Net wor k Wor ki ng Group Y. Chba

Request for Comments: 3063 Y. Kat sube
Cat egory: Experi nental Toshi ba
E. Rosen

Ci sco Systens

P. Dool an

Ennovat e Networ ks
February 2001

MPLS Loop Prevention Mechani sm

Status of this Meno

This meno defines an Experinental Protocol for the Internet
community. 1t does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenment are requested.
Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The Internet Society (2001). Al Rights Reserved.

Abst ract

Thi s paper presents a sinple nechanism based on "threads", which can
be used to prevent Miltiprotocol Label Switching (MPLS) from setting
up | abel switched path (LSPs) which have | oops. The nmechanismis
conpati ble with, but does not require, VC nerge. The nmechani sm can
be used with either the ordered downstream on-denand al | ocation or
ordered downstream al |l ocation. The amount of information that nust
be passed in a protocol nessage is tightly bounded (i.e., no path-
vector is used). When a node needs to change its next hop, a

di stributed procedure is executed, but only nodes which are
downstream of the change are invol ved

Chba, et al. Experi ment al [Page 1]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

Tabl e of Contents

1 Introduction 2
2 Basic definitions 3
3 Thread basiCS 5
3.1 Thread attributes i, 5
3.2 Thread 100D 7
3.3 Primtive thread actions 7
3.4 Exanpl es of primtive thread actions 10
4 Thread algorithm 14
5 Applicability of the algorithm........................ 14
5.1 LSP Loop prevention/detection 15
5.2 Using old path while |ooping on new path 15
5.3 How to deal with ordered downstream allocation 15
5.4 How to realize load splitting 15
6 Vhy this WOrks 16
6.1 Why a thread with unknown hop count is extended 16
6.2 Way a rewound thread cannot contain a loop 17
6.2.1 Casel: LSP with known link hop counts 17
6.2.1 Case2: LSP with unknown link hop counts 17
6.3 Wy L3 loop is detected 17
6.4 Way L3 loop is not mis-detected 17
6.5 How a stalled thread automatically recovers fromloop . 18
6.6 Why different colored threads do not chase each other . 18
7 Loop prevention exanples 19
7.1 First exanpl e ... 19
7.2 Second exanpl e 23
8 Thread control block 24
8.1 Finite state machine 25
9 Conparison with path-vector/diffusion nethod 28
10 Security Considerations 29
11 Intellectual Property Considerations 29
12 Acknowl edgments 29
13 Authors’ Addresses 30
14 References 30
Appendi x A Further discussion of the algorithm............. 31
Ful | Copyright Statement i, 44
1. Introduction

Thi s paper presents a sinple nechanism based on "threads", which can
be used to prevent MPLS fromsetting up | abel sw tched paths (LSPs)
whi ch have | oops.

When an LSR finds that it has a new next hop for a particular FEC
(Forwardi ng Equi val ence Cass) [1], it creates a thread and extends
it downstream Each such thread is assigned a unique "color", such
that no two threads in the network can have the sane col or

Chba, et al. Experi ment al [Page 2]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

For a given LSP, once a thread is extended to a particular next hop
no other thread is extended to that next hop unless there is a change
in the hop count fromthe furthest upstream node. The only state

i nformati on that needs to be associated with a particular next hop
for a particular LSP is the thread color and hop count.

If there is a |loop, then sone thread will arrive back at an LSR
through which it has already passed. This is easily detected, since
each thread has a uni que col or.

Section 3 and 4 provide procedures for determ ning that there is no

| oop. Wien this is determned, the threads are "rewound" back to the
point of creation. As they are rewound, |abels get assigned. Thus

| abel s are NOT assigned until |oop freedomis guaranteed.

While a thread is extended, the LSRs through which it passes nust
renmenber its color and hop count, but when the thread has been
rewound, they need only renenber its hop count.

The thread nechani smworks if sone, all, or none of the LSRs in the
LSP support VC-nmerge. It can also be used with either the ordered
downst ream on- denmand | abel allocation or ordered downstream
unsolicited | abel allocation [2,3]. The nechanismcan al so be
applicable to | oop detection, old path retention, and | oad-splitting.

The state information which nmust be carried in protocol nessages, and
whi ch nmust be maintained internally in state tables, is of fixed

si ze, independent of the network size. Thus the thread nechanismis
nore scal able than alternatives which require that path-vectors be
carri ed.

To set up a new LSP after a routing change, the thread nechani sm
requi res comunication only between nodes which are downstream of the
poi nt of change. There is no need to comunicate with nodes that are
upstream of the point of change. Thus the thread nmechanismis nore
robust than alternatives which require that a diffusion conputation
be perfornmed (see section 9).

2. Basic definitions
LSP

W will use the termLSP to refer to a nmultipoint-to-point tree
whose root is the egress node. See section 3.5 of [3].

Chba, et al. Experi ment al [Page 3]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

In the following, we speak as if there were only a single LSP
being set up in the network. This allows us to talk of inconing
and outgoing links w thout constantly saying sonething Iike "for
the sane LSP.

I ncom ng Link, Upstream Link
Qut goi ng Li nk, Downstream Li nk

At a given node, a given LSP will have one or nore incom ng, or
upstream | i nks, and one outgoing or downstreamlink. A "link" is
really an abstract relationship with an "adjacent” LSR;, it is an
"edge" in the "tree", and not necessarily a particular concrete
entity like an "interface"

Leaf Node, |ngress Node
A node whi ch has no upstream | i nks.
El i gi bl e Leaf Node

A node which is capable of being a | eaf node. For exanple, a node
is not an eligible leaf node if it is not allowed to directly

i nject L3 packets created or received at the node into its

out goi ng | i nk.

Li nk Hop Count

Every link is |labeled with a "link hop count”. This is the nunber
of hops between the given link and the | eaf node which is furthest
upstream of the given link. At any node, the |link hop count for
the downstreamlink is one nore than the |argest of the hop counts
associ ated with the upstreamlinks

We define the quantity "Hrax" at a given node to be the maxi mum of
all the incomng |ink hop counts. Note that, the link hop count
of the downstreamlink is equal to Hmx+1l. At a |leaf node, Hmax
is set to be zero

An an exanple of link hop counts is shown in Fig.1.

Chba, et al. Experi ment al [Page 4]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

1 2
A---B---C K
| |
| 3 | 1
| |
| 4 5|6 7
D--G--H--1---J
|
| 2
1|
E---F

Fig.1 Exanple of link hop counts
Next Hop Acquisition

Node N thought that FEC F was unreachabl e, but now has a next hop
for it.

Next Hop Loss
Node N thought that node A was the next hop for FEC F, but now no
| onger has the next hop for FEC F. A node |oses a next hop
whenever the next hop goes down.
Next Hop Change
At node N, the next hop for FEC F changes from node A to node B
where Ais different than B. A next hop change event can be seen
as a conbination of a next hop | oss event on the old next hop and
a next hop acquisition event on the new next hop.
3. Thread basics
A thread is a sequence of nessages used to set up an LSP, in the
"ordered downstream on-denand" (ingress-initiated ordered control)
style.
3.1. Thread attributes

There are three attributes related to threads. They nmay be encoded
into a single thread object as:

Chba, et al. Experi ment al [Page 5]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

01234567890123456789012345678901
B Lt r s i i i o o T s ks S R S
| |
+ Col or +
| |
B T S S e s e i s S i S S S S S S T S SR S S S i S S S
| Hop Count | TTL | Reser ved
B Lt r s i i i o o T s ks S R S

Thread Col or

Every tine a path control nessage is initiated by a node, the node
assigns a unique "color" to it. This color is to be unique in
both tine and space: its encoding consists of an | P address of the
node concatenated with a unique event identifier froma nunbering
space mai ntai ned by the node. The path setup nessages that the
node sends downstreamwi |l contain this color. Also, when the
node sends such a nessage downstream it will renenber the color,
and this color becones the color of the downstream i nk.

When a col ored nessage is received, its color becones the col or of
the incomng link. The thread which consists of nessages of a
certain color will be known as a thread of that col or

special color value "transparent"(=all 0's) is reserved

One possible nmethod for unique color assignnent is, starting the
event identifier fromits initial value, and incrementing it by
one (nmodul o its maxi mum value) each tine a color is assigned. In
this nethod, the initial event identifier is either selected at
random or assigned to be larger than the | argest event identifier
used on the previous systemincarnation

Thread Hop Count

In order to maintain |ink hop counts, we need to carry hop counts
in the path control nessages. For instance, a | eaf node would
assign a hop count of 1 to its downstreamlink, and would store
that value into a path setup nessage it sends downstream \Wen a
path setup nessage is sent downstream a node would assign a hop
count which is one nore than the largest of the incomng |ink hop
counts, to its downstreamlink, and would store that value into a
path setup nessage it sends downstream Once the value is stored
in a path control nessage, we may refer to it has a "thread hop
count".

Chba, et al. Experi ment al [Page 6]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

A special hop count val ue "unknown"(=0xff), which is larger than
any ot her known value, is used when a loop is found. Once the
thread hop count is "unknown", it is not increased any nore as the
thread i s extended.

Thread TTL

To avoid infinite |l ooping of control nessages in sonme cases, a
thread TTL is used. When a node creates a path control nessage
and sends it downstream it sets a TTL to the nessage, and the TTL
is decremented at each hop. Wen the TTL reaches 0, the nessage
is not forwarded any nore. Unlike the thread hop counts and the
thread colors, the thread TTLs do not needs to be stored in

i ncom ng |inks.

3.2. Thread | oop

When the sane colored thread is received on nmultiple inconmng |inks,
or the received thread color was assigned by the receiving node, it
is said that the thread forns a loop. A thread creator can tel

whet her it assigned the received thread color by checking the IP
address part of the received thread color.

3.3. Primtive thread actions

Five prinitive actions are defined in order to prevent LSP | oops by
usi ng threads: "extending", "rew nding", "wthdraw ng", "merging"
and "stalling". This section describes only each primtive action
and does not describe how these primtive actions are conbi ned and
how the algorithmtotally works. The main body of the algorithmis
described in section 4.

Thread Extendi ng

When a node starts to send a path setup nessage to its next hop
with a set of thread attributes, it is said that "the node creates
a thread and extends it downstreani. Wen a node receives a path
setup nessage from an upstream node with a set of thread
attributes and forwards it downstream it is said that "the node
receives a thread and extends it downstreanmt. The col or and hop
count of the thread becone the color and hop count of the outgoing
link. Wenever a thread is received on a particular link, the
col or and hop count of that thread becone the col or and hop count
of that inconing |ink, replacing any color and hop count that the
Iink may have had previously.

Chba, et al. Experi ment al [Page 7]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

For exanple, when an ingress node initiates a path setup, it
creates a thread and extends it downstream by sending a path setup
nmessage. The thread hop count is set to be 1, and the thread
color is set to be the ingress node’s address with an appropriate
event identifier, and the thread TTL is set to be its maxi num

val ue.

Wien a node receives a thread and extends it downstream the node
either (i) extends the thread w thout changing color, or (ii)
extend the thread with changing color. The received thread is
extended with changing color if it is received on a new incom ng
Iink and extended on an al ready existing outgoing |link, otherwi se,
it is extended without changing color. Wen a thread is extended
with changing color, a new colored thread is created and extended.

Thread creati on does not occur only at |eaf nodes. |[If an
i nternmedi ate node has an incomng link, it will create and extend
a new thread whenever it acquires a new next hop

Wien a node notifies a next hop node of a decrease of the Iink hop
count, if it is not extending a colored thread, a transparent
thread i s extended.

Thread Mergi ng

Chba,

Wien a node which has a colored outgoing link receives a new
thread, it does not necessarily extend the new thread. It may
instead 'merge’ the new threads into the existing outgoing thread.
In this case, no nessages are sent downstream Also, if a new
incom ng thread is extended downstream but there are already
other inconming threads, these other incomng threads are
considered to be merged into the new outgoing thread.

Specifically, a received thread is nerged if all the follow ng
condi tions hol d:

A colored thread is received by node N, AND

The thread does not forma | oop, AND

N is not an egress node, AND

N s outgoing link is colored, AND

N s outgoing |ink hop count is at |east one greater than the
hop count of the newy received thread.

OO0OO0OO0Oo

When an outgoing thread rew nds (see below), any incom ng threads
whi ch have been nerged with it will rewind as well.

et al. Experi ment al [Page 8]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

Thread Stalling

When a colored thread is received, if the thread forms a | oop, the
recei ved thread color and hop count are stored on the receiving
link without being extended. This is the special case of thread
nmergi ng applied only for threads forning a loop and referred to as
the "thread stalling", and the inconming link storing the stalled
thread is called "stalled incomng Iink". A distinction is nade
between stalled inconming |links and unstalled incom ng |inks.

Thread Rew ndi ng

Chba,

When a thread reaches a node which satisfies a particular |oop-
free condition, the node returns an acknow edgnent nessage back to
the message initiator in the reverse path on which the thread was
extended. The transnission of the acknow edgnment messages is the
"rew ndi ng" of the thread.

The | oop-free condition is:

0 Acolored thread is received by the egress node, OR
o Al of the follow ng conditions hold:
(a) Acolored thread is received by node N, AND
(b) N s outgoing link is transparent, AND
(c) N s outgoing link hop count is at |east one greater than
the hop count of the newy received thread.

When a node rewi nds a thread which was received on a particul ar
link, it changes the color of that link to transparent.

If there is a link fromnode Mto node N, and M has extended a
colored thread to N over that link, and Mdeternines (by receiving
a nmessage fromN) that N has rewound that thread, then Msets the
color of its outgoing link to transparent. Mthen continues

rewi nding the thread, and in addition, rew nds any other incomn ng
t hread whi ch had been nerged with the thread bei ng rewound,

i ncluding stalled threads.

Each node can start label switching after the thread colors in all
i ncom ng and outgoing |inks becones transparent.

Note that transparent threads are threads which have al ready been

rewound; hence there is no such thing as rewinding a transparent
t hr ead.

et al. Experi ment al [Page 9]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

3. 4.

GChb

Thread Wt hdraw ng

It is possible for a node to tear down a path. A node tears down
the portion of the path downstream of itself by sending teardown
messages to its next hop. This process is known as the "thread
wi t hdr awi ng".

For exanple, suppose a node is trying to set up a path, and then
experi ences a next hop change or a next hop loss. It wll
wi thdraw the thread that it had extended down its old next hop

If node Mhas extended a thread to node N, and node M then
wi thdraws that thread, N now has one less inconming link than it

had before. |If N now has no other unstalled incom ng |links and N
is not an eligible |l eaf node, it nust withdraw its outgoi ng
thread. If N still has an unstalled incoming Iink or Nis an

eligible | eaf node, it may (or may not) need to change the hop
count of the outgoing link

N needs to change the outgoing hop count if:

o The incoming link hop count that was just renoved had a | arger
hop count than any of the remaining incomng |inks, AND

0 One of the followi ng conditions holds:
(a) The outgoing link is transparent, OR
(b) The outgoing link has a known hop count.

If the outgoing link is transparent, it remains transparent, but
the new hop count needs to be sent downstream |If the outgoing
link is colored, a newthread (with a new color) needs to be
created and extended downstream

Exanpl es of primitive thread actions

The following notations are used to illustrate exanples of primtive
actions defined for threads.

A pair of thread attributes stored in each Iink is represented by
"(CH", where C and H represent the thread color and thread hop
count, respectively.

A thread marked "+" indicates that it is created or received now. A
thread marked "-" indicates that it is w thdrawn now.

A link labeled with squared brackets (e.g., "[a]") indicates that it

is an unstalled link. A link labeled with braces (e.g., "{a}")
indicates that it is a stalled |ink

a, et al. Experi ment al [Page 10]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

Fig. 2 shows an exanple in which a | eaf node A creates a blue thread
and extends it downstream

(bl, 1)
A--[ol]--->

Fig.2 Thread extendi ng at | eaf node

Fi g. 3 shows an exanple of thread extending w thout changi ng col or at

i nternmedi ate node. Assunme that a node B has no inconing and outgoi ng
link before receiving a blue thread. Wen node B receives the blue
thread of hop count 1 on a newinconing link il, it extends the

t hread downstream wi t hout changing color (Fig.3(a)). After the blue
thread is extended, node B receives a red thread of hop count unknown
on inconming link il again (Fig.3(b)). The red thread is al so

ext ended wi thout changing its color, since both il and ol already

exi sts.
(bl, 1)+ (bl,2) (re,U+ (re, U
----[i1]--->B---[01]----> ----[i1]--->B----[01]--->
Fig.3(a) Fi g. 3(b)
Fig.3 Thread extendi ng wit hout changi ng col or

Fi g.4 shows an exanple of thread extending w th changing col or.
There are single inconming link i1 and single outgoing link ol in
Fig.4(a). Then a red thread of hop count 3 is received on a new

incoming link i2. In this case, the received thread is extended wth
changing color, i.e., a new green thread is created and extended
(Fig.4(b)), since ol already exists.
(bl, 1) (bl, 2) (bl, 1) (gr,4)
----]i1]--->B----[0l]---> ----]i1]--->B----[0l]--->
N
_ |
----[i2]----+
(re,3)+
Fig. 4(a) Fig. 4(b)

Fig. 4 Thread extendi ng with changi ng col or

Fi g.5 shows an exanple of thread nmerging. Wen a node B receives a
red thread of hop count 3, the received thread is not extended since
the outgoing link hop count is at |east one greater than the received
thread hop count. Both the red and blue threads will be rewound when
the blue thread on outgoing link ol is rewound.

Chba, et al. Experi ment al [Page 11]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

(bl , 3) (bl , 4)
oo [i1]--->B----[01] --->

|
----li2]----+
(re,3)+

Fig.5 Thread mnergi ng

Figs 6 and 7 show exanples of thread stalling. Wen a node B
receives a blue thread of hop count 10 on incoming link i2 in Fig.6,
it "stalls" the received thread since the blue thread forns a | oop
In Fig.7, a leaf node A finds the Ioop of its own thread.

(bl , 3) (bl , 4)
—e--[i1]--->B----[01] --->

|
----{i2}----+
(bl,10) +

Fig.6 Thread stalling (1)
(bl, 10) + (bl 1)
----{il}--->A----[01]--->
Fig.7 Thread stalling (2)
Fi g. 8 shows an exanple of thread rewi nding. Wen the yellow thread
which is currently being extended is rewound (Fig.8(a)), the node

changes all the inconing and outgoing thread color to transparent,
and propagates thread rewi nding to upstream nodes (Fig.8(b)).

(bl, 1) (ye, 2) (tr, 1) (tr,2)
----[i2]--->B----[01]---> ----[i2]--->B----[01]--->
| |

----]i3]----+ ----]i3]----+
(ye, 1) (tr,1)
Fi g.8(a) Fi g. 8(b)

Fig.8 Thread rew ndi ng

Chba, et al. Experi ment al [Page 12]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

Fig.9 shows an exanple of thread withdrawing. In Fig.9(a), the red
thread on inconming link i2 is withdrawn. Then Hrax decreases from 3
to 1, and node B creates a new green thread and extends it

downstream as shown in Fig.9(b).

(bl, 1) (re, 4) (bl, 1) (gr,2)+
----[i1]--->B---[01]---> ----[i1]--->B----[01]--->
|
----li2]----+
(re, 3)-
Fig.9(a) Fi g.9(b)

Fig.9 Thread w thdrawing (1)

Fi g. 10 shows anot her exanple of thread withdrawing. In Fig.10(a),
the red thread on inconmng link i3 is withdrawn. In this case, Hmax
decreases fromunknown to 1, however, no thread is extended as shown
in Fig.10(b), since the outgoing link has a colored thread and the

hop count is unknown.

(bl, 1) (re, U (bl, 1) (re, U
----[i2]--->B----[01]---> ----[i2]--->B----[01]--->
|
----]i3]----+
(re, V-
Fi g.10(a) Fi g. 10(b)

Fig. 10 Thread w t hdrawi ng (2)

Fi g.11 shows anot her exanple of thread withdrawing. In Fig.11(a),
the transparent thread on incomng link i3 is withdrawn. 1In this
case, a transparent thread is extended (Fig.11(b)), since Hmax
decreases and the outgoing link is transparent.

(tr, 1) (tr, U (tr, 1) (tr,2)+
----[12]--->B----[01]---> ----[12]--->B----[01]--->
|
----[13]----+
(tr,U)'
Fig.11(a) Fig.11(b)

Fig. 11 Thread wi t hdrawi ng (3)

Chba, et al. Experi ment al [Page 13]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

4. Thread al gorithm

The ordered downstream on-demand all ocation is assuned here, however,
the al gorithm can be adapted to the ordered downstream al |l ocation, as
shown in section 5.

In the algorithm a next hop change event will be separated into two
events: a next hop |loss event on the old next hop and a next hop
acqui sition event on the new next hop, in this order

The followi ng notations are defined:

Hrex: the largest inconming |ink hop count
Ni : t he nunber of unstalled inconming |inks

The thread algorithmis described as foll ows.

When a node acquires a new next hop, it creates a colored thread and
extends it downstream

When a node | oses a next hop to which it has extended a thread, it
may withdraw that thread. As described in section 3, this may or may
not cause the next hop to take sone action. Anong the actions the
next hop may take are withdrawing the thread fromits own next hop

or extending a new thread to its own next hop

A received colored thread is either stalled, nerged, rewound, or
extended. A thread with TTL zero i s never extended.

Wien a received thread is stalled at a node, if Ni=0 and the node is
not an eligible |leaf node, initiate a thread withdrawing. O herwi se,
if Ni>0 and the received thread hop count is not unknown, a col ored
thread of hop count unknown is created and extended. |f the received
thread hop count is unknown, no thread is extended and no further
action is taken.

When a thread being extended is rewound, if the thread hop count is
greater than one nore than Hrax, a transparent thread of hop count
(Hmax+1) is extended downstream
When a node that has an transparent outgoing link receives a
transparent thread, if Hnmax decreases the node extends it downstream
wi t hout changi ng col or.

5. Applicability of the algorithm

The thread al gorithm described in section 4 can be applied to various
LSP nmanagenent policies

Chba, et al. Experi ment al [Page 14]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

5.1. LSP Loop prevention/detection

The sane thread algorithmis applicable to both LSP | oop prevention
and detection.

In | oop prevention node, a node transnits a |abel nmapping (including
a thread object) for a particular LSP only when it rew nds the thread
for that LSP. No mapping nessage is sent until the thread rew nds

On the other hand, if a node operates in |oop detection node, it
returns a | abel mapping nessage without a thread object inmmediately
after receiving a colored thread. A node which receives a | abel
mappi ng nmessage that does not have a thread object will not rew nd
t he thread.

5.2. Using old path while |ooping on new path

When a route changes, one might want to continue to use the old path
if the newroute is looping. This is achieved sinply by holding the
| abel assigned to the downstreamlink on the old path until the

t hread bei ng extended on the new route gets rewound. This is an

i mpl enent ati on choi ce.

5.3. Howto deal with ordered downstream al | ocati on

The thread nechani sm can be al so adapted to ordered downstream

al l ocation node (or the egress-initiated ordered control) by
regarding the event of newly receiving of a | abel mapping nessage [4]
fromthe next hop as a next hop acquisition event.

Not e that a node which doesn’t yet have an inconing |ink behaves as a
leaf. In the case where the tree is being initially built up (e.g.
the egress node has just cone up), each node in turn will behave as a
|l eaf for a short period of tine.

5.4. Howto realize load splitting

A leaf node can easily performload splitting by setting up two
different LSPs for the same FEC. The downstream|links for the two
LSPs are sinply assigned different colors. The thread al gorithm now
prevents a loop in either path, but also allows the two paths to have
a conmon downstream node

If some internediate node wants to do load splitting, the follow ng
nodi fication is made. Assune that there are nultiple next hops for
the sane FEC. If there are n next hops for a particular FEC, the set
of incomng links for that FEC s LSP can be partitioned into n
subsets, where each subset can be mapped to a distinct outgoing |link

Chba, et al. Experi ment al [Page 15]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

This provides n LSPs for the FEC. Each such LSP uses a distinct
color for its outgoing link. The thread algorithmnow prevents a
loop in any of the paths, but also allows two or nore of the paths to
have a comobn downstream node

In this case, an interesting situation may happen. Let’s say that in
Fig.12, node B has two inconming links, il and i2, and two outgoing
links, ol and 02, such that il is mapped to ol, while i2 is mapped to
02.

If a blue thread received on i1l and extended on 0l is again received
at node Bon i2, the blue thread is not regarded as fornmng a | oop
since il and i2 are regarded as belonging to different subsets.
Instead, the blue thread received on i2 is extended on 02. |If the
thread extended on 02 is rewound, a single |oop-free LSP which
traverses node B twice is established.

R T R R +
(bl, 3) (bl, 4)
----]i1]---+ +--[ol]---> --+
/
. v [/
| B
|
e [i2]--->B----[02]--->
(bl, 10) + (bl, 11)

Fig.12 Load splitting at internedi ate node

There is another type of load splitting, in which packets arrived at
single inconmng link can be |abel switched to any one of multiple
outgoing links. This case does not seemto be a good | oad-splitting
schene, since the packet order in the sane FEC is not preserved
Thus, this docunment does not focus on this case.

Whet her that's a good type of load splitting or not, the fact remains
that ATM LSRs cannot load split like this because ATM switches just
don’t have the capability to make forwardi ng decisions on a per-
packet basis.

6. Wiy this works

6.1. Wiy a thread with unknown hop count is extended

In the algorithm a thread of unknown hop count is extended when a
thread loop is detected. This reduces the nunber of |oop prevention

Chba, et al. Experi ment al [Page 16]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

messages by nerging threads (of known hop count) that are flow ng
i nside or outside the loop. See Appendix A 12.

6.2. Wiy a rewound thread cannot contain a | oop
6.2.1. Casel: LSP with known |ink hop counts

How can we be sure that an established path does not contain a | oop
when the outgoing link hop count is NOT "unknown"?

Consi der a sequence of LSRs <R1, ..., Rn> such that there is a | oop
traversing the LSRs in the sequence. (l.e., packets fromRl go to
R2, then to R3, etc., then to Rn, and then fromRn to Rl.)

Suppose that the thread hop count of the Iink between R1 and R2 is k
Then by the above procedures, the hop counts between Rn and Rl nust
be k+n-1. But the algorithmalso ensures that if a node has an

i ncom ng hop count of j, its outgoing link hop count nust be at |east
of j+1. Hence, if we assune that the LSP established as a result of
thread rew nding contains a |loop, the hop counts between Rl and R2
must be at least k+n. Fromthis we nay derive the absurd concl usion
that n=0, and we may therefore conclude that there is no such
sequence of LSRs.

6.2.1. Case2: LSP with unknown |ink hop counts

An established path does not contain a |loop as well, when the
outgoi ng link hop count is "unknown". This is because a col ored
thread of unknown hop count is never rewound unless it reaches
egress.

6.3. Wy L3 loop is detected

Regar dl ess of whether the thread hop count is known or unknown, if
there is a | oop, then sone node in the loop will be the last node to
receive a thread over a newinconming link. This thread will always
arrive back at that node, without its color having changed. Hence
the loop will always be detected by at |east one of the nodes in the
| oop.

6.4. Wiy L3 loop is not nis-detected

Since no node ever extends the sane col ored thread downstreamtw ce,
a thread loop is not detected unless there actually is an L3 routing
| oop.

Chba, et al. Experi ment al [Page 17]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

6.5. How a stalled thread automatically recovers from/l oop

Once a thread is stalled in a |oop, the thread (or the path setup
request) effectively remains in the |oop, so that a path
reconfiguration (i.e., thread withdrawing on the old path and thread
extendi ng on the new path) can be issued from any node that nay
receive a route change event so as to break the | oop

6.6. Wy different colored threads do not chase each other

In the algorithm nultiple thread col or and/ or hop count updates may
happen if several |eaf nodes start extending threads at the sane
time. How can we prevent multiple threads fromlooping unlimted y?

First, when a node finds that a thread forns a loop, it creates a new
thread of hop count "unknown". All the |ooping threads of a known
hop count which later arrive at the node would be nerged into this
thread. Such a thread behaves |ike a thread absorber

Second, the "thread extending with changing color" prevents two
t hreads from chasi ng each ot her

Suppose that a received thread were al ways extended w t hout changi ng
color. Then we would encounter the follow ng situation

G Y
| |
v v
R1------ >R2
" |
| v
R4<------ R3

Fig.13 Exanpl e of thread chasing

In Fig.13, (1) node G acquires Rl as a next hop, and starts to extend
a green thread of hop count 1, (2) node Y acquires R2 as a next hop,
and starts to extend a yellow thread of hop count 1, and (3) both
node G and node Y withdraws their threads before these threads go
round.

In this case, the yellow and green threads would go round and get
back to R2 and Rl, respectively. Wen the threads get back to R2 and
R1, however, the incomng links that store the yellow and green
colors no longer exist. As a result, the yellow and green threads
woul d chase each other forever in the |oop

Chba, et al. Experi ment al [Page 18]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

However, since we have the "extending with changi ng col or" nechani sm
this does not actually happen. Wen a green thread is received at
R2, R2 extends the thread with changing color, i.e., creates a new
red thread and extends it. Simlarly, when a yellow thread is
received at Rl, Rl creates a new purple thread and extends it. Thus,
the thread |oop is detected even after node G and node Y withdraw
threads. This ensures that a thread is extended around the | oop

whi ch has a col or assigned by sone node that is in the | oop

There is at | east one case even the "extending with changing col or"
mechani sm cannot treat, that is, the "self-chasing” in which thread
extending and thread withdrawing with regard to the same thread chase
each other in a loop. This case would happen when a node withdraw a
thread i mediately after extending it into an L3 |oop

A heuristics for self-chasing is to delay the execution of thread
wi thdrawing at an initiating node of the thread withdrawi ng. Anyway,
the thread TTL nechanismcan elimnate any kind of thread | ooping.

7. Loop prevention exanples

In this section, we show two exanples to show how t he al gorithm can
prevent LSP | oops in given networKks.

We assune that the ordered downstream on-denmand all ocation is
enpl oyed, that all the LSPs are with regard to the sane FEC, and that
all nodes are VC-nerge capable.

7.1. First exanple
Consi der an MPLS network shown in Fig.14 in which an L3 | oop exists.

Each directed link represents the current next hop of the FEC at each
node. Now | eaf nodes RlL and R6 initiate creation of an LSP

R11 ------- RIO <--------mmmmmeiaa o R9
| | "
| | |
| | |
v v |
RL ------- >R -------- >R3 -------- >R4 --------- R5

[leaf] A
|
|
R6 ------- >RV -------- > R8
[1eaf]

Fig. 14 Exanpl e MPLS network (1)

Chba, et al. Experi ment al [Page 19]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

Assunme that R1L and R6 send a | abel request nessage at the sane tine,
and that the initial thread TTL is 255. First we show an exanpl e of
how to prevent LSP | oops.

A set of thread attributes is represented by (color, hop count, TTL).

The request fromRlL and R6 contains (re, 1,255) and (bl, 1, 255),
respectively.

Assume that R3 receives the request originated fromRl before
receiving the request originated fromR6. When R3 receives the first
request with red thread, R3 forwards it with (re, 3,253) wi thout
changi ng thread color, since both the receiving inconmng link and the
outgoing link are newy created. Then R3 receives the second request
with blue thread. 1In this tine, the outgoing link is already exists.
Thus, R3 perfornms thread extending with changing color, i.e., creates
a new brown thread and forwards the request with (br, 4, 255).

When R2 receives the request fromRLO with (re, 6,250), it finds that
the red thread forms a loop, and stalls the red thread. Then, R2
creates a purple thread of hop count unknown and extends it
downstream by sending a request with (pu, U, 255) to R3, where "U'
represents "unknown".

After that, R2 receives another request fromRLO with (br, 7, 252).
The brown thread is nmerged into purple thread. R2 sends no request
to RS3.

On the other hand, the purple thread goes round w thout changi ng
color through existing links, and R2 finds the thread | oop and stalls
the purple thread. Since the received thread hop count is unknown,
no thread is created any nore. 1In this case no thread rew nding
occurs. The current state of the network is shown in Fig. 15.

Chba, et al. Experi ment al [Page 20]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

*: location of thread stalling

(pu, V)
R11 ------- RIO <--------mmmmmmiaa o R9
I I "
I | (pu, U)* I
I I | (pu, U
% %
RL ------- >R -------- >R3 -------- >R4 --------- R5
[leaf] (re, 1) (pu, Y 7~ (pu, Y
| (bl,3)
R6 ------- >R7 -------- > R8
[leaf] (bl,1) (bl,2)

Fig.15 The network state
Then R10 changes its next hop fromR2 to R11

Since R10 has a purple thread on the old downstreamlink, it first
sends a path teardown nessage to the old next hop R2 for w thdraw ng
the purple thread. Next, it creates a green thread of hop count
unknown and sends a request with (gr, U, 255) to Rl1l

When R2 receives the teardown nessage from R10, R2 renobves the
stalled inconmng |ink between R10 and R2.

On the other hand, the green thread reaches Rl and Hrax i s updated
fromzero to unknown. |In this case, Rl perforns thread extending
with changing color since the thread is received on a new i nconi ng
link but extended on the already existing outgoing link. As a
result, Rl creates an orange thread of hop count unknown and extend
it to R2.

The orange thread goes round through existing |inks w thout changing
color, and finally it is stalled at RI1.

The state of the network is now shown in Fig.16.

Chba, et al. Experi ment al [Page 21]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

*: location of thread stalling

(or, U (or, U

R11 <------ RIO <-----mmmme e ee oo RO

I I A

| (or, U= I I

I | I(Or,U)

v

RL ------- >R -------- >R3 -------- > R4 --------- R5
[leaf] (or, U (or,U ~ (or,U

| (bl,3)

R6 ------- >R7 -------- > R8

[leaf] (bl,1) (bl,2)

Fig.16 The network state
Then R4 changes its next hop fromR9 to R5.

Since R4 is extending an orange thread, it first sends a teardown
message to the old next hop RO to withdraw the orange thread on the
old route. Next, it creates a yellow thread of hop count unknown,
and sends a request nessage with (ye, U 255) to R5.

Since R5 is the egress node, the yellow thread rewinding starts. R5
returns a | abel mapping nmessage. The thread rew nding procedure is
performed at each node, as the | abel mapping nmessage is returned
upstream hop- by- hop

If Rl receives a | abel mappi ng nessage before receiving the orange
thread’s withdrawal from R11, Rl returns a | abel mapping nessage to
R11. On receiving the orange thread’s withdrawal, RL will create a
transparent thread and extend it by sending an update nmessage wth
(tr,1,255) in order to notify downstream of the known hop count.

O herwise, if RL receives the orange thread’' s w thdrawal before
receiving a | abel mappi ng nessage, Rl renoves the stalled inconing
orange link and waits for rew nding of the outgoing orange thread.
Finally, when Rl receives a |abel mapping nessage fromR2, it creates
a transparent thread (tr,1,255) and extend it downstream

In both cases, a nerged LSP ((Rl->R2), (R6->R7->R8))->R3->R4->R5) is

establ i shed and every node obtains the correct link hop count. The
final network state is shown in Fig.17.

Chba, et al. Experi ment al [Page 22]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

R11 <------ RIO <-------mmmmmmmia o - R9
v	
RL ------- >R -------- >R3 -------- >R4 -------- > R5	
[leaf] (tr,1) (tr,2) ~ (tr,4) (tr,5)	
(tr,3)	
R6 ------- >R7 -------- > R8
[leaf] (tr,1) (tr,2)

Fig.17 The final network state

7.2. Second exanple

+----- R6----> R7----- +

| |

| v
Rl---->R2 R4- - --- >R5

| N

| |

R RS SR3--------- +

Fig.18 Exanpl e MPLS network (2)

Assunme that in Fig.18, there is an established LSP Rl->R2->R3->R4-
>R5, and the next hop changes at R2 fromR3 to R6. R2 sends a
request to R6 with a red thread (re, 2,255). Wen the request wth
(re,4,253) reaches R4, it extends the thread to R5 with changing
color. Thus, a new green thread is created at R4 and extended to R5
by sending an update message with (gr,5, 255).

When R5 receives the update, it updates the inconing |ink hop count
to 5 and returns an ack (or a notification nessage with a success
code) for the update. Wien R4 receives the ack for the update, it
returns a | abel mapping nmessage to R7.

When R2 receives the | abel napping nessage on the new route, it sends
a teardown nessage to R3. Wien R4 receives the teardown nessage, it
does not sends an update to R5 since Hmax does not change. Now an
establ i shed LSP Rl1->R2->R6->R7->R4->R5 i s obt ai ned.

Then, the next hop changes again at R2 fromR6 to R3.

Chba, et al. Experi ment al [Page 23]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

R2 sends a request with a blue thread (bl,2,255) to R3. R3 forwards
the request with (bl, 3,254) to R4.

When R4 receives the request, it imediately returns a | abel nmapping
message to R3 since Hrax does not change

When R2 receives the | abel napping nessage on the new route, it sends
a teardown nessage to R6. The teardown nessage reaches R4,
triggering an update nessage with a transparent thread (tr,4,255) to
R5, since Hrax decreases from4 to 3. R5 updates the inconming |ink
hop count to 4 without returning an ack

8. Thread control bl ock

A thread control block (TCB) is naintained per LSP at each node and
may contain the follow ng information

- FEC
- State
I ncom ng |inks
Each inconming link has the followi ng attributes:
0 nei ghbor: upstream nei ghbor node address
o color: received thread col or
o hop count: received thread hop count
o |abel
o S-flag: indicates a stalled link
Qut goi ng li nks
Each outgoing link has the follow ng attributes:
0 neighbor: downstream nei ghbor node address
o color: received thread col or
o hop count: received thread hop count
o |abel
0o Cflag: indicates the link to the current next hop

If a transparent thread is received on an incoming link for which no
| abel is assigned yet or a non-transparent color is stored, discard
the thread without entering the FSM An error nessage nay be
returned to the sender

Whenever a thread is received on an inconing link, the follow ng
actions are taken before entering the FSM (1) Store the received
thread col or and hop count on the link, replacing the old thread
color and hop count, and (2) set the following flags that are used
for an event switch within "Recv thread" event (see section 8.1).

Chba, et al. Experi ment al [Page 24]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

0o Color flag (CL-flag):
Set if the received thread is colored
0o Loop flag (LP-flag):
Set if the received thread forns a | oop
o Arrived on new link flag (NL-flag):
Set if the received thread arrives on a new i ncomng |ink

If LP-flag is set, there nust be an inconming link L, other than the
receiving link, which stores the sane thread col or as the received
one. The TCB to which Iink L belongs is referred to as the
"detecting TCB". If the receiving LSR is VC nerge capable, the
detecting TCB and the receiving TCB is the sanme, otherw se, the two
TCBs are different.

Before perfornming a thread extending, the thread TTL is decrenented
by one. |If the resulting TTL beconmes zero, the thread is not
extended but silently discarded. QOherw se, the thread is extended
and the extended thread hop count and color are stored into the

out goi ng | i nk.

When a node receives a thread rewinding event, if the received thread
color and the extending thread color are different, it discards the
event wi thout entering the FSM

8.1. Finite state machine

An event which is "schedul ed" by an action in an FSM nust be passed
i medi ately after the conpletion of the action

The follow ng variables are used in the FSM

o Ni: nunmber of unstalled incomng |inks
0 Hnmax: largest incoming hop count

0 Hout: hop count of the outgoing link for the current next hop
0 Hrec: hop count of the received thread

In the FSM if Hmax=unknown, the value for (Hrax+l) becones the val ue
reserved for unknown hop count plus 1. For exanple, if
Hrmax=unknown=255, the val ue (Hmax+1) becones 256.

A TCB has three states; Null, Colored, and Transparent. Wen a TCB
is in state Null, there is no outgoing Iink and Ni=0. The state

Col ored neans that the node is extending a colored thread on the
outgoing link for the current next hop. The state Transparent neans
that the node is the egress node or the outgoing link is transparent.

The flag value "1" represents the flag is set, "0" represents the
flag is not set, and "*" neans the flag value is either 1 or O.

Chba, et al. Experi ment al [Page 25]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

The FSM al l ows to have one transparent outgoing |ink on the old next
hop and one col ored outgoing link on the current next hop. However,
it is not allowed to have a colored outgoing link on the old next
hop.

State Null:
Event Action New state
Recv thread

Fl ags
CL LP NL
o * = Do not hi ng. No change
1 0 * If the node is egress, start thread rew ndi ng Transparent

and change the color of the receiving link to
transparent.
O herwi se, extend the received thread w thout Col ored
changi ng col or.

1 1 * Stall the received thread; if Hrec<unknown, No change
schedul e "Reset to unknown" event for the
detecting TCB

Next hop If eligible-leaf, create a colored thread and Col or ed
acquisition extend it.

O hers Silently ignore the event. No change

State Col ored:

Event Action New st ate
Recv thread
Fl ags
CL LP NL
0o * | f Hmax+l<Hout <unknown, create a col ored No change
thread and extend it. Oherw se, do not hing.
1 0 * I f Hmax<Hout, merge the received thread. No change

O herwi se, extend the thread with (if NL=1)
or without (if NL=0) changing col or.

1 1 * Stall the received thread
If Ni=0 and the node is not an eligible |eaf, Nul
initiate thread w t hdraw ng
If Ni >0 and Hrec<unknown, schedule "Reset to No change
unknown" event for the detecting TCB
O herwi se, do not hi ng. No change

Chba, et al. Experi ment al [Page 26]

RFC 3063

Rewound

W t hdr awn

Next hop
acquisition

Next hop
| oss

Reset to
unknown

O hers

MPLS Loop Prevention Mechani sm February 2001

Propagate thread rewi nding to previous hops Tr anspar ent
that are extending a colored thread; change

the colors stored in all incom ng and outgoing

links to transparent; if Hmax+l<Hout, extend

transparent thread. Wthdraw the thread on

the outgoing link for which Cflag=0.

Renmove the corresponding i ncomng |ink

If Ni=0 and the node is not an eligible |eaf, Nul
propagate thread withdrawing to all next hops.

O herwi se, if Hmax+l<Hout <unknown, create No change
a colored thread and extend it.

O herwi se, do not hi ng. No change

If there is already an outgoing link for the Transparent
next hop, do nothing. (This case happens only

when the node retains the old path.)

O herwi se, create a colored thread and extend No change
it.

If the outgoing link is transparent and the No change
node is allowed to retain the link and the

next hop is alive, do nothing.

O herwi se, take the foll owi ng actions.

Initiate thread withdrawi ng for the next hop

if the node becones a new egress, schedule

"Rewound" event for this TCB

If Ni=0, nmove to Null. Nul
O herw se, do not hi ng. No change
Create a colored thread of hop count unknown No change

and extend it.

Silently ignore the event. No change

State Transparent:

Event
Recv thread
Fl ags
CL LP NL
0 * *
1 0 *

Chba, et al

Acti on New st at e

I f Hmax+l<Hout, extend a transparent thread. No change
If the node is egress or if Hmax<Hout, change No change
the color of the receiving link to transparent

and start thread rew nding.

O herwi se, extend the thread with (if NL=1) Col or ed
or without (if NL=0) changing col or.

Experi ment al [Page 27]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

W t hdr awn Renove the correspondi ng inconming |ink

If Ni=0 and the node is not an eligible |eaf, Nul

propagate thread withdrawi ng to next hops.

O herwi se, if Hmax+l<Hout, create No change

a transparent thread and extend it.

O herwi se, do not hi ng. No change
Next hop Create a colored thread and extend it. Col ored
acquisition
Next hop If the node is allowed to retain the outgoing No change
| oss link and the next hop is alive, do nothing

O herwi se, take the foll owi ng actions.

Initiate thread wi thdraw ng.

If Ni=0, nove to Null. Nul

O herw se, do not hi ng. No change
O hers Silently ignore the event. No change

9. Conparison with path-vector/diffusion nethod

(0]

Chba,

Whereas the size of the path-vector increases with the |ength of
the LSP, the sizes of the threads are constant. Thus the size
of messages used by the thread algorithmare unaffected by the
network size or topology. |In addition, the thread merging
capability reduces the nunber of outstandi ng nmessages. These
lead to inproved scalability.

In the thread algorithm a node which is changing its next hop
for a particular LSP nust interact only with nodes that are
between it and the LSP egress on the new path. In the

pat h-vector algorithm however, it is necessary for the node to
initiate a diffusion conputation that involves nodes which do
not lie between it and the LSP egress.

This characteristic nakes the thread al gorithm nore robust. |If
a diffusion conputation is used, nisbehaving nodes which aren’t
even in the path can delay the path setup. 1In the thread

algorithm the only nodes which can delay the path setup are
t hose nodes which are actually in the path.

The thread algorithmis well suited for use with both the
ordered downstream on-demand al |l ocati on and ordered downstream
al l ocation. The path-vector/diffusion algorithm however, is
tightly coupled with the ordered downstream al |l ocati on

et al. Experi ment al [Page 28]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

0 The thread algorithmis retry-free, achieving quick path
(re)configuration. The diffusion algorithmtends to delay the
path reconfiguration tine, since a node at the route change
point rmust to consult all its upstream nodes.

0 In the thread algorithm the node can continue to use the old
path if there is an L3 loop on the new path, as in the
pat h-vector al gorithm

10. Security Considerations

The use of the procedures specified in this docunent does not have
any security inpact other than that which nmay generally be present
in the use of any MPLS procedures.

11. Intellectual Property Considerations

Toshi ba and/or Ci sco may seek patent or other intellectual property
protection for sone of the technol ogies disclosed in this docunent.
I f any standards arising fromthis document are or becone protected
by one or nore patents assigned to Toshi ba and/or C sco, Toshiba
and/ or Cisco intend to disclose those patents and license them on
reasonabl e and non-di scrimnatory terns.

12. Acknow edgnents

We would like to thank Hiroshi Esaki, Bob Thomas, Eric Gay, and
Joel Hal pern for their coments.

Chba, et al. Experi ment al [Page 29]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

13. Authors’ Addresses

Yoshi hiro Ohba

Toshi ba Cor poration

1, Konukai - Toshi ba-cho, Sai wai -ku
Kawasaki 210-8582, Japan

EMai | : yoshi hi ro. ohba@ oshi ba.co.jp

Yasuhi ro Kat sube

Toshi ba Cor poration

1, Toshi ba-cho, Fuchu-shi,
Tokyo, 183-8511, Japan

EMai | : yasuhiro. kat sube@ oshi ba. co. jp

Eri c Rosen

Cisco Systems, Inc.
250 Apollo Drive

Chel msford, MA, 01824

EMmi | : erosen@i sco.com

Paul Dool an
Ennovat e Net wor ks
330 Codnman H Il Rd
Mar | bor ough MA 01719

EMai | : pdool an@nnovat enet wor ks. com
14. References

[1] Callon, R, et al., "A Framework for Miltiprotocol Label
Swi tching", Work in Progress.

[2] Davie, B., Lawence, J., McCoghrie, K, Rosen, E, Swallow, G,
Rekhter, Y. and P. Doolan, "MPLS using LDP and ATM VC Swi t chi ng",
RFC 3035, January 2001.

[3] Rosen, E., et al., "A Proposed Architecture for MPLS", Wirk in
Pr ogr ess.

[4] Andersson, L., Doolan, P., Feldman, N., Fredette, A and B.
Thomas, "LDP Specification", RFC 3036, January 2001.

Chba, et al. Experi ment al [Page 30]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

Appendi x A - Further discussion of the algorithm

The purpose of this appendix is to give a nore informal and tutoria
presentation of the algorithm and to provide some of the notivation
for it. For the precise specification of the algorithm the FSM
shoul d be taken as authoritative.

As in the body of the docunment, we speak as if there is only one LSP
otherwi se we would al ways be saying "... of the same LSP". W also
consider only the case where the algorithmis used for |oop
prevention, rather than | oop detection

A. 1. Loop Prevention the Brute Force Wy

As a starting point, let’s consider an algorithmwhich we night cal

"l oop prevention by brute force". In this algorithm every path
setup attenpt nust go all the way to the egress and back in order for
the path to be setup. This algorithmis obviously |oop-free, by
virtue of the fact that the setup nessages actually made it to the
egress and back.

Consi der, for exanple, an existing LSP B-C-D-E to egress node E. Now
node A attenpts to join the LSP. 1In this algorithm A nust send a
nmessage to B, Bto C, Cto Db Dto E. Then nessages are sent fromE
back to A. The final nmessage, fromB to A contains a | abel binding,
and A can now join the LSP, knowing that the path is |oop-free.

Usi ng our term nology, we say that A created a thread and extended it
downstream The thread reached the egress, and then rewound.

We needn’t assune, in the above exanple, that A is an ingress node.

It can be any node which acquires or changes its next hop for the LSP
in question, and there nay be nodes upstreamof it which are al so
trying to join the LSP.

It is clear that if there is a |oop, the thread never reaches the
egress, so it does not rewind. What does happen? The path setup
messages just keep traveling around the loop. |If one keeps a hop
count in them one can ensure that they stop traveling around the
| oop when the hop count reaches a certain maxi numvalue. That is,
when one receives a path setup nessage with that the maxi mum hop
count val ue, one doesn’t send a path setup nessage downstream

How does one recover fromthis situation of a looping thread? In

order for L3 routing to break the | oop, sonme node in the | oop MJST
experi ence a next hop change. This node will w thdraw the thread

Chba, et al. Experi ment al [Page 31]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

fromits old next hop, and extend a thread down its new next hop. |If
there is no longer a loop, this thread now reaches the egress, and
gets rewound.

A 2. What’'s Wong with the Brute Force Method?

Consi der this exanpl e:

If Aand C both attenpt to join the established B-D-E path, then B
and D nust keep state for both path setup attenpts, the one fromA
and the one fromC That is, D nust keep track of two threads, the
A-thread and the C-thread. |n general, there nay be nany nore nodes
upstream of B who are attenpting to join the established path, and D
woul d need to keep track of themall.

If VC merge is not being used, this isn’t actually so bad. Wthout
VC nerge, Dreally nust support one LSP for each upstream node
anyway. |If VC nerge is being used, however, supporting an LSP
requires only that one keep state for each upstreamlink. It would
be advantageous if the | oop prevention technique also required that
the amount of state kept by a node be proportional to the nunmber of
upstream | i nks which thenode has, rather than to the nunmber of nodes
whi ch are upstreamin the LSP

Another problemis that if there is a | oop, the setup nessages keep
| oopi ng. Even though a thread has traversed sone node tw ce, the
node has no way to tell that a setup nessage it is currently
receiving is part of the sanme thread as some setup nessage it
received in the past.

Can we nodify this brute force schene to elimnate these two
probl ens? W can. To show how to do this, we introduce two notions:
thread hop count, and thread col or

A. 3. Thread Hop Count
Suppose every link in an LSP tree is labeled with the nunber of hops
you woul d traverse if you were to travel backwards (upstream) from
that link to the | eaf node which is furthest upstreamof the |ink

For exanple, the following tree would have its |links |abeled as
fol | ows:

Chba, et al. Experi ment al [Page 32]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

1 2
A---B---C K
| |
| 3 | 1
| |
| 4 5|6 7
D--G--H--1---J
|
| 2
1|
E---F

Call these the "link hop counts"”

Li nks AB, EF, KH are | abel ed one, because you can go only one hop
upstream fromthese links. Links BC, and FD are | abeled 2, because
you can go 2 hops upstreamfromthese links. Link DGis |abeled 4,
because it is possible to travel 4 hops upstreamfromthis link, etc.

Note that at any node, the hop count associated with the downstream
link is one nore than the I argest of the hop counts associated with
the upstream | i nks.

Let’'s ook at a way to maintain these hop counts.

In order to maintain the link hop counts, we need to carry hop counts
in the path setup nessages. For instance, a node which has no
upstream | inks would assign a hop count of 1 to its downstream|ink
and woul d store that value into the path setup nessages it sends
downstream Once the value is stored in a path setup nessage, we nmay
refer to it has a "thread hop count".

When a path setup nessage is received, the thread hop count is stored
as the Iink hop count of the upstreamlink over which the nmessage was
recei ved.

When a path setup nessage is sent downstream the downstreamlink’s
hop count (and the thread hop count) is set to be one nore than the
| argest of the incoming |link hop counts.

Suppose a node N has some inconming |inks and an outgoing link, with
hop counts all set properly, and N now acquires a new inconming |ink
If, and only if, the Iink hop count of the new incoming link is
greater than that of all of the existing inconming |links, the

downstream | i nk hop count nust be changed. |In this case, contro
messages must be sent downstream carrying the new, |arger thread hop
count .

Chba, et al. Experi ment al [Page 33]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

If, on the other hand, N acquires a new inconmng link with a |link hop
count that is less than or equal to the Iink hop count of al

exi sting incoming |links, the downstream|ink hop count remnains
unchanged, and no nessages need be sent downstream

Suppose N | oses the incom ng |link whose hop count was the |argest of
any of the incomng links. 1In this case, the downstream|ink hop
count nust be nade snaller, and nessages need to be sent downstream
to indicate this.

Suppose we were not concerned with | oop prevention, but only with the
mai nt enance of the hop counts. Then we would adopt the follow ng
rules to be used by nerge points:

A 3.1 When a new incoming thread is received, extend it downstreamif
and only if its hop count is the largest of all incom ng threads.

A 3.2 O herwi se, rewind the thread
A.3.3 An egress node woul d, of course, always rewind the thread.
A. 4. Thread Col or

Nodes create new threads as a result of next hop changes or next hop
acquisitions. Let’'s suppose that every tine a thread is created by a
node, the node assigns a unique "color" to it. This color is to be
unique in both time and space: its encoding consists of an | P address
of the node concatenated with a unique event identifier froma
nunbering space maintai ned by the node. The path setup nmessages that
t he node sends downstreamw ||l contain this color. Also, when the
node sends such a nessage downstream it will renmenber the color, and
this col or beconmes the color of the downstreamlink

When a col ored nessage is received, its col or becones the col or of
the incomng link. The thread which consists of nessages of a
certain color will be known as a thread of that col or

Wien a thread is rewound (and a path set up), the color is renoved
The |inks becone transparent, and we will sonetinmes speak of an
established LSP as being a "transparent thread".

Not e that packets cannot be forwarded on a colored link, but only on
a transparent |ink.

Note that if a thread | oops, some node will see a nmessage, over a
particular incomng link, with a color that the node has already seen
before. Either the node will have originated the thread of that
color, or it will have a different inconing |link which al ready has

Chba, et al. Experi ment al [Page 34]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

that color. This fact can be used to prevent control nessages from
| oopi ng. However, the node would be required to renenber the colors
of all the threads passing through it which have not been rewound or
withdrawn. (l.e., it would have to renenber a color for each path
setup in progress.)

A.5. The Rel ation between Col or and Hop Count

By conbi ning the col or mechani smand the hop count mechanism we can
prevent | oops w thout requiring any node to renenber nore than one
col or and one hop count per link for each LSP

W have already stated that in order to naintain the hop counts, a
node needs to extend only the thread which has the | argest hop count
of any incomng thread. Now we add the follow ng rule:

A 5.1 When extending an inconming thread downstream that thread s
color is also passed downstream (l.e., the downstreamlink’s col or
will be the sane as the color of the upstreamlink with | argest hop
count.)

Note that at a given node, the downstreamlink is either transparent
or it has one and only one col or

A 5.2 If a link changes color, there is no need to renenber the old
col or.

We now define the concept of "thread nerging"

A 5.2 Suppose a colored thread arrives at a node over an inconing
link, the node already has an inconmng thread with the sanme or |arger
hop count, and the node has an outgoing colored thread. 1In this
case, we nay say that the new inconming thread is "merged" into the
out goi ng thread.

Note that when an inconming thread is nerged into an outgoing thread,
no nessages are sent downstream

A. 6. Detecting Thread Loops

It can now be shown that if there is a |loop, there will always either
be sone node which gets two inconing threads of the sane col or, or
the colored thread will return to its initiator. 1In this section, we
gi ve several exanples that may provide an intuitive understandi ng of
how the thread | oops are detected.

Chba, et al. Experi ment al [Page 35]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

1 2
A---B---C K
| |
| 3 | 1
| |
| 4 5|6 7
D--G--H--1---J
|
| 2
1|
E---F

Returning to our previous exanple, let’'s set what would happen if H
changed its next hop froml to EE H now creates a new thread, and
assigns it a new color, say, red. Since H has two inconming |link,
with hop counts 1 and 5 respectively, it assigns hop count 6 to its
new downstream | ink, and attenpts a path setup through E

E now has an inconing red thread with hop count 6. Since E's
downstream | ink hop count is nowonly 1, it nust extend the red
thread to F, with hop count 7. F then extends the red thread to D
with hop count 8, Dto Gwith hop count 9, and Gto Hwth hop count
10.

The red thread has now returned to its initiator, and the loop is
det ect ed.

Suppose though that before the red thread makes it back to H G
changes its next hop fromH<to E. Then Gwll extend the red thread
to EE But E already has an inconing red link (fromH), so the |oop
i s detected.

Let’s now define the notion of a "stalled thread". A stalled thread
is athread which is nmerged into the outgoing thread, even though the
out goi ng thread has a smaller |ink hop count.

When a thread loop is detected, the thread becones stall ed.

A.6.1 \Wien a loop is detected due to a thread of a particular color

traversing some node twice, we will say that the thread is "stalled"
at the node. Mire precisely, it is the second appearance of the
thread which is stalled. Note that we say that a thread is
traversing a node twice if the thread is received by that node on an
inconmng link, but either there is another inconming link with the
sane color, or the color is one that was assigned by the node itself.

Chba, et al. Experi ment al [Page 36]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

A

>

7. Preventing the Setup of Looping LSPS

The mechanismto be used for preventing the setup of |ooping LSPs
shoul d now be obvious. |If node Mis node N s next hop, and N w shes
to set up an LSP (or to nerge into an LSP which already exists at M,
then N extends a thread to M

Mfirst checks to see if the thread forns a | oop (see Appendi x A 6),

and if so, the thread is stalled. |If not, the follow ng procedure is
fol | oned.
. 7.1 If Mreceives this thread, and M has a next hop, and either:

- M has no outgoing thread

- the incomng thread hop count is larger than the hop count of all
ot her incom ng threads,

then M nust extend the thread downstream

7.2 On the other hand, if Mreceives this thread, and M has a next
hop and there is another incomng thread with a |larger hop count,
t hen:

7.2.1 if the outgoing thread is transparent, Mrew nds the new
i ncom ng thread.

7.2.2 if the outgoing thread is colored, Mnerges the new i nconi ng
thread into the outgoing thread, but does not send any nessages
downst ream

7.3 If Mhas not already assigned a label to N, it will assign one
when, and only when, Mrew nds the thread which N has extended to it.
7.4 If Mnerges the new thread into an existing col ored outgoi ng
thread, then the new inconing thread will rew nd when, and only when,
t he out goi ng thread rew nds.

8. Wthdraw ng Threads

8.1 If a particular node has a col ored outgoing thread, and | oses or
changes its next hop, it withdraws the outgoi ng thread.

Suppose that node N is i mediately upstreamof node M and that N has
extended a thread to M Suppose further that N then wi thdraws the
t hr ead.

Chba, et al. Experi ment al [Page 37]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

A 8.2 If Mhas another inconming thread with a | arger hop count, then M
does not send any nessages downstream

A 8.3 However, if the withdrawn thread had the |argest hop count of
any incomng thread, then Ms outgoing thread will no | onger have the
proper hop count and color. Therefore:

A . 8.3.1 Mnust now extend downstreamthe inconing thread with the
| argest hop count. (This will cause it to forget the old downstream
Iink hop count and color.)

A.8.3.2 The other inconmng threads are considered to be nmerged into the
thread which is extended.

A 8.4 When the last unstalled inconming thread is wthdrawn, the
out goi ng thread rmust be withdrawn.

A. 9. Modifying Hop Counts and Col ors of Existing Threads

W have seen the way in which the withdrawal of a thread nmay cause
hop count and col or changes downstream Note that if the hop count
and/ or color of an outgoing thread changes, then the hop count and
color of the corresponding incomng thread at the next hop will also
change. This may result in a color and/or next hop change of the
outgoi ng thread at that next hop

A9.1 Whenever there is a hop count change for any inconming thread, a
node nust determ ne whether the "l argest hop count of any inconing
t hread" has changed as a result. |If so, the outgoing thread s hop
count, and possibly color, will change as well, causing nessages to
be sent downstream

A.10. When There is No Next Hop

A.10.1 If a particular node has a colored incomng thread, but has no
next hop (or loses its next hop), the inconmng thread is stalled.

A 11. Next Hop Changes and Pre-existing Col ored Inconmng Threads

It is possible that a node will experience a next hop change or a
next hop acquisition at a tine when it has colored i ncom ng threads.
Thi s happens when routing changes before path setup is conplete.

A.11.1 If a node has a next hop change or a next hop acquisition at a
time when it has colored incomng threads, it will create a thread
with a new col or, but whose hop count is one nore than the |argest of
the incomng link hop counts. It will then extend this thread
downst r eam

Chba, et al. Experi ment al [Page 38]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

A 11.2 Wien this newthread is created and extended downstream al
inconming threads are nerged into it. Any incomng threads that were
previously stalled are now considered to be "merged" rather than
"stalled".

That is, even though the outgoing thread has a different col or than
any of the incom ng threads, the pre-existing incomng threads are
all considered to have been nerged into the new outgoing thread
This means that when the outgoing thread rewi nds, the inconing
threads will too.

Note: it is still required to distinguish stalled incomng links from
unstall ed incoming |links when thread withdrawi ng is perforned.

A.12. How Many Threads Run Around a Loop?

We have seen that when a loop is detected, the |ooping thread stalls.
However, considering the follow ng topol ogy:

X--->A---- >B<---Y
~ I
| %
W-->D<----- C---Z

In this exanple, there is a loop A-B-C-D- A However, there are al so
threads entering the loop fromX, Y, Z and W Once the loop is
detected, there really is no reason why any other thread shoul d have
to wap around the loop. It would be better to sinply mark presence
of the loop in each node.

To do this, we introduce the notion of the "unknown" hop count, U
This hop count value is regarded as being |arger than any other hop
count value. A thread with hop count Uwll be known as a "U

t hread".

A.12.1 Wen an inconing thread with a known hop count stalls, and there
is an outgoing thread, we assign the hop count U to the outgoing
thread, and we assign a new color to the outgoing thread as well.

As a result, the next hop will then have an inconing U-thread, with
the newly assigned color. This causes its outgoing thread in turn to
be assigned hop count U and the new color. The rules we have already
given will then cause each link in the |Ioop to be assigned the new
color and the hop count U Wen this thread either reaches its
originator, or any other node which already has an inconming thread of
the sane color, it stalls.

Chba, et al. Experi ment al [Page 39]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

In our exanple above, this will cause the Iinks AB, BC, CD, and DA to
be given hop count U

Now |l et’s add one nore rule:

A.12.2 Wien a thread with a known hop count reaches a node that has a
col ored outgoing U-thread, the incom ng thread nerges into the
outgoing thread. (Actually, this is just a consequence of a rule
whi ch has al ready been given, since Uis greater than any known hop
count.)

Then if W X, Y, or Z attenpt to extend a thread to D, A, B, or C

respectively, those threads will inmmediately stall. Once all the
links are marked as being within a | oop, no other threads are
extended around the loop, i.e., no other setup nessages will traverse
t he 1 oop.

Here is our exanple topology with the link hop counts that would
exi st during a | oop:

1 U 1
X--->A---- >B<---Y
A I
U | |U
| v
W-->D<----- C<---Z
1 U 1

A.13. Sone Special Rules for Hop Count U

When a U-thread encounters a thread with known hop count, the usua
rules apply, renenbering that Uis larger than any known hop count
val ue.

However, we need to add a couple of special rules for the case when a
U-thread encounters a U-thread. Since we can't tell which of the two
U-threads is really the Ionger, we need to nake sure that each of the
U-threads is extended.

A.13.1 If an incoming colored U-thread arrives at a node which already
has an incomng U-thread of that color, or arrives at the node which
created that U-thread, then the thread stalls.

(Once a loop is detected, there is no need to further extend the
thread.)

Chba, et al. Experi ment al [Page 40]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

A.13.2 If an incoming colored U-thread arrives at a node which has a
transparent outgoing U-thread to its next hop, the incomng thread is
ext ended.

A.13.3 If an incoming colored U-thread arrives at a node which has a
colored outgoing U-thread, and if the inconming |link over which the
thread was received was already an incomng link of the LSP, the
thread i s extended.

A.13.4 If an incoming colored U-thread arrives at a node which has a
colored outgoing U-thread, and if the incomng |link over which the
thread was received was NOT already an inconing |ink of the LSP, a
new U-thread is created and extended. Al the incom ng threads are
nmerged into it. This is known in the main body of this docunent as
"extending the thread with changing col or"

These rul es ensure that an incomng Uthread is always extended (or
merged into a new U-thread which then gets extended), unless it is
al ready known to forma | oop

What is the purpose of rule A 13.4? There are certain cases where a
| oop can form but where the node which created the looping thread is
not part of the loop. Rule A 13.4 ensures that when there is a | oop
there will be a | ooping thread which was created by sone node which
is actually in the loop. This in turn ensures that the loop will be
detected well before the thread TTL expires.

The rule of "extending the thread with changing color" is also
appl i ed when extending a thread with a known hop count.

A.13.5 When a received colored thread with a known hop count is
extended, if the node has an outgoing thread, and if the incom ng
link over which the thread was received was NOT al ready an inconi ng
link of the LSP, a newthread is created and extended. All the
incomng threads are nmerged into it. This is an exceptional case of
A 5.1.

A. 14. Recovering Froma Loop

Here is our exanple topology again, in the presence of a |oop

1 U 1
X--->A---- >B<---Y
A I
U | | U
| Y
W -->D<----- Ck---Z
1 U 1

Chba, et al. Experi ment al [Page 41]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

Suppose now that C s next hop changes fromD to sone ot her node E,
t hereby breaking the loop. For sinplicity, we will assume that E is
t he egress node.

Cwll withdraw its outgoing U-thread fromD (9.1). It will also
create a new thread (12.1), assign it a new color, assign it hop
count U (the largest hop count of C s incoming threads), nerge its
two other inconming threads into the new thread (12.2), and extend the
new thread to E, resulting the foll owi ng configuration:

1 u 1
X--->A---- >B<---Y
~ I
U | |U
| %

W -->D Ck---Z
1 | 1
Ul
v
E

When the thread fromC to E rewinds, the nmerged threads al so rew nd
(8.4). This process of rew nding can now proceed all the way back to
the leafs. Wile this is happening, of course, Dwill note that its
out goi ng thread hop count should be 2, not U and will neke this
change (9.3). As aresult, Awll note that its outgoing hop count
should be 3, not U and will rmake this change. So at sone tinme in
the future, we mght see the foll ow ng:

1 3 1
X--->A---- >B<---Y
~ I
2 | | U
| %
W-->D C---Z
1 | 1
Ul
%
E

Chba, et al. Experi ment al [Page 42]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

After a short period, we see the follow ng:

1 3 1
X--->A---- >B<---Y
" I
2| | 4
| %
W-->D Ck---Z
1 | 1
5]
v
E

with all threads transparent, and we have a fully set up non-Iooping
pat h.

A.15. Continuing to Use an A d Path

Not hing in the above requires that any node wi thdraw a transparent
thread. Existing transparent threads (established paths) can
continue to be used, even while new paths are being set up

If this is done, then sone node may have both a transparent outgoing

thread (previous path) and a col ored outgoing thread (new path being

set up). This would happen only if the downstream!links for the two

threads are different. Wen the col ored outgoing thread rew nds (and
becones transparent), the previous path should be w t hdrawn.

Chba, et al. Experi ment al [Page 43]

RFC 3063 MPLS Loop Prevention Mechani sm February 2001

Ful I Copyright Statenent
Copyright (C) The Internet Society (2001). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Chba, et al. Experi ment al [Page 44]

