
Network Working Group M. Gaynor
Request for Comments: 3093 S. Bradner
Category: Informational Harvard University
 1 April 2001

 Firewall Enhancement Protocol (FEP)

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 Internet Transparency via the end-to-end architecture of the Internet
 has allowed vast innovation of new technologies and services [1].
 However, recent developments in Firewall technology have altered this
 model and have been shown to inhibit innovation. We propose the
 Firewall Enhancement Protocol (FEP) to allow innovation, without
 violating the security model of a Firewall. With no cooperation from
 a firewall operator, the FEP allows ANY application to traverse a
 Firewall. Our methodology is to layer any application layer
 Transmission Control Protocol/User Datagram Protocol (TCP/UDP)
 packets over the HyperText Transfer Protocol (HTTP) protocol, since
 HTTP packets are typically able to transit Firewalls. This scheme
 does not violate the actual security usefulness of a Firewall, since
 Firewalls are designed to thwart attacks from the outside and to
 ignore threats from within. The use of FEP is compatible with the
 current Firewall security model because it requires cooperation from
 a host inside the Firewall. FEP allows the best of both worlds: the
 security of a firewall, and transparent tunneling thought the
 firewall.

1.0 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

Gaynor & Bradner Informational [Page 1]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

2.0 Introduction

 The Internet has done well, considering that less than 10 years ago
 the telco’s were claiming it could not ever work for the corporate
 environment. There are many reasons for this; a particularly strong
 one is the end-to-end argument discussed by Reed, Seltzer, and Clark
 [2]. Innovation at the ends has proven to be a very powerful
 methodology creating more value than ever conceived of. But, the
 world is changing as Clark notes in [6]. With the connection of the
 corporate world to the Internet, security concerns have become
 paramount, even at the expense of breaking the end-to-end paradigm.
 One example of this is the Firewall - a device to prevent outsiders
 from unauthorized access into a corporation. Our new protocol, the
 Firewall Enhancement Protocol (FEP), is designed to restore the end-
 to-end model while maintaining the level of security created by
 Firewalls.

 To see how powerful the end-to-end model is consider the following
 example. If Scott and Mark have a good idea and some implementation
 talent, they can create an artifact, use it, and send it to their
 friends. If it turns out to be a good idea these friends can adopt
 it and maybe make it better. Now enter the Firewall: if Mark happens
 to work at a company that installs a Firewall, he can’t experiment
 with his friend Scott. Innovation is more difficult, maybe
 impossible. What business is it of an IT manager if Scott and Mark
 want to do some experiments to enable them to better serve their
 users? This is how the web was created: one guy with talent, a few
 good ideas, and the ability to innovate.

 Firewalls are important, and we do respect the right of anybody to
 protecting themselves any way they want (as long as others are not
 inconvenienced). Firewalls work, and have a place in the Internet.
 However, Firewalls are built to protect from external threats, not
 internal ones. Our proposed protocol does not break the security
 model of the Firewall; it still protects against all external risks
 that a particular Firewall can protect against. For our protocol to
 work someone inside the Firewall must run an application level
 protocol that can access TCP port 80. Our concept allows a
 consistent level of security while bypassing the IT manager in charge
 of the Firewall. We offer freedom to innovate without additionally
 compromising external security, and the best part, no need to waste
 time involving any managers for approval.

 We got this idea from the increasing number of applications that use
 HTTP specifically because it can bypass Firewall barriers. This
 piecemeal deployment of specific applications is not an efficient way
 to meet the challenge to innovation created by Firewalls. We decided
 to develop a process by which TCP/IP itself is carried over HTTP.

Gaynor & Bradner Informational [Page 2]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

 With this innovation anyone can use any new TCP/IP application
 immediately without having to go through the laborious process of
 dealing with Firewall access for the particular application. An
 unintended byproduct of this proposal is that existing TCP/IP
 applications can also be supported to better serve the users. With
 FEP, the users can decide what applications they can run.

 Our protocol is simple and is partly based on the Eastlake [3]
 proposal for MIME encoding of IP packets. We use the ubiquitous HTTP
 protocol format. The IP datagram is carried in the message body of
 the HTTP message and the TCP packet header information is encoded
 into HTTP headers of the message. This ASCII encoding of the header
 fields has many advantages, including human readability, increasing
 the debuggability of new applications, and easy logging of packet
 information. If this becomes widely adopted, tools like tcpdump will
 become obsolete.

3.0 FEP Protocol

 Figure 1 shows a high level view of our protocol. The application
 (1) in host A (outside the Firewall) sends a TCP/IP datagram to host
 B (within the firewall). Using a tunnel interface the TCP/IP
 datagram is routed to our FEP software (2), which encodes the
 datagram within a HTTP message. Then this message is sent via a
 HTTP/TCP/IP tunnel (3) to host B on the normal HTTP port (4). When
 it arrives at host B, this packet is routed via the tunnel to the FEP
 software (5), which decodes the packet and creates a TCP/IP datagram
 to insert into host’s B protocol stack (6). This packet is routed to
 the application on host B (7), as if the Firewall (8) never existed.

Gaynor & Bradner Informational [Page 3]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

 host A host B
 ---------- ----------
 | App | (1) | App | (7)
 |----------| |----------|
 | TCP | | TCP |
 |----------| |----------|
 | IP | | IP | (6)
 |----------| |----------|
 | FEP dvr | (2) | FEP dvr | (5)
 |----------| |----------|
 | TCP | | TCP |
 |----------| |----------|
 | IP | Firewall (8) | IP |
 ---------- --- -----------
 | (3) | | ^ (4)
 +---------------->| |-----------------------+
 | |
 | |

 Figure 1

3.1 HTTP Method

 FEP allows either side to look like a client or server. Each TCP/IP
 packet is sent as either a HTTP GET request or a response to a GET
 request. This flexibility work well with firewalls that try to
 verify valid HTTP commands crossing the Firewall stopping the
 unwanted intercepting of FEP packets.

3.2 TCP Header Encapsulation:

 The TCP/IP packet is encoded into the HTTP command in two (or
 optionally three) steps. First, the IP packet is encoded as the
 message body in MIME format, as specified in [3]. Next, the TCP [4]
 packet header is parsed and encoded into new HTTP headers. Finally,
 as an option, the IP header can also be encoded into new optional
 HTTP headers. Encoding the TCP and optionally the IP header is
 strictly for human readability, since the entire IP datagram is
 encoded in the body part of the HTTP command.

 This proposal defines the following new HTTP headers for representing
 TCP header information.

 TCP_value_opt - This ASCII string represents the encoding type for
 the TCP fields where a mandatory encoding type is not specified.
 The legitimate values are:

Gaynor & Bradner Informational [Page 4]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

 TCP_binary - ASCII representation of the binary representation of the
 value of the field.

 TCP_hexed - ASCII representation of the hex representation of the
 value of the field.

 TCP_Sport - The 16-bit TCP Source Port number, encoded as an ASCII
 string representing the value of port number.

 TCP_Dport - The 16-bit TCP Destination Port number, encoded as an
 ASCII string representing the value of the port number.

 TCP_SeqNum - The 32-bit Sequence Number, encoded as an ASCII string
 representing the hex value of the Sequence number. This field
 MUST be sent as lower case because it is not urgent.

 TCP_Ackl - The 32-bit Acknowledgement Number, encoded as ASCII string
 representing the value of the Acknowledgement number.

 TCP_DODO - The 4-bit Data Offset value, encoded as an ASCII string
 representing the base 32 value of the actual length of TCP header
 in bits. (Normally this is the Data value times 32.)

 TCP_6Os - The 6 reserved bits, encoded as a string of 6 ASCII
 characters. A "O" ("Oh") represents an "Off" bit and "O" ("Oh")
 represents an "On" bit. (Note these characters MUST all be sent
 as "off" and MUST be ignored on receipt.)

 TCP_FlgBts - The TCP Flags, encoded as the set of 5 comma-separated
 ASCII strings: [{URG|urg}, {ACK|ack}, {PSH|psh}, {RST|rst},
 {SYN|syn}, {FIN|fin}]. Capital letters imply the flag is set,
 lowercase means the flag is not set.

 TCP_Windex - The 16-bit TCP Window Size, encoded as an ASCII string
 representing the value of the number of bytes in the window.

 TCP_Checkit - The 16-bit TCP Checksum field, encoded as an ASCII
 string representing the decimal value of the ones-complement of
 the checksum field.

 TCP_UP - The 16-bit TCP Urgent Pointer, encoded as the hex
 representation of the value of the field. The hex string MUST be
 capitalized since it is urgent.

Gaynor & Bradner Informational [Page 5]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

 TCP_Opp_Lst - A comma-separated list of any TCP options that may be
 present. Each option is encoded as an ASCII string representing
 the name of the option followed by option-specific information
 enclosed in square brackets. Representative options and their
 encoding follow, other IP options follow the same form:

 End of Options option: ["End of Options"]

 Window scale option: ["Window scale", shift_count], where
 shift_count is the window scaling factor represented as the
 ASCII string in decimal.

3.2 IPv4 Header Encapsulation:

 This proposal defines the following new HTTP headers for representing
 IPv4 header information:

 These optional headers are used to encode the IPv4 [5] header for
 better readability. These fields are encoded in a manner similar to
 the above TCP header fields.

 Since the base IP packet is already present in an HTTP header, the
 following headers are optional. None, some or all of them may be
 used depending on the whim of the programmer.

 IP_value_opt - This ASCII string represents the encoding type for the
 following fields where a mandatory encoding type is not
 specified. The legitimate values are the same as for
 TCP_value_opt.

 IP_Ver - The IP Version number, encoded as an UTF-8 string. The
 legitimate values for the string are "four", "five", and "six."
 The encapsulation of the fields in the IP header are defined in
 this section if the value is "four", and in section 3.3 if the
 value is "six". Encapsulations for headers with IP_Ver value of
 "five" will be developed if the right orders are received.
 Encapsulations for headers with the IP_Ver value of "eight" are
 empty. Implementations MUST be able to support arbitrary native
 languages for these strings.

 IP4_Hlen - The IP Internet Header Length field, it is encoded in the
 same way as TCP_DODO.

 IP4_Type_of_Service (this name is case sensitive) - This is an
 obsolete name for a field in the IPv4 header, which has been
 replaced with IP_$$ and IP_CU.

Gaynor & Bradner Informational [Page 6]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

 IP_$$ - The 6-bit Differentiated Services field, encapsulated as an
 UTF-8 string representing the name of the DS codepoint in the
 field.

 IP_CU - The 2-bit field that was the two low-order bits of the TOS
 field. Since this field is currently being used for experiments
 it has to be coded in the most general way possible, thus it is
 encoded as two ASCII strings of the form "bit0=X" and "bit1=X,"
 where "X" is "on" or "off." Note that bit 0 is the MSB.

 IP4_Total - The 16-bit Total Length field, encoded as an ASCII string
 representing the value of the field.

 IP4_SSN - The IP Identification field, encoded as an ASCII string
 representing the value of the field.

 IP4_Flags - The IP Flags, encoded as the set of 3 comma separated
 ASCII strings: [{"Must Be Zero"}, {"May Fragment"|"Don’t
 Fragment"}, {"Last Fragment"|"More Fragments"}]

 IP4_Frager - The 13-bit Fragment Offset field, encoded as an ASCII
 string representing the value of the field.

 IP4_TTL - The 8-bit Time-to-Live field, encoded as an UTF-8 string of
 the form "X hops to destruction." Where "X" is the decimal value
 -1 of the field. Implementations MUST be able to support
 arbitrary languages for this string.

 IP4_Proto - The 8-bit Protocol field, encoded as an UTF-8 string
 representing the common name for the protocol whose header
 follows the IP header.

 IP4_Checkit - The 16-bit Checksum field, encoded in the same way as
 TCP_Checkit.

 IP4_Apparent_Source - The 32-bit Source Address field. For user
 friendliness this is encoded as an UTF-8 string representing the
 domain name of the apparent sender of the packet. An alternate
 form, to be used when the domain name itself might be blocked by a
 firewall programmed to protect the innocence of the corporate
 users, is an ASCII string representing the dotted quad form of the
 IPv4 address.

 IP4_Dest_Addr - The 32-bit Destination Address field, encoded in the
 same way as is IP4_Apparent_Source.

Gaynor & Bradner Informational [Page 7]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

 IP4_Opp_Lst - A comma-separated list of all IPv4 options that are
 present. Each option is encoded as an ASCII string representing
 the name of the option followed by option-specific information
 enclosed in square brackets. Representative options and their
 encoding follow, other IP options follow the same form:

 End of Options option: ["End of Options"]

 Loose Source Routing option: ["Loose Source Routing", length,
 pointer, IP4_addr1, IP4_addr2, ...], where length and pointer
 are ASCII strings representing the value of those fields.

3.3 IPv6 Header Encapsulation:

 This proposal defines the following new HTTP headers for representing
 IPv6 header information:

 These optional headers encode the IPv6 [5] header for better
 readability. These fields are encoded in a manner similar to the
 above TCP header fields.

 Since the base IP packet is already present in an HTTP header the
 following headers are optional. None, some or all of them may be
 used depending on the whim of the programmer. At this time only the
 base IPv6 header is supported. If there is sufficient interest,
 support will be developed for IPv6 extension headers.

 IP_$$ - the 6-bit Differentiated Services field - see above

 IP_CU - the 2-bit unused field - see above

 IP6_Go_with_the_Flow - The 20-bit Flow Label field. Since this field
 is not currently in use it should be encoded as the UTF-8 string
 "do not care".

 IP6_PayLd - The 16-bit Payload Length field, encoded as an ASCII
 string representing the value of the field. The use of FEP with
 IPv6 jumbograms is not recommended.

 IP6_NxtHdr - The 8-bit Next Header field, encoded in the same way as
 IP4_Proto.

 IP6_Hopping - The 8-bit Hop Limit field, encoded in the same way as
 IP4_TTL.

Gaynor & Bradner Informational [Page 8]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

 IP6_Apparent_Source - The 128-bit Source Address field. For user
 friendliness, this is encoded as an UTF-8 string representing the
 domain name of the apparent sender of the packet. An alternate
 form, to be used when the domain name itself might be blocked by a
 Firewall programmed to protect the innocence of the corporate
 users, is an ASCII string representing any one of the legitimate
 forms of representing an IPv6 address.

 IP6_Dest_Addr - The 128-bit Destination Address field, encoded the
 same way as IP6_Apparent_Source.

3.4 TCP Header Compression

 Compressing TCP headers in the face of a protocol such as this one
 that explodes the size of packets is silly, so we ignore it.

4.0 Security Considerations

 Since this protocol deals with Firewalls there are no real security
 considerations.

5.0 Acknowledgements

 We wish to thank the many Firewall vendors who have supported our
 work to re-enable the innovation that made the Internet great,
 without giving up the cellophane fig leaf of security that a Firewall
 provides.

6.0 Authors’ Addresses

 Mark Gaynor
 Harvard University
 Cambridge MA 02138

 EMail gaynor@eecs.harvard.edu

 Scott Bradner
 Harvard University
 Cambridge MA 02138

 Phone +1 617 495 3864
 EMail sob@harvard.edu

Gaynor & Bradner Informational [Page 9]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

References

 [1] Carpenter, B., "Internet Transparency", RFC 2775, February 2000.

 [2] Saltzer, J., Reed, D., and D. Clark, "End-to-End Arguments in
 System Design". 2nd International Conference on Distributed
 Systems, Paris, France, April 1981.

 [3] Eastlake, D., "IP over MIME", Work in Progress.

 [4] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [5] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.

 [6] Clark, D. and M. Blumenthal, "Rethinking the Design of the
 Internet: The end-to-end argument vs. the brave new world". 2000.

Gaynor & Bradner Informational [Page 10]

RFC 3093 Firewall Enhancement Protocol 1 April 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Gaynor & Bradner Informational [Page 11]

