
Network Working Group D. Korn
Request for Comments: 3284 AT&T Labs
Category: Standards Track J. MacDonald
 UC Berkeley
 J. Mogul
 Hewlett-Packard Company
 K. Vo
 AT&T Labs
 June 2002

 The VCDIFF Generic Differencing and Compression Data Format

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This memo describes VCDIFF, a general, efficient and portable data
 format suitable for encoding compressed and/or differencing data so
 that they can be easily transported among computers.

Korn, et. al. Standards Track [Page 1]

RFC 3284 VCDIFF June 2002

Table of Contents

 1. Executive Summary ... 2
 2. Conventions ... 4
 3. Delta Instructions .. 5
 4. Delta File Organization 6
 5. Delta Instruction Encoding 12
 6. Decoding a Target Window 20
 7. Application-Defined Code Tables 21
 8. Performance ... 22
 9. Further Issues .. 24
 10. Summary ... 25
 11. Acknowledgements .. 25
 12. Security Considerations 25
 13. Source Code Availability 25
 14. Intellectual Property Rights 26
 15. IANA Considerations ... 26
 16. References .. 26
 17. Authors’ Addresses .. 28
 18. Full Copyright Statement 29

1. Executive Summary

 Compression and differencing techniques can greatly improve storage
 and transmission of files and file versions. Since files are often
 transported across machines with distinct architectures and
 performance characteristics, such data should be encoded in a form
 that is portable and can be decoded with little or no knowledge of
 the encoders. This document describes Vcdiff, a compact portable
 encoding format designed for these purposes.

 Data differencing is the process of computing a compact and
 invertible encoding of a "target file" given a "source file". Data
 compression is similar, but without the use of source data. The UNIX
 utilities diff, compress, and gzip are well-known examples of data
 differencing and compression tools. For data differencing, the
 computed encoding is called a "delta file", and for data compression,
 it is called a "compressed file". Delta and compressed files are
 good for storage and transmission as they are often smaller than the
 originals.

 Data differencing and data compression are traditionally treated as
 distinct types of data processing. However, as shown in the Vdelta
 technique by Korn and Vo [1], compression can be thought of as a
 special case of differencing in which the source data is empty. The
 basic idea is to unify the string parsing scheme used in the Lempel-
 Ziv’77 (LZ’77) style compressors [2] and the block-move technique of
 Tichy [3]. Loosely speaking, this works as follows:

Korn, et. al. Standards Track [Page 2]

RFC 3284 VCDIFF June 2002

 a. Concatenate source and target data.
 b. Parse the data from left to right as in LZ’77 but make sure
 that a parsed segment starts the target data.
 c. Start to output when reaching target data.

 Parsing is based on string matching algorithms, such as suffix trees
 [4] or hashing with different time and space performance
 characteristics. Vdelta uses a fast string matching algorithm that
 requires less memory than other techniques [5,6]. However, even with
 this algorithm, the memory requirement can still be prohibitive for
 large files. A common way to deal with memory limitation is to
 partition an input file into chunks called "windows" and process them
 separately. Here, except for unpublished work by Vo, little has been
 done on designing effective windowing schemes. Current techniques,
 including Vdelta, simply use source and target windows with
 corresponding addresses across source and target files.

 String matching and windowing algorithms have great influence on the
 compression rate of delta and compressed files. However, it is
 desirable to have a portable encoding format that is independent of
 such algorithms. This enables the construction of client-server
 applications in which a server may serve clients with unknown
 computing characteristics. Unfortunately, all current differencing
 and compressing tools, including Vdelta, fall short in this respect.
 Their storage formats are closely intertwined with the implemented
 string matching and/or windowing algorithms.

 The encoding format Vcdiff proposed here addresses the above issues.
 Vcdiff achieves the characteristics below:

 Output compactness:
 The basic encoding format compactly represents compressed or
 delta files. Applications can further extend the basic
 encoding format with "secondary encoders" to achieve more
 compression.

 Data portability:
 The basic encoding format is free from machine byte order and
 word size issues. This allows data to be encoded on one
 machine and decoded on a different machine with different
 architecture.

 Algorithm genericity:
 The decoding algorithm is independent from string matching and
 windowing algorithms. This allows competition among
 implementations of the encoder while keeping the same decoder.

Korn, et. al. Standards Track [Page 3]

RFC 3284 VCDIFF June 2002

 Decoding efficiency:
 Except for secondary encoder issues, the decoding algorithm
 runs in time proportionate to the size of the target file and
 uses space proportionate to the maximal window size. Vcdiff
 differs from more conventional compressors in that it uses only
 byte-aligned data, thus avoiding bit-level operations, which
 improves decoding speed at the slight cost of compression
 efficiency.

 The combined differencing and compression method is called "delta
 compression" [14]. As this way of data processing treats compression
 as a special case of differencing, we shall use the term "delta file"
 to indicate the compressed output for both cases.

2. Conventions

 The basic data unit is a byte. For portability, Vcdiff shall limit a
 byte to its lower eight bits even on machines with larger bytes. The
 bits in a byte are ordered from right to left so that the least
 significant bit (LSB) has value 1, and the most significant bit
 (MSB), has value 128.

 For purposes of exposition in this document, we adopt the convention
 that the LSB is numbered 0, and the MSB is numbered 7. Bit numbers
 never appear in the encoded format itself.

 Vcdiff encodes unsigned integer values using a portable, variable-
 sized format (originally introduced in the Sfio library [7]). This
 encoding treats an integer as a number in base 128. Then, each digit
 in this representation is encoded in the lower seven bits of a byte.
 Except for the least significant byte, other bytes have their most
 significant bit turned on to indicate that there are still more
 digits in the encoding. The two key properties of this integer
 encoding that are beneficial to a data compression format are:

 a. The encoding is portable among systems using 8-bit bytes, and
 b. Small values are encoded compactly.

 For example, consider the value 123456789, which can be represented
 with four 7-bit digits whose values are 58, 111, 26, 21 in order from
 most to least significant. Below is the 8-bit byte encoding of these
 digits. Note that the MSBs of 58, 111 and 26 are on.

 +---+
 | 10111010 | 11101111 | 10011010 | 00010101 |
 +---+
 MSB+58 MSB+111 MSB+26 0+21

Korn, et. al. Standards Track [Page 4]

RFC 3284 VCDIFF June 2002

 Henceforth, the terms "byte" and "integer" will refer to a byte and
 an unsigned integer as described.

 Algorithms in the C language are occasionally exhibited to clarify
 the descriptions. Such C code is meant for clarification only, and
 is not part of the actual specification of the Vcdiff format.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119 [12].

3. Delta Instructions

 A large target file is partitioned into non-overlapping sections
 called "target windows". These target windows are processed
 separately and sequentially based on their order in the target file.

 A target window T, of length t, may be compared against some source
 data segment S, of length s. By construction, this source data
 segment S comes either from the source file, if one is used, or from
 a part of the target file earlier than T. In this way, during
 decoding, S is completely known when T is being decoded.

 The choices of T, t, S and s are made by some window selection
 algorithm, which can greatly affect the size of the encoding.
 However, as seen later, these choices are encoded so that no
 knowledge of the window selection algorithm is needed during
 decoding.

 Assume that S[j] represents the jth byte in S, and T[k] represents
 the kth byte in T. Then, for the delta instructions, we treat the
 data windows S and T as substrings of a superstring U, formed by
 concatenating them like this:

 S[0]S[1]...S[s-1]T[0]T[1]...T[t-1]

 The "address" of a byte in S or T is referred to by its location in
 U. For example, the address of T[k] is s+k.

 The instructions to encode and direct the reconstruction of a target
 window are called delta instructions. There are three types:

 ADD: This instruction has two arguments, a size x and a sequence
 of x bytes to be copied.
 COPY: This instruction has two arguments, a size x and an address
 p in the string U. The arguments specify the substring of U
 that must be copied. We shall assert that such a substring
 must be entirely contained in either S or T.

Korn, et. al. Standards Track [Page 5]

RFC 3284 VCDIFF June 2002

 RUN: This instruction has two arguments, a size x and a byte b,
 that will be repeated x times.

 Below are example source and target windows and the delta
 instructions that encode the target window in terms of the source
 window.

 a b c d e f g h i j k l m n o p
 a b c d w x y z e f g h e f g h e f g h e f g h z z z z

 COPY 4, 0
 ADD 4, w x y z
 COPY 4, 4
 COPY 12, 24
 RUN 4, z

 Thus, the first letter ’a’ in the target window is at location 16 in
 the superstring. Note that the fourth instruction, "COPY 12, 24",
 copies data from T itself since address 24 is position 8 in T. This
 instruction also shows that it is fine to overlap the data to be
 copied with the data being copied from, as long as the latter starts
 earlier. This enables efficient encoding of periodic sequences,
 i.e., sequences with regularly repeated subsequences. The RUN
 instruction is a compact way to encode a sequence repeating the same
 byte even though such a sequence can be thought of as a periodic
 sequence with period 1.

 To reconstruct the target window, one simply processes one delta
 instruction at a time and copies the data, either from the source
 window or the target window being reconstructed, based on the type of
 the instruction and the associated address, if any.

4. Delta File Organization

 A Vcdiff delta file starts with a Header section followed by a
 sequence of Window sections. The Header section includes magic bytes
 to identify the file type, and information concerning data processing
 beyond the basic encoding format. The Window sections encode the
 target windows.

 Below is the overall organization of a delta file. The indented
 items refine the ones immediately above them. An item in square
 brackets may or may not be present in the file depending on the
 information encoded in the Indicator byte above it.

Korn, et. al. Standards Track [Page 6]

RFC 3284 VCDIFF June 2002

 Header
 Header1 - byte
 Header2 - byte
 Header3 - byte
 Header4 - byte
 Hdr_Indicator - byte
 [Secondary compressor ID] - byte
 [Length of code table data] - integer
 [Code table data]
 Size of near cache - byte
 Size of same cache - byte
 Compressed code table data
 Window1
 Win_Indicator - byte
 [Source segment size] - integer
 [Source segment position] - integer
 The delta encoding of the target window
 Length of the delta encoding - integer
 The delta encoding
 Size of the target window - integer
 Delta_Indicator - byte
 Length of data for ADDs and RUNs - integer
 Length of instructions and sizes - integer
 Length of addresses for COPYs - integer
 Data section for ADDs and RUNs - array of bytes
 Instructions and sizes section - array of bytes
 Addresses section for COPYs - array of bytes
 Window2
 ...

4.1 The Header Section

 Each delta file starts with a header section organized as below.
 Note the convention that square-brackets enclose optional items.

 Header1 - byte = 0xD6
 Header2 - byte = 0xC3
 Header3 - byte = 0xC4
 Header4 - byte
 Hdr_Indicator - byte
 [Secondary compressor ID] - byte
 [Length of code table data] - integer
 [Code table data]

Korn, et. al. Standards Track [Page 7]

RFC 3284 VCDIFF June 2002

 The first three Header bytes are the ASCII characters ’V’, ’C’ and
 ’D’ with their most significant bits turned on (in hexadecimal, the
 values are 0xD6, 0xC3, and 0xC4). The fourth Header byte is
 currently set to zero. In the future, it might be used to indicate
 the version of Vcdiff.

 The Hdr_Indicator byte shows if there is any initialization data
 required to aid in the reconstruction of data in the Window sections.
 This byte MAY have non-zero values for either, both, or neither of
 the two bits VCD_DECOMPRESS and VCD_CODETABLE below:

 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+
 | | | | | | | | |
 +-+-+-+-+-+-+-+-+
 ^ ^
 | |
 | +-- VCD_DECOMPRESS
 +---- VCD_CODETABLE

 If bit 0 (VCD_DECOMPRESS) is non-zero, this indicates that a
 secondary compressor may have been used to further compress certain
 parts of the delta encoding data as described in Sections 4.3 and 6.
 In that case, the ID of the secondary compressor is given next. If
 this bit is zero, the compressor ID byte is not included.

 If bit 1 (VCD_CODETABLE) is non-zero, this indicates that an
 application-defined code table is to be used for decoding the delta
 instructions. This table itself is compressed. The length of the
 data comprising this compressed code table and the data follow next.
 Section 7 discusses application-defined code tables. If this bit is
 zero, the code table data length and the code table data are not
 included.

 If both bits are set, then the compressor ID byte is included before
 the code table data length and the code table data.

4.2 The Format of a Window Section

 Each Window section is organized as follows:

 Win_Indicator - byte
 [Source segment length] - integer
 [Source segment position] - integer
 The delta encoding of the target window

Korn, et. al. Standards Track [Page 8]

RFC 3284 VCDIFF June 2002

 Below are the details of the various items:

 Win_Indicator:
 This byte is a set of bits, as shown:

 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+
 | | | | | | | | |
 +-+-+-+-+-+-+-+-+
 ^ ^
 | |
 | +-- VCD_SOURCE
 +---- VCD_TARGET

 If bit 0 (VCD_SOURCE) is non-zero, this indicates that a
 segment of data from the "source" file was used as the
 corresponding source window of data to encode the target
 window. The decoder will use this same source data segment to
 decode the target window.

 If bit 1 (VCD_TARGET) is non-zero, this indicates that a
 segment of data from the "target" file was used as the
 corresponding source window of data to encode the target
 window. As above, this same source data segment is used to
 decode the target window.

 The Win_Indicator byte MUST NOT have more than one of the bits
 set (non-zero). It MAY have none of these bits set.

 If one of these bits is set, the byte is followed by two
 integers to indicate respectively, the length and position of
 the source data segment in the relevant file. If the indicator
 byte is zero, the target window was compressed by itself
 without comparing against another data segment, and these two
 integers are not included.

 The delta encoding of the target window:

 This contains the delta encoding of the target window, either
 in terms of the source data segment (i.e., VCD_SOURCE or
 VCD_TARGET was set) or by itself if no source window is
 specified. This data format is discussed next.

Korn, et. al. Standards Track [Page 9]

RFC 3284 VCDIFF June 2002

4.3 The Delta Encoding of a Target Window

 The delta encoding of a target window is organized as follows:

 Length of the delta encoding - integer
 The delta encoding
 Length of the target window - integer
 Delta_Indicator - byte
 Length of data for ADDs and RUNs - integer
 Length of instructions section - integer
 Length of addresses for COPYs - integer
 Data section for ADDs and RUNs - array of bytes
 Instructions and sizes section - array of bytes
 Addresses section for COPYs - array of bytes

 Length of the delta encoding:
 This integer gives the total number of remaining bytes that
 comprise the data of the delta encoding for this target
 window.

 The delta encoding:
 This contains the data representing the delta encoding which
 is described next.

 Length of the target window:
 This integer indicates the actual size of the target window
 after decompression. A decoder can use this value to
 allocate memory to store the uncompressed data.

 Delta_Indicator:
 This byte is a set of bits, as shown:

 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+
 | | | | | | | | |
 +-+-+-+-+-+-+-+-+
 ^ ^ ^
 | | |
 | | +-- VCD_DATACOMP
 | +---- VCD_INSTCOMP
 +------ VCD_ADDRCOMP

 VCD_DATACOMP: bit value 1.
 VCD_INSTCOMP: bit value 2.
 VCD_ADDRCOMP: bit value 4.

Korn, et. al. Standards Track [Page 10]

RFC 3284 VCDIFF June 2002

 As discussed, the delta encoding consists of COPY, ADD and RUN
 instructions. The ADD and RUN instructions have accompanying
 unmatched data (that is, data that does not specifically match
 any data in the source window or in some earlier part of the
 target window) and the COPY instructions have addresses of
 where the matches occur. OPTIONALLY, these types of data MAY
 be further compressed using a secondary compressor. Thus,
 Vcdiff separates the encoding of the delta instructions into
 three parts:

 a. The unmatched data in the ADD and RUN instructions,
 b. The delta instructions and accompanying sizes, and
 c. The addresses of the COPY instructions.

 If the bit VCD_DECOMPRESS (Section 4.1) was on, each of these
 sections may have been compressed using the specified secondary
 compressor. The bit positions 0 (VCD_DATACOMP), 1
 (VCD_INSTCOMP), and 2 (VCD_ADDRCOMP) respectively indicate, if
 non-zero, that the corresponding parts are compressed. Then,
 these parts MUST be decompressed before decoding the delta
 instructions.

 Length of data for ADDs and RUNs:
 This is the length (in bytes) of the section of data storing
 the unmatched data accompanying the ADD and RUN instructions.

 Length of instructions section:
 This is the length (in bytes) of the delta instructions and
 accompanying sizes.

 Length of addresses for COPYs:
 This is the length (in bytes) of the section storing the
 addresses of the COPY instructions.

 Data section for ADDs and RUNs:
 This sequence of bytes encodes the unmatched data for the ADD
 and RUN instructions.

 Instructions and sizes section:
 This sequence of bytes encodes the instructions and their
 sizes.

 Addresses section for COPYs:
 This sequence of bytes encodes the addresses of the COPY
 instructions.

Korn, et. al. Standards Track [Page 11]

RFC 3284 VCDIFF June 2002

5. Delta Instruction Encoding

 The delta instructions described in Section 3 represent the results
 of string matching. For many data differencing applications in which
 the changes between source and target data are small, any
 straightforward representation of these instructions would be
 adequate. However, for applications including differencing of binary
 files or data compression, it is important to encode these
 instructions well to achieve good compression rates. The keys to
 this achievement is to efficiently encode the addresses of COPY
 instructions and the sizes of all delta instructions.

5.1 Address Encoding Modes of COPY Instructions

 Addresses of COPY instructions are locations of matches and often
 occur close by or even exactly equal to one another. This is because
 data in local regions are often replicated with minor changes. In
 turn, this means that coding a newly matched address against some
 recently matched addresses can be beneficial. To take advantage of
 this phenomenon and encode addresses of COPY instructions more
 efficiently, the Vcdiff data format supports the use of two different
 types of address caches. Both the encoder and decoder maintain these
 caches, so that decoder’s caches remain synchronized with the
 encoder’s caches.

 a. A "near" cache is an array with "s_near" slots, each containing an
 address used for encoding addresses nearby to previously encoded
 addresses (in the positive direction only). The near cache also
 maintains a "next_slot" index to the near cache. New entries to
 the near cache are always inserted in the next_slot index, which
 maintains a circular buffer of the s_near most recent addresses.

 b. A "same" cache is an array with "s_same", with a multiple of 256
 slots, each containing an address. The same cache maintains a
 hash table of recent addresses used for repeated encoding of the
 exact same address.

 By default, the parameters s_near and s_same are respectively set to
 4 and 3. An encoder MAY modify these values, but then it MUST encode
 the new values in the encoding itself, as discussed in Section 7, so
 that the decoder can properly set up its own caches.

 At the start of processing a target window, an implementation
 (encoder or decoder) initializes all of the slots in both caches to
 zero. The next_slot pointer of the near cache is set to point to
 slot zero.

Korn, et. al. Standards Track [Page 12]

RFC 3284 VCDIFF June 2002

 Each time a COPY instruction is processed by the encoder or decoder,
 the implementation’s caches are updated as follows, where "addr" is
 the address in the COPY instruction.

 a. The slot in the near cache referenced by the next_slot index is
 set to addr. The next_slot index is then incremented modulo
 s_near.

 b. The slot in the same cache whose index is addr%(s_same*256) is set
 to addr. [We use the C notations of % for modulo and * for
 multiplication.]

5.2 Example code for maintaining caches

 To make clear the above description, below are examples of cache data
 structures and algorithms to initialize and update them:

 typedef struct _cache_s
 {
 int* near; /* array of size s_near */
 int s_near;
 int next_slot; /* the circular index for near */
 int* same; /* array of size s_same*256 */
 int s_same;
 } Cache_t;

 cache_init(Cache_t* ka)
 {
 int i;

 ka->next_slot = 0;
 for(i = 0; i < ka->s_near; ++i)
 ka->near[i] = 0;

 for(i = 0; i < ka->s_same*256; ++i)
 ka->same[i] = 0;
 }

 cache_update(Cache_t* ka, int addr)
 {
 if(ka->s_near > 0)
 { ka->near[ka->next_slot] = addr;
 ka->next_slot = (ka->next_slot + 1) % ka->s_near;
 }

 if(ka->s_same > 0)
 ka->same[addr % (ka->s_same*256)] = addr;
 }

Korn, et. al. Standards Track [Page 13]

RFC 3284 VCDIFF June 2002

5.3 Encoding of COPY instruction addresses

 The address of a COPY instruction is encoded using different modes,
 depending on the type of cached address used, if any.

 Let "addr" be the address of a COPY instruction to be decoded and
 "here" be the current location in the target data (i.e., the start of
 the data about to be encoded or decoded). Let near[j] be the jth
 element in the near cache, and same[k] be the kth element in the same
 cache. Below are the possible address modes:

 VCD_SELF: This mode has value 0. The address was encoded by
 itself as an integer.

 VCD_HERE: This mode has value 1. The address was encoded as the
 integer value "here - addr".

 Near modes: The "near modes" are in the range [2,s_near+1]. Let m
 be the mode of the address encoding. The address was encoded
 as the integer value "addr - near[m-2]".

 Same modes: The "same modes" are in the range
 [s_near+2,s_near+s_same+1]. Let m be the mode of the encoding.
 The address was encoded as a single byte b such that "addr ==
 same[(m - (s_near+2))*256 + b]".

5.4 Example code for encoding and decoding of COPY instruction addresses

 We show example algorithms below to demonstrate the use of address
 modes more clearly. The encoder has the freedom to choose address
 modes, the sample addr_encode() algorithm merely shows one way of
 picking the address mode. The decoding algorithm addr_decode() will
 uniquely decode addresses, regardless of the encoder’s algorithm
 choice.

 Note that the address caches are updated immediately after an address
 is encoded or decoded. In this way, the decoder is always
 synchronized with the encoder.

Korn, et. al. Standards Track [Page 14]

RFC 3284 VCDIFF June 2002

 int addr_encode(Cache_t* ka, int addr, int here, int* mode)
 {
 int i, d, bestd, bestm;

 /* Attempt to find the address mode that yields the
 * smallest integer value for "d", the encoded address
 * value, thereby minimizing the encoded size of the
 * address. */

 bestd = addr; bestm = VCD_SELF; /* VCD_SELF == 0 */

 if((d = here-addr) < bestd)
 { bestd = d; bestm = VCD_HERE; } /* VCD_HERE == 1 */

 for(i = 0; i < ka->s_near; ++i)
 if((d = addr - ka->near[i]) >= 0 && d < bestd)
 { bestd = d; bestm = i+2; }

 if(ka->s_same > 0 && ka->same[d = addr%(ka->s_same*256)] == addr)
 { bestd = d%256; bestm = ka->s_near + 2 + d/256; }

 cache_update(ka,addr);

 mode = bestm; / this returns the address encoding mode */
 return bestd; /* this returns the encoded address */
 }

 Note that the addr_encode() algorithm chooses the best address mode
 using a local optimization, but that may not lead to the best
 encoding efficiency because different modes lead to different
 instruction encodings, as described below.

 The functions addrint() and addrbyte() used in addr_decode(), obtain
 from the "Addresses section for COPYs" (Section 4.3), an integer or a
 byte, respectively. These utilities will not be described here. We
 simply recall that an integer is represented as a compact variable-
 sized string of bytes, as described in Section 2 (i.e., base 128).

Korn, et. al. Standards Track [Page 15]

RFC 3284 VCDIFF June 2002

 int addr_decode(Cache_t* ka, int here, int mode)
 { int addr, m;

 if(mode == VCD_SELF)
 addr = addrint();
 else if(mode == VCD_HERE)
 addr = here - addrint();
 else if((m = mode - 2) >= 0 && m < ka->s_near) /* near cache */
 addr = ka->near[m] + addrint();
 else /* same cache */
 { m = mode - (2 + ka->s_near);
 addr = ka->same[m*256 + addrbyte()];
 }

 cache_update(ka, addr);

 return addr;
 }

5.4 Instruction Codes

 Matches are often short in lengths and separated by small amounts of
 unmatched data. That is, the lengths of COPY and ADD instructions
 are often small. This is particularly true of binary data such as
 executable files or structured data, such as HTML or XML. In such
 cases, compression can be improved by combining the encoding of the
 sizes and the instruction types, as well as combining the encoding of
 adjacent delta instructions with sufficiently small data sizes.
 Effective choices of when to perform such combinations depend on many
 factors including the data being processed and the string matching
 algorithm in use. For example, if many COPY instructions have the
 same data sizes, it may be worthwhile to encode these instructions
 more compactly than others.

 The Vcdiff data format is designed so that a decoder does not need to
 be aware of the choices made in encoding algorithms. This is
 achieved with the notion of an "instruction code table", containing
 256 entries. Each entry defines, either a single delta instruction
 or a pair of instructions that have been combined. Note that the
 code table itself only exists in main memory, not in the delta file
 (unless using an application-defined code table, described in Section
 7). The encoded data simply includes the index of each instruction
 and, since there are only 256 indices, each index can be represented
 as a single byte.

Korn, et. al. Standards Track [Page 16]

RFC 3284 VCDIFF June 2002

 Each instruction code entry contains six fields, each of which is a
 single byte with an unsigned value:

 +---+
 | inst1 | size1 | mode1 | inst2 | size2 | mode2 |
 +---+

 Each triple (inst,size,mode) defines a delta instruction. The
 meanings of these fields are as follows:

 inst: An "inst" field can have one of the four values: NOOP (0),
 ADD (1), RUN (2) or COPY (3) to indicate the instruction
 types. NOOP means that no instruction is specified. In
 this case, both the corresponding size and mode fields will
 be zero.

 size: A "size" field is zero or positive. A value zero means that
 the size associated with the instruction is encoded
 separately as an integer in the "Instructions and sizes
 section" (Section 6). A positive value for "size" defines
 the actual data size. Note that since the size is
 restricted to a byte, the maximum value for any instruction
 with size implicitly defined in the code table is 255.

 mode: A "mode" field is significant only when the associated delta
 instruction is a COPY. It defines the mode used to encode
 the associated addresses. For other instructions, this is
 always zero.

5.6 The Code Table

 Following the discussions on address modes and instruction code
 tables, we define a "Code Table" to have the data below:

 s_near: the size of the near cache,
 s_same: the size of the same cache,
 i_code: the 256-entry instruction code table.

 Vcdiff itself defines a "default code table" in which s_near is 4 and
 s_same is 3. Thus, there are 9 address modes for a COPY instruction.
 The first two are VCD_SELF (0) and VCD_HERE (1). Modes 2, 3, 4 and 5
 are for addresses coded against the near cache. And modes 6, 7 and
 8, are for addresses coded against the same cache.

Korn, et. al. Standards Track [Page 17]

RFC 3284 VCDIFF June 2002

 TYPE SIZE MODE TYPE SIZE MODE INDEX

 1. RUN 0 0 NOOP 0 0 0
 2. ADD 0, [1,17] 0 NOOP 0 0 [1,18]
 3. COPY 0, [4,18] 0 NOOP 0 0 [19,34]
 4. COPY 0, [4,18] 1 NOOP 0 0 [35,50]
 5. COPY 0, [4,18] 2 NOOP 0 0 [51,66]
 6. COPY 0, [4,18] 3 NOOP 0 0 [67,82]
 7. COPY 0, [4,18] 4 NOOP 0 0 [83,98]
 8. COPY 0, [4,18] 5 NOOP 0 0 [99,114]
 9. COPY 0, [4,18] 6 NOOP 0 0 [115,130]
 10. COPY 0, [4,18] 7 NOOP 0 0 [131,146]
 11. COPY 0, [4,18] 8 NOOP 0 0 [147,162]
 12. ADD [1,4] 0 COPY [4,6] 0 [163,174]
 13. ADD [1,4] 0 COPY [4,6] 1 [175,186]
 14. ADD [1,4] 0 COPY [4,6] 2 [187,198]
 15. ADD [1,4] 0 COPY [4,6] 3 [199,210]
 16. ADD [1,4] 0 COPY [4,6] 4 [211,222]
 17. ADD [1,4] 0 COPY [4,6] 5 [223,234]
 18. ADD [1,4] 0 COPY 4 6 [235,238]
 19. ADD [1,4] 0 COPY 4 7 [239,242]
 20. ADD [1,4] 0 COPY 4 8 [243,246]
 21. COPY 4 [0,8] ADD 1 0 [247,255]

 The default instruction code table is depicted above, in a compact
 representation that we use only for descriptive purposes. See
 section 7 for the specification of how an instruction code table is
 represented in the Vcdiff encoding format. In the depiction, a zero
 value for size indicates that the size is separately coded. The mode
 of non-COPY instructions is represented as 0, even though they are
 not used.

 In the depiction, each numbered line represents one or more entries
 in the actual instruction code table (recall that an entry in the
 instruction code table may represent up to two combined delta
 instructions.) The last column ("INDEX") shows which index value, or
 range of index values, of the entries are covered by that line. (The
 notation [i,j] means values from i through j, inclusively.) The
 first 6 columns of a line in the depiction, describe the pairs of
 instructions used for the corresponding index value(s).

 If a line in the depiction includes a column entry using the [i,j]
 notation, this means that the line is instantiated for each value in
 the range from i to j, inclusively. The notation "0, [i,j]" means
 that the line is instantiated for the value 0 and for each value in
 the range from i to j, inclusively.

Korn, et. al. Standards Track [Page 18]

RFC 3284 VCDIFF June 2002

 If a line in the depiction includes more than one entry using the
 [i,j] notation, implying a "nested loop" to convert the line to a
 range of table entries, the first such [i,j] range specifies the
 outer loop, and the second specifies the inner loop.

 The below examples should make clear the above description:

 Line 1 shows the single RUN instruction with index 0. As the size
 field is 0, this RUN instruction always has its actual size encoded
 separately.

 Line 2 shows the 18 single ADD instructions. The ADD instruction
 with size field 0 (i.e., the actual size is coded separately) has
 index 1. ADD instructions with sizes from 1 to 17 use code indices 2
 to 18 and their sizes are as given (so they will not be separately
 encoded.)

 Following the single ADD instructions are the single COPY
 instructions ordered by their address encoding modes. For example,
 line 11 shows the COPY instructions with mode 8, i.e., the last of
 the same cache. In this case, the COPY instruction with size field 0
 has index 147. Again, the actual size of this instruction will be
 coded separately.

 Lines 12 to 21 show the pairs of instructions that are combined
 together. For example, line 12 depicts the 12 entries in which an
 ADD instruction is combined with an immediately following COPY
 instruction. The entries with indices 163, 164, 165 represent the
 pairs in which the ADD instructions all have size 1, while the COPY
 instructions have mode 0 (VCD_SELF) and sizes 4, 5 and 6
 respectively.

 The last line, line 21, shows the eight instruction pairs, where the
 first instruction is a COPY and the second is an ADD. In this case,
 all COPY instructions have size 4 with mode ranging from 0 to 8 and
 all the ADD instructions have size 1. Thus, the entry with the
 largest index 255 combines a COPY instruction of size 4 and mode 8
 with an ADD instruction of size 1.

 The choice of the minimum size 4 for COPY instructions in the default
 code table was made from experiments that showed that excluding small
 matches (less then 4 bytes long) improved the compression rates.

Korn, et. al. Standards Track [Page 19]

RFC 3284 VCDIFF June 2002

6. Decoding a Target Window

 Section 4.3 discusses that the delta instructions and associated data
 are encoded in three arrays of bytes:

 Data section for ADDs and RUNs,
 Instructions and sizes section, and
 Addresses section for COPYs.

 Further, these data sections may have been further compressed by some
 secondary compressor. Assuming that any such compressed data has
 been decompressed so that we now have three arrays:

 inst: bytes coding the instructions and sizes.
 data: unmatched data associated with ADDs and RUNs.
 addr: bytes coding the addresses of COPYs.

 These arrays are organized as follows:

 inst: a sequence of (index, [size1], [size2]) tuples, where
 "index" is an index into the instruction code table, and
 size1 and size2 are integers that MAY or MAY NOT be included
 in the tuple as follows. The entry with the given "index"
 in the instruction code table potentially defines two delta
 instructions. If the first delta instruction is not a
 VCD_NOOP and its size is zero, then size1 MUST be present.
 Otherwise, size1 MUST be omitted and the size of the
 instruction (if it is not VCD_NOOP) is as defined in the
 table. The presence or absence of size2 is defined
 similarly with respect to the second delta instruction.

 data: a sequence of data values, encoded as bytes.

 addr: a sequence of address values. Addresses are normally
 encoded as integers as described in Section 2 (i.e., base
 128). However, since the same cache emits addresses in the
 range [0,255], same cache addresses are always encoded as a
 single byte.

 To summarize, each tuple in the "inst" array includes an index to
 some entry in the instruction code table that determines:

 a. Whether one or two instructions were encoded and their types.

 b. If the instructions have their sizes encoded separately, these
 sizes will follow, in order, in the tuple.

Korn, et. al. Standards Track [Page 20]

RFC 3284 VCDIFF June 2002

 c. If the instructions have accompanying data, i.e., ADDs or RUNs,
 their data will be in the array "data".

 d. Similarly, if the instructions are COPYs, the coded addresses are
 found in the array "addr".

 The decoding procedure simply processes the arrays by reading one
 code index at a time, looking up the corresponding instruction code
 entry, then consuming the respective sizes, data and addresses
 following the directions in this entry. In other words, the decoder
 maintains an implicit next-element pointer for each array;
 "consuming" an instruction tuple, data, or address value implies
 incrementing the associated pointer.

 For example, if during the processing of the target window, the next
 unconsumed tuple in the inst array has an index value of 19, then the
 first instruction is a COPY, whose size is found as the immediately
 following integer in the inst array. Since the mode of this COPY
 instruction is VCD_SELF, the corresponding address is found by
 consuming the next integer in the addr array. The data array is left
 intact. As the second instruction for code index 19 is a NOOP, this
 tuple is finished.

7. APPLICATION-DEFINED CODE TABLES

 Although the default code table used in Vcdiff is good for general
 purpose encoders, there are times when other code tables may perform
 better. For example, to code a file with many identical segments of
 data, it may be advantageous to have a COPY instruction with the
 specific size of these data segments, so that the instruction can be
 encoded in a single byte. Such a special code table MUST then be
 encoded in the delta file so that the decoder can reconstruct it
 before decoding the data.

 Vcdiff allows an application-defined code table to be specified in a
 delta file with the following data:

 Size of near cache - byte
 Size of same cache - byte
 Compressed code table data

 The "compressed code table data" encodes the delta between the
 default code table (source) and the new code table (target) in the
 same manner as described in Section 4.3 for encoding a target window
 in terms of a source window. This delta is computed using the
 following steps:

Korn, et. al. Standards Track [Page 21]

RFC 3284 VCDIFF June 2002

 a. Convert the new instruction code table into a string, "code", of
 1536 bytes using the below steps in order:

 i. Add in order the 256 bytes representing the types of the first
 instructions in the instruction pairs.
 ii. Add in order the 256 bytes representing the types of the
 second instructions in the instruction pairs.
 iii. Add in order the 256 bytes representing the sizes of the first
 instructions in the instruction pairs.
 iv. Add in order the 256 bytes representing the sizes of the
 second instructions in the instruction pairs.
 v. Add in order the 256 bytes representing the modes of the first
 instructions in the instruction pairs.
 vi. Add in order the 256 bytes representing the modes of the
 second instructions in the instruction pairs.

 b. Similarly, convert the default code table into a string "dflt".

 c. Treat the string "code" as a target window and "dflt" as the
 corresponding source data and apply an encoding algorithm to
 compute the delta encoding of "code" in terms of "dflt". This
 computation MUST use the default code table for encoding the delta
 instructions.

 The decoder can then reverse the above steps to decode the compressed
 table data using the method of Section 6, employing the default code
 table, to generate the new code table. Note that the decoder does
 not need to know about the details of the encoding algorithm used in
 step (c). It is able to decode the new code table because the Vcdiff
 format is independent from the choice of encoding algorithm, and
 because the encoder in step (c) uses the known, default code table.

8. Performance

 The encoding format is compact. For compression only, using the LZ-
 77 string parsing strategy and without any secondary compressors, the
 typical compression rate is better than Unix compress and close to
 gzip. For differencing, the data format is better than all known
 methods in terms of its stated goal, which is primarily decoding
 speed and encoding efficiency.

 We compare the performance of compress, gzip and Vcdiff using the
 archives of three versions of the Gnu C compiler, gcc-2.95.1.tar,
 gcc-2.95.2.tar and gcc-2.95.3.tar. Gzip was used at its default
 compression level. The Vcdiff data were obtained using the
 Vcodex/Vcdiff software (Section 13).

Korn, et. al. Standards Track [Page 22]

RFC 3284 VCDIFF June 2002

 Below are the different Vcdiff runs:

 Vcdiff: vcdiff is used as a compressor only.

 Vcdiff-d: vcdiff is used as a differencer only. That is, it only
 compares target data against source data. Since the files
 involved are large, they are broken into windows. In this
 case, each target window, starting at some file offset in the
 target file, is compared against a source window with the same
 file offset (in the source file). The source window is also
 slightly larger than the target window to increase matching
 opportunities.

 Vcdiff-dc: This is similar to Vcdiff-d, but vcdiff can also
 compare target data against target data as applicable. Thus,
 vcdiff both computes differences and compresses data. The
 windowing algorithm is the same as above. However, the above
 hint is recinded in this case.

 Vcdiff-dcw: This is similar to Vcdiff-dc but the windowing
 algorithm uses a content-based heuristic to select a source
 window that is more likely to match with a given target window.
 Thus, the source data segment selected for a target window
 often will not be aligned with the file offsets of this target
 window.

 gcc-2.95.1 gcc-2.95.2 gcc-2.95.3

 1. raw size 55,746,560 55,797,760 55,787,520
 2. compress - 19,939,390 19,939,453
 3. gzip - 12,973,443 12,998,097
 4. Vcdiff - 15,358,786 15,371,737
 5. Vcdiff-d - 100,971 26,383,849
 6. Vcdiff-dc - 97,246 14,461,203
 7. Vcdiff-dcw - 256,445 1,248,543

 The above table shows the raw sizes of the tar files and the sizes of
 the compressed results. The differencing results in the gcc-2.95.2
 column were obtained by compressing gcc-2.95.2, given gcc-2.95.1.
 The same results for the column gcc-2.95.3 were obtained by
 compressing gcc-2.95.3, given gcc-2.95.2.

 Rows 2, 3 and 4 show that, for compression only, the compression rate
 from Vcdiff is worse than gzip and better than compress.

Korn, et. al. Standards Track [Page 23]

RFC 3284 VCDIFF June 2002

 The last three rows in the column gcc-2.95.2 show that when two file
 versions are very similar, differencing can give dramatically good
 compression rates. Vcdiff-d and Vcdiff-dc use the same simple window
 selection method of aligning by file offsets, but Vcdiff-dc also does
 compression so its output is slightly smaller. Vcdiff-dcw uses a
 content-based algorithm to search for source data that likely will
 match a given target window. Although it does a good job, the
 algorithm does not always find the best matches, which in this case,
 are given by the simple algorithm of Vcdiff-d. As a result, the
 output size for Vcdiff-dcw is slightly larger.

 The situation is reversed in the gcc-2.95.3 column. Here, the files
 and their contents were sufficiently rearranged or changed between
 the making of the gcc-2.95.3.tar archive and the gcc-2.95.2 archive
 so that the simple method of aligning windows by file offsets no
 longer works. As a result, Vcdiff-d and Vcdiff-dc do not perform
 well. By allowing compression, along with differencing, Vcdiff-dc
 manages to beat Vcdiff-c, which does compression only. The content-
 based window matching algorithm in Vcdiff-dcw is effective in
 matching the right source and target windows so that Vcdiff-dcw is
 the overall winner.

9. Further Issues

 This document does not address a few issues:

 Secondary compressors:
 As discussed in Section 4.3, certain sections in the delta
 encoding of a window may be further compressed by a secondary
 compressor. In our experience, the basic Vcdiff format is
 adequate for most purposes so that secondary compressors are
 seldom needed. In particular, for normal use of data
 differencing, where the files to be compared have long stretches
 of matches, much of the gain in compression rate is already
 achieved by normal string matching. Thus, the use of secondary
 compressors is seldom needed in this case. However, for
 applications beyond differencing of such nearly identical files,
 secondary compressors may be needed to achieve maximal compressed
 results.

 Therefore, we recommend leaving the Vcdiff data format defined as
 in this document so that the use of secondary compressors can be
 implemented when they become needed in the future. The formats of
 the compressed data via such compressors or any compressors that
 may be defined in the future are left open to their
 implementations. These could include Huffman encoding, arithmetic
 encoding, and splay tree encoding [8,9].

Korn, et. al. Standards Track [Page 24]

RFC 3284 VCDIFF June 2002

 Large file system vs. small file system:
 As discussed in Section 4, a target window in a large file may be
 compared against some source window in another file or in the same
 file (from some earlier part). In that case, the file offset of
 the source window is specified as a variable-sized integer in the
 delta encoding. There is a possibility that the encoding was
 computed on a system supporting much larger files than in a system
 where the data may be decoded (e.g., 64-bit file systems vs. 32-
 bit file systems). In that case, some target data may not be
 recoverable. This problem could afflict any compression format,
 and ought to be resolved with a generic negotiation mechanism in
 the appropriate protocol(s).

10. Summary

 We have described Vcdiff, a general and portable encoding format for
 compression and differencing. The format is good in that it allows
 implementing a decoder without knowledge of the encoders. Further,
 ignoring the use of secondary compressors not defined within the
 format, the decoding algorithms run in linear time and requires
 working space proportional to window size.

11. Acknowledgements

 Thanks are due to Balachander Krishnamurthy, Jeff Mogul and Arthur
 Van Hoff who provided much encouragement to publicize Vcdiff. In
 particular, Jeff helped in clarifying the description of the data
 format presented here.

12. Security Considerations

 Vcdiff only provides a format to encode compressed and differenced
 data. It does not address any issues concerning how such data are,
 in fact, stored in a given file system or the run-time memory of a
 computer system. Therefore, we do not anticipate any security issues
 with respect to Vcdiff.

13. Source Code Availability

 Vcdiff is implemented as a data transforming method in Phong Vo’s
 Vcodex library. AT&T Corp. has made the source code for Vcodex
 available for anyone to use to transmit data via HTTP/1.1 Delta
 Encoding [10,11]. The source code and according license is
 accessible at the below URL:

 http://www.research.att.com/sw/tools

Korn, et. al. Standards Track [Page 25]

RFC 3284 VCDIFF June 2002

14. Intellectual Property Rights

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights, at <http://www.ietf.org/ipr.html>.

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP 11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

15. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) administers the number
 space for Secondary Compressor ID values. Values and their meaning
 must be documented in an RFC or other peer-reviewed, permanent, and
 readily available reference, in sufficient detail so that
 interoperability between independent implementations is possible.
 Subject to these constraints, name assignments are First Come, First
 Served - see RFC 2434 [13]. Legal ID values are in the range 1..255.

 This document does not define any values in this number space.

16. References

 [1] D.G. Korn and K.P. Vo, Vdelta: Differencing and Compression,
 Practical Reusable Unix Software, Editor B. Krishnamurthy, John
 Wiley & Sons, Inc., 1995.

 [2] J. Ziv and A. Lempel, A Universal Algorithm for Sequential Data
 Compression, IEEE Trans. on Information Theory, 23(3):337-343,
 1977.

 [3] W. Tichy, The String-to-String Correction Problem with Block
 Moves, ACM Transactions on Computer Systems, 2(4):309-321,
 November 1984.

Korn, et. al. Standards Track [Page 26]

RFC 3284 VCDIFF June 2002

 [4] E.M. McCreight, A Space-Economical Suffix Tree Construction
 Algorithm, Journal of the ACM, 23:262-272, 1976.

 [5] J.J. Hunt, K.P. Vo, W. Tichy, An Empirical Study of Delta
 Algorithms, IEEE Software Configuration and Maintenance
 Workshop, 1996.

 [6] J.J. Hunt, K.P. Vo, W. Tichy, Delta Algorithms: An Empirical
 Analysis, ACM Trans. on Software Engineering and Methodology,
 7:192-214, 1998.

 [7] D.G. Korn, K.P. Vo, Sfio: A buffered I/O Library, Proc. of the
 Summer ’91 Usenix Conference, 1991.

 [8] D. W. Jones, Application of Splay Trees to Data Compression,
 CACM, 31(8):996:1007.

 [9] M. Nelson, J. Gailly, The Data Compression Book, ISBN 1-55851-
 434-1, M&T Books, New York, NY, 1995.

 [10] J.C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy,
 Potential benefits of delta encoding and data compression for
 HTTP, SIGCOMM ’97, Cannes, France, 1997.

 [11] Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A., Goland,
 Y. and A. Van Hoff, "Delta Encoding in HTTP", RFC 3229, January
 2002.

 [12] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [13] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

 [14] D.G. Korn and K.P. Vo, Engineering a Differencing and
 Compression Data Format, Submitted to Usenix’2002, 2001.

Korn, et. al. Standards Track [Page 27]

RFC 3284 VCDIFF June 2002

17. Authors’ Addresses

 Kiem-Phong Vo (main contact)
 AT&T Labs, Room D223
 180 Park Avenue
 Florham Park, NJ 07932

 Phone: 1 973 360 8630
 EMail: kpv@research.att.com

 David G. Korn
 AT&T Labs, Room D237
 180 Park Avenue
 Florham Park, NJ 07932

 Phone: 1 973 360 8602
 EMail: dgk@research.att.com

 Jeffrey C. Mogul
 Western Research Laboratory
 Hewlett-Packard Company
 1501 Page Mill Road, MS 1251
 Palo Alto, California, 94304, U.S.A.

 Phone: 1 650 857 2206 (email preferred)
 EMail: JeffMogul@acm.org

 Joshua P. MacDonald
 Computer Science Division
 University of California, Berkeley
 345 Soda Hall
 Berkeley, CA 94720

 EMail: jmacd@cs.berkeley.edu

Korn, et. al. Standards Track [Page 28]

RFC 3284 VCDIFF June 2002

18. Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Korn, et. al. Standards Track [Page 29]

