
Network Working Group B. Moore, Ed.
Request for Comments: 3460 IBM
Updates: 3060 January 2003
Category: Standards Track

 Policy Core Information Model (PCIM) Extensions

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document specifies a number of changes to the Policy Core
 Information Model (PCIM, RFC 3060). Two types of changes are
 included. First, several completely new elements are introduced, for
 example, classes for header filtering, that extend PCIM into areas
 that it did not previously cover. Second, there are cases where
 elements of PCIM (for example, policy rule priorities) are
 deprecated, and replacement elements are defined (in this case,
 priorities tied to associations that refer to policy rules). Both
 types of changes are done in such a way that, to the extent possible,
 interoperability with implementations of the original PCIM model is
 preserved. This document updates RFC 3060.

Table of Contents

 1. Introduction..5
 2. Changes since RFC 3060..5
 3. Overview of the Changes...6
 3.1. How to Change an Information Model.........................6
 3.2. List of Changes to the Model...............................6
 3.2.1. Changes to PolicyRepository.........................6
 3.2.2. Additional Associations and Additional Reusable
 Elements..7
 3.2.3. Priorities and Decision Strategies..................7
 3.2.4. Policy Roles..8
 3.2.5. CompoundPolicyConditions and
 CompoundPolicyActions...............................8

Moore Standards Track [Page 1]

RFC 3460 PCIM Extensions January 2003

 3.2.6. Variables and Values................................9
 3.2.7. Domain-Level Packet Filtering.......................9
 3.2.8. Device-Level Packet Filtering.......................9
 4. The Updated Class and Association Class Hierarchies............10
 5. Areas of Extension to PCIM.....................................13
 5.1. Policy Scope..13
 5.1.1. Levels of Abstraction: Domain- and Device-Level
 Policies...13
 5.1.2. Administrative and Functional Scopes...............14
 5.2. Reusable Policy Elements..................................15
 5.3. Policy Sets...16
 5.4. Nested Policy Rules.......................................16
 5.4.1. Usage Rules for Nested Rules.......................17
 5.4.2. Motivation...17
 5.5. Priorities and Decision Strategies........................18
 5.5.1. Structuring Decision Strategies....................19
 5.5.2. Side Effects.......................................21
 5.5.3. Multiple PolicySet Trees For a Resource............21
 5.5.4. Deterministic Decisions............................22
 5.6. Policy Roles..23
 5.6.1. Comparison of Roles in PCIM with Roles in
 snmpconf...23
 5.6.2. Addition of PolicyRoleCollection to PCIMe..........24
 5.6.3. Roles for PolicyGroups.............................25
 5.7. Compound Policy Conditions and Compound Policy Actions....27
 5.7.1. Compound Policy Conditions.........................27
 5.7.2. Compound Policy Actions............................27
 5.8. Variables and Values......................................28
 5.8.1. Simple Policy Conditions...........................29
 5.8.2. Using Simple Policy Conditions.....................29
 5.8.3. The Simple Condition Operator......................31
 5.8.4. SimplePolicyActions................................33
 5.8.5. Policy Variables...................................35
 5.8.6. Explicitly Bound Policy Variables..................36
 5.8.7. Implicitly Bound Policy Variables..................37
 5.8.8. Structure and Usage of Pre-Defined Variables.......38
 5.8.9. Rationale for Modeling Implicit Variables
 as Classes...39
 5.8.10. Policy Values.....................................40
 5.9. Packet Filtering..41
 5.9.1. Domain-Level Packet Filters........................41
 5.9.2. Device-Level Packet Filters........................42
 5.10. Conformance to PCIM and PCIMe............................43
 6. Class Definitions..44
 6.1. The Abstract Class "PolicySet"............................44
 6.2. Update PCIM’s Class "PolicyGroup".........................45
 6.3. Update PCIM’s Class "PolicyRule"..........................45
 6.4. The Class "SimplePolicyCondition".........................46

Moore Standards Track [Page 2]

RFC 3460 PCIM Extensions January 2003

 6.5. The Class "CompoundPolicyCondition".......................47
 6.6. The Class "CompoundFilterCondition".......................47
 6.7. The Class "SimplePolicyAction"............................48
 6.8. The Class "CompoundPolicyAction"..........................48
 6.9. The Abstract Class "PolicyVariable".......................50
 6.10. The Class "PolicyExplicitVariable".......................50
 6.10.1. The Single-Valued Property "ModelClass"...........51
 6.10.2. The Single-Valued Property ModelProperty..........51
 6.11. The Abstract Class "PolicyImplicitVariable"..............51
 6.11.1. The Multi-Valued Property "ValueTypes"............52
 6.12. Subclasses of "PolicyImplicitVariable" Specified
 in PCIMe...52
 6.12.1. The Class "PolicySourceIPv4Variable"..............52
 6.12.2. The Class "PolicySourceIPv6Variable"..............52
 6.12.3. The Class "PolicyDestinationIPv4Variable".........53
 6.12.4. The Class "PolicyDestinationIPv6Variable".........53
 6.12.5. The Class "PolicySourcePortVariable"..............54
 6.12.6. The Class "PolicyDestinationPortVariable".........54
 6.12.7. The Class "PolicyIPProtocolVariable"..............54
 6.12.8. The Class "PolicyIPVersionVariable"...............55
 6.12.9. The Class "PolicyIPToSVariable"...................55
 6.12.10. The Class "PolicyDSCPVariable"...................55
 6.12.11. The Class "PolicyFlowIdVariable".................56
 6.12.12. The Class "PolicySourceMACVariable"..............56
 6.12.13. The Class "PolicyDestinationMACVariable".........56
 6.12.14. The Class "PolicyVLANVariable"...................56
 6.12.15. The Class "PolicyCoSVariable"....................57
 6.12.16. The Class "PolicyEthertypeVariable"..............57
 6.12.17. The Class "PolicySourceSAPVariable"..............57
 6.12.18. The Class "PolicyDestinationSAPVariable".........58
 6.12.19. The Class "PolicySNAPOUIVariable"................58
 6.12.20. The Class "PolicySNAPTypeVariable"...............59
 6.12.21. The Class "PolicyFlowDirectionVariable"..........59
 6.13. The Abstract Class "PolicyValue".........................59
 6.14. Subclasses of "PolicyValue" Specified in PCIMe...........60
 6.14.1. The Class "PolicyIPv4AddrValue"...................60
 6.14.2. The Class "PolicyIPv6AddrValue....................61
 6.14.3. The Class "PolicyMACAddrValue"....................62
 6.14.4. The Class "PolicyStringValue".....................63
 6.14.5. The Class "PolicyBitStringValue"..................63
 6.14.6. The Class "PolicyIntegerValue"....................64
 6.14.7. The Class "PolicyBooleanValue"....................65
 6.15. The Class "PolicyRoleCollection".........................65
 6.15.1. The Single-Valued Property "PolicyRole"...........66
 6.16. The Class "ReusablePolicyContainer".................66
 6.17. Deprecate PCIM’s Class "PolicyRepository"................66
 6.18. The Abstract Class "FilterEntryBase".....................67
 6.19. The Class "IpHeadersFilter"..............................67

Moore Standards Track [Page 3]

RFC 3460 PCIM Extensions January 2003

 6.19.1. The Property HdrIpVersion.........................68
 6.19.2. The Property HdrSrcAddress........................68
 6.19.3. The Property HdrSrcAddressEndOfRange..............68
 6.19.4. The Property HdrSrcMask...........................69
 6.19.5. The Property HdrDestAddress.......................69
 6.19.6. The Property HdrDestAddressEndOfRange.............69
 6.19.7. The Property HdrDestMask..........................70
 6.19.8. The Property HdrProtocolID........................70
 6.19.9. The Property HdrSrcPortStart......................70
 6.19.10. The Property HdrSrcPortEnd.......................70
 6.19.11. The Property HdrDestPortStart....................71
 6.19.12. The Property HdrDestPortEnd......................71
 6.19.13. The Property HdrDSCP.............................72
 6.19.14. The Property HdrFlowLabel.................... ...72
 6.20. The Class "8021Filter"...................................72
 6.20.1. The Property 8021HdrSrcMACAddr....................73
 6.20.2. The Property 8021HdrSrcMACMask....................73
 6.20.3. The Property 8021HdrDestMACAddr...................73
 6.20.4. The Property 8021HdrDestMACMask...................73
 6.20.5. The Property 8021HdrProtocolID....................74
 6.20.6. The Property 8021HdrPriorityValue.................74
 6.20.7. The Property 8021HdrVLANID........................74
 6.21. The Class FilterList.....................................74
 6.21.1. The Property Direction............................75
 7. Association and Aggregation Definitions........................75
 7.1. The Aggregation "PolicySetComponent"......................75
 7.2. Deprecate PCIM’s Aggregation "PolicyGroupInPolicyGroup"...76
 7.3. Deprecate PCIM’s Aggregation "PolicyRuleInPolicyGroup"....76
 7.4. The Abstract Association "PolicySetInSystem"..............77
 7.5. Update PCIM’s Weak Association "PolicyGroupInSystem"......77
 7.6. Update PCIM’s Weak Association "PolicyRuleInSystem".......78
 7.7. The Abstract Aggregation "PolicyConditionStructure".......79
 7.8. Update PCIM’s Aggregation "PolicyConditionInPolicyRule"...79
 7.9. The Aggregation "PolicyConditionInPolicyCondition"........79
 7.10. The Abstract Aggregation "PolicyActionStructure".........80
 7.11. Update PCIM’s Aggregation "PolicyActionInPolicyRule".....80
 7.12. The Aggregation "PolicyActionInPolicyAction".............80
 7.13. The Aggregation "PolicyVariableInSimplePolicyCondition"..80
 7.14. The Aggregation "PolicyValueInSimplePolicyCondition".....81
 7.15. The Aggregation "PolicyVariableInSimplePolicyAction".....82
 7.16. The Aggregation "PolicyValueInSimplePolicyAction"........83
 7.17. The Association "ReusablePolicy".........................83
 7.18. Deprecate PCIM’s "PolicyConditionInPolicyRepository".....84
 7.19. Deprecate PCIM’s "PolicyActionInPolicyRepository"........84
 7.20. The Association ExpectedPolicyValuesForVariable..........84
 7.21. The Aggregation "ContainedDomain"........................85
 7.22. Deprecate PCIM’s "PolicyRepositoryInPolicyRepository"....86
 7.23. The Aggregation "EntriesInFilterList"....................86

Moore Standards Track [Page 4]

RFC 3460 PCIM Extensions January 2003

 7.23.1. The Reference GroupComponent......................86
 7.23.2. The Reference PartComponent.......................87
 7.23.3. The Property EntrySequence........................87
 7.24. The Aggregation "ElementInPolicyRoleCollection"..........87
 7.25. The Weak Association "PolicyRoleCollectionInSystem"......87
 8. Intellectual Property..88
 9. Acknowledgements..89
 10. Contributors..89
 11. Security Considerations.......................................91
 12. Normative References..91
 13. Informative References..91
 Author’s Address..92
 Full Copyright Statement..93

1. Introduction

 This document specifies a number of changes to the Policy Core
 Information Model (PCIM), RFC 3060 [1]. Two types of changes are
 included. First, several completely new elements are introduced, for
 example, classes for header filtering, that extend PCIM into areas
 that it did not previously cover. Second, there are cases where
 elements of PCIM (for example, policy rule priorities) are
 deprecated, and replacement elements are defined (in this case,
 priorities tied to associations that refer to policy rules). Both
 types of changes are done in such a way that, to the extent possible,
 interoperability with implementations of the original PCIM model is
 preserved.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119 [8].

2. Changes since RFC 3060

 Section 3.2 contains a short discussion of the changes that this
 document makes to the RFC 3060 information model. Here is a very
 brief list of the changes:

 1. Deprecate and replace PolicyRepository and its associations.
 2. Clarify and expand the ways that PolicyRules and PolicyGroups are
 aggregated.
 3. Change how prioritization for PolicyRules is represented, and
 introduce administrator-specified decision strategies for rule
 evaluation.
 4. Expand the role of PolicyRoles, and introduce a means of
 associating a PolicyRole with a resource.
 5. Introduce compound policy conditions and compound policy actions
 into the model.

Moore Standards Track [Page 5]

RFC 3460 PCIM Extensions January 2003

 6. Introduce variables and values into the model.
 7. Introduce variable and value subclasses for packet-header
 filtering.
 8. Introduce classes for device-level packet-header filtering.

3. Overview of the Changes

3.1. How to Change an Information Model

 The Policy Core Information Model is closely aligned with the DMTF’s
 CIM Core Policy model. Since there is no separately documented set
 of rules for specifying IETF information models such as PCIM, it is
 reasonable to look to the CIM specifications for guidance on how to
 modify and extend the model. Among the CIM rules for changing an
 information model are the following. Note that everything said here
 about "classes" applies to association classes (including
 aggregations) as well as to non- association classes.

 o Properties may be added to existing classes.
 o Classes, and individual properties, may be marked as DEPRECATED.
 If there is a replacement feature for the deprecated class or
 property, it is identified explicitly. Otherwise the notation "No
 value" is used. In this document, the notation "DEPRECATED FOR
 <feature-name>" is used to indicate that a feature has been
 deprecated, and to identify its replacement feature.
 o Classes may be inserted into the inheritance hierarchy above
 existing classes, and properties from the existing classes may
 then be "pulled up" into the new classes. The net effect is that
 the existing classes have exactly the same properties they had
 before, but the properties are inherited rather than defined
 explicitly in the classes.
 o New subclasses may be defined below existing classes.

3.2. List of Changes to the Model

 The following subsections provide a very brief overview of the
 changes to PCIM defined in PCIMe. In several cases, the origin of
 the change is noted, as QPIM [11], ICPM [12], or QDDIM [15].

3.2.1. Changes to PolicyRepository

 Because of the potential for confusion with the Policy Framework
 component Policy Repository (from the four-box picture: Policy
 Management Tool, Policy Repository, PDP, PEP), "PolicyRepository" is
 a bad name for the PCIM class representing a container of reusable
 policy elements. Thus the class PolicyRepository is being replaced
 with the class ReusablePolicyContainer. To accomplish this change,
 it is necessary to deprecate the PCIM class PolicyRepository and its

Moore Standards Track [Page 6]

RFC 3460 PCIM Extensions January 2003

 three associations, and replace them with a new class
 ReusablePolicyContainer and new associations. As a separate change,
 the associations for ReusablePolicyContainer are being broadened, to
 allow a ReusablePolicyContainer to contain any reusable policy
 elements. In PCIM, the only associations defined for a
 PolicyRepository were for it to contain reusable policy conditions
 and policy actions.

3.2.2. Additional Associations and Additional Reusable Elements

 The PolicyRuleInPolicyRule and PolicyGroupInPolicyRule aggregations
 have, in effect, been imported from QPIM. ("In effect" because these
 two aggregations, as well as PCIM’s two aggregations
 PolicyGroupInPolicyGroup and PolicyRuleInPolicyGroup, are all being
 combined into a single aggregation PolicySetComponent.) These
 aggregations make it possible to define larger "chunks" of reusable
 policy to place in a ReusablePolicyContainer. These aggregations
 also introduce new semantics representing the contextual implications
 of having one PolicyRule executing within the scope of another
 PolicyRule.

3.2.3. Priorities and Decision Strategies

 Drawing from both QPIM and ICPM, the Priority property has been
 deprecated in PolicyRule, and placed instead on the aggregation
 PolicySetComponent. The QPIM rules for resolving relative priorities
 across nested PolicyGroups and PolicyRules have been incorporated
 into PCIMe as well. With the removal of the Priority property from
 PolicyRule, a new modeling dependency is introduced. In order to
 prioritize a PolicyRule/PolicyGroup relative to other
 PolicyRules/PolicyGroups, the elements being prioritized must all
 reside in one of three places: in a common PolicyGroup, in a common
 PolicyRule, or in a common System.

 In the absence of any clear, general criterion for detecting policy
 conflicts, the PCIM restriction stating that priorities are relevant
 only in the case of conflicts is being removed. In its place, a
 PolicyDecisionStrategy property has been added to the PolicyGroup and
 PolicyRule classes. This property allows policy administrator to
 select one of two behaviors with respect to rule evaluation: either
 perform the actions for all PolicyRules whose conditions evaluate to
 TRUE, or perform the actions only for the highest-priority PolicyRule
 whose conditions evaluate to TRUE. (This is accomplished by placing
 the PolicyDecisionStrategy property in an abstract class PolicySet,

Moore Standards Track [Page 7]

RFC 3460 PCIM Extensions January 2003

 from which PolicyGroup and PolicyRule are derived.) The QPIM rules
 for applying decision strategies to a nested set of PolicyGroups and
 PolicyRules have also been imported.

3.2.4. Policy Roles

 The concept of policy roles is added to PolicyGroups (being present
 already in the PolicyRule class). This is accomplished via a new
 superclass for both PolicyRules and PolicyGroups - PolicySet. For
 nested PolicyRules and PolicyGroups, any roles associated with the
 outer rule or group are automatically "inherited" by the nested one.
 Additional roles may be added at the level of a nested rule or group.

 It was also observed that there is no mechanism in PCIM for assigning
 roles to resources. For example, while it is possible in PCIM to
 associate a PolicyRule with the role "FrameRelay&&WAN", there is no
 way to indicate which interfaces match this criterion. A new
 PolicyRoleCollection class has been defined in PCIMe, representing
 the collection of resources associated with a particular role. The
 linkage between a PolicyRule or PolicyGroup and a set of resources is
 then represented by an instance of PolicyRoleCollection. Equivalent
 values should be defined in the PolicyRoles property of PolicyRules
 and PolicyGroups, and in the PolicyRole property in
 PolicyRoleCollection.

3.2.5. CompoundPolicyConditions and CompoundPolicyActions

 The concept of a CompoundPolicyCondition has also been imported into
 PCIMe from QPIM, and broadened to include a parallel
 CompoundPolicyAction. In both cases the idea is to create reusable
 "chunks" of policy that can exist as named elements in a
 ReusablePolicyContainer. The "Compound" classes and their
 associations incorporate the condition and action semantics that PCIM
 defined at the PolicyRule level: DNF/CNF for conditions, and ordering
 for actions.

 Compound conditions and actions are defined to work with any
 component conditions and actions. In other words, while the
 components may be instances, respectively, of SimplePolicyCondition
 and SimplePolicyAction (discussed immediately below), they need not
 be.

Moore Standards Track [Page 8]

RFC 3460 PCIM Extensions January 2003

3.2.6. Variables and Values

 The SimplePolicyCondition / PolicyVariable / PolicyValue structure
 has been imported into PCIMe from QPIM. A list of PCIMe-level
 variables is defined, as well as a list of PCIMe-level values. Other
 variables and values may, if necessary, be defined in submodels of
 PCIMe. For example, QPIM defines a set of implicit variables
 corresponding to fields in RSVP flows.

 A corresponding SimplePolicyAction / PolicyVariable / PolicyValue
 structure is also defined. While the semantics of a
 SimplePolicyCondition are "variable matches value", a
 SimplePolicyAction has the semantics "set variable to value".

3.2.7. Domain-Level Packet Filtering

 For packet filtering specified at the domain level, a set of
 PolicyVariables and PolicyValues are defined, corresponding to the
 fields in an IP packet header plus the most common Layer 2 frame
 header fields. It is expected that domain-level policy conditions
 that filter on these header fields will be expressed in terms of
 CompoundPolicyConditions built up from SimplePolicyConditions that
 use these variables and values. An additional PolicyVariable,
 PacketDirection, is also defined, to indicate whether a packet being
 filtered is traveling inbound or outbound on an interface.

3.2.8. Device-Level Packet Filtering

 For packet filtering expressed at the device level, including the
 packet classifier filters modeled in QDDIM, the variables and values
 discussed in Section 3.2.7 need not be used. Filter classes derived
 from the CIM FilterEntryBase class hierarchy are available for use in
 these contexts. These latter classes have two important differences
 from the domain-level classes:

 o They support specification of filters for all of the fields in a
 particular protocol header in a single object instance. With the
 domain-level classes, separate instances are needed for each
 header field.

 o They provide native representations for the filter values, as
 opposed to the string representation used by the domain-level
 classes.

 Device-level filter classes for the IP-related headers (IP, UDP, and
 TCP) and the 802 MAC headers are defined, respectively, in Sections
 6.19 and 6.20.

Moore Standards Track [Page 9]

RFC 3460 PCIM Extensions January 2003

4. The Updated Class and Association Class Hierarchies

 The following figure shows the class inheritance hierarchy for PCIMe.
 Changes from the PCIM hierarchy are noted parenthetically.

 ManagedElement (abstract)
 |
 +--Policy (abstract)
 | |
 | +---PolicySet (abstract -- new - 5.3)
 | | |
 | | +---PolicyGroup (moved - 5.3)
 | | |
 | | +---PolicyRule (moved - 5.3)
 | |
 | +---PolicyCondition (abstract)
 | | |
 | | +---PolicyTimePeriodCondition
 | | |
 | | +---VendorPolicyCondition
 | | |
 | | +---SimplePolicyCondition (new - 5.8.1)
 | | |
 | | +---CompoundPolicyCondition (new - 5.7.1)
 | | |
 | | +---CompoundFilterCondition (new - 5.9)
 | |
 | +---PolicyAction (abstract)
 | | |
 | | +---VendorPolicyAction
 | | |
 | | +---SimplePolicyAction (new - 5.8.4)
 | | |
 | | +---CompoundPolicyAction (new - 5.7.2)
 | |
 | +---PolicyVariable (abstract -- new - 5.8.5)
 | | |
 | | +---PolicyExplicitVariable (new - 5.8.6)
 | | |
 | | +---PolicyImplicitVariable (abstract -- new - 5.8.7)
 | | |
 | | +---(subtree of more specific classes -- new - 6.12)
 | |
 | +---PolicyValue (abstract -- new - 5.8.10)
 | |
 | +---(subtree of more specific classes -- new - 6.14)
 |
 +--Collection (abstract -- newly referenced)

Moore Standards Track [Page 10]

RFC 3460 PCIM Extensions January 2003

 | |
 | +--PolicyRoleCollection (new - 5.6.2)
 ManagedElement(abstract)
 |
 +--ManagedSystemElement (abstract)
 |
 +--LogicalElement (abstract)
 |
 +--System (abstract)
 | |
 | +--AdminDomain (abstract)
 | |
 | +---ReusablePolicyContainer (new - 5.2)
 | |
 | +---PolicyRepository (deprecated - 5.2)
 |
 +--FilterEntryBase (abstract -- new - 6.18)
 | |
 | +--IpHeadersFilter (new - 6.19)
 | |
 | +--8021Filter (new - 6.20)
 |
 +--FilterList (new - 6.21)

 Figure 1. Class Inheritance Hierarchy for PCIMe

Moore Standards Track [Page 11]

RFC 3460 PCIM Extensions January 2003

 The following figure shows the association class hierarchy for PCIMe.
 As before, changes from PCIM are noted parenthetically.

 [unrooted]
 |
 +---PolicyComponent (abstract)
 | |
 | +---PolicySetComponent (new - 5.3)
 | |
 | +---PolicyGroupInPolicyGroup (deprecated - 5.3)
 | |
 | +---PolicyRuleInPolicyGroup (deprecated - 5.3)
 | |
 | +---PolicyConditionStructure (abstract -- new - 5.7.1)
 | | |
 | | +---PolicyConditionInPolicyRule (moved - 5.7.1)
 | | |
 | | +---PolicyConditionInPolicyCondition (new - 5.7.1)
 | |
 | +---PolicyRuleValidityPeriod
 | |
 | +---PolicyActionStructure (abstract -- new - 5.7.2)
 | | |
 | | +---PolicyActionInPolicyRule (moved - 5.7.2)
 | | |
 | | +---PolicyActionInPolicyAction (new - 5.7.2)
 | |
 | +---PolicyVariableInSimplePolicyCondition (new - 5.8.2)
 | |
 | +---PolicyValueInSimplePolicyCondition (new - 5.8.2)
 | |
 | +---PolicyVariableInSimplePolicyAction (new - 5.8.4)
 | |
 | +---PolicyValueInSimplePolicyAction (new - 5.8.4)
 [unrooted]
 |
 +---Dependency (abstract)
 | |
 | +---PolicyInSystem (abstract)
 | | |
 | | +---PolicySetInSystem (abstract, new - 5.3)
 | | | |
 | | | +---PolicyGroupInSystem
 | | | |
 | | | +---PolicyRuleInSystem
 | | |
 | | +---ReusablePolicy (new - 5.2)
 | | |

Moore Standards Track [Page 12]

RFC 3460 PCIM Extensions January 2003

 | | +---PolicyConditionInPolicyRepository (deprecated - 5.2)
 | | |
 | | +---PolicyActionInPolicyRepository (deprecated - 5.2)
 | |
 | +---ExpectedPolicyValuesForVariable (new - 5.8)
 | |
 | +---PolicyRoleCollectionInSystem (new - 5.6.2)
 |
 +---Component (abstract)
 | |
 | +---SystemComponent
 | | |
 | | +---ContainedDomain (new - 5.2)
 | | |
 | | +---PolicyRepositoryInPolicyRepository (deprecated - 5.2)
 | |
 | +---EntriesInFilterList (new - 7.23)
 |
 +---MemberOfCollection (newly referenced)
 |
 +--- ElementInPolicyRoleCollection (new - 5.6.2)

 Figure 2. Association Class Inheritance Hierarchy for PCIMe

 In addition to these changes that show up at the class and
 association class level, there are other changes from PCIM involving
 individual class properties. In some cases new properties are
 introduced into existing classes, and in other cases existing
 properties are deprecated (without deprecating the classes that
 contain them).

5. Areas of Extension to PCIM

 The following subsections describe each of the areas for which PCIM
 extensions are being defined.

5.1. Policy Scope

 Policy scopes may be thought of in two dimensions: 1) the level of
 abstraction of the policy specification and 2) the applicability of
 policies to a set of managed resources.

5.1.1. Levels of Abstraction: Domain- and Device-Level Policies

 Policies vary in level of abstraction, from the business-level
 expression of service level agreements (SLAs) to the specification of
 a set of rules that apply to devices in a network. Those latter
 policies can, themselves, be classified into at least two groups:

Moore Standards Track [Page 13]

RFC 3460 PCIM Extensions January 2003

 those policies consumed by a Policy Decision Point (PDP) that specify
 the rules for an administrative and functional domain, and those
 policies consumed by a Policy Enforcement Point (PEP) that specify
 the device-specific rules for a functional domain. The higher-level
 rules consumed by a PDP, called domain-level policies, may have late
 binding variables unspecified, or specified by a classification,
 whereas the device-level rules are likely to have fewer unresolved
 bindings.

 There is a relationship between these levels of policy specification
 that is out of scope for this standards effort, but that is necessary
 in the development and deployment of a usable policy-based
 configuration system. An SLA-level policy transformation to the
 domain-level policy may be thought of as analogous to a visual
 builder that takes human input and develops a programmatic rule
 specification. The relationship between the domain-level policy and
 the device-level policy may be thought of as analogous to that of a
 compiler and linkage editor that translates the rules into specific
 instructions that can be executed on a specific type of platform.

 PCIM and PCIMe may be used to specify rules at any and all of these
 levels of abstraction. However, at different levels of abstraction,
 different mechanisms may be more or less appropriate.

5.1.2. Administrative and Functional Scopes

 Administrative scopes for policy are represented in PCIM and in these
 extensions to PCIM as System subclass instances. Typically, a
 domain-level policy would be scoped by an AdminDomain instance (or by
 a hierarchy of AdminDomain instances) whereas a device-level policy
 might be scoped by a System instance that represents the PEP (e.g.,
 an instance of ComputerSystem, see CIM [2]). In addition to
 collecting policies into an administrative domain, these System
 classes may also aggregate the resources to which the policies apply.

 Functional scopes (sometimes referred to as functional domains) are
 generally defined by the submodels derived from PCIM and PCIMe, and
 correspond to the service or services to which the policies apply.
 So, for example, Quality of Service may be thought of as a functional
 scope, or Diffserv and Intserv may each be thought of as functional
 scopes. These scoping decisions are represented by the structure of
 the submodels derived from PCIM and PCIMe, and may be reflected in
 the number and types of PEP policy client(s), services, and the
 interaction between policies. Policies in different functional
 scopes are organized into disjoint sets of policy rules. Different
 functional domains may share some roles, some conditions, and even
 some actions. The rules from different functional domains may even
 be enforced at the same managed resource, but for the purposes of

Moore Standards Track [Page 14]

RFC 3460 PCIM Extensions January 2003

 policy evaluation they are separate. See section 5.5.3 for more
 information.

 The functional scopes MAY be reflected in administrative scopes.
 That is, deployments of policy may have different administrative
 scopes for different functional scopes, but there is no requirement
 to do so.

5.2. Reusable Policy Elements

 In PCIM, a distinction was drawn between reusable PolicyConditions
 and PolicyActions and rule-specific ones. The PolicyRepository class
 was also defined, to serve as a container for these reusable
 elements. The name "PolicyRepository" has proven to be an
 unfortunate choice for the class that serves as a container for
 reusable policy elements. This term is already used in documents
 like the Policy Framework, to denote the location from which the PDP
 retrieves all policy specifications, and into which the Policy
 Management Tool places all policy specifications. Consequently, the
 PolicyRepository class is being deprecated, in favor of a new class
 ReusablePolicyContainer.

 When a class is deprecated, any associations that refer to it must
 also be deprecated. So replacements are needed for the two
 associations PolicyConditionInPolicyRepository and
 PolicyActionInPolicyRepository, as well as for the aggregation
 PolicyRepositoryInPolicyRepository. In addition to renaming the
 PolicyRepository class to ReusablePolicyContainer, however, PCIMe is
 also broadening the types of policy elements that can be reusable.
 Consequently, rather than providing one-for-one replacements for the
 two associations, a single higher-level association ReusablePolicy is
 defined. This new association allows any policy element (that is, an
 instance of any subclass of the abstract class Policy) to be placed
 in a ReusablePolicyContainer.

 Summarizing, the following changes in Sections 6 and 7 are the result
 of this item:

 o The class ReusablePolicyContainer is defined.
 o PCIM’s PolicyRepository class is deprecated.
 o The association ReusablePolicy is defined.
 o PCIM’s PolicyConditionInPolicyRepository association is
 deprecated.
 o PCIM’s PolicyActionInPolicyRepository association is deprecated.
 o The aggregation ContainedDomain is defined.
 o PCIM’s PolicyRepositoryInPolicyRepository aggregation is
 deprecated.

Moore Standards Track [Page 15]

RFC 3460 PCIM Extensions January 2003

5.3. Policy Sets

 A "policy" can be thought of as a coherent set of rules to
 administer, manage, and control access to network resources ("Policy
 Terminology", reference [10]). The structuring of these coherent
 sets of rules into subsets is enhanced in this document. In Section
 5.4, we discuss the new options for the nesting of policy rules.

 A new abstract class, PolicySet, is introduced to provide an
 abstraction for a set of rules. It is derived from Policy, and it is
 inserted into the inheritance hierarchy above both PolicyGroup and
 PolicyRule. This reflects the additional structural flexibility and
 semantic capability of both subclasses.

 Two properties are defined in PolicySet: PolicyDecisionStrategy and
 PolicyRoles. The PolicyDecisionStrategy property is included in
 PolicySet to define the evaluation relationship among the rules in
 the policy set. See Section 5.5 for more information. The
 PolicyRoles property is included in PolicySet to characterize the
 resources to which the PolicySet applies. See Section 5.6 for more
 information.

 Along with the definition of the PolicySet class, a new concrete
 aggregation class is defined that will also be discussed in the
 following sections. PolicySetComponent is defined as a subclass of
 PolicyComponent; it provides the containment relationship for a
 PolicySet in a PolicySet. PolicySetComponent replaces the two PCIM
 aggregations PolicyGroupInPolicyGroup and PolicyRuleInPolicyGroup, so
 these two aggregations are deprecated.

 A PolicySet’s relationship to an AdminDomain or other administrative
 scoping system (for example, a ComputerSystem) is represented by the
 PolicySetInSystem abstract association. This new association is
 derived from PolicyInSystem, and the PolicyGroupInSystem and
 PolicyRuleInSystem associations are now derived from
 PolicySetInSystem instead of directly from PolicyInSystem. The
 PolicySetInSystem.Priority property is discussed in Section 5.5.3.

5.4. Nested Policy Rules

 As previously discussed, policy is described by a set of policy rules
 that may be grouped into subsets. In this section we introduce the
 notion of nested rules, or the ability to define rules within rules.
 Nested rules are also called sub-rules, and we use both terms in this
 document interchangeably. The aggregation PolicySetComponent is used
 to represent the nesting of a policy rule in another policy rule.

Moore Standards Track [Page 16]

RFC 3460 PCIM Extensions January 2003

5.4.1. Usage Rules for Nested Rules

 The relationship between rules and sub-rules is defined as follows:

 o The parent rule’s condition clause is a condition for evaluation
 of all nested rules; that is, the conditions of the parent are
 logically ANDed to the conditions of the sub-rules. If the parent
 rule’s condition clause evaluates to FALSE, sub-rules MAY be
 skipped since they also evaluate to FALSE.

 o If the parent rule’s condition evaluates to TRUE, the set of sub-
 rules SHALL BE evaluated according to the decision strategy and
 priorities as discussed in Section 5.5.

 o If the parent rule’s condition evaluates to TRUE, the parent
 rule’s set of actions is executed BEFORE execution of the sub-
 rules actions. The parent rule’s actions are not to be confused
 with default actions. A default action is one that is to be
 executed only if none of the more specific sub-rules are executed.
 If a default action needs to be specified, it needs to be defined
 as an action that is part of a catchall sub-rule associated with
 the parent rule. The association linking the default action(s) in
 this special sub-rule should have the lowest priority relative to
 all other sub-rule associations:

 if parent-condition then parent rule’s action
 if condA then actA
 if condB then ActB
 if True then default action

 Such a default action functions as a default when FirstMatching
 decision strategies are in effect (see section 5.5). If
 AllMatching applies, the "default" action is always performed.

 o Policy rules have a context in which they are executed. The rule
 engine evaluates and applies the policy rules in the context of
 the managed resource(s) that are identified by the policy roles
 (or by an explicit association). Submodels MAY add additional
 context to policy rules based on rule structure; any such
 additional context is defined by the semantics of the action
 classes of the submodel.

5.4.2. Motivation

 Rule nesting enhances Policy readability, expressiveness and
 reusability. The ability to nest policy rules and form sub-rules is
 important for manageability and scalability, as it enables complex
 policy rules to be constructed from multiple simpler policy rules.

Moore Standards Track [Page 17]

RFC 3460 PCIM Extensions January 2003

 These enhancements ease the policy management tools’ task, allowing
 policy rules to be expressed in a way closer to how humans think.

 Although rule nesting can be used to suggest optimizations in the way
 policy rules are evaluated, as discussed in section 5.5.2 "Side
 Effects," nesting does not specify nor does it require any particular
 order of evaluation of conditions. Optimization of rule evaluation
 can be done in the PDP or in the PEP by dedicated code. This is
 similar to the relation between a high level programming language
 like C and machine code. An optimizer can create a more efficient
 machine code than any optimization done by the programmer within the
 source code. Nevertheless, if the PEP or PDP does not do
 optimization, the administrator writing the policy may be able to
 influence the evaluation of the policy rules for execution using rule
 nesting.

 Nested rules are not designed for policy repository retrieval
 optimization. It is assumed that all rules and groups that are
 assigned to a role are retrieved by the PDP or PEP from the policy
 repository and enforced. Optimizing the number of rules retrieved
 should be done by clever selection of roles.

5.5. Priorities and Decision Strategies

 A "decision strategy" is used to specify the evaluation method for
 the policies in a PolicySet. Two decision strategies are defined:
 "FirstMatching" and "AllMatching." The FirstMatching strategy is
 used to cause the evaluation of the rules in a set such that the only
 actions enforced on a given examination of the PolicySet are those
 for the first rule (that is, the rule with the highest priority) that
 has its conditions evaluate to TRUE. The AllMatching strategy is
 used to cause the evaluation of all rules in a set; for all of the
 rules whose conditions evaluate to TRUE, the actions are enforced.
 Implementations MUST support the FirstMatching decision strategy;
 implementations MAY support the AllMatching decision strategy.

 As previously discussed, the PolicySet subclasses are PolicyGroup and
 PolicyRule: either subclass may contain PolicySets of either
 subclass. Loops, including the degenerate case of a PolicySet that
 contains itself, are not allowed when PolicySets contain other
 PolicySets. The containment relationship is specified using the
 PolicySetComponent aggregation.

 The relative priority within a PolicySet is established by the
 Priority property of the PolicySetComponent aggregation of the
 contained PolicyGroup and PolicyRule instances. The use of PCIM’s
 PolicyRule.Priority property is deprecated in favor of this new
 property. The separation of the priority property from the rule has

Moore Standards Track [Page 18]

RFC 3460 PCIM Extensions January 2003

 two advantages. First, it generalizes the concept of priority, so
 that it can be used for both groups and rules. Second, it places the
 priority on the relationship between the parent policy set and the
 subordinate policy group or rule. The assignment of a priority value
 then becomes much easier, in that the value is used only in
 relationship to other priorities in the same set.

 Together, the PolicySet.PolicyDecisionStrategy and
 PolicySetComponent.Priority determine the processing for the rules
 contained in a PolicySet. As before, the larger priority value
 represents the higher priority. Unlike the earlier definition,
 PolicySetComponent.Priority MUST have a unique value when compared
 with others defined for the same aggregating PolicySet. Thus, the
 evaluation of rules within a set is deterministically specified.

 For a FirstMatching decision strategy, the first rule (that is, the
 one with the highest priority) in the set that evaluates to True, is
 the only rule whose actions are enforced for a particular evaluation
 pass through the PolicySet.

 For an AllMatching decision strategy, all of the matching rules are
 enforced. The relative priority of the rules is used to determine
 the order in which the actions are to be executed by the enforcement
 point: the actions of the higher priority rules are executed first.
 Since the actions of higher priority rules are executed first, lower
 priority rules that also match may get the "last word," and thus
 produce a counter-intuitive result. So, for example, if two rules
 both evaluate to True, and the higher priority rule sets the DSCP to
 3 and the lower priority rule sets the DSCP to 4, the action of the
 lower priority rule will be executed later and, therefore, will
 "win," in this example, setting the DSCP to 4. Thus, conflicts
 between rules are resolved by this execution order.

 An implementation of the rule engine need not provide the action
 sequencing but the actions MUST be sequenced by the PEP or PDP on its
 behalf. So, for example, the rule engine may provide an ordered list
 of actions to be executed by the PEP and any required serialization
 is then provided by the service configured by the rule engine. See
 Section 5.5.2 for a discussion of side effects.

5.5.1. Structuring Decision Strategies

 As discussed in Sections 5.3 and 5.4, PolicySet instances may be
 nested arbitrarily. For a FirstMatching decision strategy on a
 PolicySet, any contained PolicySet that matches satisfies the
 termination criteria for the FirstMatching strategy. A PolicySet is
 considered to match if it is a PolicyRule and its conditions evaluate
 to True, or if the PolicySet is a PolicyGroup and at least one of its

Moore Standards Track [Page 19]

RFC 3460 PCIM Extensions January 2003

 contained PolicyGroups or PolicyRules match. The priority associated
 with contained PolicySets, then, determines when to terminate rule
 evaluation in the structured set of rules.

 In the example shown in Figure 3, the relative priorities for the
 nested rules, high to low, are 1A, 1B1, 1X2, 1B3, 1C, 1C1, 1X2 and
 1C3. (Note that PolicyRule 1X2 is included in both PolicyGroup 1B
 and PolicyRule 1C, but with different priorities.) Of course, which
 rules are enforced is also dependent on which rules, if any, match.

 PolicyGroup 1: FirstMatching
 |
 +-- Pri=6 -- PolicyRule 1A
 |
 +-- Pri=5 -- PolicyGroup 1B: AllMatching
 | |
 | +-- Pri=5 -- PolicyGroup 1B1: AllMatching
 | | |
 | | +---- etc.
 | |
 | +-- Pri=4 -- PolicyRule 1X2
 | |
 | +-- Pri=3 -- PolicyRule 1B3: FirstMatching
 | |
 | +---- etc.
 |
 +-- Pri=4 -- PolicyRule 1C: FirstMatching
 |
 +-- Pri=4 -- PolicyRule 1C1
 |
 +-- Pri=3 -- PolicyRule 1X2
 |
 +-- Pri=2 -- PolicyRule 1C3

 Figure 3. Nested PolicySets with Different Decision Strategies

 o Because PolicyGroup 1 has a FirstMatching decision strategy, if
 the conditions of PolicyRule 1A match, its actions are enforced
 and the evaluation stops.

 o If it does not match, PolicyGroup 1B is evaluated using an
 AllMatching strategy. Since PolicyGroup 1B1 also has an
 AllMatching strategy all of the rules and groups of rules
 contained in PolicyGroup 1B1 are evaluated and enforced as
 appropriate. PolicyRule 1X2 and PolicyRule 1B3 are also evaluated
 and enforced as appropriate. If any of the sub-rules in the

Moore Standards Track [Page 20]

RFC 3460 PCIM Extensions January 2003

 subtrees of PolicyGroup 1B evaluate to True, then PolicyRule 1C is
 not evaluated because the FirstMatching strategy of PolicyGroup 1
 has been satisfied.

 o If neither PolicyRule 1A nor PolicyGroup 1B yield a match, then
 PolicyRule 1C is evaluated. Since it is first matching, rules
 1C1, 1X2, and 1C3 are evaluated until the first match, if any.

5.5.2. Side Effects

 Although evaluation of conditions is sometimes discussed as an
 ordered set of operations, the rule engine need not be implemented as
 a procedural language interpreter. Any side effects of condition
 evaluation or the execution of actions MUST NOT affect the result of
 the evaluation of other conditions evaluated by the rule engine in
 the same evaluation pass. That is, an implementation of a rule
 engine MAY evaluate all conditions in any order before applying the
 priority and determining which actions are to be executed.

 So, regardless of how a rule engine is implemented, it MUST NOT
 include any side effects of condition evaluation in the evaluation of
 conditions for either of the decision strategies. For both the
 AllMatching decision strategy and for the nesting of rules within
 rules (either directly or indirectly) where the actions of more than
 one rule may be enforced, any side effects of the enforcement of
 actions MUST NOT be included in condition evaluation on the same
 evaluation pass.

5.5.3. Multiple PolicySet Trees For a Resource

 As shown in the example in Figure 3., PolicySet trees are defined by
 the PolicySet subclass instances and the PolicySetComponent
 aggregation instances between them. Each PolicySet tree has a
 defined set of decision strategies and evaluation priorities. In
 section 5.6 we discuss some improvements in the use of PolicyRoles
 that cause the parent PolicySet.PolicyRoles to be applied to all
 contained PolicySet instances. However, a given resource may still
 have multiple, disjoint PolicySet trees regardless of how they are
 collected. These top-level PolicySet instances are called "unrooted"
 relative to the given resource.

 So, a PolicySet instance is defined to be rooted or unrooted in the
 context of a particular managed element; the relationship to the
 managed element is usually established by the policy roles of the
 PolicySet instance and of the managed element (see 5.6 "Policy
 Roles"). A PolicySet instance is unrooted in that context if and
 only if there is no PolicySetComponent association to a parent
 PolicySet that is also related to the same managed element. These

Moore Standards Track [Page 21]

RFC 3460 PCIM Extensions January 2003

 PolicySetComponent aggregations are traversed up the tree without
 regard to how a PolicySet instance came to be related with the
 ManagedElement. Figure 4. shows an example where instance A has role
 A, instance B has role B and so on. In this example, in the context
 of interface X, instances B, and C are unrooted and instances D, E,
 and F are all rooted. In the context of interface Y, instance A is
 unrooted and instances B, C, D, E and F are all rooted.

 +---+ +-----------+ +-----------+
 | A | | I/F X | | I/F Y |
 +---+ | has roles | | has roles |
 / \ | B & C | | A & B |
 / \ +-----------+ +-----------+
 +---+ +---+
 | B | | C |
 +---+ +---+
 / \ \
 / \ \
 +---+ +---+ +---+
 | D | | E | | F |
 +---+ +---+ +---+

 Figure 4. Unrooted PolicySet Instances

 For those cases where there are multiple unrooted PolicySet instances
 that apply to the same managed resource (i.e., not in a common
 PolicySetComponent tree), the decision strategy among these disjoint
 PolicySet instances is the FirstMatching strategy. The priority used
 with this FirstMatching strategy is defined in the PolicySetInSystem
 association. The PolicySetInSystem subclass instances are present
 for all PolicySet instances (it is a required association) but the
 priority is only used as a default for unrooted PolicySet instances
 in a given ManagedElement context.

 The FirstMatching strategy is used among all unrooted PolicySet
 instances that apply to a given resource for a given functional
 domain. So, for example, the PolicySet instances that are used for
 QoS policy and the instances that are used for IKE policy, although
 they are disjoint, are not joined in a FirstMatching decision
 strategy. Instead, they are evaluated independently of one another.

5.5.4. Deterministic Decisions

 As previously discussed, PolicySetComponent.Priority values MUST be
 unique within a containing PolicySet and PolicySetInSystem.Priority
 values MUST be unique for an associated System. Each PolicySet,
 then, has a deterministic behavior based upon the decision strategy
 and uniquely defined priority.

Moore Standards Track [Page 22]

RFC 3460 PCIM Extensions January 2003

 There are certainly cases where rules need not have a unique priority
 value (i.e., where evaluation and execution priority is not
 important). However, it is believed that the flexibility gained by
 this capability is not sufficiently beneficial to justify the
 possible variations in implementation behavior and the resulting
 confusion that might occur.

5.6. Policy Roles

 A policy role is defined in [10] as "an administratively specified
 characteristic of a managed element (for example, an interface). It
 is a selector for policy rules and PRovisioning Classes (PRCs), to
 determine the applicability of the rule/PRC to a particular managed
 element."

 In PCIMe, PolicyRoles is defined as a property of PolicySet, which is
 inherited by both PolicyRules and PolicyGroups. In this document, we
 also add PolicyRole as the identifying name of a collection of
 resources (PolicyRoleCollection), where each element in the
 collection has the specified role characteristic.

5.6.1. Comparison of Roles in PCIM with Roles in snmpconf

 In the Configuration Management with SNMP (snmpconf) working group’s
 Policy Based Management MIB [14], policy rules are of the form

 if <policyFilter> then <policyAction>

 where <policyFilter> is a set of conditions that are used to
 determine whether or not the policy applies to an object instance.
 The policy filter can perform comparison operations on SNMP variables
 already defined in MIBS (e.g., "ifType == ethernet").

 The policy management MIB defined in [14] defines a Role table that
 enables one to associate Roles with elements, where roles have the
 same semantics as in PCIM. Then, since the policyFilter in a policy
 allows one to define conditions based on the comparison of the values
 of SNMP variables, one can filter elements based on their roles as
 defined in the Role group.

 This approach differs from that adopted in PCIM in the following
 ways. First, in PCIM, a set of role(s) is associated with a policy
 rule as the values of the PolicyRoles property of a policy rule. The
 semantics of role(s) are then expected to be implemented by the PDP
 (i.e., policies are applied to the elements with the appropriate
 roles). In [14], however, no special processing is required for

Moore Standards Track [Page 23]

RFC 3460 PCIM Extensions January 2003

 realizing the semantics of roles; roles are treated just as any other
 SNMP variables and comparisons of role values can be included in the
 policy filter of a policy rule.

 Secondly, in PCIM, there is no formally defined way of associating a
 role with an object instance, whereas in [14] this is done via the
 use of the Role tables (pmRoleESTable and pmRoleSETable). The Role
 tables associate Role values with elements.

5.6.2. Addition of PolicyRoleCollection to PCIMe

 In order to remedy the latter shortcoming in PCIM (the lack of a way
 of associating a role with an object instance), PCIMe has a new class
 PolicyRoleCollection derived from the CIM Collection class.
 Resources that share a common role are aggregated by a
 PolicyRoleCollection instance, via the ElementInPolicyRoleCollection
 aggregation. The role is specified in the PolicyRole property of the
 aggregating PolicyRoleCollection instance.

 A PolicyRoleCollection always exists in the context of a system. As
 was done in PCIM for PolicyRules and PolicyGroups, an association,
 PolicyRoleCollectionInSystem, captures this relationship. Remember
 that in CIM, System is a base class for describing network devices
 and administrative domains.

 The association between a PolicyRoleCollection and a system should be
 consistent with the associations that scope the policy rules/groups
 that are applied to the resources in that collection. Specifically,
 a PolicyRoleCollection should be associated with the same System as
 the applicable PolicyRules and/or PolicyGroups, or to a System higher
 in the tree formed by the SystemComponent association. When a PEP
 belongs to multiple Systems (i.e., AdminDomains), and scoping by a
 single domain is impractical, two alternatives exist. One is to
 arbitrarily limit domain membership to one System/AdminDomain. The
 other option is to define a more global AdminDomain that simply
 includes the others, and/or that spans the business or enterprise.

 As an example, suppose that there are 20 traffic trunks in a network,
 and that an administrator would like to assign three of them to
 provide "gold" service. Also, the administrator has defined several
 policy rules which specify how the "gold" service is delivered. For
 these rules, the PolicyRoles property (inherited from PolicySet) is
 set to "Gold Service".

 In order to associate three traffic trunks with "gold" service, an
 instance of the PolicyRoleCollection class is created and its
 PolicyRole property is also set to "Gold Service". Following this,
 the administrator associates three traffic trunks with the new

Moore Standards Track [Page 24]

RFC 3460 PCIM Extensions January 2003

 instance of PolicyRoleCollection via the
 ElementInPolicyRoleCollection aggregation. This enables a PDP to
 determine that the "Gold Service" policy rules apply to the three
 aggregated traffic trunks.

 Note that roles are used to optimize policy retrieval. It is not
 mandatory to implement roles or, if they have been implemented, to
 group elements in a PolicyRoleCollection. However, if roles are
 used, then either the collection approach should be implemented, or
 elements should be capable of reporting their "pre-programmed" roles
 (as is done in COPS).

5.6.3. Roles for PolicyGroups

 In PCIM, role(s) are only associated with policy rules. However, it
 may be desirable to associate role(s) with groups of policy rules.
 For example, a network administrator may want to define a group of
 rules that apply only to Ethernet interfaces. A policy group can be
 defined with a role-combination="Ethernet", and all the relevant
 policy rules can be placed in this policy group. (Note that in
 PCIMe, role(s) are made available to PolicyGroups as well as to
 PolicyRules by moving PCIM’s PolicyRoles property up from PolicyRule
 to the new abstract class PolicySet. The property is then inherited
 by both PolicyGroup and PolicyRule.) Then every policy rule in this
 policy group implicitly inherits this role-combination from the
 containing policy group. A similar implicit inheritance applies to
 nested policy groups.

 There is no explicit copying of role(s) from container to contained
 entity. Obviously, this implicit inheritance of role(s) leads to the
 possibility of defining inconsistent role(s) (as explained in the
 example below); the handling of such inconsistencies is beyond the
 scope of PCIMe.

Moore Standards Track [Page 25]

RFC 3460 PCIM Extensions January 2003

 As an example, suppose that there is a PolicyGroup PG1 that contains
 three PolicyRules, PR1, PR2, and PR3. Assume that PG1 has the roles
 "Ethernet" and "Fast". Also, assume that the contained policy rules
 have the role(s) shown below:

 +------------------------------+
 | PolicyGroup PG1 |
 | PolicyRoles = Ethernet, Fast |
 +------------------------------+
 |
 | +------------------------+
 | | PolicyRule PR1 |
 |--------| PolicyRoles = Ethernet |
 | +------------------------+
 |
 | +--------------------------+
 | | PolicyRule PR2 |
 |--------| PolicyRoles = <undefined>|
 | +--------------------------+
 |
 | +------------------------+
 | | PolicyRule PR3 |
 |--------| PolicyRoles = Slow |
 +------------------------+

 Figure 5. Inheritance of Roles

 In this example, the PolicyRoles property value for PR1 is consistent
 with the value in PG1, and in fact, did not need to be redefined. The
 value of PolicyRoles for PR2 is undefined. Its roles are implicitly
 inherited from PG1. Lastly, the value of PolicyRoles for PR3 is
 "Slow". This appears to be in conflict with the role, "Fast,"
 defined in PG1. However, whether these roles are actually in
 conflict is not clear. In one scenario, the policy administrator
 may have wanted only "Fast"- "Ethernet" rules in the policy group.
 In another scenario, the administrator may be indicating that PR3
 applies to all "Ethernet" interfaces regardless of whether they are
 "Fast" or "Slow." Only in the former scenario (only "Fast"-
 "Ethernet" rules in the policy group) is there a role conflict.

 Note that it is possible to override implicitly inherited roles via
 appropriate conditions on a PolicyRule. For example, suppose that
 PR3 above had defined the following conditions:

 (interface is not "Fast") and (interface is "Slow")

 This results in unambiguous semantics for PR3.

Moore Standards Track [Page 26]

RFC 3460 PCIM Extensions January 2003

5.7. Compound Policy Conditions and Compound Policy Actions

 Compound policy conditions and compound policy actions are introduced
 to provide additional reusable "chunks" of policy.

5.7.1. Compound Policy Conditions

 A CompoundPolicyCondition is a PolicyCondition representing a Boolean
 combination of simpler conditions. The conditions being combined may
 be SimplePolicyConditions (discussed below in Section 6.4), but the
 utility of reusable combinations of policy conditions is not
 necessarily limited to the case where the component conditions are
 simple ones.

 The PCIM extensions to introduce compound policy conditions are
 relatively straightforward. Since the purpose of the extension is to
 apply the DNF / CNF logic from PCIM’s PolicyConditionInPolicyRule
 aggregation to a compound condition that aggregates simpler
 conditions, the following changes are required:

 o Create a new aggregation PolicyConditionInPolicyCondition, with
 the same GroupNumber and ConditionNegated properties as
 PolicyConditionInPolicyRule. The cleanest way to do this is to
 move the properties up to a new abstract aggregation superclass
 PolicyConditionStructure, from which the existing aggregation
 PolicyConditionInPolicyRule and a new aggregation
 PolicyConditionInPolicyCondition are derived. For now there is no
 need to re-document the properties themselves, since they are
 already documented in PCIM as part of the definition of the
 PolicyConditionInPolicyRule aggregation.

 o It is also necessary to define a concrete subclass
 CompoundPolicyCondition of PolicyCondition, to introduce the
 ConditionListType property. This property has the same function,
 and works in exactly the same way, as the corresponding property
 currently defined in PCIM for the PolicyRule class.

 The class and property definitions for representing compound policy
 conditions are below, in Section 6.

5.7.2. Compound Policy Actions

 A compound action is a convenient construct to represent a sequence
 of actions to be applied as a single atomic action within a policy
 rule. In many cases, actions are related to each other and should be
 looked upon as sub-actions of one "logical" action. An example of
 such a logical action is "shape & mark" (i.e., shape a certain stream
 to a set of predefined bandwidth characteristics and then mark these

Moore Standards Track [Page 27]

RFC 3460 PCIM Extensions January 2003

 packets with a certain DSCP value). This logical action is actually
 composed of two different QoS actions, which should be performed in a
 well-defined order and as a complete set.

 The CompoundPolicyAction construct allows one to create a logical
 relationship between a number of actions, and to define the
 activation logic associated with this logical action.

 The CompoundPolicyAction construct allows the reusability of these
 complex actions, by storing them in a ReusablePolicyContainer and
 reusing them in different policy rules. Note that a compound action
 may also be aggregated by another compound action.

 As was the case with CompoundPolicyCondition, the PCIM extensions to
 introduce compound policy actions are relatively straightforward.
 This time the goal is to apply the property ActionOrder from PCIM’s
 PolicyActionInPolicyRule aggregation to a compound action that
 aggregates simpler actions. The following changes are required:

 o Create a new aggregation PolicyActionInPolicyAction, with the same
 ActionOrder property as PolicyActionInPolicyRule. The cleanest
 way to do this is to move the property up to a new abstract
 aggregation superclass PolicyActionStructure, from which the
 existing aggregation PolicyActionInPolicyRule and a new
 aggregation PolicyActionInPolicyAction are derived.

 o It is also necessary to define a concrete subclass
 CompoundPolicyAction of PolicyAction, to introduce the
 SequencedActions property. This property has the same function,
 and works in exactly the same way, as the corresponding property
 currently defined in PCIM for the PolicyRule class.

 o Finally, a new property ExecutionStrategy is needed for both the
 PCIM class PolicyRule and the new class CompoundPolicyAction. This
 property allows the policy administrator to specify how the PEP
 should behave in the case where there are multiple actions
 aggregated by a PolicyRule or by a CompoundPolicyAction.

 The class and property definitions for representing compound policy
 actions are below, in Section 6.

5.8. Variables and Values

 The following subsections introduce several related concepts,
 including PolicyVariables and PolicyValues (and their numerous
 subclasses), SimplePolicyConditions, and SimplePolicyActions.

Moore Standards Track [Page 28]

RFC 3460 PCIM Extensions January 2003

5.8.1. Simple Policy Conditions

 The SimplePolicyCondition class models elementary Boolean expressions
 of the form: "(<variable> MATCH <value>)". The relationship ’MATCH’,
 which is implicit in the model, is interpreted based on the variable
 and the value. Section 5.8.3 explains the semantics of the ’MATCH’
 operator. Arbitrarily complex Boolean expressions can be formed by
 chaining together any number of simple conditions using relational
 operators. Individual simple conditions can be negated as well.
 Arbitrarily complex Boolean expressions are modeled by the class
 CompoundPolicyCondition (described in Section 5.7.1).

 For example, the expression "SourcePort == 80" can be modeled by a
 simple condition. In this example, ’SourcePort’ is a variable, ’==’
 is the relational operator denoting the equality relationship (which
 is generalized by PCIMe to a "MATCH" relationship), and ’80’ is an
 integer value. The complete interpretation of a simple condition
 depends on the binding of the variable. Section 5.8.5 describes
 variables and their binding rules.

 The SimplePolicyCondition class refines the basic structure of the
 PolicyCondition class defined in PCIM by using the pair (<variable>,
 <value>) to form the condition. Note that the operator between the
 variable and the value is always implied in PCIMe: it is not a part
 of the formal notation.

 The variable specifies the attribute of an object that should be
 matched when evaluating the condition. For example, for a QoS model,
 this object could represent the flow that is being conditioned. A
 set of predefined variables that cover network attributes commonly
 used for filtering is introduced in PCIMe, to encourage
 interoperability. This list covers layer 3 IP attributes such as IP
 network addresses, protocols and ports, as well as a set of layer 2
 attributes (e.g., MAC addresses).

 The bound variable is matched against a value to produce the Boolean
 result. For example, in the condition "The source IP address of the
 flow belongs to the 10.1.x.x subnet", a source IP address variable is
 matched against a 10.1.x.x subnet value.

5.8.2. Using Simple Policy Conditions

 Simple conditions can be used in policy rules directly, or as
 building blocks for creating compound policy conditions.

 Simple condition composition MUST enforce the following data-type
 conformance rule: The ValueTypes property of the variable must be
 compatible with the type of the value class used. The simplest (and

Moore Standards Track [Page 29]

RFC 3460 PCIM Extensions January 2003

 friendliest, from a user point-of-view) way to do this is to equate
 the type of the value class with the name of the class. By ensuring
 that the ValueTypes property of the variable matches the name of the
 value class used, we know that the variable and value instance values
 are compatible with each other.

 Composing a simple condition requires that an instance of the class
 SimplePolicyCondition be created, and that instances of the variable
 and value classes that it uses also exist. Note that the variable
 and/or value instances may already exist as reusable objects in an
 appropriate ReusablePolicyContainer.

 Two aggregations are used in order to create the pair (<variable>,
 <value>). The aggregation PolicyVariableInSimplePolicyCondition
 relates a SimplePolicyCondition to a single variable instance.
 Similarly, the aggregation PolicyValueInSimplePolicyCondition relates
 a SimplePolicyCondition to a single value instance. Both
 aggregations are defined in this document.

 Figure 6. depicts a SimplePolicyCondition with its associated
 variable and value. Also shown are two PolicyValue instances that
 identify the values that the variable can assume.

 +-----------------------+
 | SimplePolicyCondition |
 +-----------------------+
 * @
 * @
 +------------------+ * @ +---------------+
 | (PolicyVariable) |*** @@@| (PolicyValue) |
 +------------------+ +---------------+
 # #
 # ooo #
 # #
 +---------------+ +---------------+
 | (PolicyValue) | ooo | (PolicyValue) |
 +---------------+ +---------------+

 Aggregation Legend:
 **** PolicyVariableInSimplePolicyCondition
 @@@@ PolicyValueInSimplePolicyCondition
 #### ExpectedPolicyValuesForVariable

 Figure 6. SimplePolicyCondition

 Note: The class names in parenthesis denote subclasses. The classes
 named in the figure are abstract, and thus cannot themselves be
 instantiated.

Moore Standards Track [Page 30]

RFC 3460 PCIM Extensions January 2003

5.8.3. The Simple Condition Operator

 A simple condition models an elementary Boolean expression of the
 form "variable MATCHes value". However, the formal notation of the
 SimplePolicyCondition, together with its associations, models only a
 pair, (<variable>, <value>). The ’MATCH’ operator is not directly
 modeled -- it is implied. Furthermore, this implied ’MATCH’ operator
 carries overloaded semantics.

 For example, in the simple condition "DestinationPort MATCH ’80’",
 the interpretation of the ’MATCH’ operator is equality (the ’equal’
 operator). Clearly, a different interpretation is needed in the
 following cases:

 o "DestinationPort MATCH {’80’, ’8080’}" -- operator is ’IS SET
 MEMBER’

 o "DestinationPort MATCH {’1 to 255’}" -- operator is ’IN INTEGER
 RANGE’

 o "SourceIPAddress MATCH ’MyCompany.com’" -- operator is ’IP ADDRESS
 AS RESOLVED BY DNS’

 The examples above illustrate the implicit, context-dependent nature
 of the ’MATCH’ operator. The interpretation depends on the actual
 variable and value instances in the simple condition. The
 interpretation is always derived from the bound variable and the
 value instance associated with the simple condition. Text
 accompanying the value class and implicit variable definition is used
 for interpreting the semantics of the ’MATCH’ relationship. In the
 following list, we define generic (type-independent) matching.

 PolicyValues may be multi-fielded, where each field may contain a
 range of values. The same equally holds for PolicyVariables.
 Basically, we have to deal with single values (singleton), ranges
 ([lower bound .. upper bound]), and sets (a,b,c). So independent of
 the variable and value type, the following set of generic matching
 rules for the ’MATCH’ operator are defined.

 o singleton matches singleton -> the matching rule is defined in the
 type

 o singleton matches range [lower bound .. upper bound] -> the
 matching evaluates to true, if the singleton matches the lower
 bound or the upper bound or a value in between

Moore Standards Track [Page 31]

RFC 3460 PCIM Extensions January 2003

 o singleton matches set -> the matching evaluates to true, if the
 value of the singleton matches one of the components in the set,
 where a component may be a singleton or range again

 o ranges [A..B] matches singleton -> is true if A matches B matches
 singleton

 o range [A..B] matches range [X..Y] -> the matching evaluates to
 true, if all values of the range [A..B] are also in the range
 [X..Y]. For instance, [3..5] match [1..6] evaluates to true,
 whereas [3..5] match [4..6] evaluates to false.

 o range [A..B] matches set (a,b,c, ...) -> the matching evaluates to
 true, if all values in the range [A..B] are part of the set. For
 instance, range [2..3] match set ([1..2],3) evaluates to true, as
 well as range [2..3] match set (2,3), and range [2..3] match set
 ([1..2],[3..5]).

 o set (a,b,c, ...) match singleton -> is true if a match b match c
 match ... match singleton

 o set match range -> the matching evaluates to true, if all values
 in the set are part of the range. For example, set (2,3) match
 range [1..4] evaluates to true.

 o set (a,b,c,...) match set (x,y,z,...) -> the matching evaluates to
 true, if all values in the set (a,b,c,...) are part of the set
 (x,y,z,...). For example, set (1,2,3) match set (1,2,3,4)
 evaluates to true. Set (1,2,3) match set (1,2) evaluates to
 false.

 Variables may contain various types (Section 6.11.1). When not
 stated otherwise, the type of the value bound to the variable at
 condition evaluation time and the value type of the PolicyValue
 instance need to be of the same type. If they differ, then the
 condition evaluates to FALSE.

 The ExpectedPolicyValuesForVariable association specifies an expected
 set of values that can be matched with a variable within a simple
 condition. Using this association, a source or destination port can
 be limited to the range 0-200, a source or destination IP address can
 be limited to a specified list of IPv4 address values, etc.

Moore Standards Track [Page 32]

RFC 3460 PCIM Extensions January 2003

 +-----------------------+
 | SimplePolicyCondition |
 +-----------------------+
 * @
 * @
 * @
 +-----------------------------------+ +--------------------------+
Name=SmallSourcePorts		Name=Port300
Class=PolicySourcePortVariable		Class=PolicyIntegerValue
ValueTypes=[PolicyIntegerValue]		IntegerList = [300]
 +-----------------------------------+ +--------------------------+
 #
 #
 #
 +-------------------------+
 |Name=SmallPortsValues |
 |Class=PolicyIntegerValue |
 |IntegerList=[1..200] |
 +-------------------------+

 Aggregation Legend:
 **** PolicyVariableInSimplePolicyCondition
 @@@@ PolicyValueInSimplePolicyCondition
 #### ExpectedPolicyValuesForVariable

 Figure 7. An Invalid SimplePolicyCondition

 The ability to express these limitations appears in the model to
 support validation of a SimplePolicyCondition prior to its deployment
 to an enforcement point. A Policy Management Tool, for example
 SHOULD NOT accept the SimplePolicyCondition shown in Figure 7. If,
 however, a policy rule containing this condition does appear at an
 enforcement point, the expected values play no role in the
 determination of whether the condition evaluates to True or False.
 Thus in this example, the SimplePolicyCondition evaluates to True if
 the source port for the packet under consideration is 300, and it
 evaluates to False otherwise.

5.8.4. SimplePolicyActions

 The SimplePolicyAction class models the elementary set operation.
 "SET <variable> TO <value>". The set operator MUST overwrite an old
 value of the variable. In the case where the variable to be updated
 is multi- valued, the only update operation defined is a complete
 replacement of all previous values with a new set. In other words,
 there are no Add or Remove [to/from the set of values] operations
 defined for SimplePolicyActions.

Moore Standards Track [Page 33]

RFC 3460 PCIM Extensions January 2003

 For example, the action "set DSCP to EF" can be modeled by a simple
 action. In this example, ’DSCP’ is an implicit variable referring to
 the IP packet header DSCP field. ’EF’ is an integer or bit string
 value (6 bits). The complete interpretation of a simple action
 depends on the binding of the variable.

 The SimplePolicyAction class refines the basic structure of the
 PolicyAction class defined in PCIM, by specifying the contents of the
 action using the (<variable>, <value>) pair to form the action. The
 variable specifies the attribute of an object. The value of this
 attribute is set to the value specified in <value>. Selection of the
 object is a function of the type of variable involved. See Sections
 5.8.6 and 5.8.7, respectively, for details on object selection for
 explicitly bound and implicitly bound policy variables.

 SimplePolicyActions can be used in policy rules directly, or as
 building blocks for creating CompoundPolicyActions.

 The set operation is only valid if the list of types of the variable
 (ValueTypes property of PolicyImplicitVariable) includes the
 specified type of the value. Conversion of values from one
 representation into another is not defined. For example, a variable
 of IPv4Address type may not be set to a string containing a DNS name.
 Conversions are part of an implementation-specific mapping of the
 model.

 As was the case with SimplePolicyConditions, the role of expected
 values for the variables that appear in SimplePolicyActions is for
 validation, prior to the time when an action is executed. Expected
 values play no role in action execution.

 Composing a simple action requires that an instance of the class
 SimplePolicyAction be created, and that instances of the variable and
 value classes that it uses also exist. Note that the variable and/or
 value instances may already exist as reusable objects in an
 appropriate ReusablePolicyContainer.

 Two aggregations are used in order to create the pair (<variable>,
 <value>). The aggregation PolicyVariableInSimplePolicyAction relates
 a SimplePolicyAction to a single variable instance. Similarly, the
 aggregation PolicyValueInSimplePolicyAction relates a
 SimplePolicyAction to a single value instance. Both aggregations are
 defined in this document.

 Figure 8. depicts a SimplePolicyAction with its associated variable
 and value.

Moore Standards Track [Page 34]

RFC 3460 PCIM Extensions January 2003

 +-----------------------+
 | SimplePolicyAction |
 | |
 +-----------------------+
 * @
 * @
 +------------------+ * @ +---------------+
 | (PolicyVariable) |*** @@@| (PolicyValue) |
 +------------------+ +---------------+
 # #
 # ooo #
 # #
 +---------------+ +---------------+
 | (PolicyValue) | ooo | (PolicyValue) |
 +---------------+ +---------------+

 Aggregation Legend:
 **** PolicyVariableInSimplePolicyAction
 @@@@ PolicyValueInSimplePolicyAction
 #### ExpectedPolicyValuesForVariable

 Figure 8. SimplePolicyAction

5.8.5. Policy Variables

 A variable generically represents information that changes (or
 "varies"), and that is set or evaluated by software. In policy,
 conditions and actions can abstract information as "policy variables"
 to be evaluated in logical expressions, or set by actions.

 PCIMe defines two types of PolicyVariables, PolicyImplicitVariables
 and PolicyExplicitVariables. The semantic difference between these
 classes is based on modeling context. Explicit variables are bound
 to exact model constructs, while implicit variables are defined and
 evaluated outside of a model. For example, one can imagine a
 PolicyCondition testing whether a CIM ManagedSystemElement’s Status
 property has the value "Error." The Status property is an explicitly
 defined PolicyVariable (i.e., it is defined in the context of the CIM
 Schema, and evaluated in the context of a specific instance). On the
 other hand, network packets are not explicitly modeled or
 instantiated, since there is no perceived value (at this time) in
 managing at the packet level. Therefore, a PolicyCondition can make
 no explicit reference to a model construct that represents a network
 packet’s source address. In this case, an implicit PolicyVariable is
 defined, to allow evaluation or modification of a packet’s source
 address.

Moore Standards Track [Page 35]

RFC 3460 PCIM Extensions January 2003

5.8.6. Explicitly Bound Policy Variables

 Explicitly bound policy variables indicate the class and property
 names of the model construct to be evaluated or set. The CIM Schema
 defines and constrains "appropriate" values for the variable (i.e.,
 model property) using data types and other information such as
 class/property qualifiers.

 A PolicyExplicitVariable is "explicit" because its model semantics
 are exactly defined. It is NOT explicit due to an exact binding to a
 particular object instance. If PolicyExplicitVariables were tied to
 instances (either via associations or by an object identification
 property in the class itself), then we would be forcing element-
 specific rules. On the other hand, if we only specify the object’s
 model context (class and property name), but leave the binding to the
 policy framework (for example, using policy roles), then greater
 flexibility results for either general or element-specific rules.

 For example, an element-specific rule is obtained by a condition
 ((<variable>, <value>) pair) that defines CIM LogicalDevice
 DeviceID="12345". Alternately, if a PolicyRule’s PolicyRoles is
 "edge device" and the condition ((<variable>, <value>) pair) is
 Status="Error", then a general rule results for all edge devices in
 error.

 Currently, the only binding for a PolicyExplicitVariable defined in
 PCIMe is to the instances selected by policy roles. For each such
 instance, a SimplePolicyCondition that aggregates the
 PolicyExplicitVariable evaluates to True if and only if ALL of the
 following are true:

 o The instance selected is of the class identified by the variable’s
 ModelClass property, or of a subclass of this class.
 o The instance selected has the property identified by the
 variable’s ModelProperty property.
 o The value of this property in the instance matches the value
 specified in the PolicyValue aggregated by the condition.

 In all other cases, the SimplePolicyCondition evaluates to False.

 For the case where a SimplePolicyAction aggregates a
 PolicyExplicitVariable, the indicated property in the selected
 instance is set to the value represented by the PolicyValue that the
 SimplePolicyAction also aggregates. However, if the selected
 instance is not of the class identified by the variable’s ModelClass
 property, or of a subclass of this class, then the action is not
 performed. In this case the SimplePolicyAction is not treated either
 as a successfully executed action (for the execution strategy Do

Moore Standards Track [Page 36]

RFC 3460 PCIM Extensions January 2003

 Until Success) or as a failed action (for the execution strategy Do
 Until Failure). Instead, the remaining actions for the policy rule,
 if any, are executed as if this SimplePolicyAction were not present
 at all in the list of actions aggregated by the rule.

 Explicit variables would be more powerful if they could reach beyond
 the instances selected by policy roles, to related instances.
 However, to represent a policy rule involving such variables in any
 kind of general way requires something that starts to resemble very
 much a complete policy language. Clearly such a language is outside
 the scope of PCIMe, although it might be the subject of a future
 document.

 By restricting much of the generality, it would be possible for
 explicit variables in PCIMe to reach slightly beyond a selected
 instance. For example, if a selected instance were related to
 exactly one instance of another class via a particular association
 class, and if the goal of the policy rule were both to test a
 property of this related instance and to set a property of that same
 instance, then it would be possible to represent the condition and
 action of the rule using PolicyExplicitVariables. Rather than
 handling this one specific case with explicit variables, though, it
 was decided to lump them with the more general case, and deal with
 them if and when a policy language is defined.

 Refer to Section 6.10 for the formal definition of the class
 PolicyExplicitVariable.

5.8.7. Implicitly Bound Policy Variables

 Implicitly bound policy variables define the data type and semantics
 of a variable. This determines how the variable is bound to a value
 in a condition or an action. Further instructions are provided for
 specifying data type and/or value constraints for implicitly bound
 variables.

 PCIMe introduces an abstract class, PolicyImplicitVariable, to model
 implicitly bound variables. This class is derived from the abstract
 class PolicyVariable also defined in PCIMe. Each of the implicitly
 bound variables introduced by PCIMe (and those that are introduced by
 domain- specific sub-models) MUST be derived from the
 PolicyImplicitVariable class. The rationale for using this mechanism
 for modeling is explained below in Section 5.8.9.

 A domain-specific policy information model that extends PCIMe may
 define additional implicitly bound variables either by deriving them
 directly from the class PolicyImplicitVariable, or by further

Moore Standards Track [Page 37]

RFC 3460 PCIM Extensions January 2003

 refining an existing variable class such as SourcePort. When
 refining a class such as SourcePort, existing binding rules, type or
 value constraints may be narrowed.

5.8.8. Structure and Usage of Pre-Defined Variables

 A class derived from PolicyImplicitVariable to model a particular
 implicitly bound variable SHOULD be constructed so that its name
 depicts the meaning of the variable. For example, a class defined to
 model the source port of a TCP/UDP flow SHOULD have ’SourcePort’ in
 its name.

 PCIMe defines one association and one general-purpose mechanism that
 together characterize each of the implicitly bound variables that it
 introduces:

 1. The ExpectedPolicyValuesForVariable association defines the set of
 value classes that could be matched to this variable.

 2. The list of constraints on the values that the PolicyVariable can
 hold (i.e., values that the variable must match) are defined by
 the appropriate properties of an associated PolicyValue class.

 In the example presented above, a PolicyImplicitVariable represents
 the SourcePort of incoming traffic. The ValueTypes property of an
 instance of this class will hold the class name PolicyIntegerValue.
 This by itself constrains the data type of the SourcePort instance to
 be an integer. However, we can further constrain the particular
 values that the SourcePort variable can hold by entering valid ranges
 in the IntegerList property of the PolicyIntegerValue instance (0 -
 65535 in this document).

 The combination of the VariableName and the
 ExpectedPolicyValuesForVariable association provide a consistent and
 extensible set of metadata that define the semantics of variables
 that are used to form policy conditions. Since the
 ExpectedPolicyValuesForVariable association points to a PolicyValue
 instance, any of the values expressible in the PolicyValue class can
 be used to constrain values that the PolicyImplicitVariable can hold.
 For example:

 o The ValueTypes property can be used to ensure that only proper
 classes are used in the expression. For example, the SourcePort
 variable will not be allowed to ever be of type
 PolicyIPv4AddrValue, since source ports have different semantics
 than IP addresses and may not be matched. However, integer value
 types are allowed as the property ValueTypes holds the string
 "PolicyIntegerValue", which is the class name for integer values.

Moore Standards Track [Page 38]

RFC 3460 PCIM Extensions January 2003

 o The ExpectedPolicyValuesForVariable association also ensures that
 variable-specific semantics are enforced (e.g., the SourcePort
 variable may include a constraint association to a value object
 defining a specific integer range that should be matched).

5.8.9. Rationale for Modeling Implicit Variables as Classes

 An implicitly bound variable can be modeled in one of several ways,
 including a single class with an enumerator for each individual
 implicitly bound variable and an abstract class extended for each
 individual variable. The reasons for using a class inheritance
 mechanism for specifying individual implicitly bound variables are
 these:

 1. It is easy to extend. A domain-specific information model can
 easily extend the PolicyImplicitVariable class or its subclasses
 to define domain-specific and context-specific variables. For
 example, a domain-specific QoS policy information model may
 introduce an implicitly bound variable class to model applications
 by deriving a qosApplicationVariable class from the
 PolicyImplicitVariable abstract class.

 2. Introduction of a single structural class for implicitly bound
 variables would have to include an enumerator property that
 contains all possible individual implicitly bound variables. This
 means that a domain-specific information model wishing to
 introduce an implicitly bound variable must extend the enumerator
 itself. This results in multiple definitions of the same class,
 differing in the values available in the enumerator class. One
 definition, in this document, would include the common implicitly
 bound variables’ names, while a second definition, in the domain-
 specific information model document, may include additional values
 (’qosApplicationVariable’ in the example above). It wouldn’t even
 be obvious to the application developer that multiple class
 definitions existed. It would be harder still for the application
 developer to actually find the correct class to use.

 3. In addition, an enumerator-based definition would require each
 additional value to be registered with IANA to ascertain adherence
 to standards. This would make the process cumbersome.

 4. A possible argument against the inheritance mechanism would cite
 the fact that this approach results in an explosion of class
 definitions compared to an enumerator class, which only introduces
 a single class. While, by itself, this is not a strike against
 the approach, it may be argued that data models derived from this
 information model may be more difficult to optimize for
 applications. This argument is rejected on the grounds that

Moore Standards Track [Page 39]

RFC 3460 PCIM Extensions January 2003

 application optimization is of lesser value for an information
 model than clarity and ease of extension. In addition, it is hard
 to claim that the inheritance model places an absolute burden on
 the optimization. For example, a data model may still use
 enumeration to denote instances of pre-defined variables and claim
 PCIMe compliance, as long as the data model can be mapped
 correctly to the definitions specified in this document.

5.8.10. Policy Values

 The abstract class PolicyValue is used for modeling values and
 constants used in policy conditions. Different value types are
 derived from this class, to represent the various attributes
 required. Extensions of the abstract class PolicyValue, defined in
 this document, provide a list of values for basic network attributes.
 Values can be used to represent constants as named values. Named
 values can be kept in a reusable policy container to be reused by
 multiple conditions. Examples of constants include well-known ports,
 well-known protocols, server addresses, and other similar concepts.

 The PolicyValue subclasses define three basic types of values:
 scalars, ranges and sets. For example, a well-known port number
 could be defined using the PolicyIntegerValue class, defining a
 single value (80 for HTTP), a range (80-88), or a set (80, 82, 8080)
 of ports, respectively. For details, please see the class definition
 for each value type in Section 6.14 of this document.

 PCIMe defines the following subclasses of the abstract class
 PolicyValue:

 Classes for general use:

 - PolicyStringValue,
 - PolicyIntegerValue,
 - PolicyBitStringValue
 - PolicyBooleanValue.

 Classes for layer 3 Network values:

 - PolicyIPv4AddrValue,
 - PolicyIPv6AddrValue.

 Classes for layer 2 Network values:

 - PolicyMACAddrValue.

 For details, please see the class definition section of each class in
 Section 6.14 of this document.

Moore Standards Track [Page 40]

RFC 3460 PCIM Extensions January 2003

5.9. Packet Filtering

 PCIMe contains two mechanisms for representing packet filters. The
 more general of these, termed here the domain-level model, expresses
 packet filters in terms of policy variables and policy values. The
 other mechanism, termed here the device-level model, expresses packet
 filters in a way that maps more directly to the packet fields to
 which the filters are being applied. While it is possible to map
 between these two representations of packet filters, no mapping is
 provided in PCIMe itself.

5.9.1. Domain-Level Packet Filters

 In addition to filling in the holes in the overall Policy
 infrastructure, PCIMe proposes a single mechanism for expressing
 domain-level packet filters in policy conditions. This is being done
 in response to concerns that even though the initial "wave" of
 submodels derived from PCIM were all filtering on IP packets, each
 was doing it in a slightly different way. PCIMe proposes a common
 way to express IP packet filters. The following figure illustrates
 how packet-filtering conditions are expressed in PCIMe.

 +---------------------------------+
 | CompoundFilterCondition |
 | - IsMirrored boolean |
 | - ConditionListType (DNF|CNF) |
 +---------------------------------+
 + + +
 + + +
 + + +
 SimplePC SimplePC SimplePC
 * @ * @ * @
 * @ * @ * @
 * @ * @ * @
 FlowDirection "In" SrcIP <addr1> DstIP <addr2>

 Aggregation Legend:
 ++++ PolicyConditionInPolicyCondition
 **** PolicyVariableInSimplePolicyCondition
 @@@@ PolicyValueInSimplePolicyCondition

 Figure 9. Packet Filtering in Policy Conditions

 In Figure 9., each SimplePolicyCondition represents a single field to
 be filtered on: Source IP address, Destination IP address, Source
 port, etc. An additional SimplePolicyCondition indicates the
 direction that a packet is traveling on an interface: inbound or
 outbound. Because of the FlowDirection condition, care must be taken

Moore Standards Track [Page 41]

RFC 3460 PCIM Extensions January 2003

 in aggregating a set of SimplePolicyConditions into a
 CompoundFilterCondition. Otherwise, the resulting
 CompoundPolicyCondition may match all inbound packets, or all
 outbound packets, when this is probably not what was intended.

 Individual SimplePolicyConditions may be negated when they are
 aggregated by a CompoundFilterCondition.

 CompoundFilterCondition is a subclass of CompoundPolicyCondition. It
 introduces one additional property, the Boolean property IsMirrored.
 The purpose of this property is to allow a single
 CompoundFilterCondition to match packets traveling in both directions
 on a higher-level connection such as a TCP session. When this
 property is TRUE, additional packets match a filter, beyond those
 that would ordinarily match it. An example will illustrate how this
 property works.

 Suppose we have a CompoundFilterCondition that aggregates the
 following three filters, which are ANDed together:

 o FlowDirection = "In"
 o Source IP = 9.1.1.1
 o Source Port = 80

 Regardless of whether IsMirrored is TRUE or FALSE, inbound packets
 will match this CompoundFilterCondition if their Source IP address =
 9.1.1.1 and their Source port = 80. If IsMirrored is TRUE, however,
 an outbound packet will also match the CompoundFilterCondition if its
 Destination IP address = 9.1.1.1 and its Destination port = 80.

 IsMirrored "flips" the following Source/Destination packet header
 fields:

 o FlowDirection "In" / FlowDirection "Out"
 o Source IP address / Destination IP address
 o Source port / Destination port
 o Source MAC address / Destination MAC address
 o Source [layer-2] SAP / Destination [layer-2] SAP.

5.9.2. Device-Level Packet Filters

 At the device level, packet header filters are represented by two
 subclasses of the abstract class FilterEntryBase: IpHeadersFilter and
 8021Filter. Submodels of PCIMe may define other subclasses of
 FilterEntryBase in addition to these two; ICPM [12], for example,
 defines subclasses for IPsec-specific filters.

Moore Standards Track [Page 42]

RFC 3460 PCIM Extensions January 2003

 Instances of the subclasses of FilterEntryBase are not used directly
 as filters. They are always aggregated into a FilterList, by the
 aggregation EntriesInFilterList. For PCIMe and its submodels, the
 EntrySequence property in this aggregation always takes its default
 value ’0’, indicating that the aggregated filter entries are ANDed
 together.

 The FilterList class includes an enumeration property Direction,
 representing the direction of the traffic flow to which the
 FilterList is to be applied. The value Mirrored(4) for Direction
 represents exactly the same thing as the IsMirrored boolean does in
 CompoundFilterCondition. See Section 5.9.1 for details.

5.10. Conformance to PCIM and PCIMe

 Because PCIM and PCIMe provide the core classes for modeling
 policies, they are not in general sufficient by themselves for
 representing actual policy rules. Submodels, such as QPIM and ICPM,
 provide the means for expressing policy rules, by defining subclasses
 of the classes defined in PCIM and PCIMe, and/or by indicating how
 the PolicyVariables and PolicyValues defined in PCIMe can be used to
 express conditions and actions applicable to the submodel.

 A particular submodel will not, in general, need to use every element
 defined in PCIM and PCIMe. For the elements it does not use, a
 submodel SHOULD remain silent on whether its implementations must
 support the element, must not support the element, should support the
 element, etc. For the elements it does use, a submodel SHOULD
 indicate which elements its implementations must support, which
 elements they should support, and which elements they may support.

 PCIM and PCIMe themselves simply define elements that may be of use
 to submodels. These documents remain silent on whether
 implementations are required to support an element, should support
 it, etc.

 This model (and derived submodels) defines conditions and actions
 that are used by policy rules. While the conditions and actions
 defined herein are straightforward and may be presumed to be widely
 supported, as submodels are developed it is likely that situations
 will arise in which specific conditions or actions are not supported
 by some part of the policy execution system. Similarly, situations
 may also occur where rules contain syntactic or semantic errors.

 It should be understood that the behavior and effect of undefined or
 incorrectly defined conditions or actions is not prescribed by this
 information model. While it would be helpful if it were prescribed,
 the variations in implementation restrict the ability for this

Moore Standards Track [Page 43]

RFC 3460 PCIM Extensions January 2003

 information model to control the effect. For example, if an
 implementation only detected that a PEP could not enforce a given
 action on that PEP, it would be very difficult to declare that such a
 failure should affect other PEPs, or the PDP process. On the other
 hand, if the PDP determines that it cannot properly evaluate a
 condition, that failure may well affect all applications of the
 containing rules.

6. Class Definitions

 The following definitions supplement those in PCIM itself. PCIM
 definitions that are not DEPRECATED here are still current parts of
 the overall Policy Core Information Model.

6.1. The Abstract Class "PolicySet"

 PolicySet is an abstract class that may group policies into a
 structured set of policies.

 NAME PolicySet
 DESCRIPTION An abstract class that represents a set of policies
 that form a coherent set. The set of contained
 policies has a common decision strategy and a
 common set of policy roles. Subclasses include
 PolicyGroup and PolicyRule.
 DERIVED FROM Policy
 ABSTRACT TRUE
 PROPERTIES PolicyDecisionStrategy
 PolicyRoles

 The PolicyDecisionStrategy property specifies the evaluation method
 for policy groups and rules contained within the policy set.

 NAME PolicyDecisionStrategy
 DESCRIPTION The evaluation method used for policies contained in
 the PolicySet. FirstMatching enforces the actions
 of the first rule that evaluates to TRUE;
 All Matching enforces the actions of all rules
 that evaluate to TRUE.
 SYNTAX uint16
 VALUES 1 [FirstMatching], 2 [AllMatching]
 DEFAULT VALUE 1 [FirstMatching]

 The definition of PolicyRoles is unchanged from PCIM. It is,
 however, moved from the class Policy up to the superclass PolicySet.

Moore Standards Track [Page 44]

RFC 3460 PCIM Extensions January 2003

6.2. Update PCIM’s Class "PolicyGroup"

 The PolicyGroup class is moved, so that it is now derived from
 PolicySet.

 NAME PolicyGroup
 DESCRIPTION A container for a set of related PolicyRules and
 PolicyGroups.
 DERIVED FROM PolicySet
 ABSTRACT FALSE
 PROPERTIES (none)

6.3. Update PCIM’s Class "PolicyRule"

 The PolicyRule class is moved, so that it is now derived from
 PolicySet. The Priority property is also deprecated in PolicyRule,
 and PolicyRoles is now inherited from the parent class PolicySet.
 Finally, a new property ExecutionStrategy is introduced, paralleling
 the property of the same name in the class CompoundPolicyAction.

 NAME PolicyRule
 DESCRIPTION The central class for representing the "If Condition
 then Action" semantics associated with a policy
 rule.
 DERIVED FROM PolicySet
 ABSTRACT FALSE
 PROPERTIES Enabled
 ConditionListType
 RuleUsage
 Priority DEPRECATED FOR PolicySetComponent.Priority
 AND FOR PolicySetInSystem.Priority
 Mandatory
 SequencedActions
 ExecutionStrategy

 The property ExecutionStrategy defines the execution strategy to be
 used upon the sequenced actions aggregated by this PolicyRule. (An
 equivalent ExecutionStrategy property is also defined for the
 CompoundPolicyAction class, to provide the same indication for the
 sequenced actions aggregated by a CompoundPolicyAction.) This
 document defines three execution strategies:

 Do Until Success - execute actions according to predefined order,
 until successful execution of a single action.
 Do All - execute ALL actions which are part of the modeled
 set, according to their predefined order.
 Continue doing this, even if one or more of the
 actions fails.

Moore Standards Track [Page 45]

RFC 3460 PCIM Extensions January 2003

 Do Until Failure - execute actions according to predefined order,
 until the first failure in execution of a single
 sub-action.

 The property definition is as follows:

 NAME ExecutionStrategy
 DESCRIPTION An enumeration indicating how to interpret the
 action ordering for the actions aggregated by this
 PolicyRule.
 SYNTAX uint16 (ENUM, {1=Do Until Success, 2=Do All, 3=Do
 Until Failure})
 DEFAULT VALUE Do All (2)

6.4. The Class "SimplePolicyCondition"

 A simple policy condition is composed of an ordered triplet:

 <Variable> MATCH <Value>

 No formal modeling of the MATCH operator is provided. The ’match’
 relationship is implied. Such simple conditions are evaluated by
 answering the question:

 Does <variable> match <value>?

 The ’match’ relationship is to be interpreted by analyzing the
 variable and value instances associated with the simple condition.

 Simple conditions are building blocks for more complex Boolean
 Conditions, modeled by the CompoundPolicyCondition class.

 The SimplePolicyCondition class is derived from the PolicyCondition
 class defined in PCIM.

 A variable and a value must be associated with a simple condition to
 make it a meaningful condition, using, respectively, the aggregations
 PolicyVariableInSimplePolicyCondition and
 PolicyValueInSimplePolicyCondition.

 The class definition is as follows:

 NAME SimplePolicyCondition
 DERIVED FROM PolicyCondition
 ABSTRACT False
 PROPERTIES (none)

Moore Standards Track [Page 46]

RFC 3460 PCIM Extensions January 2003

6.5. The Class "CompoundPolicyCondition"

 This class represents a compound policy condition, formed by
 aggregation of simpler policy conditions.

 NAME CompoundPolicyCondition
 DESCRIPTION A subclass of PolicyCondition that introduces the
 ConditionListType property, used for assigning DNF /
 CNF semantics to subordinate policy conditions.
 DERIVED FROM PolicyCondition
 ABSTRACT FALSE
 PROPERTIES ConditionListType

 The ConditionListType property is used to specify whether the list of
 policy conditions associated with this compound policy condition is
 in disjunctive normal form (DNF) or conjunctive normal form (CNF).
 If this property is not present, the list type defaults to DNF. The
 property definition is as follows:

 NAME ConditionListType
 DESCRIPTION Indicates whether the list of policy conditions
 associated with this policy rule is in disjunctive
 normal form (DNF) or conjunctive normal form (CNF).
 SYNTAX uint16
 VALUES DNF(1), CNF(2)
 DEFAULT VALUE DNF(1)

6.6. The Class "CompoundFilterCondition"

 This subclass of CompoundPolicyCondition introduces one additional
 property, the boolean IsMirrored. This property turns on or off the
 "flipping" of corresponding source and destination fields in a filter
 specification.

 NAME CompoundFilterCondition
 DESCRIPTION A subclass of CompoundPolicyCondition that
 introduces the IsMirrored property.
 DERIVED FROM CompoundPolicyCondition
 ABSTRACT FALSE
 PROPERTIES IsMirrored

 The IsMirrored property indicates whether packets that "mirror" a
 compound filter condition should be treated as matching the filter.
 The property definition is as follows:

Moore Standards Track [Page 47]

RFC 3460 PCIM Extensions January 2003

 NAME IsMirrored
 DESCRIPTION Indicates whether packets that mirror the specified
 filter are to be treated as matching the filter.
 SYNTAX boolean
 DEFAULT VALUE FALSE

6.7. The Class "SimplePolicyAction"

 The SimplePolicyAction class models the elementary set operation.
 "SET <variable> TO <value>". The set operator MUST overwrite an old
 value of the variable.

 Two aggregations are used in order to create the pair <variable>
 <value>. The aggregation PolicyVariableInSimplePolicyAction relates
 a SimplePolicyAction to a single variable instance. Similarly, the
 aggregation PolicyValueInSimplePolicyAction relates a
 SimplePolicyAction to a single value instance. Both aggregations are
 defined in this document.

 NAME SimplePolicyAction
 DESCRIPTION A subclass of PolicyAction that introduces the
 notion of "SET variable TO value".
 DERIVED FROM PolicyAction
 ABSTRACT FALSE
 PROPERTIES (none)

6.8. The Class "CompoundPolicyAction"

 The CompoundPolicyAction class is used to represent an expression
 consisting of an ordered sequence of action terms. Each action term
 is represented as a subclass of the PolicyAction class, defined in
 [PCIM]. Compound actions are constructed by associating dependent
 action terms together using the PolicyActionInPolicyAction
 aggregation.

 The class definition is as follows:

 NAME CompoundPolicyAction
 DESCRIPTION A class for representing sequenced action terms.
 Each action term is defined to be a subclass of the
 PolicyAction class.
 DERIVED FROM PolicyAction
 ABSTRACT FALSE
 PROPERTIES SequencedActions
 ExecutionStrategy

 This is a concrete class, and is therefore directly instantiable.

Moore Standards Track [Page 48]

RFC 3460 PCIM Extensions January 2003

 The Property SequencedActions is identical to the SequencedActions
 property defined in PCIM for the class PolicyRule.

 The property ExecutionStrategy defines the execution strategy to be
 used upon the sequenced actions associated with this compound action.
 (An equivalent ExecutionStrategy property is also defined for the
 PolicyRule class, to provide the same indication for the sequenced
 actions associated with a PolicyRule.) This document defines three
 execution strategies:

 Do Until Success - execute actions according to predefined order,
 until successful execution of a single sub-action.
 Do All - execute ALL actions which are part of the modeled
 set, according to their predefined order.
 Continue doing this, even if one or more of the
 sub-actions fails.
 Do Until Failure - execute actions according to predefined order,
 until the first failure in execution of a single
 sub-action.

 Since a CompoundPolicyAction may itself be aggregated either by a
 PolicyRule or by another CompoundPolicyAction, its success or failure
 will be an input to the aggregating entity’s execution strategy.
 Consequently, the following rules are specified, for determining
 whether a CompoundPolicyAction succeeds or fails:

 If the CompoundPolicyAction’s ExecutionStrategy is Do Until Success,
 then:

 o If one component action succeeds, then the CompoundPolicyAction
 succeeds.
 o If all component actions fail, then the CompoundPolicyAction
 fails.

 If the CompoundPolicyAction’s ExecutionStrategy is Do All, then:

 o If all component actions succeed, then the CompoundPolicyAction
 succeeds.
 o If at least one component action fails, then the
 CompoundPolicyAction fails.

 If the CompoundPolicyAction’s ExecutionStrategy is Do Until Failure,
 then:

 o If all component actions succeed, then the CompoundPolicyAction
 succeeds.
 o If at least one component action fails, then the
 CompoundPolicyAction fails.

Moore Standards Track [Page 49]

RFC 3460 PCIM Extensions January 2003

 The definition of the ExecutionStrategy property is as follows:

 NAME ExecutionStrategy
 DESCRIPTION An enumeration indicating how to interpret the
 action ordering for the actions aggregated by this
 CompoundPolicyAction.
 SYNTAX uint16 (ENUM, {1=Do Until Success, 2=Do All, 3=Do
 Until Failure})
 DEFAULT VALUE Do All (2)

6.9. The Abstract Class "PolicyVariable"

 Variables are used for building individual conditions. The variable
 specifies the property of a flow or an event that should be matched
 when evaluating the condition. However, not every combination of a
 variable and a value creates a meaningful condition. For example, a
 source IP address variable can not be matched against a value that
 specifies a port number. A given variable selects the set of
 matchable value types.

 A variable can have constraints that limit the set of values within a
 particular value type that can be matched against it in a condition.
 For example, a source-port variable limits the set of values to
 represent integers to the range of 0-65535. Integers outside this
 range cannot be matched to the source-port variable, even though they
 are of the correct data type. Constraints for a given variable are
 indicated through the ExpectedPolicyValuesForVariable association.

 The PolicyVariable is an abstract class. Implicit and explicit
 context variable classes are defined as sub classes of the
 PolicyVariable class. A set of implicit variables is defined in this
 document as well.

 The class definition is as follows:

 NAME PolicyVariable
 DERIVED FROM Policy
 ABSTRACT TRUE
 PROPERTIES (none)

6.10. The Class "PolicyExplicitVariable"

 Explicitly defined policy variables are evaluated within the context
 of the CIM Schema and its modeling constructs. The
 PolicyExplicitVariable class indicates the exact model property to be
 evaluated or manipulated. See Section 5.8.6 for a complete
 discussion of what happens when the values of the ModelClass and

Moore Standards Track [Page 50]

RFC 3460 PCIM Extensions January 2003

 ModelProperty properties in an instance of this class do not
 correspond to the characteristics of the model construct being
 evaluated or updated.

 The class definition is as follows:

 NAME PolicyExplicitVariable
 DERIVED FROM PolicyVariable
 ABSTRACT False
 PROPERTIES ModelClass, ModelProperty

6.10.1. The Single-Valued Property "ModelClass"

 This property is a string specifying the class name whose property is
 evaluated or set as a PolicyVariable.

 The property is defined as follows:

 NAME ModelClass
 SYNTAX String

6.10.2. The Single-Valued Property ModelProperty

 This property is a string specifying the property name, within the
 ModelClass, which is evaluated or set as a PolicyVariable. The
 property is defined as follows:

 NAME ModelProperty
 SYNTAX String

6.11. The Abstract Class "PolicyImplicitVariable"

 Implicitly defined policy variables are evaluated outside of the
 context of the CIM Schema and its modeling constructs. Subclasses
 specify the data type and semantics of the PolicyVariables.

 Interpretation and evaluation of a PolicyImplicitVariable can vary,
 depending on the particular context in which it is used. For
 example, a "SourceIP" address may denote the source address field of
 an IP packet header, or the sender address delivered by an RSVP PATH
 message.

 The class definition is as follows:

 NAME PolicyImplicitVariable
 DERIVED FROM PolicyVariable
 ABSTRACT True
 PROPERTIES ValueTypes[]

Moore Standards Track [Page 51]

RFC 3460 PCIM Extensions January 2003

6.11.1. The Multi-Valued Property "ValueTypes"

 This property is a set of strings specifying an unordered list of
 possible value/data types that can be used in simple conditions and
 actions, with this variable. The value types are specified by their
 class names (subclasses of PolicyValue such as PolicyStringValue).
 The list of class names enables an application to search on a
 specific name, as well as to ensure that the data type of the
 variable is of the correct type.

 The list of default ValueTypes for each subclass of
 PolicyImplicitVariable is specified within that variable’s
 definition.

 The property is defined as follows:

 NAME ValueTypes
 SYNTAX String

6.12. Subclasses of "PolicyImplicitVariable" Specified in PCIMe

 The following subclasses of PolicyImplicitVariable are defined in
 PCIMe.

6.12.1. The Class "PolicySourceIPv4Variable"

 NAME PolicySourceIPv4Variable
 DESCRIPTION The source IPv4 address. of the outermost IP packet
 header. "Outermost" here refers to the IP packet as
 it flows on the wire, before any headers have been
 stripped from it.

 ALLOWED VALUE TYPES:
 - PolicyIPv4AddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.2. The Class "PolicySourceIPv6Variable"

 NAME PolicySourceIPv6Variable
 DESCRIPTION The source IPv6 address of the outermost IP packet
 header. "Outermost" here refers to the IP packet as
 it flows on the wire, before any headers have been
 stripped from it.

Moore Standards Track [Page 52]

RFC 3460 PCIM Extensions January 2003

 ALLOWED VALUE TYPES:
 - PolicyIPv6AddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.3. The Class "PolicyDestinationIPv4Variable"

 NAME PolicyDestinationIPv4Variable
 DESCRIPTION The destination IPv4 address of the outermost IP
 packet header. "Outermost" here refers to the IP
 packet as it flows on the wire, before any headers
 have been stripped from it.

 ALLOWED VALUE TYPES:
 - PolicyIPv4AddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.4. The Class "PolicyDestinationIPv6Variable"

 NAME PolicyDestinationIPv6Variable
 DESCRIPTION The destination IPv6 address of the outermost IP
 packet header. "Outermost" here refers to the IP
 packet as it flows on the wire, before any headers
 have been stripped from it.

 ALLOWED VALUE TYPES:
 - PolicyIPv6AddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

Moore Standards Track [Page 53]

RFC 3460 PCIM Extensions January 2003

6.12.5. The Class "PolicySourcePortVariable"

 NAME PolicySourcePortVariable
 DESCRIPTION Ports are defined as the abstraction that transport
 protocols use to distinguish among multiple
 destinations within a given host computer. For TCP
 and UDP flows, the PolicySourcePortVariable is
 logically bound to the source port field of the
 outermost UDP or TCP packet header. "Outermost"
 here refers to the IP packet as it flows on the
 wire, before any headers have been stripped from
 it.
 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..65535)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.6. The Class "PolicyDestinationPortVariable"

 NAME PolicyDestinationPortVariable
 DESCRIPTION Ports are defined as the abstraction that transport
 protocols use to distinguish among multiple
 destinations within a given host computer. For TCP
 and UDP flows, the PolicyDestinationPortVariable is
 logically bound to the destination port field of the
 outermost UDP or TCP packet header. "Outermost"
 here refers to the IP packet as it flows on the
 wire, before any headers have been stripped from it.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..65535)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.7. The Class "PolicyIPProtocolVariable"

 NAME PolicyIPProtocolVariable
 DESCRIPTION The IP protocol number.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..255)

Moore Standards Track [Page 54]

RFC 3460 PCIM Extensions January 2003

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.8. The Class "PolicyIPVersionVariable"

 NAME PolicyIPVersionVariable
 DESCRIPTION The IP version number. The well-known values are 4
 and 6.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..15)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.9. The Class "PolicyIPToSVariable"

 NAME PolicyIPToSVariable
 DESCRIPTION The IP TOS octet.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..255)
 - PolicyBitStringValue (8 bits)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.10. The Class "PolicyDSCPVariable"

 NAME PolicyDSCPVariable
 DESCRIPTION The 6 bit Differentiated Service Code Point.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..63)
 - PolicyBitStringValue (6 bits)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

Moore Standards Track [Page 55]

RFC 3460 PCIM Extensions January 2003

6.12.11. The Class "PolicyFlowIdVariable"

 NAME PolicyFlowIdVariable
 DESCRIPTION The flow identifier of the outermost IPv6 packet
 header. "Outermost" here refers to the IP packet as
 it flows on the wire, before any headers have been
 stripped from it.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..1048575
 - PolicyBitStringValue (20 bits)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.12. The Class "PolicySourceMACVariable"

 NAME PolicySourceMACVariable
 DESCRIPTION The source MAC address.

 ALLOWED VALUE TYPES:
 - PolicyMACAddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.13. The Class "PolicyDestinationMACVariable"

 NAME PolicyDestinationMACVariable
 DESCRIPTION The destination MAC address.

 ALLOWED VALUE TYPES:
 - PolicyMACAddrValue

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.14. The Class "PolicyVLANVariable"

 NAME PolicyVLANVariable
 DESCRIPTION The virtual Bridged Local Area Network Identifier, a
 12-bit field as defined in the IEEE 802.1q standard.

Moore Standards Track [Page 56]

RFC 3460 PCIM Extensions January 2003

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..4095)
 - PolicyBitStringValue (12 bits)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.15. The Class "PolicyCoSVariable"

 NAME PolicyCoSVariable
 DESCRIPTION Class of Service, a 3-bit field, used in the layer 2
 header to select the forwarding treatment. Bound to
 the IEEE 802.1q user-priority field.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..7)
 - PolicyBitStringValue (3 bits)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.16. The Class "PolicyEthertypeVariable"

 NAME PolicyEthertypeVariable
 DESCRIPTION The Ethertype protocol number of Ethernet frames.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..65535)
 - PolicyBitStringValue (16 bits)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.17. The Class "PolicySourceSAPVariable"

 NAME PolicySourceSAPVariable
 DESCRIPTION The Source Service Access Point (SAP) number of the
 IEEE 802.2 LLC header.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..255)
 - PolicyBitStringValue (8 bits)

Moore Standards Track [Page 57]

RFC 3460 PCIM Extensions January 2003

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.18. The Class "PolicyDestinationSAPVariable"

 NAME PolicyDestinationSAPVariable
 DESCRIPTION The Destination Service Access Point (SAP) number of
 the IEEE 802.2 LLC header.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..255)
 - PolicyBitStringValue (8 bits)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.19. The Class "PolicySNAPOUIVariable"

 NAME PolicySNAPOUIVariable
 DESCRIPTION The value of the first three octets of the Sub-
 Network Access Protocol (SNAP) Protocol Identifier
 field for 802.2 SNAP encapsulation, containing an
 Organizationally Unique Identifier (OUI). The value
 00-00-00 indicates the encapsulation of Ethernet
 frames (RFC 1042). OUI value 00-00-F8 indicates the
 special encapsulation of Ethernet frames by certain
 types of bridges (IEEE 802.1H). Other values are
 supported, but are not further defined here. These
 OUI values are to be interpreted according to the
 endian-notation conventions of IEEE 802. For either
 of the two Ethernet encapsulations, the remainder of
 the Protocol Identifier field is represented by the
 PolicySNAPTypeVariable.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..16777215)
 - PolicyBitStringValue (24 bits)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

Moore Standards Track [Page 58]

RFC 3460 PCIM Extensions January 2003

6.12.20. The Class "PolicySNAPTypeVariable"

 NAME PolicySNAPTypeVariable
 DESCRIPTION The value of the 4th and 5th octets of the Sub-
 Network Access Protocol (SNAP) Protocol Identifier
 field for IEEE 802 SNAP encapsulation when the
 PolicySNAPOUIVariable indicates one of the two
 Encapsulated Ethernet frame formats. This value is
 undefined for other values of PolicySNAPOUIVariable.

 ALLOWED VALUE TYPES:
 - PolicyIntegerValue (0..65535)
 - PolicyBitStringValue (16 bits)

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

6.12.21. The Class "PolicyFlowDirectionVariable"

 NAME PolicyFlowDirectionVariable
 DESCRIPTION The direction of a flow relative to a network
 element. Direction may be "IN" and/or "OUT".

 ALLOWED VALUE TYPES:
 - PolicyStringValue (’IN", "OUT")

 DERIVED FROM PolicyImplicitVariable
 ABSTRACT FALSE
 PROPERTIES (none)

 To match on both inbound and outbound flows, the associated
 PolicyStringValue object has two entries in its StringList property:
 "IN" and "OUT".

6.13. The Abstract Class "PolicyValue"

 This is an abstract class that serves as the base class for all
 subclasses that are used to define value objects in the PCIMe. It is
 used for defining values and constants used in policy conditions.
 The class definition is as follows:

 NAME PolicyValue
 DERIVED FROM Policy
 ABSTRACT True
 PROPERTIES (none)

Moore Standards Track [Page 59]

RFC 3460 PCIM Extensions January 2003

6.14. Subclasses of "PolicyValue" Specified in PCIMe

 The following subsections contain the PolicyValue subclasses defined
 in PCIMe. Additional subclasses may be defined in models derived
 from PCIMe.

6.14.1. The Class "PolicyIPv4AddrValue"

 This class is used to provide a list of IPv4Addresses, hostnames and
 address range values to be matched against in a policy condition.
 The class definition is as follows:

 NAME PolicyIPv4AddrValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES IPv4AddrList[]

 The IPv4AddrList property provides an unordered list of strings, each
 specifying a single IPv4 address, a hostname, or a range of IPv4
 addresses, according to the ABNF definition [6] of an IPv4 address,
 as specified below:

 IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
 IPv4prefix = IPv4address "/" 1*2DIGIT
 IPv4range = IPv4address"-"IPv4address
 IPv4maskedaddress = IPv4address","IPv4address
 Hostname (as defined in [4])

 In the above definition, each string entry is either:

 1. A single IPv4address in dot notation, as defined above. Example:
 121.1.1.2

 2. An IPv4prefix address range, as defined above, specified by an
 address and a prefix length, separated by "/". Example:
 2.3.128.0/15

 3. An IPv4range address range defined above, specified by a starting
 address in dot notation and an ending address in dot notation,
 separated by "-". The range includes all addresses between the
 range’s starting and ending addresses, including these two
 addresses. Example: 1.1.22.1-1.1.22.5

 4. An IPv4maskedaddress address range, as defined above, specified by
 an address and mask. The address and mask are represented in dot
 notation, separated by a comma ",". The masked address appears
 before the comma, and the mask appears after the comma. Example:
 2.3.128.0,255.255.248.0.

Moore Standards Track [Page 60]

RFC 3460 PCIM Extensions January 2003

 5. A single Hostname. The Hostname format follows the guidelines and
 restrictions specified in [4]. Example: www.bigcompany.com.

 Conditions matching IPv4AddrValues evaluate to true according to the
 generic matching rules. Additionally, a hostname is matched against
 another valid IPv4address representation by resolving the hostname
 into an IPv4 address first, and then comparing the addresses
 afterwards. Matching hostnames against each other is done using a
 string comparison of the two names.

 The property definition is as follows:

 NAME IPv4AddrList
 SYNTAX String
 FORMAT IPv4address | IPv4prefix | IPv4range |
 IPv4maskedaddress | hostname

6.14.2. The Class "PolicyIPv6AddrValue

 This class is used to define a list of IPv6 addresses, hostnames, and
 address range values. The class definition is as follows:

 NAME PolicyIPv6AddrValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES IPv6AddrList[]

 The property IPv6AddrList provides an unordered list of strings, each
 specifying an IPv6 address, a hostname, or a range of IPv6 addresses.
 IPv6 address format definition uses the standard address format
 defined in [7]. The ABNF definition [6] as specified in [7] is:

 IPv6address = hexpart [":" IPv4address]
 IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
 IPv6prefix = hexpart "/" 1*2DIGIT
 hexpart = hexseq | hexseq "::" [hexseq] | "::" [hexseq]
 hexseq = hex4 *(":" hex4)
 hex4 = 1*4HEXDIG
 IPv6range = IPv6address"-"IPv6address
 IPv6maskedaddress = IPv6address","IPv6address
 Hostname (as defines in [NAMES])

 Each string entry is either:

 1. A single IPv6address as defined above.

 2. A single Hostname. Hostname format follows guidelines and
 restrictions specified in [4].

Moore Standards Track [Page 61]

RFC 3460 PCIM Extensions January 2003

 3. An IPv6range address range, specified by a starting address in dot
 notation and an ending address in dot notation, separated by "-".
 The range includes all addresses between the range’s starting and
 ending addresses, including these two addresses.

 4. An IPv4maskedaddress address range defined above specified by an
 address and mask. The address and mask are represented in dot
 notation separated by a comma ",".

 5. A single IPv6prefix as defined above.

 Conditions matching IPv6AddrValues evaluate to true according to the
 generic matching rules. Additionally, a hostname is matched against
 another valid IPv6address representation by resolving the hostname
 into an IPv6 address first, and then comparing the addresses
 afterwards. Matching hostnames against each other is done using a
 string comparison of the two names.

6.14.3. The Class "PolicyMACAddrValue"

 This class is used to define a list of MAC addresses and MAC address
 range values. The class definition is as follows:

 NAME PolicyMACAddrValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES MACAddrList[]

 The property MACAddrList provides an unordered list of strings, each
 specifying a MAC address or a range of MAC addresses. The 802 MAC
 address canonical format is used. The ABNF definition [6] is:

 MACaddress = 1*4HEXDIG ":" 1*4HEXDIG ":" 1*4HEXDIG
 MACmaskedaddress = MACaddress","MACaddress

 Each string entry is either:

 1. A single MAC address. Example: 0000:00A5:0000

 2. A MACmaskedaddress address range defined specified by an address
 and mask. The mask specifies the relevant bits in the address.
 Example: 0000:00A5:0000,FFFF:FFFF:0000 defines a range of MAC
 addresses in which the first four octets are equal to 0000:00A5.

Moore Standards Track [Page 62]

RFC 3460 PCIM Extensions January 2003

 The property definition is as follows:

 NAME MACAddrList
 SYNTAX String
 FORMAT MACaddress | MACmaskedaddress

6.14.4. The Class "PolicyStringValue"

 This class is used to represent a single string value, or a set of
 string values. Each value can have wildcards. The class definition
 is as follows:

 NAME PolicyStringValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES StringList[]

 The property StringList provides an unordered list of strings, each
 representing a single string with wildcards. The asterisk character
 "*" is used as a wildcard, and represents an arbitrary substring
 replacement. For example, the value "abc*def" matches the string
 "abcxyzdef", and the value "abc*def*" matches the string
 "abcxxxdefyyyzzz". The syntax definition is identical to the
 substring assertion syntax defined in [5]. If the asterisk character
 is required as part of the string value itself, it MUST be quoted as
 described in Section 4.3 of [5].

 The property definition is as follows:

 NAME StringList
 SYNTAX String

6.14.5. The Class "PolicyBitStringValue"

 This class is used to represent a single bit string value, or a set
 of bit string values. The class definition is as follows:

 NAME PolicyBitStringValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES BitStringList[]

 The property BitStringList provides an unordered list of strings,
 each representing a single bit string or a set of bit strings. The
 number of bits specified SHOULD equal the number of bits of the
 expected variable. For example, for a one-octet variable, 8 bits

Moore Standards Track [Page 63]

RFC 3460 PCIM Extensions January 2003

 should be specified. If the variable does not have a fixed length,
 the bit string should be matched against the variable’s most
 significant bit string. The formal definition of a bit string is:

 binary-digit = "0" / "1"
 bitString = 1*binary-digit
 maskedBitString = bitString","bitString

 Each string entry is either:

 1. A single bit string. Example: 00111010

 2. A range of bit strings specified using a bit string and a bit
 mask. The bit string and mask fields have the same number of bits
 specified. The mask bit string specifies the significant bits in
 the bit string value. For example, 110110, 100110 and 110111
 would match the maskedBitString 100110,101110 but 100100 would
 not.

 The property definition is as follows:

 NAME BitStringList
 SYNTAX String
 FORMAT bitString | maskedBitString

6.14.6. The Class "PolicyIntegerValue"

 This class provides a list of integer and integer range values.
 Integers of arbitrary sizes can be represented. The class definition
 is as follows:

 NAME PolicyIntegerValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES IntegerList[]

 The property IntegerList provides an unordered list of integers and
 integer range values, represented as strings. The format of this
 property takes one of the following forms:

 1. An integer value.

 2. A range of integers. The range is specified by a starting integer
 and an ending integer, separated by ’..’. The starting integer
 MUST be less than or equal to the ending integer. The range
 includes all integers between the starting and ending integers,
 including these two integers.

Moore Standards Track [Page 64]

RFC 3460 PCIM Extensions January 2003

 To represent a range of integers that is not bounded, the reserved
 words -INFINITY and/or INFINITY can be used in place of the starting
 and ending integers. In addition to ordinary integer matches,
 INFINITY matches INFINITY and -INFINITY matches -INFINITY.

 The ABNF definition [6] is:

 integer = [-]1*DIGIT | "INFINITY" | "-INFINITY"
 integerrange = integer".."integer

 Using ranges, the operators greater-than, greater-than-or-equal-to,
 less- than, and less-than-or-equal-to can be expressed. For example,
 "X is- greater-than 5" (where X is an integer) can be translated to
 "X matches 6-INFINITY". This enables the match condition semantics
 of the operator for the SimplePolicyCondition class to be kept simple
 (i.e., just the value "match").

 The property definition is as follows:

 NAME IntegerList
 SYNTAX String
 FORMAT integer | integerrange

6.14.7. The Class "PolicyBooleanValue"

 This class is used to represent a Boolean (TRUE/FALSE) value. The
 class definition is as follows:

 NAME PolicyBooleanValue
 DERIVED FROM PolicyValue
 ABSTRACT False
 PROPERTIES BooleanValue

 The property definition is as follows:

 NAME BooleanValue
 SYNTAX boolean

6.15. The Class "PolicyRoleCollection"

 This class represents a collection of managed elements that share a
 common role. The PolicyRoleCollection always exists in the context
 of a system, specified using the PolicyRoleCollectionInSystem
 association. The value of the PolicyRole property in this class
 specifies the role, and can be matched with the value(s) in the
 PolicyRoles array in PolicyRules and PolicyGroups. ManagedElements
 that share the role defined in this collection are aggregated into
 the collection via the association ElementInPolicyRoleCollection.

Moore Standards Track [Page 65]

RFC 3460 PCIM Extensions January 2003

 NAME PolicyRoleCollection
 DESCRIPTION A subclass of the CIM Collection class used to group
 together managed elements that share a role.
 DERIVED FROM Collection
 ABSTRACT FALSE

 PROPERTIES PolicyRole

6.15.1. The Single-Valued Property "PolicyRole"

 This property represents the role associated with a
 PolicyRoleCollection. The property definition is as follows:

 NAME PolicyRole
 DESCRIPTION A string representing the role associated with a
 PolicyRoleCollection.
 SYNTAX string

6.16. The Class "ReusablePolicyContainer"

 The new class ReusablePolicyContainer is defined as follows:

 NAME ReusablePolicyContainer
 DESCRIPTION A class representing an administratively defined
 container for reusable policy-related information.
 This class does not introduce any additional
 properties beyond those in its superclass
 AdminDomain. It does, however, participate in
 a number of unique associations.
 DERIVED FROM AdminDomain
 ABSTRACT FALSE
 PROPERTIES (none)

6.17. Deprecate PCIM’s Class "PolicyRepository"

 The class definition of PolicyRepository (from PCIM) is updated as
 follows, with an indication that the class has been deprecated. Note
 that when an element of the model is deprecated, its replacement
 element is identified explicitly.

 NAME PolicyRepository
 DEPRECATED FOR ReusablePolicyContainer
 DESCRIPTION A class representing an administratively defined
 container for reusable policy-related information.
 This class does not introduce any additional
 properties beyond those in its superclass
 AdminDomain. It does, however, participate in a
 number of unique associations.

Moore Standards Track [Page 66]

RFC 3460 PCIM Extensions January 2003

 DERIVED FROM AdminDomain
 ABSTRACT FALSE
 PROPERTIES (none)

6.18. The Abstract Class "FilterEntryBase"

 FilterEntryBase is the abstract base class from which all filter
 entry classes are derived. It serves as the endpoint for the
 EntriesInFilterList aggregation, which groups filter entries into
 filter lists. Its properties include CIM naming attributes and an
 IsNegated boolean property (to easily "NOT" the match information
 specified in an instance of one of its subclasses).

 The class definition is as follows:

 NAME FilterEntryBase
 DESCRIPTION An abstract class representing a single
 filter that is aggregated into a
 FilterList via the aggregation
 EntriesInFilterList.
 DERIVED FROM LogicalElement
 TYPE Abstract
 PROPERTIES IsNegated

6.19. The Class "IpHeadersFilter"

 This concrete class contains the most commonly required properties
 for performing filtering on IP, TCP or UDP headers. Properties not
 present in an instance of IPHeadersFilter are treated as ’all
 values’. A property HdrIpVersion identifies whether the IP addresses
 in an instance are IPv4 or IPv6 addresses. Since the source and
 destination IP addresses come from the same packet header, they will
 always be of the same type.

 The class definition is as follows:

 NAME IpHeadersFilter
 DESCRIPTION A class representing an entire IP
 header filter, or any subset of one.
 DERIVED FROM FilterEntryBase
 TYPE Concrete
 PROPERTIES HdrIpVersion, HdrSrcAddress,
 HdrSrcAddressEndOfRange, HdrSrcMask,
 HdrDestAddress, HdrDestAddressEndOfRange,
 HdrDestMask, HdrProtocolID,
 HdrSrcPortStart, HdrSrcPortEnd,
 HdrDestPortStart, HdrDestPortEnd, HdrDSCP[],
 HdrFlowLabel

Moore Standards Track [Page 67]

RFC 3460 PCIM Extensions January 2003

6.19.1. The Property HdrIpVersion

 This property is an 8-bit unsigned integer, identifying the version
 of the IP addresses to be filtered on. IP versions are identified as
 they are in the Version field of the IP packet header - IPv4 = 4,
 IPv6 = 6. These two values are the only ones defined for this
 property.

 The value of this property determines the sizes of the OctetStrings
 in the six properties HdrSrcAddress, HdrSrcAddressEndOfRange,
 HdrSrcMask, HdrDestAddress, HdrDestAddressEndOfRange, and
 HdrDestMask, as follows:

 o IPv4: OctetString(SIZE (4))

 o IPv6: OctetString(SIZE (16|20)), depending on whether a scope
 identifier is present

 If a value for this property is not provided, then the filter does
 not consider IP version in selecting matching packets, i.e., IP
 version matches for all values. In this case, the HdrSrcAddress,
 HdrSrcAddressEndOfRange, HdrSrcMask, HdrDestAddress,
 HdrDestAddressEndOfRange, and HdrDestMask must also not be present.

6.19.2. The Property HdrSrcAddress

 This property is an OctetString, of a size determined by the value of
 the HdrIpVersion property, representing a source IP address. When
 there is no HdrSrcAddressEndOfRange value, this value is compared to
 the source address in the IP header, subject to the mask represented
 in the HdrSrcMask property. (Note that the mask is ANDed with the
 address.) When there is a HdrSrcAddressEndOfRange value, this value
 is the start of the specified range (i.e., the HdrSrcAddress is lower
 than the HdrSrcAddressEndOfRange) that is compared to the source
 address in the IP header and matches on any value in the range.

 If a value for this property is not provided, then the filter does
 not consider HdrSrcAddress in selecting matching packets, i.e.,
 HdrSrcAddress matches for all values.

6.19.3. The Property HdrSrcAddressEndOfRange

 This property is an OctetString, of a size determined by the value of
 the HdrIpVersion property, representing the end of a range of source
 IP addresses (inclusive), where the start of the range is the
 HdrSrcAddress property value.

Moore Standards Track [Page 68]

RFC 3460 PCIM Extensions January 2003

 If a value for HdrSrcAddress is not provided, then this property also
 MUST NOT be provided. If a value for this property is provided, then
 HdrSrcMask MUST NOT be provided.

6.19.4. The Property HdrSrcMask

 This property is an OctetString, of a size determined by the value of
 the HdrIpVersion property, representing a mask to be used in
 comparing the source address in the IP header with the value
 represented in the HdrSrcAddress property.

 If a value for this property is not provided, then the filter does
 not consider HdrSrcMask in selecting matching packets, i.e., the
 value of HdrSrcAddress or the source address range must match the
 source address in the packet exactly. If a value for this property
 is provided, then HdrSrcAddressEndOfRange MUST NOT be provided.

6.19.5. The Property HdrDestAddress

 This property is an OctetString, of a size determined by the value of
 the HdrIpVersion property, representing a destination IP address.
 When there is no HdrDestAddressEndOfRange value, this value is
 compared to the destination address in the IP header, subject to the
 mask represented in the HdrDestMask property. (Note that the mask is
 ANDed with the address.) When there is a HdrDestAddressEndOfRange
 value, this value is the start of the specified range (i.e., the
 HdrDestAddress is lower than the HdrDestAddressEndOfRange) that is
 compared to the destination address in the IP header and matches on
 any value in the range.

 If a value for this property is not provided, then the filter does
 not consider HdrDestAddress in selecting matching packets, i.e.,
 HdrDestAddress matches for all values.

6.19.6. The Property HdrDestAddressEndOfRange

 This property is an OctetString, of a size determined by the value of
 the HdrIpVersion property, representing the end of a range of
 destination IP addresses (inclusive), where the start of the range is
 the HdrDestAddress property value.

 If a value for HdrDestAddress is not provided, then this property
 also MUST NOT be provided. If a value for this property is provided,
 then HdrDestMask MUST NOT be provided.

Moore Standards Track [Page 69]

RFC 3460 PCIM Extensions January 2003

6.19.7. The Property HdrDestMask

 This property is an OctetString, of a size determined by the value of
 the HdrIpVersion property, representing a mask to be used in
 comparing the destination address in the IP header with the value
 represented in the HdrDestAddress property.

 If a value for this property is not provided, then the filter does
 not consider HdrDestMask in selecting matching packets, i.e., the
 value of HdrDestAddress or the destination address range must match
 the destination address in the packet exactly. If a value for this
 property is provided, then HdrDestAddressEndOfRange MUST NOT be
 provided.

6.19.8. The Property HdrProtocolID

 This property is an 8-bit unsigned integer, representing an IP
 protocol type. This value is compared to the Protocol field in the
 IP header.

 If a value for this property is not provided, then the filter does
 not consider HdrProtocolID in selecting matching packets, i.e.,
 HdrProtocolID matches for all values.

6.19.9. The Property HdrSrcPortStart

 This property is a 16-bit unsigned integer, representing the lower
 end of a range of UDP or TCP source ports. The upper end of the
 range is represented by the HdrSrcPortEnd property. The value of
 HdrSrcPortStart MUST be no greater than the value of HdrSrcPortEnd.
 A single port is indicated by equal values for HdrSrcPortStart and
 HdrSrcPortEnd.

 A source port filter is evaluated by testing whether the source port
 identified in the IP header falls within the range of values between
 HdrSrcPortStart and HdrSrcPortEnd, including these two end points.

 If a value for this property is not provided, then the filter does
 not consider HdrSrcPortStart in selecting matching packets, i.e.,
 there is no lower bound in matching source port values.

6.19.10. The Property HdrSrcPortEnd

 This property is a 16-bit unsigned integer, representing the upper
 end of a range of UDP or TCP source ports. The lower end of the
 range is represented by the HdrSrcPortStart property. The value of

Moore Standards Track [Page 70]

RFC 3460 PCIM Extensions January 2003

 HdrSrcPortEnd MUST be no less than the value of HdrSrcPortStart. A
 single port is indicated by equal values for HdrSrcPortStart and
 HdrSrcPortEnd.

 A source port filter is evaluated by testing whether the source port
 identified in the IP header falls within the range of values between
 HdrSrcPortStart and HdrSrcPortEnd, including these two end points.

 If a value for this property is not provided, then the filter does
 not consider HdrSrcPortEnd in selecting matching packets, i.e., there
 is no upper bound in matching source port values.

6.19.11. The Property HdrDestPortStart

 This property is a 16-bit unsigned integer, representing the lower
 end of a range of UDP or TCP destination ports. The upper end of the
 range is represented by the HdrDestPortEnd property. The value of
 HdrDestPortStart MUST be no greater than the value of HdrDestPortEnd.
 A single port is indicated by equal values for HdrDestPortStart and
 HdrDestPortEnd.

 A destination port filter is evaluated by testing whether the
 destination port identified in the IP header falls within the range
 of values between HdrDestPortStart and HdrDestPortEnd, including
 these two end points.

 If a value for this property is not provided, then the filter does
 not consider HdrDestPortStart in selecting matching packets, i.e.,
 there is no lower bound in matching destination port values.

6.19.12. The Property HdrDestPortEnd

 This property is a 16-bit unsigned integer, representing the upper
 end of a range of UDP or TCP destination ports. The lower end of the
 range is represented by the HdrDestPortStart property. The value of
 HdrDestPortEnd MUST be no less than the value of HdrDestPortStart. A
 single port is indicated by equal values for HdrDestPortStart and
 HdrDestPortEnd.

 A destination port filter is evaluated by testing whether the
 destination port identified in the IP header falls within the range
 of values between HdrDestPortStart and HdrDestPortEnd, including
 these two end points.

 If a value for this property is not provided, then the filter does
 not consider HdrDestPortEnd in selecting matching packets, i.e.,
 there is no upper bound in matching destination port values.

Moore Standards Track [Page 71]

RFC 3460 PCIM Extensions January 2003

6.19.13. The Property HdrDSCP

 The property HdrDSCP is defined as an array of uint8’s, restricted to
 the range 0..63. Since DSCPs are defined as discrete code points,
 with no inherent structure, there is no semantically significant
 relationship between different DSCPs. Consequently, there is no
 provision for specifying a range of DSCPs in this property. However,
 a list of individual DSCPs, which are ORed together to form a filter,
 is supported by the array syntax.

 If a value for this property is not provided, then the filter does
 not consider HdrDSCP in selecting matching packets, i.e., HdrDSCP
 matches for all values.

6.19.14. The Property HdrFlowLabel

 The 20-bit Flow Label field in the IPv6 header may be used by a
 source to label sequences of packets for which it requests special
 handling by IPv6 devices, such as non-default quality of service or
 ’real-time’ service. This property is an octet string of size 3
 (that is, 24 bits), in which the 20-bit Flow Label appears in the
 rightmost 20 bits, padded on the left with b’0000’.

 If a value for this property is not provided, then the filter does
 not consider HdrFlowLabel in selecting matching packets, i.e.,
 HdrFlowLabel matches for all values.

6.20. The Class "8021Filter"

 This concrete class allows 802.1.source and destination MAC
 addresses, as well as the 802.1 protocol ID, priority, and VLAN
 identifier fields, to be expressed in a single object

 The class definition is as follows:

 NAME 8021Filter
 DESCRIPTION A class that allows 802.1 source
 and destination MAC address and
 protocol ID, priority, and VLAN
 identifier filters to be
 expressed in a single object.
 DERIVED FROM FilterEntryBase
 TYPE Concrete
 PROPERTIES 8021HdrSrcMACAddr, 8021HdrSrcMACMask,
 8021HdrDestMACAddr, 8021HdrDestMACMask,
 8021HdrProtocolID, 8021HdrPriorityValue,
 8021HDRVLANID

Moore Standards Track [Page 72]

RFC 3460 PCIM Extensions January 2003

6.20.1. The Property 8021HdrSrcMACAddr

 This property is an OctetString of size 6, representing a 48-bit
 source MAC address in canonical format. This value is compared to
 the SourceAddress field in the MAC header, subject to the mask
 represented in the 8021HdrSrcMACMask property.

 If a value for this property is not provided, then the filter does
 not consider 8021HdrSrcMACAddr in selecting matching packets, i.e.,
 8021HdrSrcMACAddr matches for all values.

6.20.2. The Property 8021HdrSrcMACMask

 This property is an OctetString of size 6, representing a 48-bit mask
 to be used in comparing the SourceAddress field in the MAC header
 with the value represented in the 8021HdrSrcMACAddr property.

 If a value for this property is not provided, then the filter does
 not consider 8021HdrSrcMACMask in selecting matching packets, i.e.,
 the value of 8021HdrSrcMACAddr must match the source MAC address in
 the packet exactly.

6.20.3. The Property 8021HdrDestMACAddr

 This property is an OctetString of size 6, representing a 48-bit
 destination MAC address in canonical format. This value is compared
 to the DestinationAddress field in the MAC header, subject to the
 mask represented in the 8021HdrDestMACMask property.

 If a value for this property is not provided, then the filter does
 not consider 8021HdrDestMACAddr in selecting matching packets, i.e.,
 8021HdrDestMACAddr matches for all values.

6.20.4. The Property 8021HdrDestMACMask

 This property is an OctetString of size 6, representing a 48-bit mask
 to be used in comparing the DestinationAddress field in the MAC
 header with the value represented in the 8021HdrDestMACAddr property.

 If a value for this property is not provided, then the filter does
 not consider 8021HdrDestMACMask in selecting matching packets, i.e.,
 the value of 8021HdrDestMACAddr must match the destination MAC
 address in the packet exactly.

Moore Standards Track [Page 73]

RFC 3460 PCIM Extensions January 2003

6.20.5. The Property 8021HdrProtocolID

 This property is a 16-bit unsigned integer, representing an Ethernet
 protocol type. This value is compared to the Ethernet Type field in
 the 802.3 MAC header.

 If a value for this property is not provided, then the filter does
 not consider 8021HdrProtocolID in selecting matching packets, i.e.,
 8021HdrProtocolID matches for all values.

6.20.6. The Property 8021HdrPriorityValue

 This property is an 8-bit unsigned integer, representing an 802.1Q
 priority. This value is compared to the Priority field in the 802.1Q
 header. Since the 802.1Q Priority field consists of 3 bits, the
 values for this property are limited to the range 0..7.

 If a value for this property is not provided, then the filter does
 not consider 8021HdrPriorityValue in selecting matching packets,
 i.e., 8021HdrPriorityValue matches for all values.

6.20.7. The Property 8021HdrVLANID

 This property is a 32-bit unsigned integer, representing an 802.1Q
 VLAN Identifier. This value is compared to the VLAN ID field in the
 802.1Q header. Since the 802.1Q VLAN ID field consists of 12 bits,
 the values for this property are limited to the range 0..4095.

 If a value for this property is not provided, then the filter does
 not consider 8021HdrVLANID in selecting matching packets, i.e.,
 8021HdrVLANID matches for all values.

6.21. The Class FilterList

 This is a concrete class that aggregates instances of (subclasses of)
 FilterEntryBase via the aggregation EntriesInFilterList. It is
 possible to aggregate different types of filters into a single
 FilterList - for example, packet header filters (represented by the
 IpHeadersFilter class) and security filters (represented by
 subclasses of FilterEntryBase defined by IPsec).

 The aggregation property EntriesInFilterList.EntrySequence is always
 set to 0, to indicate that the aggregated filter entries are ANDed
 together to form a selector for a class of traffic.

Moore Standards Track [Page 74]

RFC 3460 PCIM Extensions January 2003

 The class definition is as follows:

 NAME FilterList
 DESCRIPTION A concrete class representing
 the aggregation of multiple filters.
 DERIVED FROM LogicalElement
 TYPE Concrete
 PROPERTIES Direction

6.21.1. The Property Direction

 This property is a 16-bit unsigned integer enumeration, representing
 the direction of the traffic flow to which the FilterList is to be
 applied. Defined enumeration values are

 o NotApplicable(0)
 o Input(1)
 o Output(2)
 o Both(3) - This value is used to indicate that the direction is
 immaterial, e.g., to filter on a source subnet regardless of
 whether the flow is inbound or outbound
 o Mirrored(4) - This value is also applicable to both inbound and
 outbound flow processing, but it indicates that the filter
 criteria are applied asymmetrically to traffic in both directions
 and, thus, specifies the reversal of source and destination
 criteria (as opposed to the equality of these criteria as
 indicated by "Both"). The match conditions in the aggregated
 FilterEntryBase subclass instances are defined from the
 perspective of outbound flows and applied to inbound flows as well
 by reversing the source and destination criteria. So, for
 example, consider a FilterList with 3 filter entries indicating
 destination port = 80, and source and destination addresses of a
 and b, respectively. Then, for the outbound direction, the filter
 entries match as specified and the ’mirror’ (for the inbound
 direction) matches on source port = 80 and source and destination
 addresses of b and a, respectively.

7. Association and Aggregation Definitions

 The following definitions supplement those in PCIM itself. PCIM
 definitions that are not DEPRECATED here are still current parts of
 the overall Policy Core Information Model.

7.1. The Aggregation "PolicySetComponent"

 PolicySetComponent is a new aggregation class that collects instances
 of PolicySet subclasses (PolicyGroups and PolicyRules) into coherent
 sets of policies.

Moore Standards Track [Page 75]

RFC 3460 PCIM Extensions January 2003

 NAME PolicySetComponent
 DESCRIPTION A concrete class representing the components of a
 policy set that have the same decision strategy, and
 are prioritized within the set.
 DERIVED FROM PolicyComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicySet[0..n]]
 PartComponent[ref PolicySet[0..n]]
 Priority

 The definition of the Priority property is unchanged from its
 previous definition in [PCIM].

 NAME Priority
 DESCRIPTION A non-negative integer for prioritizing this
 PolicySet component relative to other components of
 the same PolicySet. A larger value indicates a
 higher priority.
 SYNTAX uint16
 DEFAULT VALUE 0

7.2. Deprecate PCIM’s Aggregation "PolicyGroupInPolicyGroup"

 The new aggregation PolicySetComponent is used directly to represent
 aggregation of PolicyGroups by a higher-level PolicyGroup. Thus the
 aggregation PolicyGroupInPolicyGroup is no longer needed, and can be
 deprecated.

 NAME PolicyGroupInPolicyGroup
 DEPRECATED FOR PolicySetComponent
 DESCRIPTION A class representing the aggregation of PolicyGroups
 by a higher-level PolicyGroup.
 DERIVED FROM PolicyComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyGroup[0..n]]
 PartComponent[ref PolicyGroup[0..n]]

7.3. Deprecate PCIM’s Aggregation "PolicyRuleInPolicyGroup"

 The new aggregation PolicySetComponent is used directly to represent
 aggregation of PolicyRules by a PolicyGroup. Thus the aggregation
 PolicyRuleInPolicyGroup is no longer needed, and can be deprecated.

 NAME PolicyRuleInPolicyGroup
 DEPRECATED FOR PolicySetComponent
 DESCRIPTION A class representing the aggregation of PolicyRules
 by a PolicyGroup.
 DERIVED FROM PolicyComponent

Moore Standards Track [Page 76]

RFC 3460 PCIM Extensions January 2003

 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyGroup[0..n]]
 PartComponent[ref PolicyRule[0..n]]

7.4. The Abstract Association "PolicySetInSystem"

 PolicySetInSystem is a new association that defines a relationship
 between a System and a PolicySet used in the administrative scope of
 that system (e.g., AdminDomain, ComputerSystem). The Priority
 property is used to assign a relative priority to a PolicySet within
 the administrative scope in contexts where it is not a component of
 another PolicySet.

 NAME PolicySetInSystem
 DESCRIPTION An abstract class representing the relationship
 between a System and a PolicySet that is used in the
 administrative scope of the System.
 DERIVED FROM PolicyInSystem
 ABSTRACT TRUE
 PROPERTIES Antecedent[ref System[0..1]]
 Dependent [ref PolicySet[0..n]]
 Priority

 The Priority property is used to specify the relative priority of the
 referenced PolicySet when there are more than one PolicySet instances
 applied to a managed resource that are not PolicySetComponents and,
 therefore, have no other relative priority defined.

 NAME Priority
 DESCRIPTION A non-negative integer for prioritizing the
 referenced PolicySet among other PolicySet
 instances that are not components of a common
 PolicySet. A larger value indicates a higher
 priority.
 SYNTAX uint16
 DEFAULT VALUE 0

7.5. Update PCIM’s Weak Association "PolicyGroupInSystem"

 Regardless of whether it a component of another PolicySet, a
 PolicyGroup is itself defined within the scope of a System. This
 association links a PolicyGroup to the System in whose scope the
 PolicyGroup is defined. It is a subclass of the abstract
 PolicySetInSystem association. The class definition for the
 association is as follows:

Moore Standards Track [Page 77]

RFC 3460 PCIM Extensions January 2003

 NAME PolicyGroupInSystem
 DESCRIPTION A class representing the fact that a PolicyGroup is
 defined within the scope of a System.
 DERIVED FROM PolicySetInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref System[1..1]]
 Dependent [ref PolicyGroup[weak]]

 The Reference "Antecedent" is inherited from PolicySetInSystem, and
 overridden to restrict its cardinality to [1..1]. It serves as an
 object reference to a System that provides a scope for one or more
 PolicyGroups. Since this is a weak association, the cardinality for
 this object reference is always 1, that is, a PolicyGroup is always
 defined within the scope of exactly one System.

 The Reference "Dependent" is inherited from PolicySetInSystem, and
 overridden to become an object reference to a PolicyGroup defined
 within the scope of a System. Note that for any single instance of
 the association class PolicyGroupInSystem, this property (like all
 reference properties) is single-valued. The [0..n] cardinality
 indicates that a given System may have 0, 1, or more than one
 PolicyGroups defined within its scope.

7.6. Update PCIM’s Weak Association "PolicyRuleInSystem"

 Regardless of whether it a component of another PolicySet, a
 PolicyRule is itself defined within the scope of a System. This
 association links a PolicyRule to the System in whose scope the
 PolicyRule is defined. It is a subclass of the abstract
 PolicySetInSystem association. The class definition for the
 association is as follows:

 NAME PolicyRuleInSystem
 DESCRIPTION A class representing the fact that a PolicyRule is
 defined within the scope of a System.
 DERIVED FROM PolicySetInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref System[1..1]]
 Dependent[ref PolicyRule[weak]]

 The Reference "Antecedent" is inherited from PolicySetInSystem, and
 overridden to restrict its cardinality to [1..1]. It serves as an
 object reference to a System that provides a scope for one or more
 PolicyRules. Since this is a weak association, the cardinality for
 this object reference is always 1, that is, a PolicyRule is always
 defined within the scope of exactly one System.

Moore Standards Track [Page 78]

RFC 3460 PCIM Extensions January 2003

 The Reference "Dependent" is inherited from PolicySetInSystem, and
 overridden to become an object reference to a PolicyRule defined
 within the scope of a System. Note that for any single instance of
 the association class PolicyRuleInSystem, this property (like all
 Reference properties) is single-valued. The [0..n] cardinality
 indicates that a given System may have 0, 1, or more than one
 PolicyRules defined within its scope.

7.7. The Abstract Aggregation "PolicyConditionStructure"

 NAME PolicyConditionStructure
 DESCRIPTION A class representing the aggregation of
 PolicyConditions by an aggregating instance.
 DERIVED FROM PolicyComponent
 ABSTRACT TRUE
 PROPERTIES PartComponent[ref PolicyCondition[0..n]]
 GroupNumber
 ConditionNegated
7.8. Update PCIM’s Aggregation "PolicyConditionInPolicyRule"

 The PCIM aggregation "PolicyConditionInPolicyRule" is updated, to
 make it a subclass of the new abstract aggregation
 PolicyConditionStructure. The properties GroupNumber and
 ConditionNegated are now inherited, rather than specified explicitly
 as they were in PCIM.

 NAME PolicyConditionInPolicyRule
 DESCRIPTION A class representing the aggregation of
 PolicyConditions by a PolicyRule.
 DERIVED FROM PolicyConditionStructure
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyRule[0..n]]

7.9. The Aggregation "PolicyConditionInPolicyCondition"

 A second subclass of PolicyConditionStructure is defined,
 representing the compounding of policy conditions into a higher-level
 policy condition.

 NAME PolicyConditionInPolicyCondition
 DESCRIPTION A class representing the aggregation of
 PolicyConditions by another PolicyCondition.
 DERIVED FROM PolicyConditionStructure
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref CompoundPolicyCondition[0..n]]

Moore Standards Track [Page 79]

RFC 3460 PCIM Extensions January 2003

7.10. The Abstract Aggregation "PolicyActionStructure"

 NAME PolicyActionStructure
 DESCRIPTION A class representing the aggregation of
 PolicyActions by an aggregating instance.
 DERIVED FROM PolicyComponent
 ABSTRACT TRUE
 PROPERTIES PartComponent[ref PolicyAction[0..n]]
 ActionOrder

 The definition of the ActionOrder property appears in Section 7.8.3
 of PCIM [1].

7.11. Update PCIM’s Aggregation "PolicyActionInPolicyRule"

 The PCIM aggregation "PolicyActionInPolicyRule" is updated, to make
 it a subclass of the new abstract aggregation PolicyActionStructure.
 The property ActionOrder is now inherited, rather than specified
 explicitly as it was in PCIM.

 NAME PolicyActionInPolicyRule
 DESCRIPTION A class representing the aggregation of
 PolicyActions by a PolicyRule.
 DERIVED FROM PolicyActionStructure
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyRule[0..n]]

7.12. The Aggregation "PolicyActionInPolicyAction"

 A second subclass of PolicyActionStructure is defined, representing
 the compounding of policy actions into a higher-level policy action.

 NAME PolicyActionInPolicyAction
 DESCRIPTION A class representing the aggregation of
 PolicyActions by another PolicyAction.
 DERIVED FROM PolicyActionStructure
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref CompoundPolicyAction[0..n]]

7.13. The Aggregation "PolicyVariableInSimplePolicyCondition"

 A simple policy condition is represented as an ordered triplet
 {variable, operator, value}. This aggregation provides the linkage
 between a SimplePolicyCondition instance and a single PolicyVariable.
 The aggregation PolicyValueInSimplePolicyCondition links the
 SimplePolicyCondition to a single PolicyValue. The Operator property
 of SimplePolicyCondition represents the third element of the triplet,
 the operator.

Moore Standards Track [Page 80]

RFC 3460 PCIM Extensions January 2003

 The class definition for this aggregation is as follows:

 NAME PolicyVariableInSimplePolicyCondition
 DERIVED FROM PolicyComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref SimplePolicyCondition[0..n]]
 PartComponent[ref PolicyVariable[1..1]]

 The reference property "GroupComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 SimplePolicyCondition that contains exactly one PolicyVariable. Note
 that for any single instance of the aggregation class
 PolicyVariableInSimplePolicyCondition, this property is single-
 valued. The [0..n] cardinality indicates that there may be 0, 1, or
 more SimplePolicyCondition objects that contain any given policy
 variable object.

 The reference property "PartComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 PolicyVariable that is defined within the scope of a
 SimplePolicyCondition. Note that for any single instance of the
 association class PolicyVariableInSimplePolicyCondition, this
 property (like all reference properties) is single-valued. The
 [1..1] cardinality indicates that a SimplePolicyCondition must have
 exactly one policy variable defined within its scope in order to be
 meaningful.

7.14. The Aggregation "PolicyValueInSimplePolicyCondition"

 A simple policy condition is represented as an ordered triplet
 {variable, operator, value}. This aggregation provides the linkage
 between a SimplePolicyCondition instance and a single PolicyValue.
 The aggregation PolicyVariableInSimplePolicyCondition links the
 SimplePolicyCondition to a single PolicyVariable. The Operator
 property of SimplePolicyCondition represents the third element of the
 triplet, the operator.

 The class definition for this aggregation is as follows:

 NAME PolicyValueInSimplePolicyCondition
 DERIVED FROM PolicyComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref SimplePolicyCondition[0..n]]
 PartComponent[ref PolicyValue[1..1]]

 The reference property "GroupComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 SimplePolicyCondition that contains exactly one PolicyValue. Note

Moore Standards Track [Page 81]

RFC 3460 PCIM Extensions January 2003

 that for any single instance of the aggregation class
 PolicyValueInSimplePolicyCondition, this property is single-valued.
 The [0..n] cardinality indicates that there may be 0, 1, or more
 SimplePolicyCondition objects that contain any given policy value
 object.

 The reference property "PartComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 PolicyValue that is defined within the scope of a
 SimplePolicyCondition. Note that for any single instance of the
 association class PolicyValueInSimplePolicyCondition, this property
 (like all reference properties) is single-valued. The [1..1]
 cardinality indicates that a SimplePolicyCondition must have exactly
 one policy value defined within its scope in order to be meaningful.

7.15. The Aggregation "PolicyVariableInSimplePolicyAction"

 A simple policy action is represented as a pair {variable, value}.
 This aggregation provides the linkage between a SimplePolicyAction
 instance and a single PolicyVariable. The aggregation
 PolicyValueInSimplePolicyAction links the SimplePolicyAction to a
 single PolicyValue.

 The class definition for this aggregation is as follows:

 NAME PolicyVariableInSimplePolicyAction
 DERIVED FROM PolicyComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref SimplePolicyAction[0..n]]
 PartComponent[ref PolicyVariable[1..1]]

 The reference property "GroupComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 SimplePolicyAction that contains exactly one PolicyVariable. Note
 that for any single instance of the aggregation class
 PolicyVariableInSimplePolicyAction, this property is single-valued.
 The [0..n] cardinality indicates that there may be 0, 1, or more
 SimplePolicyAction objects that contain any given policy variable
 object.

 The reference property "PartComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 PolicyVariable that is defined within the scope of a
 SimplePolicyAction. Note that for any single instance of the
 association class PolicyVariableInSimplePolicyAction, this property
 (like all reference properties) is single-valued. The [1..1]
 cardinality indicates that a SimplePolicyAction must have exactly one
 policy variable defined within its scope in order to be meaningful.

Moore Standards Track [Page 82]

RFC 3460 PCIM Extensions January 2003

7.16. The Aggregation "PolicyValueInSimplePolicyAction"

 A simple policy action is represented as a pair {variable, value}.
 This aggregation provides the linkage between a SimplePolicyAction
 instance and a single PolicyValue. The aggregation
 PolicyVariableInSimplePolicyAction links the SimplePolicyAction to a
 single PolicyVariable.

 The class definition for this aggregation is as follows:

 NAME PolicyValueInSimplePolicyAction
 DERIVED FROM PolicyComponent
 ABSTRACT False
 PROPERTIES GroupComponent[ref SimplePolicyAction[0..n]]
 PartComponent[ref PolicyValue[1..1]]

 The reference property "GroupComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 SimplePolicyAction that contains exactly one PolicyValue. Note that
 for any single instance of the aggregation class
 PolicyValueInSimplePolicyAction, this property is single-valued. The
 [0..n] cardinality indicates that there may be 0, 1, or more
 SimplePolicyAction objects that contain any given policy value
 object.

 The reference property "PartComponent" is inherited from
 PolicyComponent, and overridden to become an object reference to a
 PolicyValue that is defined within the scope of a SimplePolicyAction.
 Note that for any single instance of the association class
 PolicyValueInSimplePolicyAction, this property (like all reference
 properties) is single-valued. The [1..1] cardinality indicates that
 a SimplePolicyAction must have exactly one policy value defined
 within its scope in order to be meaningful.

7.17. The Association "ReusablePolicy"

 The association ReusablePolicy makes it possible to include any
 subclass of the abstract class "Policy" in a ReusablePolicyContainer.

 NAME ReusablePolicy
 DESCRIPTION A class representing the inclusion of a reusable
 policy element in a ReusablePolicyContainer.
 Reusable elements may be PolicyGroups, PolicyRules,
 PolicyConditions, PolicyActions, PolicyVariables,
 PolicyValues, or instances of any other subclasses
 of the abstract class Policy.

Moore Standards Track [Page 83]

RFC 3460 PCIM Extensions January 2003

 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref ReusablePolicyContainer[0..1]]

7.18. Deprecate PCIM’s "PolicyConditionInPolicyRepository"

 NAME PolicyConditionInPolicyRepository
 DEPRECATED FOR ReusablePolicy
 DESCRIPTION A class representing the inclusion of a reusable
 PolicyCondition in a PolicyRepository.
 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref PolicyRepository[0..1]]
 Dependent[ref PolicyCondition[0..n]]

7.19. Deprecate PCIM’s "PolicyActionInPolicyRepository"

 NAME PolicyActionInPolicyRepository
 DEPRECATED FOR ReusablePolicy
 DESCRIPTION A class representing the inclusion of a reusable
 PolicyAction in a PolicyRepository.
 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref PolicyRepository[0..1]]
 Dependent[ref PolicyAction[0..n]]

7.20. The Association ExpectedPolicyValuesForVariable

 This association links a PolicyValue object to a PolicyVariable
 object, modeling the set of expected values for that PolicyVariable.
 Using this association, a variable (instance) may be constrained to
 be bound- to/assigned only a set of allowed values. For example,
 modeling an enumerated source port variable, one creates an instance
 of the PolicySourcePortVariable class and associates with it the set
 of values (integers) representing the allowed enumeration, using
 appropriate number of instances of the
 ExpectedPolicyValuesForVariable association.

 Note that a single variable instance may be constrained by any number
 of values, and a single value may be used to constrain any number of
 variables. These relationships are manifested by the n-to-m
 cardinality of the association.

 The purpose of this association is to support validation of simple
 policy conditions and simple policy actions, prior to their
 deployment to an enforcement point. This association, and the

Moore Standards Track [Page 84]

RFC 3460 PCIM Extensions January 2003

 PolicyValue object that it refers to, plays no role when a PDP or a
 PEP is evaluating a simple policy condition, or executing a simple
 policy action. See Section 5.8.3 for more details on this point.

 The class definition for the association is as follows:

 NAME ExpectedPolicyValuesForVariable
 DESCRIPTION A class representing the association of a set of
 expected values to a variable object.
 DERIVED FROM Dependency
 ABSTRACT FALSE
 PROPERTIES Antecedent [ref PolicyVariable[0..n]]
 Dependent [ref PolicyValue [0..n]]

 The reference property Antecedent is inherited from Dependency. Its
 type and cardinality are overridden to provide the semantics of a
 variable optionally having value constraints. The [0..n] cardinality
 indicates that any number of variables may be constrained by a given
 value.

 The reference property "Dependent" is inherited from Dependency, and
 overridden to become an object reference to a PolicyValue
 representing the values that a particular PolicyVariable can have.
 The [0..n] cardinality indicates that a given policy variable may
 have 0, 1 or more than one PolicyValues defined to model the set(s)
 of values that the policy variable can take.

7.21. The Aggregation "ContainedDomain"

 The aggregation ContainedDomain provides a means of nesting of one
 ReusablePolicyContainer inside another one. The aggregation is
 defined at the level of ReusablePolicyContainer’s superclass,
 AdminDomain, to give it applicability to areas other than Core
 Policy.

 NAME ContainedDomain
 DESCRIPTION A class representing the aggregation of lower level
 administrative domains by a higher-level
 AdminDomain.
 DERIVED FROM SystemComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref AdminDomain [0..n]]
 PartComponent[ref AdminDomain [0..n]]

Moore Standards Track [Page 85]

RFC 3460 PCIM Extensions January 2003

7.22. Deprecate PCIM’s "PolicyRepositoryInPolicyRepository"

 NAME PolicyRepositoryInPolicyRepository
 DEPRECATED FOR ContainedDomain
 DESCRIPTION A class representing the aggregation of
 PolicyRepositories by a higher-level
 PolicyRepository.
 DERIVED FROM SystemComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyRepository[0..n]]
 PartComponent[ref PolicyRepository[0..n]]

7.23. The Aggregation "EntriesInFilterList"

 This aggregation is a specialization of the Component aggregation; it
 is used to define a set of filter entries (subclasses of
 FilterEntryBase) that are aggregated by a FilterList.

 The cardinalities of the aggregation itself are 0..1 on the
 FilterList end, and 0..n on the FilterEntryBase end. Thus in the
 general case, a filter entry can exist without being aggregated into
 any FilterList. However, the only way a filter entry can figure in
 the PCIMe model is by being aggregated into a FilterList by this
 aggregation.

 The class definition for the aggregation is as follows:

 NAME EntriesInFilterList
 DESCRIPTION An aggregation used to define a set of
 filter entries (subclasses of
 FilterEntryBase) that are aggregated by
 a particular FilterList.
 DERIVED FROM Component
 ABSTRACT False
 PROPERTIES GroupComponent[ref
 FilterList[0..1]],
 PartComponent[ref
 FilterEntryBase[0..n],
 EntrySequence

7.23.1. The Reference GroupComponent

 This property is overridden in this aggregation to represent an
 object reference to a FilterList object (instead of to the more
 generic ManagedSystemElement object defined in its superclass). It
 also restricts the cardinality of the aggregate to 0..1 (instead of
 the more generic 0-or-more), representing the fact that a filter
 entry always exists within the context of at most one FilterList.

Moore Standards Track [Page 86]

RFC 3460 PCIM Extensions January 2003

7.23.2. The Reference PartComponent

 This property is overridden in this aggregation to represent an
 object reference to a FilterEntryBase object (instead of to the more
 generic ManagedSystemElement object defined in its superclass). This
 object represents a single filter entry, which may be aggregated with
 other filter entries to form the FilterList.

7.23.3. The Property EntrySequence

 An unsigned 16-bit integer indicating the order of the filter entry
 relative to all others in the FilterList. The default value ’0’
 indicates that order is not significant, because the entries in this
 FilterList are ANDed together.

7.24. The Aggregation "ElementInPolicyRoleCollection"

 The following aggregation is used to associate ManagedElements with a
 PolicyRoleCollection object that represents a role played by these
 ManagedElements.

 NAME ElementInPolicyRoleCollection
 DESCRIPTION A class representing the inclusion of a
 ManagedElement in a collection, specified as
 having a given role. All the managed elements
 in the collection share the same role.
 DERIVED FROM MemberOfCollection
 ABSTRACT FALSE
 PROPERTIES Collection[ref PolicyRoleCollection [0..n]]
 Member[ref ManagedElement [0..n]]

7.25. The Weak Association "PolicyRoleCollectionInSystem"

 A PolicyRoleCollection is defined within the scope of a System. This
 association links a PolicyRoleCollection to the System in whose scope
 it is defined.

 When associating a PolicyRoleCollection with a System, this should be
 done consistently with the system that scopes the policy rules/groups
 that are applied to the resources in that collection. A
 PolicyRoleCollection is associated with the same system as the
 applicable PolicyRules and/or PolicyGroups, or to a System higher in
 the tree formed by the SystemComponent association.

 The class definition for the association is as follows:

Moore Standards Track [Page 87]

RFC 3460 PCIM Extensions January 2003

 NAME PolicyRoleCollectionInSystem
 DESCRIPTION A class representing the fact that a
 PolicyRoleCollection is defined within the scope of
 a System.
 DERIVED FROM Dependency
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref System[1..1]]
 Dependent[ref PolicyRoleCollection[weak]]

 The reference property Antecedent is inherited from Dependency, and
 overridden to become an object reference to a System, and to restrict
 its cardinality to [1..1]. It serves as an object reference to a
 System that provides a scope for one or more PolicyRoleCollections.
 Since this is a weak association, the cardinality for this object
 reference is always 1, that is, a PolicyRoleCollection is always
 defined within the scope of exactly one System.

 The reference property Dependent is inherited from Dependency, and
 overridden to become an object reference to a PolicyRoleCollection
 defined within the scope of a System. Note that for any single
 instance of the association class PolicyRoleCollectionInSystem, this
 property (like all Reference properties) is single-valued. The
 [0..n] cardinality indicates that a given System may have 0, 1, or
 more than one PolicyRoleCollections defined within its scope.

8. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11.

 Copies of claims of rights made available for publication and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Moore Standards Track [Page 88]

RFC 3460 PCIM Extensions January 2003

9. Acknowledgements

 The starting point for this document was PCIM itself [1], and the
 first three submodels derived from it [11], [12], [13]. The authors
 of these documents created the extensions to PCIM, and asked the
 questions about PCIM, that are reflected in PCIMe.

10. Contributors

 This document includes text written by a number of authors (including
 the editor), that was subsequently merged by the editor. The
 following people contributed text to this document:

 Lee Rafalow
 IBM Corporation, BRQA/501
 4205 S. Miami Blvd.
 Research Triangle Park, NC 27709

 Phone: +1 919-254-4455
 Fax: +1 919-254-6243
 EMail: rafalow@us.ibm.com

 Yoram Ramberg
 Cisco Systems
 4 Maskit Street
 Herzliya Pituach, Israel 46766

 Phone: +972-9-970-0081
 Fax: +972-9-970-0219
 EMail: yramberg@cisco.com

 Yoram Snir
 Cisco Systems
 4 Maskit Street
 Herzliya Pituach, Israel 46766

 Phone: +972-9-970-0085
 Fax: +972-9-970-0366
 EMail: ysnir@cisco.com

Moore Standards Track [Page 89]

RFC 3460 PCIM Extensions January 2003

 Andrea Westerinen
 Cisco Systems
 Building 20
 725 Alder Drive
 Milpitas, CA 95035

 Phone: +1-408-853-8294
 Fax: +1-408-527-6351
 EMail: andreaw@cisco.com

 Ritu Chadha
 Telcordia Technologies
 MCC 1J-218R
 445 South Street
 Morristown NJ 07960.

 Phone: +1-973-829-4869
 Fax: +1-973-829-5889
 EMail: chadha@research.telcordia.com

 Marcus Brunner
 NEC Europe Ltd.
 C&C Research Laboratories
 Adenauerplatz 6
 D-69115 Heidelberg, Germany

 Phone: +49 (0)6221 9051129
 Fax: +49 (0)6221 9051155
 EMail: brunner@ccrle.nec.de

 Ron Cohen
 Ntear LLC

 EMail: ronc@ntear.com

 John Strassner
 INTELLIDEN, Inc.
 90 South Cascade Avenue
 Colorado Springs, CO 80903

 Phone: +1-719-785-0648
 EMail: john.strassner@intelliden.com

Moore Standards Track [Page 90]

RFC 3460 PCIM Extensions January 2003

11. Security Considerations

 The Policy Core Information Model (PCIM) [1] describes the general
 security considerations related to the general core policy model.
 The extensions defined in this document do not introduce any
 additional considerations related to security.

12. Normative References

 [1] Moore, B., Ellesson, E., Strassner, J. and A. Westerinen,
 "Policy Core Information Model -- Version 1 Specification", RFC
 3060, February 2001.

 [2] Distributed Management Task Force, Inc., "DMTF Technologies: CIM
 Standards CIM Schema: Version 2.5", available at
 http://www.dmtf.org/standards/cim_schema_v25.php.

 [3] Distributed Management Task Force, Inc., "Common Information
 Model (CIM) Specification: Version 2.2", June 14, 1999,
 available at
 http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf.

 [4] Mockapetris, P., "Domain Names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [5] Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight
 Directory Access Protocol (v3): Attribute Syntax Definitions",
 RFC 2252, December 1997.

 [6] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [7] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

 [8] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

13. Informative References

 [9] Hovey, R. and S. Bradner, "The Organizations Involved in the
 IETF Standards Process", BCP 11, RFC 2028, October 1996.

 [10] Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M.,
 Quinn, B., Herzog, S., Huynh, A., Carlson, M., Perry, J. and
 Waldbusser, "Terminology for Policy-Based Management", RFC 3198,
 November 2001.

Moore Standards Track [Page 91]

RFC 3460 PCIM Extensions January 2003

 [11] Snir, Y., and Y. Ramberg, J. Strassner, R. Cohen, "Policy QoS
 Information Model", Work in Progress.

 [12] Jason, J., and L. Rafalow, E. Vyncke, "IPsec Configuration
 Policy Model", Work in Progress.

 [13] Chadha, R., and M. Brunner, M. Yoshida, J. Quittek, G.
 Mykoniatis, A. Poylisher, R. Vaidyanathan, A. Kind, F.
 Reichmeyer, "Policy Framework MPLS Information Model for QoS and
 TE", Work in Progress.

 [14] S. Waldbusser, and J. Saperia, T. Hongal, "Policy Based
 Management MIB", Work in Progress.

 [15] B. Moore, and D. Durham, J. Halpern, J. Strassner, A.
 Westerinen, W. Weiss, "Information Model for Describing Network
 Device QoS Datapath Mechanisms", Work in Progress.

Author’s Address

 Bob Moore
 IBM Corporation, BRQA/501
 4205 S. Miami Blvd.
 Research Triangle Park, NC 27709

 Phone: +1 919-254-4436
 Fax: +1 919-254-6243
 EMail: remoore@us.ibm.com

Moore Standards Track [Page 92]

RFC 3460 PCIM Extensions January 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Moore Standards Track [Page 93]

