
Network Working Group M. Wildgrube
Request for Comments: 3072 March 2001
Category: Informational

 Structured Data Exchange Format (SDXF)

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

IESG Note

 This document specifies a data exchange format and, partially, an API
 that can be used for creating and parsing such a format. The IESG
 notes that the same problem space can be addressed using formats that
 the IETF normally uses including ASN.1 and XML. The document reader
 is strongly encouraged to carefully read section 13 before choosing
 SDXF over ASN.1 or XML. Further, when storing text in SDXF, the user
 is encourage to use the datatype for UTF-8, specified in section 2.5.

Abstract

 This specification describes an all-purpose interchange format for
 use as a file format or for net-working. Data is organized in chunks
 which can be ordered in hierarchical structures. This format is
 self-describing and CPU-independent.

Table of Contents

 1. Introduction ... 2
 2. Description of the SDXF data format 3
 3. Introduction to the SDXF functions 5
 3.1 General remarks .. 5
 3.2 Writing a SDXF buffer .. 5
 3.3 Reading a SDXF buffer .. 6
 3.4 Example .. 6
 4. Platform independence .. 8
 5. Compression .. 9
 6. Encryption ...11
 7. Arrays..11
 8. Description of the SDXF functions12

Wildgrube Informational [Page 1]

RFC 3072 Structured Data Exchange Format March 2001

 8.1 Introduction ...12
 8.2 Basic definitions ..13
 8.3 Definitions for C++ ..15
 8.4 Common Definitions ...16
 8.5 Special functions ..17
 9. ’Support’ of UTF-8 ...19
 10. Security Considerations19
 11. Some general hints ..20
 12. IANA Considerations ...20
 13. Discussion ..21
 13.1 SDXF vs. ASN.1 ..21
 13.2 SDXF vs. XML ..22
 14. Author’s Address ..24
 15. Acknowledgements ..24
 16. References ..24
 17. Full Copyright Statement26

1. Introduction

 The purpose of the Structured Data eXchange Format (SDXF) is to
 permit the interchange of an arbitrary structured data block with
 different kinds of data (numerical, text, bitstrings). Because data
 is normalized to an abstract computer architecture independent
 "network format", SDXF is usable as a network interchange data
 format.

 This data format is not limited to any application, the demand for
 this format is that it is usable as a text format for word-
 processing, as a picture format, a sound format, for remote procedure
 calls with complex parameters, suitable for document formats, for
 interchanging business data, etc.

 SDXF is self-describing, every program can unpack every SDXF-data
 without knowing the meaning of the individual data elements.

 Together with the description of the data format a set of functions
 will be introduced. With the help of these functions one can create
 and access the data elements of SDXF. The idea is that a programmer
 should only use these functions instead of maintaining the structure
 by himself on the level of bits and bytes. (In the speech of
 object-oriented programming these functions are methods of an object
 which works as a handle for a given SDXF data block.)

 SDXF is not limited to a specific platform, along with a correct
 preparation of the SDXF functions the SDXF data can be interchanged
 (via network or data carrier) across the boundaries of different
 architectures (specified by the character code like ASCII, ANSI or
 EBCDIC and the byte order for binary data).

Wildgrube Informational [Page 2]

RFC 3072 Structured Data Exchange Format March 2001

 SDXF is also prepared to compress and encrypt parts or the whole
 block of SDXF data.

2. Description of SDXF data format.

2.1 First we introduce the term "chunk". A chunk is a data structure
 with a fixed set of components. A chunk may be "elementary" or
 "structured". The latter one contains itself one or more other
 chunks.

 A chunk consists of a header and the data body (content):

 +----------+-----+-------+-----------------------------------+
 | Name | Pos.| Length| Description |
 +----------+-----+-------+-----------------------------------+
chunk-ID	1	2	ID of the chunk (unsigned short)
flags	3	1	type and properties of this chunk
length	4	3	length of the following data
content	7	*)	net data or a list of of chunks
 +----------+-----+-------+-----------------------------------+

 (* as stated in "length". total length of chunk is length+6. The
 chunk ID is a non-zero positive number.

 or more visually:

 +----+----+----+----+----+----+----+----+----+-...
 | chunkID | fl | length | content
 +----+----+----+----+----+----+----+----+----+-...

 or in ASN.1 syntax:

 chunk ::= SEQUENCE
 {
 chunkID INTEGER (1..65535),
 flags BIT STRING,
 length OCTET STRING SIZE 3, -- or: INTEGER (0..16777215)
 content OCTET STRING
 }

2.2 Structured chunk.

 A structured chunk is marked as such by the flag byte (see 2.5).
 Opposed to an elementary chunk its content consists of a list of
 chunks (elementary or structured):

Wildgrube Informational [Page 3]

RFC 3072 Structured Data Exchange Format March 2001

 +----+-+---+-------+-------+-------+-----+-------+
 | id |f|len| chunk | chunk | chunk | ... | chunk |
 +----+-+---+-------+-------+-------+-----+-------+

 With the help of this concept you can reproduce every hierarchically
 structured data into a SDXF chunk.

2.3 Some Remarks about the internal representation of the chunk’s
 elements:

 Binary values are always in high-order-first (big endian) format,
 like the binary values in the IP header (network format). A length
 of 300 (=256 + 32 + 12) is stored as

 +----+----+----+----+----+----+----+----+----+--
 | | | 00 01 2C | content
 +----+----+----+----+----+----+----+----+----+--

 in hexadecimal notation.

 This is also valid for the chunk-ID.

2.4 Character values in the content portion are also an object of
 adaptation: see chapter 4.

2.5 Meaning of the flag-bits: Let us represent the flag byte in this
 manner:

 +-+-+-+-+-+-+-+-+
 |0|1|2|3|4|5|6|7|
 +-+-+-+-+-+-+-+-+
 | | | | | | | |
 | | | | | | | +-- reserved
 | | | | | | +---- array
 | | | | | +------ short chunk
 | | | | +-------- encrypted chunk
 | | | +---------- compressed chunk
 | | |
 +-+-+------------ data type (0..7)

 data types are:

 0 -- pending structure (chunk is inconsistent, see also 11.1)
 1 -- structure
 2 -- bit string
 3 -- numeric
 4 -- character
 5 -- float (ANSI/IEEE 754-1985)

Wildgrube Informational [Page 4]

RFC 3072 Structured Data Exchange Format March 2001

 6 -- UTF-8
 7 -- reserved

2.6 A short chunk has no data body. The 3 byte Length field is used as
 data bytes instead. This is used in order to save space when there
 are many small chunks.

2.7 Compressed and encrypted chunks are explained in chapter 5 and 6.

2.8 Arrays are explained in chapter 7.

2.9 Handling of UTF-8 is explained in chapter 9.

2.10 Not all combinations of bits are allowed or reasonable:

 - the flags ’array’ and ’short’ are mutually exclusive.
 - ’short’ is not applicable for data type ’structure’ and ’float’.
 - ’array’ is not applicable for data type ’structure’.

3. Introduction to the SDXF functions

3.1 General remarks

 The functionality of the SDXF concept is not bounded to any
 programming language, but of course the functions themselves must be
 coded in a particular language. I discuss these functions in C and
 C++, because in the meanwhile these languages are available on almost
 all platforms.

 All these functions for reading and writing SDXF chunks uses only one
 parameter, a parameter structure. In C++ this parameter structure is
 part of the "SDXF class" and the SDXF functions are methods of this
 class.

 An exact description of the interface is given in chapter 8.

3.2 Writing a SDXF buffer

 For to write SDXF chunks, there are following functions:

 init -- initialize the parameter structure
 create -- create a new chunk
 leave -- "close" a structured chunk

Wildgrube Informational [Page 5]

RFC 3072 Structured Data Exchange Format March 2001

3.3 Reading a SDXF buffer

 For to read SDXF chunks, there are following functions:

 init -- initialize the parameter structure
 enter -- "go into" a structured chunk
 next -- "go to" the next chunk inside a structured chunk
 extract -- extract the content of an elementary chunk into
 user’s data area
 leave -- "go out" off a structured chunk

3.4 Example:

3.4.1 Writing:

 For demonstration we use a reduced (outlined) C++ Form of these
 functions with polymorph definitions:

 void create (short chunkID); // opens a new structure,
 void create (short chunkID, char *string);
 // creates a new chunk with dataType character, etc.)

 The sequence:

 SDXF x(new); // create the SDXF object "x" for a new chunk
 // includes the "init"
 x.create (3301); // opens a new structure
 x.create (3302, "first chunk");
 x.create (3303, "second chunk");
 x.create (3304); // opens a new structure
 x.create (3305, "chunk in a structure");
 x.create (3306, "next chunk in a structure");
 x.leave (); // closes the inner structure
 x.create (3307, "third chunk");
 x.leave (); // closes the outer structure

Wildgrube Informational [Page 6]

RFC 3072 Structured Data Exchange Format March 2001

 creates a chunk which we can show graphically like:

 3301
 |
 +--- 3302 = "first chunk"
 |
 +--- 3303 = "second chunk"
 |
 +--- 3304
 | |
 | +--- 3305 = "chunk in a structure"
 | |
 | +--- 3306 = "next chunk in a structure"
 |
 +--- 3307 = "last chunk"

3.4.2 Reading

 A typically access to a structured SDXF chunk is a selection inside
 a loop:

 SDXF x(old); // defines a SDXF object "x" for an old chunk
 x.enter (); // enters the structure

 while (x.rc == 0) // 0 == ok, rc will set by the SDXF functions
 {
 switch (x.chunkID)
 {
 case 3302:
 x.extract (data1, maxLength1);
 // extr. 1st chunk into data1
 break;

 case 3303:
 x.extract (data2, maxLength2);
 // extr. 2nd chunk into data2
 break;

 case 3304: // we know this is a structure
 x.enter (); // enters the inner structure

 while (x.rc == 0) // inner loop
 {
 switch (x.chunkID)
 {
 case 3305:
 x.extract (data3, maxLength3);
 // extr. the chunk inside struct.

Wildgrube Informational [Page 7]

RFC 3072 Structured Data Exchange Format March 2001

 break;
 case 3306:
 x.extract (data4, maxLength4);
 // extr. 2nd chunk inside struct.
 break;
 }
 x.next (); // returns x.rc == 1 at end of structure
 } // end-while
 break;

 case 3307:
 x.extract (data5, maxLength5);
 // extract last chunk into data
 break;
 // default: none - ignore unknown chunks !!!

 } // end-switch
 x.next (); // returns x.rc = 1 at end of structure
 } // end-while

4. Platform independence

 The very most of the computer platforms today have a 8-Bits-in-a-Byte
 architecture, which enables data exchange between these platforms.
 But there are two significant points in which platforms may be
 different:

 a) The representation of binary numerical (the short and long int and
 floats).

 b) The representation of characters (ASCII/ANSI vs. EBCDIC)

 Point (a) is the phenomenon of "byte swapping": How is a short int
 value 259 = 0x0103 = X’0103’ be stored at address 4402?

 The two flavours are:

 4402 4403
 01 03 the big-endian, and
 03 01 the little-endian.

 Point (b) is represented by a table of the assignment of the 256
 possible values of a Byte to printable or control characters. (In
 ASCII the letter "A" is assigned to value (or position) 0x41 = 65, in
 EBCDIC it is 0xC1 = 193.)

Wildgrube Informational [Page 8]

RFC 3072 Structured Data Exchange Format March 2001

 The solution of these problems is to normalize the data:

 We fix:

 (a) The internal representation of binary numerals are 2-complements
 in big-endian order.

 (b) The internal representation of characters is ISO 8859-1 (also
 known as Latin 1).

 The fixing of point (b) should be regarded as a first strike. In
 some environment 8859-1 seems not to be the best choice, in a greek
 or russian environment 8859-5 or 8859-7 are appropriate.

 Nevertheless, in a specific group (or world) of applications, that is
 to say all the applications which wants to interchange data with a
 defined protocol (via networking or diskette or something else), this
 internal character table must be unique.

 So a possibility to define a translation table (and his inversion)
 should be given.

 Important: You construct a SDXF chunk not for a specific addressee,
 but you adapt your data into a normalized format (or network format).

 This adaption is not done by the programmer, it will be done by the
 create and extract function. An administrator has take care of
 defining the correct translation tables.

5. Compression

 As stated in 2.5 there is a flag bit which declares that the
 following data (elementary or structured) are compressed. This data
 is not further interpretable until it is decompressed. Compression
 is transparently done by the SDXF functions: "create" does the
 compression for elementary chunks, "leave" for structured chunks,
 "extract" does the decompression for elementary chunks, "enter" for
 structured chunks.

 Transparently means that the programmer has only to tell the SDXF
 functions that he want compress the following chunk(s).

 For choosing between different compression methods and for
 controlling the decompressed (original) length, there is an
 additional definition:

Wildgrube Informational [Page 9]

RFC 3072 Structured Data Exchange Format March 2001

 After the chunk header for a compressed chunk, a compression header
 is following:

 +-----------------------+---------------+---------------->
 | chunk header | compr. header | compressed data
 +---+---+---+---+---+---+---+---+---+---+---------------->
 |chunkID|flg| length |md | orglength |
 +---+---+---+---+---+---+---+---+---+---+---------------->

 - ’orglength’ is the original (decompressed) length of the data.

 - ’md’ is the "compression method": Two methods are described here:

 # method 01 for a simple (fast but not very effective)
 "Run Length 1" or "Byte Run 1" algorithm. (More then two
 consecutive identical characters are replaced by the number of
 these characters and the character itself.)

 more precisely:

 The compressed data consists of several sections of various
 length. Every section starts with a "counter" byte, a signed
 "tiny" (8 bit) integer, which contains a length information.

 If this byte contains the value "n",
 with n >= 0 (and n <128), the next n+1 bytes will be taken
 unchanged;
 with n < 0 (and n > -128), the next byte will be replicated
 -n+1 times;
 n = -128 will be ignored.

 Appending blanks will be cutted in general. If these are
 necessary, they can be reconstructed while "extract"ing with
 the parameter field "filler" (see 8.2.1) set to space
 character.

 # method 02 for the wonderful "deflate" algorithm which comes
 from the "zip"-people.
 The authors are:
 Jean-loup Gailly (deflate routine),
 Mark Adler (inflate routine), and others.

 The deflate format is described in [DEFLATE].

 The values for the compression method number are maintained by
 IANA, see chap. 12.1.

Wildgrube Informational [Page 10]

RFC 3072 Structured Data Exchange Format March 2001

6. Encryption

 As stated in 2.5 there is a flag bit which declares that the
 following data (elementary or structured) is encrypted. This data is
 not interpretable until it is decrypted. En/Decryption is
 transparently done by the SDXF functions, "create" does the
 encryption for elementary chunks, "leave" for structured chunks,
 "extract" does the decryption for elementary chunks, "enter" for
 structured chunks. (Yes it sounds very similar to chapter 5.) More
 then one encryption method for a given range of applications is not
 very reasonable. Some encryption algorithms work with block ciphering
 algorithms. That means that the length of the data to encrypt must be
 rounded up to the next multiple of this block length. This blocksize
 (zero means non-blocking) is reported by the encryption interface
 routine (addressed by the option field *encryptProc, see chapter 8.5)
 with mode=3. If blocking is used, at least one byte is added, the
 last byte of the lengthening data contains the number of added bytes
 minus one. With this the decryption interface routine can calculate
 the real data length.

 If an application (or network connect handshaking protocol) needs to
 negotiate an encryption method it should be used a method number
 maintained by IANA, see chap. 12.2.

 Even the en/decryption is done transparently, an encryption key
 (password) must be given to the SDXF functions. Encryption is done
 after translating character data into, decryption is done before
 translation from the internal ("network-") format.

 If both, encryption and compression are applied on the same chunk,
 compression is done first - compression on good encrypted data (same
 strings appears as different after encryption) tends to zero
 compression rates.

7. Arrays

 An array is a sequence of chunks with identical chunk-ID, length and
 data type.

 At first a hint: in principle a special definition in SDXF for such
 an array is not really necessary:

 It is not forbidden that there are more than one chunk with equal
 chunk-ID within the same structured chunk.

 Therefore with a sequence of SDX_next / SDX_extract calls one can
 fill the destination array step by step.

Wildgrube Informational [Page 11]

RFC 3072 Structured Data Exchange Format March 2001

 If there are many occurrences of chunks with the same chunk-ID (and a
 comparative small length), the overhead of the chunk-packages may be
 significant.

 Therefore the array flag is introduced. An array chunk has only one
 chunk header for the complete sequence of elementary chunks. After
 the chunk header for an array chunk, an array header is following:

 This is a short integer (big endian!) which contains the number of
 the array elements (CT). Every element has a fixed length (EL), so
 the chunklength (CL) is CL = EL * CT + 2.

 The data elements follows immediately after the array header.

 The complete array will be constructed by SDX_create, the complete
 array will be read by SDX_extract.

 The parameter fields (see 8.2.1) ’dataLength’ and ’count’ are used
 for the SDXF functions ’extract’ and ’create’:

 Field ’dataLength’ is the common length of the array elements,
 ’count’ is the actual dimension of the array for ’create’ (input).

 For the ’extract’ function ’count’ acts both as an input and output
 parameter:

 Input : the maximum dimension
 output: the actual array dimension.

 (If output count is greater than input count, the ’data cutted’
 warning will be responded and the destination array is filled up to
 the maximum dimension.)

8. Description of the SDXF functions

8.1 Introduction

 Following the principles of Object Oriented Programming, not only the
 description of the data is necessary, but also the functions which
 manipulate data - the "methods".

 For the programmer knowing the methods is more important than knowing
 the data structure, the methods has to know the exact specifications
 of the data and guarantees the consistence of the data while creating
 them.

Wildgrube Informational [Page 12]

RFC 3072 Structured Data Exchange Format March 2001

 A SDXF object is an instance of a parameter structure which acts as a
 programming interface. Especially it points to an actual SDXF data
 chunk, and, while processing on this data, there is a pointer to the
 actual inner chunk which will be the focus for the next operation.

 The benefit of an exact interface description is the same as using
 for example the standard C library functions: By using standard
 interfaces your code remains platform independent.

8.2 Basic definitions

8.2.1 The SDXF Parameter structure

 All SDXF access functions need only one parameter, a pointer to the
 SDXF parameter structure:

 First 3 prerequisite definitions:

 typedef short int ChunkID;
 typedef unsigned char Byte;

 typedef struct Chunk
 {
 ChunkID chunkID;
 Byte flags;
 char length [3];
 Byte data;
 } Chunk;

 And now the parameter structure:

 typedef struct
 {
 ChunkID chunkID; // name (ID) of Chunk
 Byte *container; // pointer to the whole Chunk
 long bufferSize; // size of container
 Chunk *currChunk; // pointer to actual Chunk
 long dataLength; // length of data in Chunk
 long maxLength; // max. length of Chunk for SDX_extract
 long remainingSize; // rem. size in cont. after SDX_create
 long value; // for data type numeric
 double fvalue; // for data type float
 char *function; // name of the executed SDXF function
 Byte *data; // pointer to Data
 Byte *cryptkey; // pointer to Crypt Key
 short count; // (max.) number of elements in an array
 short dataType; // Chunk data type / init open type
 short ec; // extended return-code

Wildgrube Informational [Page 13]

RFC 3072 Structured Data Exchange Format March 2001

 short rc; // return-code
 short level; // level of hierarchy
 char filler; // filler char for SDX_extract
 Byte encrypt; // Indication if data to encrypt (0 / 1)
 Byte compression; // compression method
 // (00=none, 01=RL1, 02=zip/deflate)
 } SDX_obj, *SDX_handle;

 Only the "public" fields of the parameter structure which acts as
 input and output for the SDXF functions is described here. A given
 implementation may add some "private" fields to this structure.

8.2.2 Basic Functions

 All these functions works with a SDX_handle as the only formal
 parameter. Every function returns as output ec and rc as a report of
 success. For the values for ec, rc and dataType see chap. 8.4.

 1. SDX_init : Initialize the parameter structure.

 input : container, dataType, bufferSize (for dataType =
 SDX_NEW only)
 output: currChunk, dataLength (for dataType = SDX_OLD only),
 ec, rc,
 the other fields of the parameter structure will be
 initialized.

 2. SDX_enter : Enter a structured chunk.
 You can access the first chunk inside this structured chunk.
 input : none
 output: currChunk, chunkID, dataLength, level, dataType,
 ec, rc

 3. SDX_leave : Leave the actual entered structured chunk.
 input : none
 output: currChunk, chunkID, dataLength, level, dataType,
 ec, rc

 4. SDX_next : Go to the next chunk inside a structured chunk.
 input : none
 output: currChunk, chunkID, dataLength, dataType, count, ec, rc

 At the end of a structured chunk SDX_next returns rc =
 SDX_RC_failed and ec = SDX_EC_eoc (end of chunk)
 The actual structured chunk is SDX_leave’d automatically.

Wildgrube Informational [Page 14]

RFC 3072 Structured Data Exchange Format March 2001

 5. SDX_extract : Extract data of the actual chunk.
 (If actual chunk is structured, only a copy is done, elsewhere
 the data is converted to host format.)
 input / output depends on the dataType:

 if dataType is structured, binary or char:
 input : data, maxLength, count, filler
 output: dataLength, count, ec, rc

 if dataType is numeric (float resp.):
 input : none
 output: value (fvalue resp.), ec, rc

 6. SDX_select : Go to the (next) chunk with a given chunkID.
 input : chunkID
 output: currChunk, dataLength, dataType, ec, rc

 7. SDX_create : Creating a new chunk (at the end of the actual
 structured chunk).
 input : chunkID, dataLength, data, (f)value, dataType,
 compression, encrypt, count
 update: remainingSize, level
 output: currChunk, dataLength, ec, rc

 8. SDX_append : Append a complete chunk at the end of the actual
 structured chunk).
 input : data, maxLength, currChunk
 update: remainingSize, level
 output: chunkID, chunkLength, maxLength, dataType, ec, rc

8.3 Definitions for C++

 This is the specification of the SDXF class in C++: (The type ’Byte’
 is defined as "unsigned char" for bitstrings, opposed to "signed
 char" for character strings)

 class C_SDXF
 {
 public:

 // constructors and destructor:
 C_SDXF (); // dummy
 C_SDXF (Byte *cont); // old container
 C_SDXF (Byte *cont, long size); // new container
 C_SDXF (long size); // new container
 ˜C_SDXF ();
 // methods:

Wildgrube Informational [Page 15]

RFC 3072 Structured Data Exchange Format March 2001

 void init (void); // old container
 void init (Byte *cont); // old container
 void init (Byte *cont, long size); // new container
 void init (long size); // new container

 void enter (void);
 void leave (void);
 void next (void);
 long extract (Byte *data, long length); // chars, bits
 long extract (void); // numeric data
 void create (ChunkID); // structured
 void create (ChunkID, long value); // numeric
 void create (ChunkID, double fvalue); // float
 void create (ChunkID, Byte *data, long length);// binary
 void create (ChunkID, char *data); // chars
 void set_compression (Byte compression_method);
 void set_encryption (Byte *encryption_key);

 // interface:

 ChunkID id; // see 8.4.1
 short dataType; // see 8.4.2
 long length; // length of data or chunk

 long value;
 double fvalue;
 short rc; // the raw return code see 8.4.3
 short ec; // the extended return code see 8.4.4

 protected:
 // implementation dependent ...

 };

8.4 Common Definitions:

8.4.1 Definition of ChunkID:

 typedef short ChunkID;

8.4.2 Values for dataType:

 SDX_DT_inconsistent = 0
 SDX_DT_structured = 1
 SDX_DT_binary = 2
 SDX_DT_numeric = 3
 SDX_DT_char = 4
 SDX_DT_float = 5

Wildgrube Informational [Page 16]

RFC 3072 Structured Data Exchange Format March 2001

 SDX_DT_UTF8 = 6

 data types for SDX_init:
 SDX_OLD = 1
 SDX_NEW = 2

8.4.3 Values for rc:

 SDX_RC_ok = 0
 SDX_RC_failed = 1
 SDX_RC_warning = 1
 SDX_RC_illegalOperation = 2
 SDX_RC_dataError = 3
 SDX_RC_parameterError = 4
 SDX_RC_programError = 5
 SDX_RC_noMemory = 6

8.4.4 Values for ec:

 SDX_EC_ok = 0
 SDX_EC_eoc = 1 // end of chunk
 SDX_EC_notFound = 2
 SDX_EC_dataCutted = 3
 SDX_EC_overflow = 4
 SDX_EC_wrongInitType = 5
 SDX_EC_comprerr = 6 // compression error
 SDX_EC_forbidden = 7
 SDX_EC_unknown = 8
 SDX_EC_levelOvflw = 9
 SDX_EC_paramMissing = 10
 SDX_EC_magicError = 11
 SDX_EC_not_consistent = 12
 SDX_EC_wrongDataType = 13
 SDX_EC_noMemory = 14
 SDX_EC_error = 99 // rc is sufficiently

8.5 Special functions

 Besides the basic definitions there is a global function
 (SDX_getOptions) which returns a pointer to a global table of
 options.

 With the help of these options you can adapt the behaviour of SDXF.
 Especially you can define an alternative pair of translation tables
 or an alternative function which reads these tables from an external
 resource (p.e. from disk).

Wildgrube Informational [Page 17]

RFC 3072 Structured Data Exchange Format March 2001

 Within this table of options there is also a pointer to the function
 which is used for encryption / decryption: You can install your own
 encryption algorithm by setting this pointer.

 The options pointer is received by:

 SDX_TOptions *opt = SDX_getOptions ();

 With:

 typedef struct
 {
 Byte *toHost; // Trans tab net -> host
 Byte *toNet; // Trans tab host -> net
 int maxlevel; // highest possible level
 int translation; // translation net <-> host
 // is in effect=1 or not=0
 TEncryptProc *encryptProc; // alternate encryption routine
 TGetTablesProc *getTablesProc; // alternate routine defining
 // translation Tables
 TcvtUTF8Proc *convertUTF8; // routine to convert to/from UTF-8
 } SDX_TOptions;

 typedef long TencryptProc (
 int mode, // 1= to encrypt, 2= to decrypt, 3= encrypted length
 Byte *buffer, // data to en/decrypt
 long len, // len: length of buffer
 char *passw); // Password

 // returns length of en/de-crypted data
 // (parameter buffer and passw are ignored for mode=3)
 // returns blocksize for mode=3 and len=0.
 // blocksize is zero for non-blocking algorithms

 typedef int TGetTablesProc (Byte **toNet, Byte **toHost);
 // toNet, toHost: pointer to output params. Both params
 // points to translation tables of 256 Bytes.
 // returns success: 1 = ok, 0 = error.

 typedef int TcvtUTF8Proc
 (int mode, // 1 = to UTF-8, 2 = from UTF-8
 Byte *target, int *targetlength, // output
 Byte *source, int sourcelength); // input
 // targetlength contains maximal size as input param.
 // returns success: 1 = ok, 0 = no conversion

Wildgrube Informational [Page 18]

RFC 3072 Structured Data Exchange Format March 2001

9. ’Support’ of UTF-8.

 Many systems supports [UTF-8] as a character format for transferred
 data. The benefit is that no fixing of a specific character set for
 an application is needed because the set of ’all’ characters is used,
 represented by the ’Universal Character Set’ UCS-2 [UCS], a double
 byte coding for characters.

 SDXF does not really deal with UTF-8 by itself, there are many
 possibilities to interprete an UTF-8 sequence: The application may:

 - reconstruct the UCS-2 sequence,
 - accepts only the pure ASCII character and maps non-ASCII to a
 special ’non-printable’ character.
 - target is pure ASCII, non-ASCII is replaced in a senseful manner
 (French accented vowels replaced by vowels without accents, etc.).
 - target is a specific ANSI character set, the non-ASCII chars are
 mapped as possible, other replaced to a ’non-printable’.
 - etc.

 But SDXF offers an interface for the ’extract’ and ’create’
 functions:

 A function pointer may be specified in the options table to maintain
 this possibility (see 8.5). Default for this pointer is NULL: No
 further conversions are done by SDXF, the data are copied ’as is’, it
 is treated as a bit string as for data type ’binary’.

 If this function is specified, it is used by the ’create’ function
 with the ’toUTF8’ mode, and by the ’extract’ function with the ’
 fromUTF8’ mode. The invoking of these functions is done by SDXF
 transparently.

 If the function returns zero (no conversion) SDXF copies the data
 without conversion.

10. Security Considerations

 Any corruption of data in the chunk headers denounce the complete
 SDXF structure.

 Any corruption of data in a encrypted or compressed SDXF structure
 makes this chunk unusable. An integrity check after decryption or
 decompression should be done by the "enter" function.

 While using TCP/IP (more precisely: IP) as a transmission medium we
 can trust on his CRC check on the transport layer.

Wildgrube Informational [Page 19]

RFC 3072 Structured Data Exchange Format March 2001

11. Some general hints

 1. A consistent construction of a SDXF structure is done if every
 "create" to a structured chunk is closed by a paired "leave".
 While a structured chunk is under construction, his data type is
 set to zero - that means: this chunk is inconsistent. The
 SDX_leave function sets the datatype to "structured".

 2. While creating an elementary chunk a platform dependent
 transformation to a platform independent format of the data is
 performed - at the end of construction the content of the buffer
 is ready to transport to another site, without any further
 translation.

 3. As you see no data definition in your programming language is
 needed for to construct a specific SDXF structure. The data is
 created dynamically by function calls.

 4. With SDXF as a base you can define protocols for client / server
 applications. These protocols may be extended in downward
 compatibility manner by following two rules:

 Rule 1: Ignore unknown chunkIDs.

 Rule 2: The sequence of chunks should not be significant.

12. IANA Considerations

 The compression and encryption algorithms for SDXF is not fixed, SDXF
 is open for various algorithms. Therefore an agreement is necessary
 to interprete the compression and encryption algorithm method
 numbers. (Encryption methods are not a semantic part of SDXF, but
 may be used for a connection protocol to negotiate the encryption
 method to use.)

 Following two items are registered by IANA:

12.1 COMPRESSION METHODS FOR SDXF

 The compressed SDXF chunk starts with a "compression header". This
 header contains the compression method as an unsigned 1-Byte integer
 (1-255). These numbers are assigned by IANA and listed here:

Wildgrube Informational [Page 20]

RFC 3072 Structured Data Exchange Format March 2001

 compression
 method Description Hints
 --------- ------------------------------- -------------
 01 RUN-LENGTH algorithm see chap. 5
 02 DEFLATE (ZIP) see [DEFLATE]
 03-239 IANA to assign
 240-255 private or application specific

12.2 ENCRYPTION METHODS FOR SDXF

 An unique encryption method is fixed or negotiated by handshaking.
 For the latter one a number for each encryption method is necessary.
 These numbers are unsigned 1-Byte integers (1-255). These numbers
 are assigned by IANA and listed here:

 encryption
 method Description
 --------- ------------------------------
 01-239 IANA to assign
 240-255 private or application specific

12.3 Hints for assigning a number:

 Developers which want to register a compression or encrypt method for
 SDXF should contact IANA for a method number. The ASSIGNED NUMBERS
 document should be referred to for a current list of METHOD numbers
 and their corresponding protocols, see [IANA]. The new method SHOULD
 be a standard published as a RFC or by a established standardization
 organization (as OSI).

13. Discussion

 There are already some standards for Internet data exchanging, IETF
 prefers ASN.1 and XML therefore. So the reasons for establish a new
 data format should be discussed.

13.1 SDXF vs. ASN.1

 The demand of ASN.1 (see [ASN.1]) is to serve program language
 independent means to define data structures. The real data format
 which is used to send the data is not defined by ASN.1 but usually
 BER or PER (or some derivates of them like CER and DER) are used in
 this context, see [BER] and [PER].

Wildgrube Informational [Page 21]

RFC 3072 Structured Data Exchange Format March 2001

 The idea behind ASN.1 is: On every platform on which a given
 application is to develop descriptions of the used data structures
 are available in ASN.1 notation. Out off these notations the real
 language dependent definitions are generated with the help of an
 ASN.1-compiler.

 This compiler generates also transform functions for these data
 structures for to pack and unpack to and from the BER (or other)
 format.

 A direct comparison between ASN.1 and SDXF is somehow inappropriate:
 The data format of SDXF is related rather to BER (and relatives).
 The use of ASN.1 to define data structures is no contradiction to
 SDXF, but: SDXF does not require a complete data structure to build
 the message to send, nor a complete data structure will be generated
 out off the received message.

 The main difference lies in the concept of building and
 interpretation of the message, I want to name it the "static" and
 "dynamic" concept:

 o ASN.1 uses a "static" approach: The whole data structure must
 exists before the message can be created.

 o SDXF constructs and interpretes the message in a "dynamic" way,
 the message will be packed and unpacked step by step by SDXF
 functions.

 The use of static structures may be appropriate for a series of
 applications, but for complex tasks it is often impossible to define
 the message as a whole. As an example try to define an ASN.1
 description for a complex structured text document which is presented
 in XML: There are sections and paragraphs and text elements which
 may recursively consist of sections with specific text attributes.

13.2 SDXF vs. XML

 On the one hand SDXF and XML are similar as they can handle any
 recursive complex data stream. The main difference is the kind of
 data which are to be maintained:

 o XML works with pure text data (though it should be noted that the
 character representation is not standardized by XML). And: a XML
 document with all his tags is readable by human. Binary data as
 graphic is not included directly but may be referenced by an
 external link as in HTML.

Wildgrube Informational [Page 22]

RFC 3072 Structured Data Exchange Format March 2001

 In XML there is no strong separation between informational and
 control data, escape characters (like "<" and "&") and the
 <![CDATA[...]]> construction are used to distinguish between these
 two types of data.

 o SDXF maintains machine-readable data, it is not designed to be
 readable by human nor to edit SDXF data with a text editor (even
 more if compression and encryption is used). With the help of the
 SDXF functions you have a quick and easy access to every data
 element. The standard parser for a SDXF data structure follows
 always a simple template, the "while - switch -case ID -
 enter/extract" pattern as outlined in chap. 3.4.2.

 Because of the complete different philosophy behind XML and SDXF (and
 even ASN.1) a direct comparison may not be very senseful, as XML has
 its own right to exist next to ASN.1 (and even SDXF).

 Nevertheless there is a chance to convert a XML data stream into a
 SDXF structure: As a first strike, every XML tag becomes a SDXF
 chunk ID. An elementary sequence <tag>pure text</tag> can be
 transformed into an elementary (non-structured) chunk with data type
 "character". Tags with attributes and sequences with nested tags are
 transformed into structured chunks. Because XML allows a tag
 sequence everywhere in a text stream, an artificially "elementary
 text" tag must be introduced:
 If <t> is the tag for text elements, the sequence:

 <t>this is a text <attr value=’bold’>with</attr> attributes</t>

 is to be "in thought" replaced by:

 <t><et>this is a text </et><attr value=’bold’><et>with</et></attr>
 <et> attributes</et></t>

 (With "et" as the "elementary text" tag)

Wildgrube Informational [Page 23]

RFC 3072 Structured Data Exchange Format March 2001

 This results in following SDXF structure:

 ID_t
 |
 +-- ID_et = " this is a text "
 |
 +-- ID_attr
 | |
 | +-- ID_value = "bold"
 | |
 | +-- ID_et = "with"
 |
 +-- ID_et = " attributes"

 ID_t and ID_et may be represented by the same chunk ID, only
 distinguished by the data type ("structured" for <t> and "character"
 for <et>)

 Binary data as pictures can be directly imbedded into a SDXF
 structure instead referencing them as an external link like in HTML.

14. Author’s Address

 Max Wildgrube
 Schlossstrasse 120
 60486 Frankfurt
 Germany

 EMail: max@wildgrube.com

15. Acknowledgements

 I would like to thank Michael J. Slifcak (mslifcak@iss.net) for the
 supporting discussions.

16. References

 [ASN.1] Information processing systems - Open Systems
 Interconnection, "Specification of Abstract Syntax Notation
 One (ASN.1)", International Organization for
 Standardization, International Standard 8824, December
 1987.

 [BER] Information Processing Systems - Open Systems
 Interconnection - "Specification of Basic Encoding Rules
 for Abstract Notation One (ASN.1)", International
 Organization for Standardization, International Standard
 8825-1, December 1987.

Wildgrube Informational [Page 24]

RFC 3072 Structured Data Exchange Format March 2001

 [DEFLATE] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [IANA] Internet Assigned Numbers Authority,
 http://www.iana.org/numbers.htm

 [PER] Information Processing Systems - Open Systems
 Interconnection -"Specification of Packed Encoding Rules
 for Abstract Syntax Notation One (ASN.1)", International
 Organization for Standardization, International Standard
 8825-2.

 [UCS] ISO/IEC 10646-1:1993. International Standard -- Information
 technology -- Universal Multiple-Octet Coded Character Set
 (UCS)

 [UTF8] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 RFC 2279, January 1998.

Wildgrube Informational [Page 25]

RFC 3072 Structured Data Exchange Format March 2001

17. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Wildgrube Informational [Page 26]

