESULT

voi d;
DESCRI PTI ON
Standard NULL procedure. Void argument, void response. Even though
there is no direct functionality associated with this procedure, the
server will use CB _NULL to confirmthe existence of a path for RPCs
fromserver to client.
ERRORS

None.

Shepler, et al. St andards Track [Page 225]

RFC 3530 NFS version 4 Protocol

15.2. Procedure 1: CB _COWPOUND - Conpound Operations
SYNCPSI S

compoundar gs -> conpoundr es

ARGUVENT
enum nfs_cb_opnumd {
OP_CB_GETATTR =3
OP_CB_RECALL = 4,
OP_CB_| LLEGAL = 10044
i
union nfs_cb_argop4 switch (unsigned argop) {
case OP_CB GETATTR CB_CGETATTR4ar gs opchgetattr;
case OP_CB RECALL: CB_RECALL4args opcbrecall;
case OP_CB | LLEGAL: voi d opchi | | egal
i
struct CB_COVPOUND4args {
utf8str_cs t ag;
uint32_t m norver si on
uint32_t cal | back_ident;
nfs _cb_argop4 argarray<>;
i
RESULT
union nfs_chb _resop4 switch (unsigned resop){
case OP_CB_GETATTR: CB CETATTR4res opchgetattr;
case OP_CB RECALL: CB_RECALLA4res opcbrecal |

};

struct CB_COVPOUNDAres {
nfsstat4 status;
utf8str_cs tag;
nfs cb resop4 resarray<>;

b
DESCRI PTI ON

April 2003

The CB_COVPOUND procedure is used to conbine one or nore of the
cal | back procedures into a single RPC request. The nain callback RPC

program has two main procedures: CB_NULL and CB_COVPOUND

operations use the CB_COWOUND procedure as a w apper.

Shepler, et al. St andards Track

Al'l ot her

[Page 226]

RFC 3530 NFS version 4 Protocol April 2003

In the processing of the CB_COVPOUND procedure, the client may find
that it does not have the available resources to execute any or al

of the operations within the CB_COMWOUND sequence. |In this case, the
error NFS4ERR RESOURCE will be returned for the particul ar operation
wi thin the CB_COVPOUND procedure where the resource exhaustion
occurred. This assunes that all previous operations within the
CB_COVPOUND sequence have been eval uated successfully.

Contained within the CB_.COMPOUND results is a 'status’ field. This
status nust be equivalent to the status of the |last operation that
was executed within the CB_COVWOUND procedure. Therefore, if an
operation incurred an error then the 'status’ value will be the sane
error value as is being returned for the operation that failed.

For the definition of the "tag" field, see the section "Procedure 1
COVPOUND - Conpound Oper ati ons”

The val ue of callback ident is supplied by the client during

SETCLI ENTID. The server nust use the client supplied callback ident
during the CB_.COMWOUND to allow the client to properly identify the
server.

Il egal operation codes are handled in the sane way as they are
handl ed for the COVPOUND procedure.

| MPLEMENTATI ON

The CB_COWPOUND procedure is used to conbine individual operations
into a single RPC request. The client interprets each of the
operations in turn. |If an operation is executed by the client and
the status of that operation is NFS4 _OK, then the next operation in
the CB_COVPOUND procedure is executed. The client continues this
process until there are no nore operations to be executed or one of
the operations has a status val ue other than NFS4_OK

ERRORS

NFS4ERR_BADHANDLE
NFS4ERR_BAD_STATEI D
NFS4ERR_BADXDR
NFSAERR_OP_I LLEGAL
NFSAERR_RESOURCE
NFS4ERR_SERVERFAULT

Shepler, et al. St andards Track [Page 227]

RFC 3530 NFS version 4 Protocol April 2003

15.2.1. Operation 3: CB GETATTR - Get Attributes
SYNCPSI S
fh, attr_request -> attrmask, attr_vals
ARGUMENT

struct CB _GETATTR4args {
nfs fh4 fh;
bi t map4 attr_request;

b
RESULT

struct CB_GETATTR4resok {
fattr4 obj_attributes;
i

uni on CB CETATTR4res switch (nfsstat4 status) {
case NFH4_X
CB_GETATTRA4r esok resok4;
defaul t:
voi d;
s

DESCRI PTI ON

The CB_GETATTR operation is used by the server to obtain the
current nodified state of a file that has been wite del egated.

The attributes size and change are the only ones guaranteed to be
serviced by the client. See the section "Handling of CB _CETATTR'
for a full description of howthe client and server are to interact
with the use of CB GETATTR

If the filehandl e specified is not one for which the client holds a
wite open del egation, an NFS4ERR BADHANDLE error is returned.

| MPLEMENTATI ON
The client returns attrmask bits and the associated attri bute

val ues only for the change attribute, and attributes that it may
change (time_nodify, and size).

Shepler, et al. St andards Track [Page 228]

RFC 3530 NFS version 4 Protocol April 2003

ERRORS
NFS4ERR_BADHANDL E
NFS4ERR_BADXDR
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
15.2.2. Operation 4. CB RECALL - Recall an Open Del egation
SYNOPSI S

stateid, truncate, fh -> ()

ARGUVENT
struct CB_RECALL4args {
st at ei d4 st at ei d;
bool truncat e;
nfs fha f h;
s
RESULT
struct CB RECALL4res {
nf sst at 4 st at us;
s
DESCRI PTI ON

The CB RECALL operation is used to begin the process of recalling an
open del egation and returning it to the server

The truncate flag is used to optimize recall for a file which is
about to be truncated to zero. Wuen it is set, the client is freed
of obligation to propagate nodified data for the file to the server
since this data is irrelevant.

If the handl e specified is not one for which the client holds an open
del egati on, an NFS4ERR_BADHANDLE error is returned.

If the stateid specified is not one corresponding to an open

del egation for the file specified by the filehandle, an
NFSAERR BAD STATEID i s returned.

Shepler, et al. St andards Track [Page 229]

RFC 3530 NFS version 4 Protocol April 2003

15.

| MPLEMENTATI ON

The client should reply to the call back i mediately. Replying does
not conplete the recall except when an error was returned. The
recall is not conmplete until the delegation is returned using a

DEL EGRETURN.

ERRCRS

NFS4ERR_BADHANDLE
NFS4AERR_BAD_STATEI D
NFSAERR_BADXDR
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT

2.3. (Operation 10044: CB ILLEGAL - Illegal Callback Operation
SYNOPSI S
<null> -> ()
ARGUVENT
voi d;
RESULT
struct CB | LLEGAL4res {
nf sstat 4 st at us;
H
DESCRI PTI ON

This operation is a placeholder for encoding a result to handle the
case of the client sending an operation code within COWOUND that is
not supported. See the COVPOUND procedure description for nore
details.

The status field of CB_|LLEGAL4res MJST be set to NFS4ERR _OP_I| LLEGAL.
| MPLEMENTATI ON
A server will probably not send an operation with code OP_CB | LLEGAL

but if it does, the response will be CB | LLEGAL4res just as it would
be with any other invalid operation code. Note that if the client

Shepler, et al. St andards Track [Page 230]

RFC 3530 NFS version 4 Protocol April 2003

16.

gets an illegal operation code that is not OP_ILLEGAL, and if the
client checks for |egal operation codes during the XDR decode phase,
then the CB_| LLEGAL4res woul d not be returned

ERRORS
NFS4ERR_OP_| LLEGAL
Security Considerations

NFS has historically used a nodel where, from an authentication
perspective, the client was the entire nmachine, or at |east the
source | P address of the machine. The NFS server relied on the NFS
client to make the proper authentication of the end-user. The NFS
server in turn shared its files only to specific clients, as
identified by the client’s source I P address. G ven this nodel, the
AUTH_SYS RPC security flavor sinply identified the end-user using the
client to the NFS server. Wen processing NFS responses, the client
ensured that the responses cane fromthe sane | P address and port
nunber that the request was sent to. Wile such a nodel is easy to
i npl enent and sinple to deploy and use, it is certainly not a safe
nmodel . Thus, NFSv4 nandates that inplenentations support a security
nodel that uses end to end authentication, where an end-user on a
client nutually authenticates (via cryptographic schenes that do not
expose passwords or keys in the clear on the network) to a principa
on an NFS server. Consideration should also be given to the
integrity and privacy of NFS requests and responses. The issues of
end to end nmutual authentication, integrity, and privacy are

di scussed as part of the section on "RPC and Security Flavor"

Note that while NFSv4 nandates an end to end nmutual authentication
nmodel , the "classic" nodel of machi ne authentication via | P address
checking and AUTH SYS identification can still be supported with the
caveat that the AUTH SYS flavor is neither MANDATORY nor RECOMVENDED
by this specification, and so interoperability via AUTH SYS is not
assured.

For reasons of reduced adninistration overhead, better perfornance
and/or reduction of CPU utilization, users of NFS version 4

i mpl enent ati ons may choose to not use security mechani snms that enabl e
integrity protection on each renote procedure call and response. The
use of nechanisns without integrity |eaves the custonmer vulnerable to
an attacker in between the NFS client and server that nodifies the
RPC request and/or the response. While inplenentations are free to
provide the option to use weaker security mechanisnms, there are two
operations in particular that warrant the inplenmentation overriding
user choi ces.

Shepler, et al. St andards Track [Page 231]

RFC 3530 NFS version 4 Protocol April 2003

17.

17.

17.

The first such operation is SECINFO. It is reconmended that the
client issue the SECINFO call such that it is protected with a
security flavor that has integrity protection, such as RPCSEC GSS
with a security triple that uses either rpc_gss_svc_integrity or
rpc_gss_svc_privacy (rpc_gss_svc_privacy includes integrity
protection) service. Wthout integrity protection encapsul ating

SECI NFO and therefore its results, an attacker in the nmiddle could
modi fy results such that the client night select a weaker algorithm
in the set allowed by server, making the client and/or server

vul nerable to further attacks.

The second operation that should definitely use integrity protection
is any GETATTR for the fs_locations attribute. The attack has two
steps. First the attacker nodifies the unprotected results of some
operation to return NFS4ERR_MOVED. Second, when the client follows up
with a GETATTR for the fs locations attribute, the attacker nodifies
the results to cause the client mgrate its traffic to a server
controll ed by the attacker.

Because the operations SETCLI ENTI DY SETCLI ENTI D_CONFI RM ar e

responsi ble for the release of client state, it is inperative that
the principal used for these operations is checked agai nst and match
the previous use of these operations. See the section "Client ID'
for further discussion.

| ANA Consi derati ons
1. Named Attri bute Definition

The NFS version 4 protocol provides for the association of naned
attributes to files. The nanme space identifiers for these attributes
are defined as string nanmes. The protocol does not define the

speci fic assignnment of the nanme space for these file attributes

Even though the nane space is not specifically controlled to prevent
collisions, an I ANA registry has been created for the registration of
NFS version 4 naned attributes. Registration will be achieved

t hrough the publication of an Informational RFC and will require not
only the nanme of the attribute but the syntax and semantics of the
naned attribute contents; the intent is to pronote interoperability
where conmon interests exist. \While application devel opers are

all owed to define and use attributes as needed, they are encouraged
to register the attributes with | ANA

2. ONC RPC Network ldentifiers (netids)
The section "Structured Data Types" discussed the r_netid field and

the corresponding r_addr field of a clientaddr4 structure. The NFS
version 4 protocol depends on the syntax and semantics of these

Shepler, et al. St andards Track [Page 232]

RFC 3530 NFS version 4 Protocol April 2003

fields to effectively conmuni cate cal | back i nformati on between client
and server. Therefore, an | ANA registry has been created to include
the values defined in this docunment and to allow for future expansion
based on transport usage/availability. Additions to this ONC RPC
Network ldentifier registry must be done with the publication of an
RFC.

The initial values for this registry are as follows (sone of this
text is replicated fromsection 2.2 for clarity):

The Network ldentifier (or r_netid for short) is used to specify a
transport protocol and associated universal address (or r_addr for
short). The syntax of the Network Identifier is a US-ASCII string.
The initial definitions for r_netid are:

"tcp" - TCP over |IP version 4
"udp" - UDP over |IP version 4
"tcp6" - TCP over IP version 6
"udp6" - UDP over IP version 6
Note: the "’ marks are used for delimting the strings for this

docunent and are not part of the Network ldentifier string.

For the "tcp" and "udp" Network Identifiers the Universal Address or
r_addr (for IPv4) is a US-ASCI| string and is of the form

hi.h2. h3. h4. pl. p2

The prefix, "hl.h2.h3.h4", is the standard textual formfor
representing an | Pv4 address, which is always four octets |ong.
Assum ng bi g-endi an ordering, hl, h2, h3, and h4, are respectively,
the first through fourth octets each converted to ASCI I -deci mal
Assum ng bi g-endi an ordering, pl and p2 are, respectively, the first
and second octets each converted to ASClI|I-decinal. For exanple, if a
host, in big-endian order, has an address of 0x0A010307 and there is
a service listening on, in big endian order, port 0x020F (decina
527), then conpl ete universal address is "10.1.3.7.2.15"

For the "tcp6" and "udp6" Network Identifiers the Universal Address
or r_addr (for IPv6) is a US-ASCII string and is of the form

x1:x2: x3: X4: X5: x6: x7: x8. pl. p2

Shepler, et al. St andards Track [Page 233]

RFC 3530 NFS version 4 Protocol April 2003

The suffix "pl.p2" is the service port, and is conputed the sane way
as with universal addresses for "tcp" and "udp". The prefix,
"x1:x2:x3: x4: x5: x6: x7:x8", is the standard textual formfor
representing an | Pv6 address as defined in Section 2.2 of [RFC2373].
Additionally, the two alternative forns specified in Section 2.2 of
[RFC2373] are al so acceptabl e.

As nentioned, the registration of new Network ldentifiers will
require the publication of an Information RFC with simlar detail as
listed above for the Network ldentifier itself and correspondi ng

Uni ver sal Address.

18. RPC definition file

/*
Copyright (C) The Internet Society (1998, 1999, 2000, 2001, 2002) .
* Al R ghts Reserved.
*
/

nfs4_prot.x
*/
%tpragma i dent " %0

/*
* Basic typedefs for RFC 1832 data type definitions
*/

typedef int int32_t;

t ypedef unsigned int uint32_t;

t ypedef hyper int64 t;

typedef unsigned hyper uint64_t;

/*
* Sizes
*/
const NFS4_FHSI ZE
const NFS4_VERI FI ER_SI ZE
const NFS4_OPAQUE LIMT

128;
8;
1024;

/*
* File types
*/
enum nfs_ftyped {
NFAREG
NF4DI R
NF4BLK

1, /* Regular File */
2, /* Directory */
3, /* Special File - block device */

Shepler, et al. St andards Track [Page 234]

RFC 3530

b
/*

NFS version 4 Protoco

NF4CHR
NF4LNK
NF4SOCK
NF4FI FO
NF4ATTRDI R
NFANAMVEDATTR

TR TR TR T
©O~NO UM

* Brror status

*/

enum nfsstat4 {

Shepl er,

et al.

NFS4 K

NFS4ERR _PERM
NFS4ERR_NOENT
NFS4ERR | O
NFS4ERR_NXI O
NFS4ERR_ACCESS
NFS4ERR_EXI ST
NFS4ERR_XDEV

/* Unused/ reserved
NFS4ERR _NOTDI R
NFS4ERR | SDI R
NFS4ERR | NVAL
NFS4ERR _FBI G
NFSAERR_NOSPC
NFS4ERR_ROFS
NFSA4ERR M.l NK
NFS4ERR NAMETOOLONG
NFS4ERR_NOTEMPTY
NFS4ERR_DQUOT
NFSA4ERR_STALE
NFS4ERR_BADHANDLE
NFS4ERR BAD COOKI E
NFS4ERR_NOTSUPP
NFS4ERR TOOSMALL
NFS4ERR _SERVERFAULT
NFS4ERR_BADTYPE
NFS4ERR_DELAY
NFS4ERR SAME
NFS4ERR_DENI ED
NFS4ERR_EXPI RED
NFS4ERR_LOCKED
NFSAERR_GRACE
NFS4ERR_FHEXPI RED
NFS4ERR _SHARE DENI ED
NFS4ERR WRONGSEC
NFS4ERR CLI D_| NUSE

/*
/*
/*
/*
/*
/*

April 2003

Special File - character device */
Synbolic Link */

Special File - socket */

Special File - fifo */

Attribute Directory */
Naned Attribute */

0, /*
1, /*
2, /*
5, /*
6, /*
13, /*
17, /*
18, /*
19 */

20, /*
21, /*
22, /*
27, /*
28, /*
30, /*
31, /*
63, /*
66, /*
69, /*
70, /*
10001, / *
10003,/ *
10004, / *
10005, / *
10006, / *
10007,/ *
10008, / *
10009, / *
10010, /*
10011, /*
10012, /*
10013, /*
10014, /*
10015, /*
10016, /*
10017,/ *

St andards Track

everything is okay */
caller not privileged */
no such file/directory */
hard I/O error */
no such device */
access denied */
file already exists */

different filesystens */

shoul d be a directory */
shoul d not be directory */
i nval id argunent */
file exceeds server max */
no space on filesystem */
read-only fil esystem */

too many hard |inks */
nane exceeds server nmax */
directory not enpty */

hard quota limt reached*/
file no |l onger exists */
II'legal filehandle */
READDI R cookie is stale */
operation not supported */
response linmt exceeded */
undefined server error */
type invalid for CREATE */

file "busy" - retry */
nverify says attrs same */
| ock unavail abl e */
| ock | ease expired */
I/Ofailed due to lock */
in grace period */
filehandl e expired */
share reserve denied */
wrong security flavor */
clientid in use */

[Page 235]

RFC 3530

s
/*

NFS ver si on

NFS4ERR_RESOURCE
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE

NFS4ERR_STALE_CLI ENTI D
NFS4ERR_STALE_STATEI D
NFS4ERR_OLD_STATEI D

4 Protocol

10018, /* resource exhaustion
10019,/* filesystemrel ocated
10020,/* current FH is not set
NFSAERR M NOR_VERS M SMATCH = 10021,/* m nor vers not supp
10022,/ *
10023,/ *
10024,/ *

NFSAERR_BAD_STATEI D 10025,/ *
NFS4ERR_BAD SEQ D 10026, / *
NFS4ERR_NOT_SAME 10027,/ *
NFSAERR_LOCK_RANGE 10028, / *

NFS4ERR_SYMLI NK
NFS4ERR_RESTOREFH
NFS4ERR_LEASE_MOVED
NFS4ERR_ATTRNOTSUPP
NFS4ERR_NO_GRACE
NFS4ERR_RECLAI M_BAD
NFS4ERR_RECLAI M_CONFLI CT
NFS4ERR_BADXDR
NFS4ERR_LOCKS_HELD
NFS4ERR_OPENVODE
NFS4ERR_BADOWKER
NFS4ERR_BADCHAR
NFS4ERR_BADNAVE
NFS4ERR_BAD_RANGE
NFS4ERR_LOCK_NOTSUPP
NFS4ERR_OP_| LLEGAL
NFS4ERR_DEADLOCK
NFS4ERR_FI LE_OPEN
NFS4ERR_ADM N_REVOKED
NFS4ERR_CB_PATH_DOWN

* Basic data types

*/

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

Shepl er,

et al.

10029,/ *
10030,/ *
10031, /*
10032,/ *
10033,/ *
10034,/ *

10035,/ *

10036, / *
10037,/ *
10038,/ *
10039,/ *
10040, /*
10041,/ *
10042,/ *
10043,/ *
10044,/ *
10045,/ *
10046, / *
10047,/ *
10048 /*

uint32_t bi t map4<>;

ui nt 64_t of f set 4;

ui nt 32_t count 4;

ui nt 64_t | engt h4;

ui nt 64 _t clientid4,
uint32_t seqi d4;

opaque ut f 8stri ng<>;
utf8string utf8str_cis;
utf8string utf8str_cs;
utf8string ut f 8str_m xed;

utf8str_cs
conponent 4

conponent 4;

pat hnane4<>

St andards Track

April 2003

*/
*/
*/
*/

server has rebooted */
server has rebooted * [
state is out of sync */

incorrect stateid * [

request is out of seq. */
verify - attrs not same */
| ock range not supported*/

shoul d be file/directory*/
no saved fil ehandl e */
some fil esystem noved */
recomended attr not sup*/
recl ai m out si de of grace*/
reclaimerror at server */
conflict on reclaim */
XDR decode failed */
file locks held at CLOSE*/
conflict in OPEN and I/ O/
owner translation bad */
utf-8 char not supported*/
nane not supported */
| ock range not supported*/
no atomnic up/downgrade */
undefi ned operation */
file | ocking deadl ock */
open file bl ocks op. */
| ockowner state revoked */
cal | back path down */

[Page 236]

RFC 3530 NFS version 4 Protoco

typedef uint64_t nfs | ocki d4;
typedef uint64 t nfs_cooki e4;
typedef utf8str_cs I i nkt ext 4;
typedef opaque sec_oi d4<>
typedef uint32_t qop4;
typedef uint32_t node4;
typedef uint64_t changei d4;
t ypedef opaque verifier4[NFS4_VERI Fl ER_SI ZE] ;
/*
* Ti meval
*/
struct nfstinme4d {

i nt64_t seconds;

ui nt 32_t nseconds;
s

enumtime_howd {
SET_TO_SERVER TI ME4
SET_TO CLI ENT_TI ME4

no
o

b

union settinmed4 switch (tine_how4 set _it) {
case SET_TO CLI ENT_TI ME4:

nf sti me4 tine;
defaul t:
voi d;
s
/*
* File access handl e
*/

typedef opaque nfs_fh4<NFS4_FHSI ZE>;

/*
* File attribute definitions
*/
/*
* FSID structure for major/mnor
*/
struct fsid4 {
ui nt 64 _t nmaj or ;
ui nt 64_t m nor ;
b
/*

Shepler, et al. St andards Track

April 2003

[Page 237]

RFC 3530 NFS version 4 Protocol April 2003

* Filesystem|locations attribute for relocation/mnigration
*/
struct fs_locationd {

utf8str _cis server <>;
pat hnane4 r oot pat h;
s
struct fs_locations4d {
pat hnane4 fs_root;
fs locationd | ocati ons<>;
i
/*

* Various Access Control Entry definitions
*/

/*
* Mask that indicates which Access Control Entries are supported.
* Values for the fattr4_acl support attribute.
*/

const ACL4_SUPPORT_ALLOW ACL = 0x00000001
const ACL4_SUPPORT_DENY_ACL = 0x00000002;
const ACL4_SUPPORT_AUDI T_ACL = 0x00000004;
const ACL4_SUPPORT_ALARM ACL = 0x00000008;

typedef uint32_t acet ype4;

/*

* acetyped val ues, others can be added as needed.
*/

const ACE4_ACCESS ALLOWED ACE_TYPE = 0x00000000;
const ACE4_ACCESS DEN ED ACE _TYPE = 0x00000001
const ACE4_SYSTEM AUDI T_ACE_TYPE = 0x00000002;
const ACE4_SYSTEM ALARM ACE_TYPE = 0x00000003;
/*

* ACE flag

*/
typedef uint32_t acefl ag4,;
/*

* ACE flag val ues

*

/
const ACE4_FI LE_| NHERI T_ACE = 0x00000001
const ACE4_DI RECTORY_I NHERI T_ACE = 0x00000002;
const ACE4_NO PROPAGATE_| NHERI T_ACE = 0x00000004;
const ACE4_| NHERI T_ONLY_ACE = 0x00000008

Shepler, et al. St andards Track [Page 238]

RFC 3530

const ACE4_ SUCCESSFUL_ACCESS_ACE FLAG
const ACE4_FAI LED ACCESS ACE_FLAG

NFS version 4 Protoco

const ACE4_| DENTI FI ER_GROUP
/*
* ACE mask

*/

typedef uint32_t

/*

* ACE nmask val ues

*/
const
const
const
const
const
const
const
const
const
const
const
const

const
const
const
const
const

/

L

/

ACE4_GENERI C_READ - -

ACE4_READ _DATA
ACE4_LI ST_DI RECTORY
ACE4_WRI TE_DATA
ACE4_ADD_FI LE
ACE4_APPEND_DATA
ACE4_ADD_SUBDI RECTORY
ACE4_READ_NAMVED ATTRS
ACE4_W\RI TE_NAVED ATTRS
ACE4_EXECUTE
ACE4_DELETE_CHI LD
ACE4_READ_ATTRI BUTES
ACE4_WRI TE_ATTRI BUTES

ACE4_DELETE
ACE4_READ_ACL
ACE4_WRI TE_ACL
ACE4_WWRI TE_OWKER
ACE4_SYNCHRONI ZE

ACE4_READ_ACL |
ACE4_READ_DATA |

ACE4_READ_ATTRI BUTES |

ACE4_SYNCHRONI ZE

defi ned

0x00000010;
0x00000020;
0x00000040;

acemask4;

0x00000001;
0x00000001;
0x00000002;
0x00000002;
0x00000004;
0x00000004;
0x00000008;
0x00000010;
0x00000020;
0x00000040;
0x00000080;
0x00000100;

0x00010000;
0x00020000;
0x00040000;
0x00080000;
0x00100000;

as conbi nati on of

const ACE4_CGENERI C_READ = 0x00120081,;

/

* Ok Ok F F %

Shepl er,

ACE4_GENERI C WRI TE - -

ACE4_READ_ACL |
ACE4_W\RI TE_DATA |

ACE4A_V\RI TE_ATTRI BUTES

ACE4_WRI TE_ACL |

defi ned as conbi nati on of

et al. St andards Track

April 2003

[Page 239]

RFC 3530 NFS version 4 Protocol April 2003

* ACE4_APPEND DATA |
* ACE4_SYNCHRONI ZE
*/
const ACE4_GENERI C WRI TE = 0x00160106;
/*
* ACE4_GENERI C EXECUTE -- defined as conbi nation of
* ACE4_READ_ACL
* ACE4_READ _ATTRI BUTES
* ACE4_EXECUTE
* ACE4_SYNCHRONI ZE
*/
const ACE4_CENERI C_EXECUTE = 0x001200A0;
/*
* Access Control Entry definition
*/
struct nfsaced {

acet yped type;

acefl ag4 flag;

acenask4 access_nask;

utf 8str_m xed who;
i
/*
* Field definitions for the fattr4 _node attribute
*/
const MODE4 SUI D = 0x800; /* set user id on execution */
const MODE4 _SG D = 0x400; /* set group id on execution */
const MODE4_SVTX = 0x200; /* save text even after use */
const MODE4_RUSR = 0x100; /* read permnission: owner */
const MODE4 _WUSR = 0x080; /* write perm ssion: owner */
const MODE4_XUSR = 0x040; /* execute perm ssion: owner */
const MODE4 RGRP = 0x020; /* read pernission: group */
const MODE4 WERP = 0x010; /* write pernission: group */
const MODE4 XGRP = 0x008; /* execute pernission: group */
const MODE4_ROTH = 0x004; /* read pernission: other */
const MODE4_WOTH = 0x002; /* wite permi ssion: other */
const MODE4_XOTH = 0x001; /* execute perm ssion: other */
/*
* Special data/attribute associated with
* file types NF4BLK and NF4CHR
*/
struct specdatad {

uint32_t specdat al; /* maj or device nunber */

Shepler, et al. St andards Track [Page 240]

RFC 3530

s
/*

uint32_t

NFS version 4 Protoco

specdat a2;

* Values for fattrd4_fh_expire_type

*/
const
const
const
const
const

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

FH4_PERSI STENT

FHA_NOEXPI RE_W TH_OPEN
FHA4_VOLATI LE_ANY
FHA_VOL_M GRATI ON

FH4_VOL_RENANME

bi t map4
nfs_ftyped
uint32_t
changei d4
ui nt 64 _t
bool

bool

bool
fsid4
bool
uint32_t
nfsstat4

nf sace4
uint32_t
bool

bool

bool

bool

bool

ui nt 64 _t
ui nt 64 _t
nfs fh4
ui nt 64 _t
ui nt 64 _t
fs_locations4
bool

bool

ui nt 64 _t
uint32_t
uint32_t
ui nt 64_t
ui nt 64 _t
utf8str_cs
node4

Shepler, et al.

0x00000000;
0x00000001;
0x00000002;
0x00000004;
0x00000008;

fattr4 _supported attrs;
fattr4_type

fattrd4 _fh_expire_type
fattr4_change
fattr4_size
fattrd4_|ink_support;
fattr4_syn i nk_support;
fattr4_named_attr;
fattr4 fsid;

fattr4_uni que_handl es
fattr4_| ease_ti ne;
fattrd4 rdattr_error;

fattr4_acl <>

fattr4_acl support;
fattr4_archive
fattr4_cansetti ne;
fattr4_case_insensitive
fattr4_case_preserving;
fattr4_chown_restricted;
fattr4 fileid;

fattr4 files_avail;
fattr4 _fil ehandl e;
fattrd4 files free
fattr4 files_ total
fattr4_fs_l ocations
fattr4_hi dden;
fattr4_honogeneous;
fattrd4_nmaxfil esize
fattr4_maxli nk;
fattr4_maxnane;
fattr4_maxread;
fattr4_maxwrite;
fattr4_m nmetype
fattr4_node

St andards Track

Apri

/* minor device nunber */

[Page

2003

241]

RFC 3530

NFS version 4 Protocol April 2003

Shepler, et al.

typedef uint64_t fattr4 _nounted on fileid;
t ypedef bool fattr4_no_trunc;
typedef uint32_t fattr4_num i nks;
typedef utf8str_m xed fattr4_owner;
typedef utf8str_m xed fattr4_owner _group;
typedef uint64_t fattr4_quota_avail hard;
typedef uint64_t fattr4_quota_avail _soft;
typedef uint64 t fattr4_quota_used;
typedef specdat a4 fattr4_rawdev;
typedef uint64_t fattr4_space_avail;
typedef uint64_t fattr4_space_free;
typedef uint64_t fattr4 _space_total;
typedef uint64_t fattr4_space_used;
t ypedef bool fattr4_system
typedef nfstinmed fattr4_time_access;
typedef settined fattr4 time_access_set;
typedef nfstined fattr4_ti me_backup;
typedef nfstined fattr4 time_create;
typedef nfstined fattrd4_time_delta;
typedef nfstined fattr4_ti me_net adat a;
typedef nfstined fattr4_tine_nodify,;
typedef settined fattrd4_time_nodify_set;
/ *

* Mandatory Attributes

*/
const FATTR4_SUPPORTED _ATTRS = 0;
const FATTR4_TYPE = 1;
const FATTR4_FH _EXPI RE_TYPE = 2;
const FATTR4_CHANGE = 3
const FATTR4_SI ZE = 4;
const FATTRA_LI NK_SUPPORT = 5;
const FATTR4_SYM.I NK_SUPPORT = 6;
const FATTR4_NAVED ATTR =7
const FATTR4_FSID = 8;
const FATTR4_UNI QUE_HANDLES =09
const FATTR4_LEASE TI ME = 10;
const FATTR4A_RDATTR_ERROR = 11;
const FATTR4_FI LEHANDLE = 19;
/ *

* Reconmended Attributes

*/
const FATTR4_ACL = 12;
const FATTR4_ACLSUPPORT = 13;
const FATTR4_ARCH VE = 14;
const FATTR4_CANSETTI ME = 15;

St andards Track

[Page 242]

RFC 3530

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

| *
*/

struct fattr4 {

NFS version 4 Protocol
FATTR4_CASE | NSENSI Tl VE = 16;
FATTR4_CASE_PRESERVI NG = 17;
FATTR4_CHOWN RESTRI CTED = 18;
FATTR4_FI LEI D = 20;
FATTR4_FI LES AVAI L = 21;
FATTR4_FI LES FREE = 22;
FATTR4_FI LES TOTAL = 23;
FATTRA_FS_LOCATI ONS = 24
FATTR4_HI DDEN = 25;
FATTR4_HOMOGENEQUS = 26;
FATTR4_NMAXFI LESI ZE = 27;
FATTR4_MAXLI NK = 28;
FATTR4_MAXNAMVE = 29;
FATTR4A_NMAXREAD = 30;
FATTR4A_NMAXVRI TE = 31;
FATTR4_M METYPE = 32;
FATTR4_MODE = 33;
FATTR4_NO TRUNC = 34;
FATTR4_NUML.I NKS = 35;
FATTR4_OMNNER = 36;
FATTR4_OMER_GROUP = 37,
FATTR4 _QUOTA AVAIL HARD = 38;
FATTR4A_QUOTA AVAI L_SOFT = 39;
FATTR4_QUOTA USED = 40
FATTR4_RAVDEV = 41,
FATTR4_SPACE_AVAI L = 42;
FATTR4_SPACE_FREE = 43;
FATTR4 _SPACE TOTAL = 44;
FATTR4_SPACE USED = 45;
FATTR4_SYSTEM = 46;
FATTR4_TI ME_ACCESS = 47,
FATTR4_TI ME_ACCESS_SET = 48;
FATTR4_TI ME_BACKUP = 49;
FATTR4_TI ME_CREATE = 50;
FATTR4_TI ME_DELTA = b1;
FATTR4_TI ME_METADATA = 52;
FATTR4_TI ME_MODI FY = 53;
FATTRA_TI ME_MODI FY_SET = 54;
FATTR4A_MOUNTED ON FILEID = 55;
typedef opaque attrlist4<>
* File attribute container
bi t map4 attrmask
attrlist4 attr_vals;
et al. St andards Track

Shepl er,

April 2003

[Page 243]

RFC 3530 NFS version 4 Protocol April 2003

s
/*
* Change info for the client
*/
struct change_i nfo4 {
bool atoni c;
changei d4 bef or e;
changei d4 after
s

struct clientaddr4 {
/* see struct rpch in RFC 1833 */

string r_netid<>; /* network id */
string r_addr<>; /* universal address */
s
/*
* Cal | back programinfo as provided by the client
*/
struct cb_client4 {
ui nt 32_t cb_program
clientaddr4 cb_l ocation
s
/*
* Stateid
*/
struct stateid4 {
uint32_t seqi d;
opaque other[12];
s
/*
* Client ID
*/
struct nfs client _id4 {
verifier4d verifier;
opaque i d<NFS4_OPAQUE LI M T>
s
struct open_owner4 {
clientid4 clientid;
opaque owner <NFS4_OPAQUE LI M T>
s
struct | ock_owner4 {
clientid4 clientid;

Shepler, et al. St andards Track [Page 244]

RFC 3530 NFS version 4 Protocol April 2003

opaque owner <NFS4_COPAQUE_LI M T>;
s
enum nfs_| ock_typed {
READ LT =1,
VWRI TE_LT = 2,
READW LT = 3, /* bl ocking read */
VWRI TEW LT =4 /* blocking wite */
s
/*
* ACCESS: Check access perm ssion
*/
const ACCESS4_READ = 0x00000001;
const ACCESS4_LOOKUP = 0x00000002;
const ACCESS4_MODI FY = 0x00000004;
const ACCESS4_EXTEND = 0x00000008;
const ACCESS4_DELETE = 0x00000010;
const ACCESS4_EXECUTE = 0x00000020;

struct ACCESS4args {
/* CURRENT_FH: object */

uint32_t access;

s

struct ACCESS4resok {
ui nt 32_t support ed;
uint32_t access;

i

uni on ACCESS4res switch (nfsstat4 status) {
case NF4_XK
ACCESS4r esok r esok4;

defaul t:
voi d;
b
/*
* CLOSE: Close a file and rel ease share reservations
*/

struct CLOSE4args {
/* CURRENT_FH: object */
seqi d4 seqi d;
statei d4 open_statei d;

b

uni on CLOSE4res switch (nfsstat4 status) {
case NF4_ XK

Shepler, et al. St andards Track [Page 245]

RFC 3530 NFS version 4 Protocol April 2003

statei d4 open_statei d;
defaul t:
voi d;
b
/*
* COM T: Conmit cached data on server to stable storage
*/

struct COW T4args {
/* CURRENT_FH: file */

of fset4 of f set;
count4 count ;
b
struct COWM T4resok {
verifier4d witeverf;
b

union COM T4res switch (nfsstat4 status) {
case NF4_XK
COW T4r esok resok4;

defaul t:
voi d;
H
/*
* CREATE: Create a non-regular file
*/

union createtype4 switch (nfs ftyped type) {
case NF4LNK:

| i nkt ext 4 | i nkdat a;
case NF4BLK:
case NF4CHR:

specdat a4 devdat a;

case NF4SCOCK:
case NF4FI FO

case NF4DI R
voi d;
defaul t:
voi d; /* server should return NFS4AERR BADTYPE */
s

struct CREATE4args {
/* CURRENT_FH. directory for creation */

createtyped obj type;
component 4 obj nane;
fattr4 Createattrs;

Shepler, et al. St andards Track [Page 246]

RFC 3530 NFS version 4 Protocol April 2003

H
struct CREATE4resok {

change_i nf o4 ci nf o;

bi t map4 attrset; /* attributes set */
i

uni on CREATE4res switch (nfsstat4 status) {
case NF4_XK

CREATEA4r esok resok4;
defaul t:

b

/*
* DELEGPURCE: Purge Del egations Awaiting Recovery
*/
struct DELEGPURGE4args {
clientid4 clientid,
i

struct DELEGPURGE4res {
nf sstat 4 st at us;
b

/*
* DELEGRETURN: Return a del egation
*/
struct DELEGRETURMNargs {
/* CURRENT_FH. del egated file */

voi d;

statei d4 del eg_st at ei d;
s
struct DELEGRETURMNres {
nfsstat4 st at us;
s
/*
* CETATTR Get file attributes
*/

struct GETATTR4args {
/* CURRENT_FH. directory or file */

bi t map4 attr_request;
i
struct GETATTRA4resok {

fattr4 obj _attributes;
i

Shepler, et al. St andards Track [Page 247]

RFC 3530 NFS version 4 Protocol April 2003

uni on CETATTR4res switch (nfsstat4 status) {
case NFH4_X
GETATTR4r esok resok4;

defaul t:
voi d;
b
/*
* GETFH: Get current filehandle
*/
struct GETFH4resok {
nfs fh4d obj ect;
b

uni on GCETFH4res switch (nfsstat4 status) {
case NF4_ XX

GETFH4r esok resok4;
def aul t :
voi d;
s
/*
* LINK: Create link to an object
* [

struct LI NKdargs {
/* SAVED FH. source object */
/* CURRENT_FH target directory */

conmponent 4 newnare;
i
struct LI NK4resok {

change_i nf 04 ci nf o;
i

union LINK4res switch (nfsstat4 status) {
case NF4_XX
LI NK4r esok resok4;

defaul t:
voi d;
s
/*
* For LOCK, transition fromopen_owner to new | ock_owner
*/
struct open_to_Il ock_owner4 {
seqi d4 open_seqi d;
statei d4 open_statei d;
seqi d4 | ock_seqid;

Shepler, et al. St andards Track [Page 248]

RFC 3530 NFS version 4 Protocol April 2003

| ock_owner 4 | ock_owner
s
/*
* For LOCK, existing |ock _owner continues to request file |ocks
*/
struct exist_|ock owner4d {
statei d4 | ock_stateid;
seqi d4 | ock_seqi d;
s
union | ocker4 switch (bool new | ock owner) {
case TRUE:
open_to_| ock_owner4 open_owner
case FALSE:
exi st _| ock_owner4 | ock_owner;
i
/*
* LOCK/ LOCKT/ LOCKU: Record | ock nanagenent
*/

struct LOCK4args {
/* CURRENT_FH. file */
nfs |ock typed4 | ocktype;

bool reclaim
of fset4 of f set;
| engt h4 | engt h;
| ocker4 | ocker;
i
struct LOCK4deni ed {
of fset4 of f set;
| engt h4 | engt h;
nfs_|ock_typed | ocktype;
| ock_owner 4 owner ;
s
struct LOCK4resok {
statei d4 | ock_stateid;
s

union LOCK4res switch (nfsstat4 status) {
case NF4_K
LOCK4r esok r esok4;
case NFS4ERR _DEN ED
LOCK4deni ed deni ed;
defaul t:
voi d;

Shepler, et al. St andards Track [Page 249]

RFC 3530 NFS version 4 Protocol April 2003

b

struct LOCKT4args {
/* CURRENT_FH: file */
nfs_|ock_typed4 | ocktype;

of fset4 of f set;
| engt h4 | engt h;
| ock_owner 4 owner ;

b

uni on LOCKT4res switch (nfsstat4 status) {
case NFS4ERR_DENI ED:
LOCK4deni ed deni ed;
case NFH4_XK
voi d;
defaul t:

s
struct LOCKWargs {

/* CURRENT_FH. file */
nfs_|ock_typed4 | ocktype;

voi d;

seqi d4 seqi d;

statei d4 | ock_stateid;
of fset4 of f set;

| engt h4 | engt h;

b

uni on LOCKUWres switch (nfsstat4 status) {
case NFS4 K

statei d4 | ock_stateid;
defaul t:
voi d;
b
/*
* LOOKUP: Lookup fil enane
*/

struct LOOKUP4args {
/* CURRENT_FH directory */
component 4 obj nane;

b

struct LOOKUP4res {
/* CURRENT_FH: object */
nfsstat4 st at us;

H

Shepler, et al. St andards Track [Page 250]

RFC 3530 NFS version 4 Protocol April 2003

/*
* LOOKUPP: Lookup parent directory
*/
struct LOOKUPP4res {
/* CURRENT_FH. directory */

nfsstat4 st at us;
H
/*
* NVERI FY: Verify attributes different
*/

struct NVERI FY4args {
/* CURRENT_FH. object */

fattr4 obj attributes;
s
struct NVERI FY4res {
nf sstat 4 st at us;
s
/*
* Various definitions for OPEN
*/
enum cr eat ennoded {
UNCHECKED4 = 0,
GUARDED4 =1,
EXCLUSI VE4 =2
b

uni on createhow4 switch (createnoded4 node) {
case UNCHECKED4:
case GUARDEDA:

fattr4 createattrs;
case EXCLUSI| VE4:

verifier4d createverf;
b
enum opent yped {

OPEN4_NOCREATE = 0,

OPEN4_ CREATE =1

H

uni on openflag4 switch (opentyped opentype) {
case OPEN4A_CREATE:

cr eat ehow4 how,
defaul t:

b

voi d;

Shepler, et al. St andards Track [Page 251]

RFC 3530 NFS version 4 Protocol April 2003

/* Next definitions used for OPEN del egation */
enum linit_by4 {

NFS LIM T_SI ZE =1,
NFS LI M T_BLOCKS =2
/* others as needed */
}
struct nfs nodified Iimt4 {
ui nt 32_t num bl ocks;
uint32_t byt es_per _bl ock;
H

union nfs_space |linmt4 switch (Iimt_by4 limtby) {
/* limt specified as file size */
case NFS LIMT_SI ZE:
uint 64 _t filesize;
/* Iimt specified by nunber of bl ocks */
case NFS_LIM T_BLOCKS:
nfs nodified Iimt4 nod_bl ocks;
b

/*
* Share Access and Deny constants for open argunent
*/

const OPENA_SHARE ACCESS READ = 0x00000001;
const OPEN4_SHARE _ACCESS WRI TE = 0x00000002;
const OPEN4_SHARE_ACCESS BOTH = 0x00000003;
const OPEN4_SHARE DENY_NONE = 0x00000000;
const OPEN4_SHARE DENY_READ = 0x00000001;
const OPENA_SHARE DENY_WRI TE = 0x00000002;
const OPENA_SHARE DENY_BOTH = 0x00000003;
enum open_del egati on_type4d {
OPEN_DELEGATE_NONE = 0,
OPEN_DELEGATE_READ = 1,
OPEN_DELEGATE_WRI TE =2
i
enum open_cl ai mtyped {
CLAI M_NULL = 0,
CLAI M_PREVI QUS = 1,
CLAI M_DELEGATE_CUR = 2,
CLAI M DELEGATE_PREV =3
i
struct open_cl ai m del egate_cur4 {
statei d4 del egat e_st at ei d;

Shepler, et al. St andards Track [Page 252]

RFC 3530 NFS version 4 Protocol April 2003

conponent 4 file;
i
uni on open_clainmd switch (open_claimtyped4 claim {
/*
* No special rights to file. Ordinary OPEN of the specified file.
*/

case CLAI M _NULL:
/* CURRENT_FH. directory */
component 4 file;

/*
* Right to the file established by an open previous to server
* reboot. File identified by filehandl e obtained at that tinme
* rather than by nane.
*/
case CLAI M _PREVI QUS:

/* CURRENT_FH. file being reclainmed */

open_del egati on_type4 del egat e_t ype;

/*
* Right to file based on a del egation granted by the server.
* File is specified by nane.
*/
case CLAI M DELEGATE_CUR
/* CURRENT_FH. directory */
open_cl ai m del egate_cur4 del egate_cur _i nfo;

/* Right to file based on a delegation granted to a previous boot
* instance of the client. File is specified by nane.
*/
case CLAI M DELEGATE_PREV:
/* CURRENT_FH. directory */

component 4 file_del egate_prev;
b
/*
* OPEN. Open a file, potentially receiving an open del egati on
*/
struct OPEMargs {
seqi d4 seqi d;
uint32_t share_access;
uint32_t share_deny;
open_owner 4 owner ;
openfl ag4 openhow;
open_cl ai n4 claim
b

Shepler, et al. St andards Track [Page 253]

RFC 3530 NFS version 4 Protocol April 2003

struct open_read_del egationd {

statei d4 stateid; /* Stateid for del egation*/

bool recal | ; /* Pre-recalled flag for
del egati ons obt ai ned
by reclaim
(CLAI M_PREVI QUS) */

nf sace4 per nmi ssi ons; /* Defines users who don’t
need an ACCESS call to
open for read */

s

struct open_wite _del egationd {

statei d4 stateid; /* Stateid for del egation */

bool recal | ; /* Pre-recalled flag for
del egati ons obt ai ned
by reclaim
(CLAI M_PREVI QUS) */

nfs space limt4 space limt; /* Defines condition that
the client nmust check to
det ermi ne whet her the
file needs to be flushed
to the server on cl ose
*/

nf sace4 per nm ssi ons; /* Defines users who don’t
need an ACCESS call as
part of a del egated
open. */

s

uni on open_del egati on4
switch (open_del egation_type4 del egation_type) {
case OPEN_DELEGATE_NONE:
voi d;
case OPEN _DELEGATE READ:
open_r ead_del egati on4 read;
case OPEN _DELEGATE_WRI TE
open_wite delegationd wite;

1
/*
* Result flags
*/
/* Client nust confirmopen */
const OPEN4_RESULT_CONFI RM = 0x00000002;

/* Type of file | ocking behavior at the server */
const OPENA_RESULT_LOCKTYPE_POSI X = 0x00000004;

struct OPEMNresok {
statei d4 stateid; /* Stateid for open */

Shepler, et al. St andards Track [Page 254]

RFC 3530 NFS version 4 Protocol April 2003

change_i nfo4 ci nfo; /* Directory Change Info */
uint32_t rflags; /* Result flags */

bi t map4 attrset; /* attribute set for create*/
open_del egati on4 del egati on; /* Info on any open

del egation */

b

uni on OPENdres switch (nfsstat4 status) {
case NF4_XK
/* CURRENT_FH: opened file */

OPEN4r esok r esok4;
def aul t:
voi d;
i
/*
* OPENATTR open naned attributes directory
*/

struct OPENATTR4args {
/* CURRENT_FH: object */
bool createdir;

s

struct OPENATTR4res {
/* CURRENT_FH. naned attr directory */

nf sst at 4 st at us;
}
/*
* OPEN_CONFI RM confirmthe open
*/

struct OPEN _CONFI RMAar gs {
/* CURRENT_FH. opened file */

statei d4 open_statei d;
seqi d4 seqi d;
i
struct OPEN_CONFI RMAr esok {
statei d4 open_statei d;
s

uni on OPEN _CONFI RMAres switch (nfsstat4 status) {
case NFS4_OK:
OPEN_CONFI RVAr esok r esok4;
defaul t:

H

voi d;

Shepler, et al. St andards Track [Page 255]

RFC 3530 NFS version 4 Protocol

/*
* OPEN_DOWNGRADE: downgrade the access/deny for a file
*/
struct OPEN_DOMGRADE4ar gs {
/* CURRENT_FH. opened file */

statei d4 open_statei d;
seqi d4 seqi d;
ui nt 32_t shar e_access;
ui nt 32_t shar e_deny;
s
struct OPEN_DOANGRADEAr esok {
statei d4 open_statei d;
s

uni on OPEN_DOANGRADE4r es switch(nfsstat4 status) {
case NF4_ XK
OPEN_DOWNGRADE4r esok r esok4;

def aul t:
voi d;

b
/*

* PUTFH: Set current fil ehandle

* [
struct PUTFH4args {

nfs _fh4 obj ect;

s

struct PUTFH4res {
/* CURRENT_FH */

nf sst at 4 st at us;
b
/*
* PUTPUBFH. Set public filehandle
*/

struct PUTPUBFH4res {
/* CURRENT_FH. public fh */

nf sstat 4 st at us;
b
/*
* PUTROOTFH: Set root fil ehandle
* [

struct PUTROOTFH4res {

/* CURRENT_FH root fh */

Shepler, et al. St andards Track

April 2003

[Page 256]

RFC 3530 NFS version 4 Protocol April 2003

nf sst at 4 st at us;
s
/*
* READ: Read fromfile
* [

struct READdargs {
/* CURRENT_FH. file */

st atei d4 stateid;
of fset4 of f set;
count4 count;
b
struct READA4resok {
bool eof ;
opaque dat a<>;
H

uni on READ4res switch (nfsstat4 status) {
case NFH4_X

READ4r esok r esok4;
defaul t:
voi d;
b
/*
* READDI R: Read directory
*/

struct READDI Rdargs ({
/* CURRENT_FH. directory */

nfs_cooki e4 cooki e;
verifier4d cooki everf;
count 4 di r count;
count 4 maxcount ;
bi t map4 attr_request;

s

struct entry4 {
nfs_cooki e4 cooki e;
conmponent 4 name;
fattr4 attrs
entry4 *nextentry,

s

struct dirlist4 {
entry4 *entries;
bool eof ;

s

Shepler, et al. St andards Track [Page 257]

RFC 3530 NFS version 4 Protocol April 2003

struct READDI R4resok {
verifier4d cooki everf;
dirlist4 reply;

b

uni on READDI R4res switch (nfsstat4 status) {
case NFH4_XK

READDI R4r esok resok4;
defaul t:

b

voi d;

/*
* READLI NK: Read synbolic link
*/
struct READLI NK4resok {
| i nkt ext 4 l'ink;
i

uni on READLI NK4res switch (nfsstat4 status) {
case NF4_ XK
READL| NK4r esok resok4;

defaul t:
voi d;
s
/*
* REMOVE: Renopve fil esystem object
*/

struct REMOVE4args {
/* CURRENT_FH. directory */

conmponent 4 target;
b
struct REMOVE4resok {

change_i nf 04 ci nf o;
H

uni on REMOVE4res switch (nfsstat4 status) {
case NF4_ XK

REMOVE4r esok r esok4;
defaul t:

s
/*

voi d;

Shepler, et al. St andards Track [Page 258]

RFC 3530 NFS version 4 Protocol April 2003

* RENAMVE: Renane directory entry

*/

struct RENAVE4args {
/* SAVED FH. source directory */
component 4 ol dnane;
/* CURRENT_FH. target directory */

conponent 4 newnare;
s
struct RENANME4resok {
change_i nfo4 source_ci nfo;
change_i nfo4 target cinfo;
s

uni on RENAVE4res switch (nfsstat4 status) {
case NF4_ XX
RENAME4r esok r esok4;
def aul t:
voi d;
i

/*
* RENEW Renew a Lease
* [
struct RENEWlargs {
clientid4 clientid;
s

struct RENEWres {
nf sst at 4 st at us;
s

/*
* RESTOREFH. Restore saved fil ehandl e
* [

struct RESTOREFH4res {
/* CURRENT_FH: val ue of saved fh */

nf sstat 4 st at us;
b
/*
* SAVEFH:. Save current filehandle
* [

struct SAVEFH4res {
/* SAVED FH. val ue of current fh */
nfsstat 4 st at us;

Shepler, et al. St andards Track [Page 259]

RFC 3530 NFS version 4 Protocol April 2003

b

/*
* SECINFO Obtain Avail able Security Mechani sns
*/
struct SECI NFO4args {
/* CURRENT_FH. directory */
conponent 4 nanme;

b
/*

* From RFC 2203
*/
enum rpc_gss_svc_t {
RPC_GSS_SVC_NONE
RPC_GSS_SVC | NTEGRI TY
RPC_GSS_SVC_PRI VACY

wnN

b

struct rpcsec_gss_info {
sec_oi d4 oi d;
qop4 qop;
rpc_gss_svc_t servi ce;

b

/* RPCSEC_GSS has a value of '6° - See RFC 2203 */
uni on secinfo4 switch (uint32_t flavor) {
case RPCSEC_GSS.
rpcsec_gss_info flavor _info;
def aul t:

i
typedef secinfo4 SECI NFO4r esok<>;

voi d;

uni on SECI NFO4res switch (nfsstat4 status) {
case NF4_XK

SECI NFO4r esok resok4;
defaul t:

b

/*
* SETATTR: Set attributes
*/
struct SETATTR4args ({
/* CURRENT_FH. target object */

voi d;

Shepler, et al. St andards Track [Page 260]

RFC 3530 NFS version 4 Protocol April 2003

st at ei d4 st at ei d;
fattr4 obj attributes;
s
struct SETATTR4res {
nfsstat4 st at us;
bi t map4 attrsset;
s
/*
* SETCLI ENTI D
*/

struct SETCLI ENTI D4args {
nfs_client_id4 client;

cb_client4 cal | back;

uint32_t cal | back_i dent;
s
struct SETCLI ENTI D4resok {

clientid4 clientid;

verifier4d setclientid confirm
1

uni on SETCLI ENTI D4res switch (nfsstat4 status) {
case NFH4_X

SETCLI ENTI D4r esok r esok4;
case NFS4ERR _CLI D_I NUSE:
cli ent addr4 client _using;
def aul t:
voi d;
s
struct SETCLI ENTI D_CONFI RMdar gs {
clientid4 clientid;
verifierd setclientid confirm
s
struct SETCLI ENTI D_CONFI RMAres {
nfsstat4 st at us;
i
/*
* VERIFY: Verify attributes sane
*/

struct VERI FY4args {
/* CURRENT_FH: object */
fattr4 obj attributes;

Shepler, et al. St andards Track [Page 261]

RFC 3530 NFS version 4 Protocol April 2003

}
struct VERI FY4res {
nf sst at 4 st at us;
}
/*
* WRITE: Wite to file
*/
enum st abl e_how4 {
UNSTABLE4 = 0,
DATA SYNC4 =1,
FI LE_SYNC4 =2
}

struct WRI TE4args {
/* CURRENT_FH: file */

st at ei d4 st at ei d;
of fset4 of f set;
stabl e_how4 st abl e;
opaque dat a<>;

};

struct WRI TE4resok {
count 4 count;
stabl e_how4 committed;
verifier4d witeverf;

};

uni on WRI TE4res switch (nfsstat4 status) {
case NFS4_OK:
WRI TE4r esok r esok4;

defaul t:
voi d;
i
/*
* RELEASE_LOCKOWNER: Notify server to rel ease | ockowner
*/
struct RELEASE LOCKOANER4ar gs {
| ock_owner4 | ock_owner;
s
struct RELEASE LOCKOANER4res {
nf sst at 4 st at us;
s
/*

Shepler, et al. St andards Track [Page 262]

RFC 3530

* | LLEGAL: Response for illega

*/

struct

H
/*

| LLEGAL4res {

nf sstat 4

* (Qperation arrays

*/

enum nfs_opnumd {

Shepl er,

OP_ACCESS
OP_CLCSE
oP_COM T
OP_CREATE
OP_DELEGPURGE
OP_DELEGRETURN
OP_GETATTR
OP_GETFH

OP_LI NK
OP_LOCK
OP_LOCKT
OP_LOCKU
OP_LOOKUP
OP_LOOKUPP
OP_NVERI FY
OP_OPEN
OP_OPENATTR

OP_OPEN_CONFI RM
OP_OPEN_DOWNGRADE

OP_PUTFH
OP_PUTPUBFH
OP_PUTROOTFH
OP_READ
OP_READDI R
OP_READLI NK
OP_REMOVE
OP_RENAMVE
OP_RENEW
OP_RESTOREFH
OP_SAVEFH
OP_SECI NFO
OP_SETATTR
OP_SETCLI ENTI D

OP_SETCLI ENTI D_CONFI RM

OP_VERI FY
OP_WRI TE

OP_RELEASE_LOCKOMNER

et al.

NFS version 4 Protoco

st at us;

©O~NOUTAW

L T 1 1 1 1 1 1 1 e 1 1 1 1 1 1 e 1 Y A A A
N
=

St andards Track

operation nunbers

April 2003

[Page 263]

RFC 3530

s

uni on
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

case

case
case

case

};

uni on
case

Shepl er,

OP_| LLEGAL

NFS version 4 Protoco

= 10044

nfs_argop4 switch (nfs_opnumd argop) {

OP_ACCESS:
OP_CLCSE:
OP_COWM T:
OP_CREATE:
OP_DELEGPURCGE
OP_DELEGRETURN:
OP_GETATTR
OP_GETFH
OP_LI NK:
OP_LOCK:
OP_LOCKT:
OP_LOCKU
OP_LOCKUP
OP_LOCKUPP:
OP_NVERI FY:
OP_OPEN:
OP_CPENATTR

OP_OPEN_CONFI RM
OP_OPEN_DOWNGRADE:

OP_PUTFH:
OP_PUTPUBFH:
OP_PUTROOTFH:
OP_READ:
OP_READDI R
OP_READLI NK:
OP_REMOVE:
OP_RENAME:
OP_RENEW
OP_RESTOREFH:
OP_SAVEFH:
OP_SECI NFO,
OP_SETATTR
OP_SETCLI ENTI D:

OP_SETCLI ENTI D_CONFI RM

OP_VERI FY:
OP_WRI TE:

OP_RELEASE_LOCKOMNER:

OP_| LLEGAL:

ACCESS4ar gs opaccess;
CLCSE4ar gs opcl ose

COWM T4args opcomi t;
CREATE4ar gs opcreate;
DELEGPURGE4ar gs opdel egpur ge
DELEGRETURN4ar gs opdel egreturn
CETATTR4args opgetattr;

voi d;

LI NKdar gs oplink

LOCK4ar gs opl ock;

LOCKT4ar gs opl ockt;

LOCKWar gs opl ocku

LOOKUP4ar gs opl ookup

voi d;

NVERI FY4ar gs opnverify;
OPENdar gs opopen;
OPENATTR4ar gs opopenattr;
OPEN_CONFI RvAar gs opopen_confirm

April

2003

OPEN_DOANGRADE4ar gs opopen_downgr ade

PUTFH4ar gs opput f h;

voi d;

voi d;

READ4ar gs opr ead;

READDI Rdar gs opreaddir;

voi d;

REMOVE4ar gs oprenove,

RENAME4ar gs opr enane;

RENEWar gs opr enew,

voi d;

voi d;

SECI NFO4ar gs opseci nf o;

SETATTR4ar gs opsetattr;

SETCLI ENTI D4ar gs opsetclientid;

SETCLI ENTI D_CONFI RM4ar gs

opsetclientid_confirm

VERI FY4ar gs opverify;

VRl TE4args opwite;

RELEASE _LOCKOANNER4ar gs
opr el ease_| ockowner

voi d;

nfs_resop4 switch (nfs_opnumd resop){

OP_ACCESS:

et al.

ACCESS4r es opaccess;

St andards Track

[Page

264]

RFC 3530

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

case
case
case

case

b

struct COVPOUND4args {

s

struct COVPOUND4res {

Shepl er,

OP_CLOSE:
OP_COW T:
OP_CREATE:
OP_DELEGPURCE:
OP_DELEGRETURN:
OP_CETATTR
OP_CETFH:

OP_LI NK:
OP_LOCK:
OP_LOCKT:
OP_LOCKU:
OP_LOOKUP:
OP_LOOKUPP:
OP_NVER! FY:
OP_OPEN:
OP_CPENATTR:

OP_OPEN_CONFI RM
OP_OPEN_DOWNGRADE:

OP_PUTFH:
OP_PUTPUBFH:
OP_PUTROOTFH:
OP_READ:
OP_READDI R
OP_READLI NK:
OP_REMOVE:
OP_RENAME:
OP_RENEW
OP_RESTOREFH:
OP_SAVEFH:
OP_SECI NFO,
OP_SETATTR:
OP_SETCLI ENTI D:

OP_SETCLI ENTI D_CONFI RM

OP_VERI FY:
OP_WRI TE:

OP_RELEASE_LOCKOAKNER:

OP_I LLEGAL:

utf8str_cs
ui nt 32_t
nfs_ar gop4

et al.

NFS version 4 Protocol

CLOSE4res opcl ose;

COVM T4res opconmit;

CREATEA4r es opcr eat e;
DELEGPURGEAr es opdel egpur ge;
DELEGRETURN4r es opdel egr et urn;
GETATTR4res opgetattr,;
CETFH4r es opget f h;

LI NK4res oplink;

LOCK4r es opl ock;

LOCKT4r es opl ockt ;

LOCKWr es opl ocku;

LOOKUP4r es opl ookup;
LOOKUPP4r es opl ookupp;

NVERI FY4res opnverify;

OPEN4r es opopen;

OPENATTR4r es opopenattr;
OPEN_CONFI RvAr es opopen_confirm

April

2003

OPEN_DOWNGRADE4r es opopen_downgr ade;

PUTFH4r es opput f h;

PUTPUBFH4r es opput pubf h;

PUTROOTFH4r es opput r oot f h;

READ4r es opr ead;

READDI R4r es opr eaddi r;

READLI NK4r es opreadl i nk;

REMOVEA4r es oprenove;

RENAME4r es opr enane;

RENEWLr es opr enew,

RESTOREFH4r es opr est or ef h;

SAVEFH4r es opsavef h;

SECI NFO4r es opseci nf o;

SETATTR4res opsetattr;

SETCLI ENTI D4res opsetclienti d;

SETCLI ENTI D_CONFI RMAr es

opsetclientid_confirm

VERI FY4res opverify;

VRl TE4res opwite;

RELEASE LOCKOANER4r es
opr el ease_| ockowner ;

| LLEGAL4res opill egal;

tag;
nm nor ver si on;
argarray<>;

St andards Track

[Page

265]

RFC 3530 NFS version 4 Protocol April 2003

nf sstat 4 st at us;

utf8str_cs tag;
nfs_resop4 resarray<>;
b
/*
* Renote file service routines
*/

program NFS4_PROGRAM {
version NFS_ V4 {

voi d
NFSPROCA_NULL(void) = 0;
COMPOUNDAT es
NFSPROCA_ COVPOUND(COMPOUND4ar gs) = 1;
} =4
} = 100003;
/*
* NFS4 Cal | back Procedure Definitions and Program
*/
/*
* CB_GETATTR Get Current Attributes
*/
struct CB_GETATTR4args {
nfs fh4 fh;

bitmap4 attr_request;

s

struct CB_GETATTR4resok {
fattr4 obj_attributes;
i

uni on CB CETATTR4res switch (nfsstat4 status) {
case NFH4_OK:

CE_GETATTRAH esok resok4;
defaul t:
voi d;
i
/*
* CB_RECALL: Recall an Open Del egation
*/

struct CB RECALL4args {

Shepler, et al. St andards Track [Page 266]

RFC 3530 NFS version 4 Protocol April 2003

st at ei d4 st at ei d;
bool truncate;
nfs _fh4 f h;
b
struct CB RECALL4res {
nf sstat 4 st at us;
s
/*
* CB_ILLEGAL: Response for illegal operation nunmbers
*/
struct CB | LLEGAL4res {
nf sstat4 st at us;
s
/*
* Various definitions for CB_COVPOUND
*/
enum nfs_cb_opnumd {
OP_CB_GETATTR = 3,
OP_CB_RECALL = 4,
OP_CB | LLEGAL = 10044
s
union nfs_cb_argop4 switch (unsigned argop) {
case OP_CB _GETATTR CB_CGETATTR4ar gs opchgetattr;
case OP_CB RECALL: CB_RECALL4args opcbrecall;
case OP_CB | LLEGAL: voi d;
s
union nfs_cb _resop4 switch (unsigned resop){
case OP_CB _GETATTR CB _CGETATTR4res opchgetattr;
case OP_CB RECALL: CB_RECALLA4res opcbrecal | ;
case OP_CB | LLEGAL: CB | LLEGAL4res opchillegal;
s
struct CB_COVPOUND4args {
utf8str_cs t ag;
uint32_t m norver si on;
uint32_t cal | back_i dent;
nfs cb_argop4 argarray<>;
s

struct CB_COVPOUND4res {
nf sstat4 status;
utf8str_cs t ag;
nfs cb resop4 resarray<>;

Shepler, et al. St andards Track [Page 267]

RFC 3530 NFS version 4 Protocol April 2003

19.

20.

b

/*
* Program nunber is in the transient range since the client
* will assign the exact transient program nunber and provide
* that to the server via the SETCLI ENTI D operation
*/
program NFS4_CALLBACK {
version NFS_CB {
voi d
CB_NULL(void) = 0;
CB_COVPOUNDAT es
CB_COVPOUND(CB_COVPOUND4ar gs) = 1;
P} =1
} = 0x40000000;

Acknowl edgenent s
The aut hors thank and acknow edge:

Neil Brown for his extensive review and conments of various
docunents. Rick Macklem at the University of CGuel ph, Mke Frisch
Sergey Klyushin, and Dan Trufasiu of Hunmi ngbird Ltd., and Andy
Adanmson, Bruce Fields, JimRees, and Kendrick Smith fromthe C Tl
organi zation at the University of Mchigan, for their inplementation
efforts and feedback on the protocol specification. Mke Kupfer for
his review of the file |ocking and ACL nechani snms. Al an Yoder for
his input to ACL nechanisns. Peter Astrand for his close review of
the protocol specification. Ran Atkinson for his constant remn nder
that users do matter.

Nor mat i ve Ref erences

[1SOL0646] "I SO | EC 10646-1: 1993. Internationa
Standard -- Information technol ogy --
Uni versal Miltiple-COctet Coded Character
Set (UCS) -- Part 1: Architecture and Basic
Mul tilingual Plane."

[RFC793] Postel, J., "Transm ssion Contro
Protocol", STD 7, RFC 793, Septenber 1981.

[RFC1831] Srinivasan, R, "RPC. Renote Procedure Call

Prot ocol Specification Version 2", RFC
1831, August 1995.

Shepler, et al. St andards Track [Page 268]

RFC 3530

[RFC1832]

[RFC2373]

[RFC1964]

[RFC2025]

[RFC2119]

[RFC2203]

[RFC2277]

[RFC2279]

[RFC2623]

[RFC2743]

[RFC2847]

[RFC3010]

Shepler, et al.

NFS version 4 Protocol April 2003

Srinivasan, R, "XDR External Data
Representati on Standard", RFC 1832, August
1995.

H nden, R and S. Deering, "IP Version 6
Addressing Architecture", RFC 2373, July
1998.

Linn, J., "The Kerberos Version 5 GSS- API
Mechani sm', RFC 1964, June 1996.

Adans, C., "The Sinple Public-Key GSS-API
Mechani sm (SPKM ", RFC 2025, Cctober 1996.

Bradner, S., "Key words for use in RFCs to
I ndi cat e Requi renent Levels", BCP 14, RFC
2119, March 1997.

Eisler, M, Chiu, A and L. Ling,
"RPCSEC_GSS Protocol Specification", RFC
2203, Septenber 1997.

Alvestrand, H., "IETF Policy on Character
Sets and Languages", BCP 19, RFC 2277,
January 1998.

Yergeau, F., "UTF-8, a transformation
format of |SO 10646", RFC 2279, January
1998.

Eisler, M, "NFS Version 2 and Version 3
Security Issues and the NFS Protocol’'s Use
of RPCSEC_GSS and Kerberos V5", RFC 2623,
June 1999.

Linn, J., "Generic Security Service
Application Program Interface, Version 2,
Update 1", RFC 2743, January 2000.

Eisler, M, "LIPKEY - A Low Infrastructure
Public Key Mechani sm Usi ng SPKM', RFC 2847,
June 2000.

Shepler, S., Callaghan, B., Robinson, D.,
Thurlow, R, Beane, C., Eisler, M and D.
Noveck, "NFS version 4 Protocol", RFC 3010,
Decenmber 2000.

St andards Track [Page 269]

RFC 3530

21.

[RFC3454]

[Uni codel]

[Uni code2]

I nformati ve References

[FI oyd]

[Gay]

[Juszczak]

Shepler, et al.

NFS version 4 Protocol April 2003

Hof fman, P. and P. Bl anchet, "Preparation
of Internationalized Strings
("stringprep")", RFC 3454, Decenber 2002

The Uni code Consortium "The Uni code

St andard, Version 3.0", Addi son-Wesl ey
Devel opers Press, Reading, MA, 2000. |SBN
0-201-61633-5.

More informati on avail abl e at:
htt p: // ww. uni code. or g/

"Unsupported Scripts" Unicode, Inc., The
Uni code Consortium P.O Box 700519, San
Jose, CA 95710-0519 USA, Septenber 1999.
htt p: // www. uni code. or g/ uni code/ st andar d/
unsupport ed. ht m

S. Floyd, V. Jacobson, "The Synchronization
of Periodic Routing Messages," | EEE/ ACM
Transacti ons on Networking, 2(2), pp. 122-
136, April 1994.

C. Gay, D Cheriton, "Leases: An Efficient
Faul t - Tol erant Mechani sm for Distributed
Fil e Cache Consistency," Proceedings of the
Twel fth Synposi um on Operating Systens
Principles, p. 202-210, Decenber 1989.

Juszczak, Chet, "Inproving the Perfornance
and Correctness of an NFS Server," USEN X
Conf erence Proceedi ngs, USEN X Associ ation
Ber kel ey, CA, June 1990, pages 53-63.
Descri bes reply cache inplenentation that
avoids work in the server by handling
duplicate requests. Mre inportant, though
listed as a side-effect, the reply cache
aids in the avoi dance of destructive non-

i dempot ent operation re-application --

i mprovi ng correctness.

St andards Track [Page 270]

RFC 3530

[Kazar]

[Mackl em

[Mogul |

[Nowi cki]

[Paw owski]

[RFC1094]

[RFC1345]

Shepler, et al.

NFS version 4 Protocol April 2003

Kazar, M chael Leon, "Synchronization and
Caching Issues in the Andrew File System"
USENI X Conf erence Proceedi ngs, USEN X
Associ ati on, Berkeley, CA, Dallas Wnter
1988, pages 27-36. A description of the
cache consi stency schene in AFS.
Contrasted with other distributed file
syst emns.

Mackl em Rick, "Lessons Learned Tuning the
4.3BSD Reno | nplementation of the NFS
Protocol ," Wnter USEN X Conference
Proceedi ngs, USEN X Associ ation, Berkel ey,
CA, January 1991. Describes perfornance
work in tuning the 4.3BSD Reno NFS

i npl enent ati on. Descri bes performance

i nprovenent (reduced CPU | oadi ng) through
elimnation of data copies.

Mogul , Jeffrey C., "A Recovery Protocol for
Spritely NFS," USEN X File System Wrkshop
Proceedi ngs, Ann Arbor, M, USEN X
Associ ati on, Berkeley, CA, My 1992.

Second paper on Spritely NFS proposes a

| ease-based schene for recovering state of
consi st ency protocol

Nowi cki, Bill, "Transport Issues in the
Network File System" ACM SI GCOW

newsl etter Conputer Comuni cation Revi ew,
April 1989. A brief description of the
basis for the dynanic retransm ssion work.

Pawl owski, Brian, Ron Hi xon, Mark Stein,
Joseph Tunmi naro, "Network Conputing in the
UNI X and | BM Mai nfrane Environnent,"

Uni forum ‘89 Conf. Proc., (1989)

Descri ption of an NFS server inplenmentation
for IBMs WS operating system

Sun M crosystens, Inc., "NFS: Network File
System Prot ocol Specification", RFC 1094,
Mar ch 1989.

Si nonsen, K., "Character Menpnics &
Character Sets", RFC 1345, June 1992.

St andards Track [Page 271]

RFC 3530 NFS version 4 Protocol April 2003

[RFC1813] Cal | aghan, B., Pawl owski, B. and P
St aubach, "NFS Version 3 Protoco
Speci fication", RFC 1813, June 1995.

[RFC3232] Reynol ds, J., Editor, "Assigned Nunbers:
RFC 1700 is Replaced by an On-line
Dat abase", RFC 3232, January 2002.

[RFC1833] Srinivasan, R, "Binding Protocols for ONC
RPC Version 2", RFC 1833, August 1995.

[RFC2054] Cal I aghan, B., "WebNFS Cient
Speci fication", RFC 2054, Cctober 1996.

[RFC2055] Cal | aghan, B., "WebNFS Server
Speci fication", RFC 2055, Cctober 1996.

[RFC2152] Goldsnith, D. and M Davis, "UTF-7 A Ml -
Saf e Transformati on Fornmat of Uni code", RFC
2152, May 1997.

[RFC2224] Cal I aghan, B., "NFS URL Schenme", RFC 2224,
Cct ober 1997.

[RFC2624] Shepler, S., "NFS Version 4 Design
Consi derati ons", RFC 2624, June 1999.

[RFC2755] Chiu, A, Eisler, M and B. Callaghan
"Security Negotiation for WbNFS' , RFC
2755, June 2000.

[Sandber g] Sandberg, R, D. Goldberg, S. K eiman, D
Wal sh, B. Lyon, "Design and |Inplenmentation
of the Sun Network Filesystem" USEN X
Conf erence Proceedi ngs, USEN X Associ ation
Ber kel ey, CA, Summer 1985. The basic paper
describing the SunCS inpl enentation of the
NFS version 2 protocol, and discusses the
goal s, protocol specification and trade-
of fs.

Shepler, et al. St andards Track [Page 272]

RFC 3530

22,

22.

Shepl er,

[Srinivasan]

[XNFS]

Aut hors’ I nformation

1. Edi tor’ s Address

Spencer Shepl er

Sun M crosystens, |nc.
7808 Moonfl ower Drive
Austin, Texas 78750
Phone: +1 512-349-9376
EMai | :

et al.

NFS version 4 Protoco

April 2003

Srinivasan, V., Jeffrey C. Mgul, "Spritely
NFS: | npl ementation and Perfornmance of
Cache Consi stency Protocol s", WRL Research
Report 89/5, Digital Equipnent Corporation
Western Research Laboratory, 100 Hanmilton

Ave., Palo Alto, CA 94301, May 1989. This
paper anal yzes the effect of applying a
Sprite-like consistency protocol applied to

standard NFS. The issues of
st at ef ul
[Mogul].

recovery in a
environnent are covered in

The Qpen Group, Protocols for Interworking:
XNFS, Version 3W The Open G oup, 1010 E
Cami no Real Suite 380, Menlo Park, CA
94025, |SBN 1-85912-184-5, February 1998.

HTML versi on avail abl e:
htt p: //ww. opengr oup. org

spencer . shepl er @un. com

St andards Track [Page 273]

RFC 3530 NFS version 4 Protocol April 2003

22.2. Authors’ Addresses

Carl Beane
Hurmi ngbi rd Ltd.

EMmi | : beame@ws. com

Brent Cal |l aghan

Sun M crosystens, |nc.
17 Network Circle
Menl o Park, CA 94025

Phone: +1 650- 786- 5067
EMai | : brent. cal |l aghan@un. com

M ke Ei sl er
5765 Chase Point Crcle
Col orado Springs, CO 80919

Phone: +1 719-599-9026
EMail : m ke@i sl er.com

Davi d Noveck

Net wor k Appl i ance
375 Totten Pond Road
Wal t ham MA 02451

Phone: +1 781-768-5347
EMai | : dnoveck@et app. com

Davi d Robi nson

Sun M crosystens, |nc.
5300 Ri ata Park Court
Austin, TX 78727

Phone: +1 650-786-5088
EMmi | : davi d. robi nson@un. com

Robert Thurl ow

Sun M crosystens, |nc.
500 El dorado Bl vd.
Broonfield, CO 80021

Phone: +1 650-786- 5096
EMAi | : robert.thurl ow@un. com

Shepler, et al. St andards Track [Page 274]

RFC 3530 NFS version 4 Protocol April 2003

23. Full Copyright Statenent
Copyright (C) The Internet Society (2003). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Shepler, et al. St andards Track [Page 275]

