
Network Working Group M. Myers
Request for Comments: 2797 VeriSign
Category: Standards Track X. Liu
 Cisco
 J. Schaad
 Microsoft
 J. Weinstein
 April 2000

 Certificate Management Messages over CMS

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document defines a Certificate Management protocol using CMS
 (CMC). This protocol addresses two immediate needs within the
 Internet PKI community:

 1. The need for an interface to public key certification products and
 services based on [CMS] and [PKCS10], and
 2. The need in [SMIMEV3] for a certificate enrollment protocol for
 DSA-signed certificates with Diffie-Hellman public keys.

 A small number of additional services are defined to supplement the
 core certificate request service.

 Throughout this specification the term CMS is used to refer to both
 [CMS] and [PKCS7]. For both signedData and envelopedData, CMS is a
 superset of the PKCS7. In general, the use of PKCS7 in this document
 is aligned to the Cryptographic Message Syntax [CMS] that provides a
 superset of the PKCS7 syntax. The term CMC refers to this
 specification.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC 2119].

Myers, et al. Standards Track [Page 1]

RFC 2797 Certificate Management Messages over CMS April 2000

1. Protocol Requirements

 - The protocol is to be based as much as possible on the existing
 CMS, PKCS#10 and CRMF specifications.
 - The protocol must support the current industry practice of a
 PKCS#10 request followed by a PKCS#7 response as a subset of the
 protocol.
 - The protocol needs to easily support the multi-key enrollment
 protocols required by S/MIME and other groups.
 - The protocol must supply a way of doing all operations in a
 single-round trip. When this is not possible the number of round
 trips is to be minimized.
 - The protocol will be designed such that all key generation can
 occur on the client.
 - The mandatory algorithms must superset the required algorithms for
 S/MIME.
 - The protocol will contain POP methods. Optional provisions for
 multiple-round trip POP will be made if necessary.
 - The protocol will support deferred and pending responses to
 certificate request for cases where external procedures are
 required to issue a certificate.
 - The protocol needs to support arbitrary chains of local
 registration authorities as intermediaries between certificate
 requesters and issuers.

2. Protocol Overview

 An enrollment transaction in this specification is generally composed
 of a single round trip of messages. In the simplest case an
 enrollment request is sent from the client to the server and an
 enrollment response is then returned from the server to the client.
 In some more complicated cases, such as delayed certificate issuance
 and polling for responses, more than one round trip is required.

 This specification supports two different request messages and two
 different response messages.

 Public key certification requests can be based on either the PKCS10
 or CRMF object. The two different request messages are (a) the bare
 PKCS10 (in the event that no other services are needed), and (b) the
 PKCS10 or CRMF message wrapped in a CMS encapsulation as part of a
 PKIData object.

 Public key certification responses are based on the CMS signedData
 object. The response may be either (a) a degenerate CMS signedData
 object (in the event no other services are needed), or (b) a
 ResponseBody object wrapped in a CMS signedData object.

Myers, et al. Standards Track [Page 2]

RFC 2797 Certificate Management Messages over CMS April 2000

 No special services are provided for doing either renewal (new
 certificates with the same key) or re-keying (new certificates on new
 keys) of clients. Instead a renewal/re-key message looks the same as
 any enrollment message, with the identity proof being supplied by
 existing certificates from the CA.

 A provision exists for Local Registration Authorities (LRAs) to
 participate in the protocol by taking client enrollment messages,
 wrapping them in a second layer of enrollment message with additional
 requirements or statements from the LRA and then passing this new
 expanded request on to the Certification Authority.

 This specification makes no assumptions about the underlying
 transport mechanism. The use of CMS is not meant to imply an email-
 based transport.

 Optional services available through this specification are
 transaction management, replay detection (through nonces), deferred
 certificate issuance, certificate revocation requests and
 certificate/CRL retrieval.

2.1 Terminology

 There are several different terms, abbreviations and acronyms used in
 this document that we define here for convenience and consistency of
 usage:

 "End-Entity" (EE) refers to the entity that owns a key pair and for
 whom a certificate is issued.
 "LRA" or "RA" refers to a (Local) Registration Authority. A
 registration authority acts as an intermediary between an End-
 Entity and a Certification Authority. Multiple RAs can exist
 between the End-Entity and the Certification Authority.
 "CA" refers to a Certification Authority. A Certification Authority
 is the entity that performs the actual issuance of a certificate.
 "Client" refers to an entity that creates a PKI request. In this
 document both RAs and End-Entities can be clients.
 "Server" refers to the entities that process PKI requests and create
 PKI responses. CAs and RAs can be servers in this document.
 "PKCS#10" refers the Public Key Cryptography Standard #10. This is
 one of a set of standards defined by RSA Laboratories in the
 1980s. PKCS#10 defines a Certificate Request Message syntax.
 "CRMF" refers to the Certificate Request Message Format RFC [CRMF].
 We are using certificate request message format defined in this
 document as part of our management protocol.
 "CMS" refers to the Cryptographic Message Syntax RFC [CMS]. This
 document provides for basic cryptographic services including
 encryption and signing with and without key management.

Myers, et al. Standards Track [Page 3]

RFC 2797 Certificate Management Messages over CMS April 2000

 "POP" is an acronym for "Proof of Possession". POP refers to a value
 that can be used to prove that the private key corresponding to a
 public key is in the possession and can be used by an end-entity.
 "Transport wrapper" refers to the outermost CMS wrapping layer.

2.2 Protocol Flow Charts

 Figure 1 shows the Simple Enrollment Request and Response messages.
 The contents of these messages are detailed in Sections 4.1 and 4.3
 below.

 Simple PKI Request Simple PKI Response
 ------------------------- --------------------------

 +----------+ +------------------+
 | PKCS #10 | | CMS "certs-only" |
 +----------+--------------+ | message |
 | | +------------------+------+
 | Certificate Request | | |
 | | | CMS Signed Data, |
 | Subject Name | | no signerInfo |
 | Subject Public Key Info | | |
 | (K_PUB) | | signedData contains one |
 | Attributes | | or more certificates in |
 | | | the "certificates" |
 +-----------+-------------+ | portion of the |
 | signed with | | signedData. |
 | matching | | |
 | K_PRIV | | encapsulatedContentInfo |
 +-------------+ | is empty. |
 | |
 +--------------+----------+
 | unsigned |
 +----------+

 Figure 1: Simple PKI Request and Response Messages

Myers, et al. Standards Track [Page 4]

RFC 2797 Certificate Management Messages over CMS April 2000

 Full PKI Request Full PKI Response
 ----------------------- ------------------------

 +----------------+ +----------------+
 | CMS signedData | | CMS signedData |
 | object | | object |
 +----------------+--------+ +----------------+--------+
 | | | |
 | PKIData object | | ResponseBody object |
 | | | |
 | Sequence of: | | Sequence of: |
 | <enrollment attribute>* | | <enrollment attribute>* |
 | <certification request>*| | <CMS object>* |
 | <CMS objects>* | | <other message>* |
 | <other message>* | | |
 | | | where * == zero or more |
 | where * == zero or more | | |
 | | | All certificates issued |
 | Certificate requests | | as part of the response |
 | are CRMF or PKCS#10 | | are included in the |
 | objects. Attributes are | | "certificates" portion |
 | (OID, ANY defined by | | of the signedData. |
 | OID) pairs. | | Relevant CA certs and |
 | | | CRLs can be included as |
 +-------+-----------------+ | well. |
 | signed (keypair | | |
 | used may be pre-| +---------+---------------+
 | existing or | | signed by the |
 | identified in | | CA or an LRA |
 | the request) | +---------------+
 +-----------------+

 Figure 2: Full PKI Request and Response Messages

 Figure 2 shows the Full Enrollment Request and Response messages.
 The contents of these messages are detailed in Sections 4.2 and 4.4
 below.

3. Protocol Elements

 This section covers each of the different elements that may be used
 to construct enrollment request and enrollment response messages.
 Section 4 will cover how to build the enrollment request and response
 messages.

Myers, et al. Standards Track [Page 5]

RFC 2797 Certificate Management Messages over CMS April 2000

3.1 PKIData Object

 The new content object PKIData has been defined for this protocol.
 This new object is used as the body of the full PKI request message.
 The new body is identified by:

 id-cct-PKIData OBJECT IDENTIFIER ::= { id-cct 2 }

 The ASN.1 structure corresponding to this new content type is:

 PKIData ::= SEQUENCE {
 controlSequence SEQUENCE SIZE(0..MAX) OF TaggedAttribute,
 reqSequence SEQUENCE SIZE(0..MAX) OF TaggedRequest,
 cmsSequence SEQUENCE SIZE(0..MAX) OF TaggedContentInfo,
 otherMsgSequence SEQUENCE SIZE(0..MAX) OF OtherMsg
 }

 -- controlSequence consists of a sequence of control attributes. The
 control attributes defined in this document are found in section 5.
 As control sequences are defined by OIDs, other parties can define
 additional control attributes. Unrecognized OIDs MUST result in no
 part of the request being successfully processed.

 -- reqSequence consists of a sequence of certificate requests. The
 certificate requests can be either a CertificateRequest (PKCS10
 request) or a CertReqMsg. Details on each of these request types are
 found in sections 3.3.1 and 3.3.2 respectively.

 -- cmsSequence consists of a sequence of [CMS] message objects. This
 protocol only uses EnvelopedData, SignedData and EncryptedData. See
 section 3.6 for more details.

 -- otherMsgSequence allows for other arbitrary data items to be
 placed into the enrollment protocol. The {OID, any} pair of values
 allows for arbitrary definition of material. Data objects are placed
 here while control objects are placed in the controlSequence field.
 See section 3.7 for more details.

3.2 ResponseBody Object

 The new content object ResponseBody has been defined for this
 protocol. This new object is used as the body of the full PKI
 response message. The new body is identified by:

 id-cct-PKIResponse OBJECT IDENTIFIER ::= { id-cct 3 }

Myers, et al. Standards Track [Page 6]

RFC 2797 Certificate Management Messages over CMS April 2000

 The ASN.1 structure corresponding to this body content type is:

 ResponseBody ::= SEQUENCE {
 controlSequence SEQUENCE SIZE(0..MAX) OF TaggedAttribute,
 cmsSequence SEQUENCE SIZE(0..MAX) OF TaggedContentInfo,
 otherMsgSequence SEQUENCE SIZE(0..MAX) OF OtherMsg
 }

 -- controlSequence consists of a sequence of control attributes. The
 control attributes defined in this document are found in section 3.5.
 Other parties can define additional control attributes.

 -- cmsSequence consists of a sequence of [CMS] message objects. This
 protocol only uses EnvelopedData, SignedData and EncryptedData. See
 section 3.6 for more details.

 -- otherMsgSequence allows for other arbitrary items to be placed
 into the enrollment protocol. The {OID, any} pair of values allows
 for arbitrary definition of material. Data objects are placed here
 while control objects are placed in the controlSequence field. See
 section 3.7 for more details.

3.3 Certification Requests (PKCS10/CRMF)

 Certification Requests are based on either PKCS10 or CRMF messages.
 Section 3.3.1 specifies mandatory and optional requirements for
 clients and servers dealing with PKCS10 request messages. Section
 3.3.2 specifies mandatory and optional requirements for clients and
 servers dealing with CRMF request messages.

3.3.1 PKCS10 Request Body

 Servers MUST be able to understand and process PKCS10 request bodies.
 Clients MUST produce a PKCS10 request body when using the Simple
 Enrollment Request message. Clients MAY produce a PKCS10 request body
 when using the Full Enrollment Request message.

 When producing a PKCS10 request body, clients MUST produce a PKCS10
 message body containing a subject name and public key. Some
 certification products are operated using a central repository of
 information to assign subject names upon receipt of a public key for
 certification. To accommodate this mode of operation, the subject
 name in a CertificationRequest MAY be NULL, but MUST be present. CAs
 that receive a CertificationRequest with a NULL subject name MAY
 reject such requests. If rejected and a response is returned, the CA
 MUST respond with the failInfo attribute of badRequest.

Myers, et al. Standards Track [Page 7]

RFC 2797 Certificate Management Messages over CMS April 2000

 The client MAY incorporate one or more standard X.509 v3 extensions
 in any PKCS10 request as an ExtensionReq attribute. An ExtensionReq
 attribute is defined as

 ExtensionReq ::= SEQUENCE OF Extension

 where Extension is imported from [PKIXCERT] and ExtensionReq is
 identified by {pkcs-9 14}.

 Servers MUST be able to process all extensions defined in [PKIXCERT].
 Servers are not required to be able to process other V3 X.509
 extensions transmitted using this protocol, nor are they required to
 be able to process other, private extensions. Servers are not
 required to put all client-requested extensions into a certificate.
 Servers are permitted to modify client-requested extensions. Servers
 MUST NOT alter an extension so as to invalidate the original intent
 of a client-requested extension. (For example changing key usage
 from key exchange to signing.) If a certification request is denied
 due to the inability to handle a requested extension and a response
 is returned, the server MUST respond with the failInfo attribute of
 unsupportedExt.

3.3.2 CRMF Request Body

 Servers MUST be able to understand and process CRMF request body.
 Clients MAY produce a CRMF message body when using the Full
 Enrollment Request message.

 This memo imposes the following additional changes on the
 construction and processing of CRMF messages:

 - When CRMF message bodies are used in the Full Enrollment Request
 message, each CRMF message MUST include both the subject and
 publicKey fields in the CertTemplate. As in the case of PKCS10
 requests, the subject may be encoded as NULL, but MUST be present.
 - In general, when both CRMF and CMC controls exist with equivalent
 functionality, the CMC control SHOULD be used. The CMC control
 MUST override any CRMF control.
 - The regInfo field MUST NOT be used on a CRMF message. Equivalent
 functionality is provided in the regInfo control attribute
 (section 5.12).
 - The indirect method of proving POP is not supported in this
 protocol. One of the other methods (including the direct method
 described in this document) MUST be used instead if POP is
 desired. The value of encrCert in SubsequentMessage MUST NOT be
 used.

Myers, et al. Standards Track [Page 8]

RFC 2797 Certificate Management Messages over CMS April 2000

 - Since the subject and publicKeyValues are always present, the
 POPOSigningKeyInput MUST NOT be used when computing the value for
 POPSigningKey.

 A server is not required to use all of the values suggested by the
 client in the certificate template. Servers MUST be able to process
 all extensions defined in [PXIXCERT]. Servers are not required to be
 able to process other V3 X.509 extension transmitted using this
 protocol, nor are they required to be able to process other, private
 extensions. Servers are permitted to modify client-requested
 extensions. Servers MUST NOT alter an extension so as to invalidate
 the original intent of a client-requested extension. (For example
 change key usage from key exchange to signing.) If a certificate
 request is denied due to the inability to handle a requested
 extension, the server MUST respond with a failInfo attribute of
 unsupportedExt.

3.3.3 Production of Diffie-Hellman Public Key Certification Requests

 Part of a certification request is a signature over the request;
 Diffie-Hellman is a key agreement algorithm and cannot be used to
 directly produce the required signature object. [DH-POP] provides
 two ways to produce the necessary signature value. This document
 also defines a signature algorithm that does not provide a POP value,
 but can be used to produce the necessary signature value.

3.3.3.1 No-Signature Signature Mechanism

 Key management (encryption/decryption) private keys cannot always be
 used to produce some type of signature value as they can be in a
 decrypt only device. Certification requests require that the
 signature field be populated. This section provides a signature
 algorithm specifically for that purposes. The following object
 identifier and signature value are used to identify this signature
 type:

 id-alg-noSignature OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 2}

 NoSignatureValue ::= OCTET STRING

 The parameters for id-alg-noSignature MUST be present and MUST be
 encoded as NULL. NoSignatureValue contains the hash of the
 certification request. It is important to realize that there is no
 security associated with this signature type. If this signature type
 is on a certification request and the Certification Authority policy
 requires proof-of-possession of the private key, the POP mechanism
 defined in section 5.7 MUST be used.

Myers, et al. Standards Track [Page 9]

RFC 2797 Certificate Management Messages over CMS April 2000

3.3.3.2 Diffie-Hellman POP Signature

 CMC compliant implementations MUST support section 5 of [DH-POP].

3.3.3.3 Diffie-Hellman MAC signature

 CMC compliant implementations MAY support section 4 of [DH-POP].

3.4 Body Part Identifiers

 Each element of a PKIData or PKIResponse message has an associated
 body part identifier. The Body Part Identifier is a 4-octet integer
 encoded in the certReqIds field for CertReqMsg objects (in a
 TaggedRequest) or in the bodyPartId field of the other objects. The
 Body Part Identifier MUST be unique within a single PKIData or
 PKIResponse object. Body Part Identifiers can be duplicated in
 different layers (for example a CMC message embedded within another).
 The Body Part Id of zero is reserved to designate the current PKIData
 object. This value is used in control attributes such as the Add
 Extensions Control in the pkiDataReference field to refer to a
 request in the current PKIData object.

 Some control attribute, such as the CMC Status Info attribute, will
 also use Body Part Identifiers to refer to elements in the previous
 message. This allows an error to be explicit about the attribute or
 request to which the error applies.

3.5 Control Attributes

 The overall control flow of how a message is processed in this
 document is based on the control attributes. Each control attribute
 consists of an object identifier and a value based on the object
 identifier.

 Servers MUST fail the processing of an entire PKIData message if any
 included control attribute is not recognized. The response MUST be
 the error badRequest and bodyList MUST contain the bodyPartID of the
 invalid or unrecognized control attribute.

 The syntax of a control attribute is

 TaggedAttribute ::= SEQUENCE {
 bodyPartID BodyPartId,
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue
 }

Myers, et al. Standards Track [Page 10]

RFC 2797 Certificate Management Messages over CMS April 2000

 -- bodyPartId is a unique integer that is used to reference this
 control attribute. The id of 0 is reserved for use as the
 reference to the current PKIData object.

 -- attrType is the OID defining the associated data in attrValues

 -- attrValues contains the set of data values used in processing
 the control attribute.

 The set of control attributes that are defined by this memo are found
 in section 5.

3.6 Content Info objects

 The cmsSequence field of the PKIRequest and PKIResponse messages
 contains zero or more tagged content info objects. The syntax for
 this structure is

 TaggedContentInfo ::= SEQUENCE {
 bodyPartID BodyPartId,
 contentInfo ContentInfo
 }

 -- bodyPartId is a unique integer that is used to reference this
 content info object. The id of 0 is reserved for use as the
 reference to the current PKIData object.

 -- contentInfo contains a ContentInfo object (defined in [CMS]).
 The three contents used in this location are SignedData,
 EnvelopedData and Data.

 EnvelopedData provides for shrouding of data. Data allows for
 general transport of unstructured data.

 The SignedData object from [CMS] is also used in this specification
 to provide for authentication as well as serving as the general
 transport wrapper of requests and responses.

3.6.1 Signed Data

 The signedData object is used in two different locations when
 constructing enrollment messages. The signedData object is used as a
 wrapper for a PKIData as part of the enrollment request message. The
 signedData object is also used as the outer part of an enrollment
 response message.

Myers, et al. Standards Track [Page 11]

RFC 2797 Certificate Management Messages over CMS April 2000

 For the enrollment response the signedData wrapper allows the server
 to sign the returning data, if any exists, and to carry the
 certificates and CRLs for the enrollment request. If no data is
 being returned beyond the certificates, no signerInfo objects are
 placed in the signedData object.

3.6.2 Enveloped Data

 EnvelopedData is the primary method of providing confidentiality for
 sensitive information in this protocol. The protocol currently uses
 EnvelopedData to provide encryption of an entire request (see section
 4.5). The envelopedData object would also be used to wrap private
 key material for key archival.

 Servers MUST implement envelopedData according to [CMS]. There is an
 ambiguity (about encrypting content types other than id-data) in the
 PKCS7 specification that has lead to non-interoperability.

3.7 Other Message Bodies

 The other message body portion of the message allows for arbitrary
 data objects to be carried as part of a message. This is intended to
 contain data that is not already wrapped in a CMS contentInfo object.
 The data is ignored unless a control attribute references the data by
 bodyPartId.

 OtherMsg ::= SEQUENCE {
 bodyPartID BodyPartID,
 otherMsgType OBJECT IDENTIFIER,
 otherMsgValue ANY DEFINED BY otherMsgType }

 -- bodyPartID contains the unique id of this object

 -- otherMsgType contains the OID defining both the usage of this body
 part and the syntax of the value associated with this body part

 -- otherMsgValue contains the data associated with the message body
 part.

4. PKI Messages

 This section discusses the details of putting together the different
 enrollment request and response messages.

Myers, et al. Standards Track [Page 12]

RFC 2797 Certificate Management Messages over CMS April 2000

4.1 Simple Enrollment Request

 The simplest form of an enrollment request is a plain PKCS10 message.
 If this form of enrollment request is used for a private key that is
 capable of generating a signature, the PKCS10 MUST be signed with
 that private key. If this form of the enrollment request is used for
 a D-H key, then the D-H POP mechanism described in [DH-POP] MUST be
 used.

 Servers MUST support the Simple Enrollment Request message. If the
 Simple Enrollment Request message is used, servers MUST return the
 Simple Enrollment Response message (see Section 4.3) if the
 enrollment request is granted. If the enrollment request fails, the
 Full Enrollment Response MAY be returned or no response MAY be
 returned.

 Many advanced services specified in this memo are not supported by
 the Simple Enrollment Request message.

4.2 Full PKI Request

 The Full Enrollment Request provides the most functionality and
 flexibility. Clients SHOULD use the Full Enrollment Request message
 when enrolling. Servers MUST support the Full Enrollment Request
 message. An enrollment response (full or simple as appropriate) MUST
 be returned to all Full Enrollment Requests.

 The Full Enrollment Request message consists of a PKIData object
 wrapped in a signedData CMS object. The objects in the PKIData are
 ordered as follows:

 1. All Control Attributes,
 2. All certification requests,
 3. All CMS objects,
 4. All other messages.

 Each element in a Full Enrollment Request is identified by a Body
 Part Identifier. If duplicate ids are found, the server MUST return
 the error badRequest with a bodyPartID of 0.

 The signedData object wrapping the PKIData may be signed either by
 the private key material of the signature certification request, or
 by a previously certified signature key. If the private key of a
 signature certification request is being used, then:
 a) the certification request containing the corresponding public key
 MUST include a Subject Key Identifier extension request,
 b) the subjectKeyIdentifier form of signerInfo MUST be used, and

Myers, et al. Standards Track [Page 13]

RFC 2797 Certificate Management Messages over CMS April 2000

 c) the value of the subjectKeyIdentifier form of signerInfo MUST be
 the Subject Key Identifier specified in the corresponding
 certification request.

 (The subjectKeyIdentifier form of signerInfo is used here because no
 certificates have yet been issued for the signing key.) If the
 request key is used for signing, there MUST be only one signerInfo
 object in the signedData object.

 When creating a message to renew a certificate, the following should
 be taken into consideration:

 1. The identification and identityProof control statements are not
 required. The same information is provided by the use of an
 existing certificate from the CA when signing the enrollment
 message.
 2. CAs and LRAs may impose additional restrictions on the signing
 certificate used. They may require that the most recently issued
 signing certificate for an entity be used.
 3. A renewal message may occur either by creating a new set of keys,
 or by re-using an existing set of keys. Some CAs may prevent re-
 use of keys by policy. In this case the CA MUST return NOKEYREUSE
 as the failure code.

4.3 Simple Enrollment Response

 Servers SHOULD use the simple enrollment response message whenever
 possible. Clients MUST be able to process the simple enrollment
 response message. The simple enrollment response message consists of
 a signedData object with no signerInfo objects on it. The
 certificates requested are returned in the certificate bag of the
 signedData object.

 Clients MUST NOT assume the certificates are in any order. Servers
 SHOULD include all intermediate certificates needed to form complete
 chains to one or more self-signed certificates, not just the newly
 issued certificate(s). The server MAY additionally return CRLs in the
 CRL bag. Servers MAY include the self-signed certificates. Clients
 MUST NOT implicitly trust included self-signed certificate(s) merely
 due to its presence in the certificate bag. In the event clients
 receive a new self-signed certificate from the server, clients SHOULD
 provide a mechanism to enable the user to explicitly trust the
 certificate.

Myers, et al. Standards Track [Page 14]

RFC 2797 Certificate Management Messages over CMS April 2000

4.4 Full PKI Response

 Servers MUST return full PKI response messages if a) a full PKI
 request message failed or b) additional services other than returning
 certificates are required. Servers MAY return full PKI responses
 with failure information for simple PKI requests. Following section
 4.3 above, servers returning only certificates and a success status
 to the client SHOULD use the simple PKI response message.

 Clients MUST be able to process a full PKI response message.

 The full enrollment response message consists of a signedData object
 encapsulating a responseBody object. In a responseBody object all
 Control Attributes MUST precede all CMS objects. The certificates
 granted in an enrollment response are returned in the certificates
 field of the immediately encapsulating signedData object.

 Clients MUST NOT assume the certificates are in any order. Servers
 SHOULD include all intermediate certificates needed to form complete
 chains one ore more self-signed certificates, not just the newly
 issued certificate(s). The server MAY additionally return CRLs in the
 CRL bag. Servers MAY include the self-signed certificates. Clients
 MUST NOT implicitly trust included self-signed certificate(s) merely
 due to its presence in the certificate bag. In the event clients
 receive a new self-signed certificate from the server, clients SHOULD
 provide a mechanism to enable the user to explicitly trust the
 certificate.

4.5 Application of Encryption to a PKI Message

 There are occasions where a PKI request or response message must be
 encrypted in order to prevent any information about the enrollment
 from being accessible to unauthorized entities. This section
 describes the means used to encrypt a PKI message. This section is
 not applicable to a simple enrollment message.

 Confidentiality is provided by wrapping the PKI message (a signedData
 object) in a CMS EnvelopedData object. The nested content type in
 the EnvelopedData is id-signedData. Note that this is different from
 S/MIME where there is a MIME layer placed between the encrypted and
 signed data objects. It is recommended that if an enveloped data
 layer is applied to a PKI message, a second signing layer be placed
 outside of the enveloped data layer. The following figure shows how
 this nesting would be done:

Myers, et al. Standards Track [Page 15]

RFC 2797 Certificate Management Messages over CMS April 2000

 Normal Option 1 Option 2
 ------ -------- --------
 SignedData EnvelopedData SignedData
 PKIData SignedData EnvelopedData
 PKIData SignedData
 PKIData

 Options 1 and 2 provide the benefit of preventing leakage of
 sensitive data by encrypting the information. LRAs can remove the
 enveloped data wrapping, and replace or forward without further
 processing. Section 6 contains more information about LRA processing.

 PKI Messages MAY be encrypted or transmitted in the clear. Servers
 MUST provided support for all three versions.

 Alternatively, an authenticated, secure channel could exist between
 the parties requiring encryption. Clients and servers MAY use such
 channels instead of the technique described above to provide secure,
 private communication of PKI request and response messages.

5. Control Attributes

 Control attributes are carried as part of both PKI requests and
 responses. Each control attribute is encoded as a unique Object
 Identifier followed by that data for the control attribute. The
 encoding of the data is based on the control attribute object
 identifier. Processing systems would first detect the OID and
 process the corresponding attribute value prior to processing the
 message body.

 The following table lists the names, OID and syntactic structure for
 each of the control attributes documented in this memo.

Myers, et al. Standards Track [Page 16]

RFC 2797 Certificate Management Messages over CMS April 2000

 Control Attribute OID Syntax
 ----------------- ---------- --------------
 cMCStatusInfo id-cmc 1 CMCStatusInfo
 identification id-cmc 2 UTF8String
 identityProof id-cmc 3 OCTET STRING
 dataReturn id-cmc 4 OCTET STRING
 transactionId id-cmc 5 INTEGER
 senderNonce id-cmc 6 OCTET STRING
 recipientNonce id-cmc 7 OCTET STRING
 addExtensions id-cmc 8 AddExtensions
 encryptedPOP id-cmc 9 EncryptedPOP
 decryptedPOP id-cmc 10 DecryptedPOP
 lraPOPWitness id-cmc 11 LraPOPWitness
 getCert id-cmc 15 GetCert
 getCRL id-cmc 16 GetCRL
 revokeRequest id-cmc 17 RevokeRequest
 regInfo id-cmc 18 OCTET STRING
 responseInfo id-cmc 19 OCTET STRING
 QueryPending id-cmc 21 OCTET STRING
 idPOPLinkRandom id-cmc 22 OCTET STRING
 idPOPLinkWitness id-cmc 23 OCTET STRING
 idConfirmCertAcceptance id-cmc 24 CMCCertId

5.1 CMC Status Info Control Attribute

 The CMC status info control is used in full PKI Response messages to
 return information on a client request. Servers MAY emit multiple
 CMC status info controls referring to a single body part. Clients
 MUST be able to deal with multiple CMC status info controls in a
 response message. This statement uses the following ASN.1 definition:

 CMCStatusInfo ::= SEQUENCE {
 cMCStatus CMCStatus,
 bodyList SEQUENCE SIZE (1..MAX) OF BodyPartID,
 statusString UTF8String OPTIONAL,
 otherInfo CHOICE {
 failInfo CMCFailInfo,
 pendInfo PendInfo } OPTIONAL
 }

 PendInfo ::= SEQUENCE {
 pendToken OCTET STRING,
 pendTime GeneralizedTime
 }

Myers, et al. Standards Track [Page 17]

RFC 2797 Certificate Management Messages over CMS April 2000

 -- cMCStatus is described in section 5.1.1

 -- bodyList contains the list of body parts in the request message
 to which this status information applies. If an error is being
 returned for a simple enrollment message, body list will contain a
 single integer of value ’1’.

 -- statusString contains a string with additional description
 information. This string is human readable.

 -- failInfo is described in section 5.1.2. It provides a detailed
 error on what the failure was. This choice is present only if
 cMCStatus is failed.

 -- pendToken is the token to be used in the queryPending control
 attribute.

 -- pendTime contains the suggested time the server wants to be
 queried about the status of the request.

 If the cMCStatus field is success, the CMC Status Info Control MAY be
 omitted unless it is only item in the response message. If no status
 exists for a certificate request or other item requiring processing,
 then the value of success is to be assumed.

5.1.1 CMCStatus values

 CMCStatus is a field in the CMCStatusInfo structure. This field
 contains a code representing the success or failure of a specific
 operation. CMCStatus has the ASN.1 structure of:

 CMCStatus ::= INTEGER {
 success (0),
 -- request was granted
 -- reserved (1),
 -- not used, defined where the original structure was defined
 failed (2),
 -- you don’t get what you want, more information elsewhere in
 the message
 pending (3),
 -- the request body part has not yet been processed,
 -- requester is responsible to poll back on this
 -- pending may only be return for certificate request
 operations.
 noSupport (4),
 -- the requested operation is not supported
 confirmRequired (5)

Myers, et al. Standards Track [Page 18]

RFC 2797 Certificate Management Messages over CMS April 2000

 -- conformation using the idConfirmCertAcceptance control is
 required
 -- before use of certificate
 }

5.1.2 CMCFailInfo

 CMCFailInfo conveys information relevant to the interpretation of a
 failure condition. The CMCFailInfo has the following ASN.1 structure:

 CMCFailInfo ::= INTEGER {
 badAlg (0)
 -- Unrecognized or unsupported algorithm
 badMessageCheck (1)
 -- integrity check failed
 badRequest (2)
 -- transaction not permitted or supported
 badTime (3)
 -- Message time field was not sufficiently close to the system
 time
 badCertId (4)
 -- No certificate could be identified matching the provided
 criteria
 unsuportedExt (5)
 -- A requested X.509 extension is not supported by the
 recipient CA.
 mustArchiveKeys (6)
 -- Private key material must be supplied
 badIdentity (7)
 -- Identification Attribute failed to verify
 popRequired (8)
 -- Server requires a POP proof before issuing certificate
 popFailed (9)
 -- POP processing failed
 noKeyReuse (10)
 -- Server policy does not allow key re-use
 internalCAError (11)
 tryLater (12)
 }

 Additional failure reasons MAY be defined for closed environments
 with a need.

Myers, et al. Standards Track [Page 19]

RFC 2797 Certificate Management Messages over CMS April 2000

5.2 Identification and IdentityProof Control Attributes

 Some CAs and LRAs require that a proof of identity be included in a
 certification request. Many different ways of doing this exist with
 different degrees of security and reliability. Most people are
 familiar with the request of a bank to provide your mother’s maiden
 name as a form of identity proof.

 CMC provides one method of proving the client’s identity based on a
 shared secret between the certificate requestor and the verifying
 authority. If clients support full request messages, clients MUST
 implement this method of identity proof. Servers MUST provide this
 method and MAY also have a bilateral method of similar strength
 available.

 The CMC method starts with an out-of-band transfer of a token (the
 shared secret). The distribution of this token is beyond the scope
 of this document. The client then uses this token for an identity
 proof as follows:

 1. The reqSequence field of the PKIData object (encoded exactly as it
 appears in the request message including the sequence type and
 length) is the value to be validated.
 2. A SHA1 hash of the token is computed.
 3. An HMAC-SHA1 value is then computed over the value produced in
 Step 1, as described in [HMAC], using the hash of the token from
 Step 2 as the shared secret value.
 4. The 160-bit HMAC-SHA1 result from Step 3 is then encoded as the
 value of the identityProof attribute.

 When the server verifies the identityProof attribute, it computes the
 HMAC-SHA1 value in the same way and compares it to the identityProof
 attribute contained in the enrollment request.

 If a server fails the verification of an identityProof attribute and
 the server returns a response message, the failInfo attribute MUST be
 present in the response and MUST have a value of badIdentity.

 Optionally, servers MAY require the inclusion of the unprotected
 identification attribute with an identification attribute. The
 identification attribute is intended to contain either a text string
 or a numeric quantity, such as a random number, which assists the
 server in locating the shared secret needed to validate the contents
 of the identityProof attribute. Numeric values MUST be converted to
 text string representations prior to encoding as UTF8-STRINGs in this
 attribute. If the identification control attribute is included in

Myers, et al. Standards Track [Page 20]

RFC 2797 Certificate Management Messages over CMS April 2000

 the message, the derivation of the shared secret in step 2 is altered
 so that the hash of the concatenation of the token and the identity
 value are hashed rather than just the token.

5.2.1 Hardware Shared Secret Token Generation

 The shared secret between the end-entity and the identity verify is
 sometimes transferred using a hardware device that generates a series
 of tokens based on some shared secret value. The user can therefore
 prove their identity by transferring this token in plain text along
 with a name string. The above protocol can be used with a hardware
 shared-secret token generation device by the following modifications:

 1. The identification attribute MUST be included and MUST contain the
 hardware-generated token.
 2. The shared secret value used above is the same hardware-generated
 token.
 3. All certification requests MUST have a subject name and the
 subject name MUST contain the fields required to identify the
 holder of the hardware token device.

5.3 Linking Identity and POP Information

 In a PKI Full Request message identity information about the
 creator/author of the message is carried in the signature of the CMS
 SignedData object containing all of the certificate requests.
 Proof-of-possession information for key pairs requesting
 certification, however, is carried separately for each PKCS#10 or
 CRMF message. (For keys capable of generating a digital signature,
 the POP is provided by the signature on the PKCS#10 or CRMF request.
 For encryption-only keys the controls described in Section 5.7 below
 are used.) In order to prevent substitution-style attacks we must
 guarantee that the same entity generated both the POP and proof-of-
 identity information.

 This section describes two mechanisms for linking identity and POP
 information: witness values cryptographically derived from the
 shared-secret (Section 5.3.1) and shared-secret/subject DN matching
 (Section 5.3.2). Clients and servers MUST support the witness value
 technique. Clients and servers MAY support shared-secret/subject DN
 matching or other bilateral techniques of similar strength. The idea
 behind both mechanisms is to force the client to sign some data into
 each certificate request that can be directly associated with the
 shared-secret; this will defeat attempts to include certificate
 requests from different entities in a single Full PKI Request
 message.

Myers, et al. Standards Track [Page 21]

RFC 2797 Certificate Management Messages over CMS April 2000

5.3.1 Witness values derived from the shared-secret

 The first technique for doing identity-POP linking works by forcing
 the client to include a piece of information cryptographically-
 derived from the shared-secret token as a signed extension within
 each certificate request (PKCS#10 or CRMF) message. This technique
 is useful if null subject DNs are used (because, for example, the
 server can generate the subject DN for the certificate based only on
 the shared secret). Processing begins when the client receives the
 shared-secret token out-of-band from the server. The client then
 computes the following values:

 1. The client generates a random byte-string, R, which SHOULD be at
 least 512 bits in length.
 2. A SHA1 hash of the token is computed.
 3. An HMAC-SHA1 value is then computed over the random value produced
 in Step 1, as described in [HMAC], using the hash of the token
 from Step 2 as the shared secret.
 4. The random value produced in Step 1 is encoded as the value of an
 idPOPLinkRandom control attribute. This control attribute MUST be
 included in the Full PKI Request message.
 5. The 160-bit HMAC-SHA1 result from Step 3 is encoded as the value
 of an idPOPLinkWitness extension to the certificate request.
 a. For CRMF, idPOPLinkWitness is included in the controls section
 of the CertRequest structure.
 b. For PKCS#10, idPOPLinkWitness is included in the attributes
 section of the CertificationRequest structure.

 Upon receipt, servers MUST verify that each certificate request
 contains a copy of the idPOPLinkWitness and that its value was
 derived in the specified manner from the shared secret and the random
 string included in the idPOPLinkRandom control attribute.

5.3.2 Shared-secret/subject DN matching

 The second technique for doing identity-POP linking is to link a
 particular subject distinguished name (subject DN) to the shared-
 secrets that are distributed out-of-band and to require that clients
 using the shared-secret to prove identity include that exact subject
 DN in every certificate request. It is expected that many client-
 server connections using shared-secret based proof-of-identity will
 use this mechanism. (It is common not to omit the subject DN
 information from the certificate request messages.)

 When the shared secret is generated and transferred out-of-band to
 initiate the registration process (Section 5.2), a particular subject
 DN is also associated with the shared secret and communicated to the
 client. (The subject DN generated MUST be unique per entity in

Myers, et al. Standards Track [Page 22]

RFC 2797 Certificate Management Messages over CMS April 2000

 accordance with CA policy; a null subject DN cannot be used. A
 common practice could be to place the identification value as part of
 the subject DN.) When the client generates the Full PKI Request
 message, it MUST use these two pieces of information as follows:

 1. The client MUST include the specific subject DN that it received
 along with the shared secret as the subject name in every
 certificate request (PKCS#10 and/or CRMF) in the Full PKI Request.
 The subject names in the requests MUST NOT be null.
 2. The client MUST include the identityProof control attribute
 (Section 5.2), derived from the shared secret, in the Full PKI
 Request.

 The server receiving this message MUST (a) validate the identityProof
 control attribute and then, (b) check that the subject DN included in
 each certificate request matches that associated with the shared
 secret. If either of these checks fails the certificate request MUST
 be rejected.

5.3.3 Renewal and Re-Key Messages

 In a renewal or re-key message, the subject DN in (a) the certificate
 referenced by the CMS SignerInfo object, and (b) all certificate
 requests within the request message MUST match according to the
 standard name match rules described in [PKIXCERT].

5.4 Data Return Control Attribute

 The data return control attribute allows clients to send arbitrary
 data (usually some type of internal state information) to the server
 and to have the data returned as part of the enrollment response
 message. Data placed in a data return statement is considered to be
 opaque to the server. The same control is used for both requests and
 responses. If the data return statement appears in an enrollment
 message, the server MUST return it as part of the enrollment response
 message.

 In the event that the information in the data return statement needs
 to be confidential, it is expected that the client would apply some
 type of encryption to the contained data, but the details of this are
 outside the scope of this specification.

 An example of using this feature is for a client to place an
 identifier marking the exact source of the private key material.
 This might be the identifier of a hardware device containing the
 private key.

Myers, et al. Standards Track [Page 23]

RFC 2797 Certificate Management Messages over CMS April 2000

5.5 Add Extensions Control Attribute

 The Add Extensions control attribute is used by LRAs in order to
 specify additional extensions that are to be placed on certificates.
 This attribute uses the following ASN.1 definition:

 AddExtensions ::= SEQUENCE {
 pkiDataReference BodyPartID
 certReferences SEQUENCE OF BodyPartID,
 extensions SEQUENCE OF Extension
 }

 -- pkiDataReference field contains the body part id of the
 embedded request message.

 -- certReferences field is a list of references to one or more of
 the payloads contained within a PKIData. Each element of the
 certReferences sequence MUST be equal to either the bodyPartID of
 a TaggedCertificationRequest or the certReqId of the CertRequest
 within a CertReqMsg. By definition, the listed extensions are to
 be applied to every element referenced in the certReferences
 sequence. If a request corresponding to bodyPartID cannot be
 found, the error badRequest is returned referencing this control
 attribute.

 -- extensions field contains the sequence of extensions to be
 applied to the referenced certificate requests.

 Servers MUST be able to process all extensions defined in [PKIXCERT].
 Servers are not required to be able to process every V3 X.509
 extension transmitted using this protocol, nor are they required to
 be able to process other, private extensions. Servers are not
 required to put all LRA-requested extensions into a certificate.
 Servers are permitted to modify LRA-requested extensions. Servers
 MUST NOT alter an extension so as to reverse the meaning of a
 client-requested extension If a certification request is denied due
 to the inability to handle a requested extension and a response is
 returned, the server MUST return a failInfo attribute with the value
 of unsupportedExt.

 If multiple Add Extensions statements exist in an enrollment message,
 the exact behavior is left up to the certificate issuer policy.
 However it is recommended that the following policy be used. These
 rules would be applied to individual extensions within an Add
 Extensions control attribute (as opposed to an "all or nothing"
 approach).

Myers, et al. Standards Track [Page 24]

RFC 2797 Certificate Management Messages over CMS April 2000

 1. If the conflict is within a single PKIData object, the certificate
 request would be rejected with an error of badRequest.

 2. If the conflict is between different PKIData objects, the
 outermost version of the extension would be used (allowing an LRA
 to override the extension requested by the end-entyt).

5.6 Transaction Management Control Attributes

 Transactions are identified and tracked using a transaction
 identifier. If used, clients generate transaction identifiers and
 retain their value until the server responds with a message that
 completes the transaction. Servers correspondingly include received
 transaction identifiers in the response.

 The transactionId attribute identifies a given transaction. It is
 used between client and server to manage the state of an operation.
 Clients MAY include a transactionID attribute in request messages.
 If the original request contains a transactionID attribute, all
 subsequent request and response messages MUST include the same
 transactionID attribute. A server MUST use only transactionIds in
 the outermost PKIdata object. TransactionIds on inner PKIdata objects
 are for intermediate entities.

 Replay protection can be supported through the use of sender and
 recipient nonces. If nonces are used, in the first message of a
 transaction, no recipientNonce is transmitted; a senderNonce is
 instantiated by the message originator and retained for later
 reference. The recipient of a sender nonce reflects this value back
 to the originator as a recipientNonce and includes it’s own
 senderNonce. Upon receipt by the transaction originator of this
 message, the originator compares the value of recipientNonce to its
 retained value. If the values match, the message can be accepted for
 further security processing. The received value for senderNonce is
 also retained for inclusion in the next message associated with the
 same transaction.

 The senderNonce and recipientNonce attribute can be used to provide
 application-level replay prevention. Clients MAY include a
 senderNonce in the initial request message. Originating messages
 include only a value for senderNonce. If a message includes a
 senderNonce, the response MUST include the transmitted value of the
 previously received senderNonce as recipientNonce and include new
 value for senderNonce. A server MUST use only nonces in the outermost
 PKIdata object. Nonces on inner PKIdata objects are for intermediate
 entities.

Myers, et al. Standards Track [Page 25]

RFC 2797 Certificate Management Messages over CMS April 2000

5.7 Proof-of-possession (POP) for encryption-only keys

 Everything described in this section is optional to implement, for
 both servers and clients. Servers MAY require this POP method be used
 only if another POP method is unavailable. Servers SHOULD reject all
 requests contained within a PKIData if any required POP is missing
 for any element within the PKIData.

 Many servers require proof that an entity requesting a certificate
 for a public key actually possesses the corresponding private
 component of the key pair. For keys that can be used as signature
 keys, signing the certification request with the private key serves
 as a POP on that key pair. With keys that can only be used for
 encryption operations, POP MUST be performed by forcing the client to
 decrypt a value. See Section 5 of [CRMF] for a detailed discussion
 of POP.

 By necessity, POP for encryption-only keys cannot be done in one
 round-trip, since there are four distinct phases:

 1. Client tells the server about the public component of a new
 encryption key pair.
 2. Server sends the client a POP challenge, encrypted with the
 presented public encryption key, which the client must decrypt.
 3. Client decrypts the POP challenge and sends it back to the server.
 4. Server validates the decrypted POP challenge and continues
 processing the certificate request.

 CMC defines two different attributes. The first deals with the
 encrypted challenge sent from the server to the user in step 2. The
 second deals with the decrypted challenge sent from the client to the
 server in step 3.

 The encryptedPOP attribute is used to send the encrypted challenge
 from the server to the client. As such, it is encoded as a tagged
 attribute within the controlSequence of a ResponseBody. (Note that
 we assume that the message sent in Step 1 above is an enrollment
 request and that the response in step 2 is a Full Enrollment Response
 including a failureInfo specifying that a POP is explicitly required,
 and providing the POP challenge in the encryptedPOP attribute.)

 EncryptedPOP ::= SEQUENCE {

 request TaggedRequest,
 cms contentInfo,
 thePOPAlgID AlgorithmIdentifier,
 witnessAlgID AlgorithmIdentifier,
 witness OCTET STRING

Myers, et al. Standards Track [Page 26]

RFC 2797 Certificate Management Messages over CMS April 2000

 }

 DecryptedPOP ::= SEQUENCE {
 bodyPartID BodyPartID,
 thePOPAlgID AlgorithmIdentifier,
 thePOP OCTET STRING
 }

 The encrypted POP algorithm works as follows:

 1. The server generates a random value y and associates it with the
 request.
 2. The server returns the encrypted pop with the following fields
 set:
 a. request is the certificate request in the original request
 message (it is included here so the client need not key a copy
 of the request),
 b. cms is an EnvelopedData object, the content type being id-data
 and the content being the value y. If the certificate request
 contains a subject key identifier (SKI) extension, then the
 recipient identifier SHOULD be the SKI. If the
 issuerAndSerialNumber form is used, the IsserName MUST be
 encoded as NULL and the SerialNumber as the bodyPartId of the
 certificate request,
 c. thePOPAlgID contains the algorithm to be used in computing the
 return POP value,
 d. witnessAlgID contains the hash algorithm used on y to create
 the field witness,
 e. witness contains the hashed value of y.
 3. The client decrypts the cms field to obtain the value y. The
 client computes H(y) using the witnessAlgID and compares to the
 value of witness. If the values do not compare or the decryption
 is not successful, the client MUST abort the enrollment process.
 The client aborts the process by sending a request message
 containing a CMCStatusInfo control attribute with failInfo value
 of popFailed.
 4. The client creates the decryptedPOP as part of a new PKIData
 message. The fields in the decryptedPOP are:
 a. bodyPartID refers to the certificate request in the new
 enrollment message,
 b. thePOPAlgID is copied from the encryptedPOP,
 c. thePOP contains the possession proof. This value is computed
 by thePOPAlgID using the value y and request referenced in
 (4a).
 5. The server then re-computes the value of thePOP from its cached
 value of y and the request and compares to the value of thePOP.
 If the values do not match, the server MUST NOT issue the
 certificate. The server MAY re-issue a new challenge or MAY fail

Myers, et al. Standards Track [Page 27]

RFC 2797 Certificate Management Messages over CMS April 2000

 the request altogether.

 When defining the algorithms for thePOPAlgID and witnessAlgID care
 must be taken to ensure that the result of witnessAlgID is not a
 useful value to shortcut the computation with thePOPAlgID. Clients
 MUST implement SHA-1 for witnessAlgID. Clients MUST implement HMAC-
 SHA1 for thePOPAlgID. The value of y is used as the secret value in
 the HMAC algorithm and the request referenced in (4a) is used as the
 data. If y is greater than 64 bytes, only the first 64 bytes of y
 are used as the secret.

 One potential problem with the algorithm above is the amount of state
 that a CA needs to keep in order to verify the returned POP value.
 This describes one of many possible ways of addressing the problem by
 reducing the amount of state kept on the CA to a single (or small
 set) of values.

 1. Server generates random seed x, constant across all requests. (The
 value of x would normally be altered on a regular basis and kept
 for a short time afterwards.)
 2. For certificate request R, server computes y = F(x,R). F can be,
 for example, HMAC-SHA1(x,R). All that’s important for
 statelessness is that y be consistently computable with only known
 state constant x and function F, other inputs coming from the cert
 request structure. y should not be predictable based on knowledge
 of R, thus the use of a OWF like HMAC-SHA1.

5.8 LRA POP Witnesses Control Attribute

 In an enrollment scenario involving an LRAs the CA may allow (or
 require) the LRA to perform the POP protocol with the entity
 requesting certification. In this case the LRA needs a way to inform
 the CA it has done the POP. This control attribute has been created
 to address this issue.

 The ASN.1 structure for the LRA POP witness is as follows:

 LraPopWitness ::= SEQUENCE {
 pkiDataBodyid BodyPartID,
 bodyIds SEQUENCE of BodyPartID
 }

 -- pkiDataBodyid field contains the body part id of the nested CMS
 body object containing the client’s full request message.
 pkiDataBodyid is set to 0 if the request is in the current
 PKIRequest body.

Myers, et al. Standards Track [Page 28]

RFC 2797 Certificate Management Messages over CMS April 2000

 -- bodyIds contains a list of certificate requests for which the
 LRA has performed an out-of-band authentication. The method of
 authentication could be archival of private key material,
 challenge-response or other means.

 If a certificate server does not allow for an LRA to do the POP
 verification, it returns an error of POPFAILURE. The CA MUST NOT
 start a challenge-response to re-verify the POP itself.

5.9 Get Certificate Control Attribute

 Everything described in this section is optional to implement.

 The get certificate control attribute is used to retrieve previously
 issued certificates from a repository of certificates. A Certificate
 Authority, an LRA or an independent service may provide this
 repository. The clients expected to use this facility are those
 operating in a resource-constrained environment. (An example of a
 resource-constrained client would be a low-end IP router that does
 not retain its own certificate in non-volatile memory.)

 The get certificate control attribute has the following ASN.1
 structure:

 GetCert ::= SEQUENCE {
 issuerName GeneralName,
 serialNumber INTEGER }

 The service responding to the request will place the requested
 certificate in the certificates field of a SignedData object. If the
 get certificate attribute is the only control in a Full PKI Request
 message, the response would be a Simple Enrollment Response.

5.10 Get CRL Control Attribute

 Everything described in this section is optional to implement.

 The get CRL control attribute is used to retrieve CRLs from a
 repository of CRLs. A Certification Authority, an LRA or an
 independent service may provide this repository. The clients
 expected to use this facility are those where a fully deployed
 directory is either infeasible or undesirable.

 The get CRL control attribute has the following ASN.1 structure:

Myers, et al. Standards Track [Page 29]

RFC 2797 Certificate Management Messages over CMS April 2000

 GetCRL ::= SEQUENCE {
 issuerName Name,
 cRLName GeneralName OPTIONAL,
 time GeneralizedTime OPTIONAL,
 reasons ReasonFlags OPTIONAL }

 The fields in a GetCRL have the following meanings:

 -- issuerName is the name of the CRL issuer.

 -- cRLName may be the value of CRLDistributionPoints in the
 subject certificate or equivalent value in the event the
 certificate does not contain such a value.

 -- time is used by the client to specify from among potentially
 several issues of CRL that one whose thisUpdate value is less than
 but nearest to the specified time. In the absence of a time
 component, the CA always returns with the most recent CRL.

 -- reasons is used to specify from among CRLs partitioned by
 revocation reason. Implementers should bear in mind that while a
 specific revocation request has a single CRLReason code--and
 consequently entries in the CRL would have a single CRLReason code
 value--a single CRL can aggregate information for one or more
 reasonFlags.

 A service responding to the request will place the requested CRL in
 the crls field of a SignedData object. If the get CRL attribute is
 the only control in a full enrollment message, the response would be
 a simple enrollment response.

5.11 Revocation Request Control Attribute

 The revocation request control attribute is used to request that a
 certificate be revoked.

 The revocation request control attribute has the following ASN.1
 syntax:

 RevRequest ::= SEQUENCE {
 issuerName Name,
 serialNumber INTEGER,
 reason CRLReason,
 invalidityDate GeneralizedTime OPTIONAL,
 sharedSecret OCTET STRING OPTIONAL,
 comment UTF8string OPTIONAL }

Myers, et al. Standards Track [Page 30]

RFC 2797 Certificate Management Messages over CMS April 2000

 -- issuerName contains the issuerName of the certificate to be
 revoked.

 -- serialNumber contains the serial number of the certificate to
 be revoked

 -- reason contains the suggested CRLReason code for why the
 certificate is being revoked. The CA can use this value at its
 discretion in building the CRL.

 -- invalidityDate contains the suggested value for the Invalidity
 Date CRL Extension. The CA can use this value at its discretion
 in building the CRL.

 -- sharedSecret contains a secret value registered by the EE when
 the certificate was obtained to allow for revocation of a
 certificate in the event of key loss.

 -- comment contains a human readable comment.

 For a revocation request to become a reliable object in the event of
 a dispute, a strong proof of originator authenticity is required.
 However, in the instance when an end-entity has lost use of its
 signature private key, it is impossible for the end-entity to produce
 a digital signature (prior to the certification of a new signature
 key pair). The RevRequest provides for the optional transmission from
 the end-entity to the CA of a shared secret that may be used as an
 alternative authenticator in the instance of loss of use. The
 acceptability of this practice is a matter of local security policy.

 (Note that in some situations a Registration Authority may be
 delegated authority to revoke certificates on behalf of some
 population within its scope control. In these situations the CA
 would accept the LRA’s digital signature on the request to revoke a
 certificate, independent of whether the end entity still had access
 to the private component of the key pair.)

 Clients MUST provide the capability to produce a digitally signed
 revocation request control attribute. Clients SHOULD be capable of
 producing an unsigned revocation request containing the end-entity’s
 shared secret. If a client provides shared secret based self-
 revocation, the client MUST be capable of producing a revocation
 request containing the shared secret. Servers MUST be capable of
 accepting both forms of revocation requests.

 The structure of an unsigned, shared secret based revocation request
 is a matter of local implementation. The shared secret does not need
 to be encrypted when sent in a revocation request. The shared secret

Myers, et al. Standards Track [Page 31]

RFC 2797 Certificate Management Messages over CMS April 2000

 has a one-time use, that of causing the certificate to be revoked,
 and public knowledge of the shared secret after the certificate has
 been revoked is not a problem. Clients need to inform users that the
 same shared secret SHOULD NOT be used for multiple certificates.

 A full response message MUST be returned for a revocation request.

5.12 Registration and Response Information Control Attributes

 The regInfo control attribute is for clients and LRAs to pass
 additional information as part a PKI request. The regInfo control
 attribute uses the ASN.1 structure:

 RegInfo ::= OCTET STRING

 The content of this data is based on bilateral agreement between the
 client and server.

 If a server (or LRA) needs to return information back to a requestor
 in response to data submitted in a regInfo attribute, then that data
 is returned as a responseInfo control attribute. The content of the
 OCTET STRING for response information is based on bilateral agreement
 between the client and server.

5.13 Query Pending Control Attribute

 In some environments, process requirements for manual intervention or
 other identity checking can cause a delay in returning the
 certificate related to a certificate request. The query pending
 attribute allows for a client to query a server about the state of a
 pending certificate request. The server returns a token as part of
 the CMCStatusInfo attribute (in the otherInfo field). The client
 puts the token into the query pending attribute to identify the
 correct request to the server. The server can also return a
 suggested time for the client to query for the state of a pending
 certificate request.

 The ASN.1 structure used by the query pending control attribute is:

 QueryPending ::= OCTET STRING

 If a server returns a pending state (the transaction is still
 pending), the otherInfo MAY be omitted. If it is not omitted then
 the same value MUST be returned (the token MUST NOT change during the
 request).

Myers, et al. Standards Track [Page 32]

RFC 2797 Certificate Management Messages over CMS April 2000

5.14 Confirm Certificate Acceptance

 Some Certification Authorities require that clients give a positive
 conformation that the certificates issued to it are acceptable. The
 Confirm Certificate Acceptance control attribute is used for that
 purpose. If the CMCStatusInfo on a certificate request is
 confirmRequired, then the client MUST return a Confirm Certificate

 Acceptance prior to any usage of the certificate. Clients SHOULD
 wait for the response from the server that the conformation has been
 received.

 The confirm certificate acceptance structure is:

 CMCCertId ::= IssuerSerial

 -- CMCCertId contains the issuer and serial number of the
 certificate being accepted.

 Servers MUST return a full enrollment response for a confirm
 certificate acceptance control.

6. Local Registration Authorities

 This specification permits the use of Local Registration Authorities
 (LRAs). An LRA sits between the end-entity and the Certification
 Authority. From the end-entity’s perspective, the LRA appears to be
 the Certification Authority and from the server the LRA appears to be
 a client. LRAs receive the enrollment messages, perform local
 processing and then forward onto Certificate Authorities. Some of the
 types of local processing that an LRA can perform include:

 - batching multiple enrollment messages together,
 - challenge/response POP proofs,
 - addition of private or standardized certificate extensions to all
 requests,
 - archival of private key material,
 - routing of requests to different CAs.

 When an LRA receives an enrollment message it has three options: it
 may forward the message without modification, it may add a new
 wrapping layer to the message, or it may remove one or more existing
 layers and add a new wrapping layer.

 When an LRA adds a new wrapping layer to a message it creates a new
 PKIData object. The new layer contains any control attributes
 required (for example if the LRA does the POP proof for an encryption
 key or the addExtension control attribute to modify an enrollment

Myers, et al. Standards Track [Page 33]

RFC 2797 Certificate Management Messages over CMS April 2000

 request) and the client enrollment message. The client enrollment
 message is placed in the cmsSequence if it is a Full Enrollment
 message and in the reqSequence if it is a Simple Enrollment message.
 If an LRA is batching multiple client messages together, then each
 client enrollment message is placed into the appropriate location in
 the LRA’s PKIData object along with all relevant control attributes.

 (If multiple LRAs are in the path between the end-entity and the
 Certification Authority, this will lead to multiple wrapping layers
 on the message.)

 In processing an enrollment message, an LRA MUST NOT alter any
 certificate request body (PKCS #10 or CRMF) as any alteration would
 invalidate the signature on the request and thus the POP for the
 private key.

 An example of how this would look is illustrated by the following
 figure:

 SignedData (by LRA)
 PKIData
 controlSequence
 LRA added control statements
 reqSequence
 Zero or more Simple CertificationRequests from clients
 cmsSequence
 Zero or more Full PKI messages from clients
 SignedData (by client)
 PKIData

 Under some circumstances an LRA is required to remove wrapping
 layers. The following sections look at the processing required if
 encryption layers and signing layers need to be removed.

6.1 Encryption Removal

 There are two cases that require an LRA to remove or change
 encryption in an enrollment message. In the first case the
 encryption was applied for the purposes of protecting the entire
 enrollment request from unauthorized entities. If the CA does not
 have a recipient info entry in the encryption layer, the LRA MUST
 remove the encryption layer. The LRA MAY add a new encryption layer
 with or without adding a new signing layer.

 The second change of encryption that may be required is to change the
 encryption inside of a signing layer. In this case the LRA MUST
 remove all signing layers containing the encryption. All control
 statements MUST be merged according to local policy rules as each

Myers, et al. Standards Track [Page 34]

RFC 2797 Certificate Management Messages over CMS April 2000

 signing layer is removed and the resulting merged controls MUST be
 placed in a new signing layer provided by the LRA. If the signing
 layer provided by the end-entity needs to be removed to the LRA can
 remove the layer.

6.2 Signature Layer Removal

 Only two instances exist where an LRA should remove a signature layer
 on a Full Enrollment message. If an encryption needs to be modified
 within the message, or if a Certificate Authority will not accept
 secondary delegation (i.e. multiple LRA signatures). In all other
 situations LRAs SHOULD NOT remove a signing layer from a message.

 If an LRA removes a signing layer from a message, all control
 statements MUST be merged according to local policy rules. The
 resulting merged control statements MUST be placed in a new signing
 layer provided by the LRA.

7. Transport Wrapping

 Not all methods of transporting data allow for sending unlabeled raw
 binary data, in may cases standard methods of encoding can be used to
 greatly ease this issue. These methods normally consist of wrapping
 some identification of the content around the binary data, possibly
 applying an encoding to the data and labeling the data. We document
 for use three different wrapping methods.

 -- MIME wrapping is for transports that are natively MIME based such
 as HTTP and E-mail.
 -- Binary file transport is defined since floppy disk transport is
 still very common. File transport can be done either as MIME
 wrapped (section 7.1) or bare (section 7.2).
 -- Socket based transport uses the raw BER encoded object.

7.1 MIME Wrapping

 MIME wrapping is defined for those environments that are MIME native.
 These include E-Mail based protocols as well as HTTP.

 The basic mime wrapping in this section is taken from [SMIMEV2] and
 [SMIMEV3]. Simple enrollment requests are encoded using the
 application/pkcs10 content type. A file name MUST be included either
 in a content type or content disposition statement. The extension
 for the file MUST be ".p10".

Myers, et al. Standards Track [Page 35]

RFC 2797 Certificate Management Messages over CMS April 2000

 Simple enrollment response messages MUST be encoded as content-type
 application/pkcs7-mime. An smime-type parameter MUST be on the
 content-type statement with a value of "certs-only." A file name with
 the ".p7c" extension MUST be specified as part of the content-type or
 content-disposition.

 Full enrollment request messages MUST be encoded as content-type
 application/pkcs7-mime. The smime-type parameter MUST be included
 with a value of "CMC-enroll". A file name with the ".p7m" extension
 MUST be specified as part of the content-type or content-disposition
 statement.

 Full enrollment response messages MUST be encoded as content-type
 application/pkcs7-mime. The smime-type parameter MUST be included
 with a value of "CMC-response." A file name with the ".p7m"
 extensions MUST be specified as part of the content-type or content-
 disposition.

MIME TYPE File Extension SMIME-TYPE

application/pkcs10 .p10 N/A
(simple PKI request)

application/pkcs7-mime .p7m CMC-request
(full PKI request)

application/pkcs7-mime .p7c certs-only
(simple PKI response)

application/pkcs7-mime .p7m CMC-response
(full PKI response)

7.2 File-Based Transport

 Enrollment messages and responses may also be transferred between
 clients and servers using file system-based mechanisms, such as when
 enrollment is performed for an off-line client. When files are used
 to transport binary, BER-encoded Full Enrollment Request and Response
 messages, the following file type extensions SHOULD be used:

 Message Type File Extension

 Full PKI Request .crq

 Full PKI Response .crp

Myers, et al. Standards Track [Page 36]

RFC 2797 Certificate Management Messages over CMS April 2000

7.3 Socket-Based Transport

 When enrollment messages and responses are sent over sockets, no
 wrapping is required. Messages SHOULD be sent in their binary, BER-
 encoded form.

8. Interoperability

8.1 Mandatory and Optional Algorithms

 CMC clients and servers MUST be capable of producing and processing
 message signatures using the Digital Signature Algorithm [DSA]. DSA
 signatures MUST be indicated by the DSA AlgorithmIdentifier value (as
 specified in section 7.2.2 of [PKIXCERT]). PKI clients and servers
 SHOULD also be capable of producing and processing RSA signatures (as
 specified in section 7.2.1 of [PKIXCERT]).

 CMC clients and servers MUST be capable of protecting and accessing
 message encryption keys using the Diffie-Hellman (D-H) key exchange
 algorithm. D-H/3DES protection MUST be indicated by the D-H
 AlgorithmIdentifier value specified in [CMS]. PKI clients and
 servers SHOULD also be capable of producing and processing RSA key
 transport. When used for PKI messages, RSA key transport MUST be
 indicated as specified in section 7.2.1 of [PKIXCERT].

8.2 Minimum Conformance Requirements

 A minimally compliant CMC server:

 a) MUST accept a Full PKI Request message
 i) MUST accept CRMF Request Bodies within a Full PKI Request
 ii) MUST accept PKCS#10 Request Bodies within a Full PKI Request
 b) MUST accept a Simple Enrollment Request message
 c) MUST be able to return a Full PKI Response. (A Full PKI Response
 is always a valid response, but for interoperability with
 downlevel clients a compliant server SHOULD use the Simple
 Enrollment Response whenever possible.)

 A minimally-complaint CMC client:

 a) MAY use either the Simple Enrollment Message or the Full PKI
 Request.
 i) clients MUST use PKCS#10 with the Simple Enrollment Message
 ii) clients MAY use either PKCS#10 or CRMF with the Full PKI
 Request
 b) MUST understand the Simple Enrollment Response.
 c) MUST understand the Full PKI Response.

Myers, et al. Standards Track [Page 37]

RFC 2797 Certificate Management Messages over CMS April 2000

9. Security Considerations

 Initiation of a secure communications channel between an end-entity
 and a CA or LRA (and, similarly, between an LRA and another LRA or
 CA) necessarily requires an out-of-band trust initiation mechanism.
 For example, a secure channel may be constructed between the end-
 entity and the CA via IPSEC or TLS. Many such schemes exist and the
 choice of any particular scheme for trust initiation is outside the
 scope of this document. Implementers of this protocol are strongly
 encouraged to consider generally accepted principles of secure key
 management when integrating this capability within an overall
 security architecture.

 Mechanisms for thwarting replay attacks may be required in particular
 implementations of this protocol depending on the operational
 environment. In cases where the CA maintains significant state
 information, replay attacks may be detectable without the inclusion
 of the optional nonce mechanisms. Implementers of this protocol need
 to carefully consider environmental conditions before choosing
 whether or not to implement the senderNonce and recipientNonce
 attributes described in section 5.6. Developers of state-constrained
 PKI clients are strongly encouraged to incorporate the use of these
 attributes.

 Under no circumstances should a signing key be archived. Doing so
 allows the archiving entity to potentially use the key for forging
 signatures.

 Due care must be taken prior to archiving keys. Once a key is given
 to an archiving entity, the archiving entity could use the keys in a
 way not conducive to the archiving entity. Users should be made
 especially aware that proper verification is made of the certificate
 used to encrypt the private key material.

 Clients and servers need to do some checks on cryptographic
 parameters prior to issuing certificates to make sure that weak
 parameters are not used. A description of the small subgroup attack
 is provided in [X942]. CMC implementations ought to be aware of this
 attack when doing parameter validations.

Myers, et al. Standards Track [Page 38]

RFC 2797 Certificate Management Messages over CMS April 2000

10. Acknowledgments

 The authors would like to thank Brian LaMacchia for his work in
 developing and writing up many of the concepts presented in this
 document. The authors would also like to thank Alex Deacon and Barb
 Fox for their contributions.

11. References

 [CMS] Housley, R., "Cryptographic Message Syntax", RFC 2630,
 June 1999.

 [CRMF] Myers, M., Adams, C., Solo, D. and D. Kemp, "Internet
 X.509 Certificate Request Message Format", RFC 2511, March
 1999.

 [DH] B. Kaliski, "PKCS 3: Diffie-Hellman Key Agreement v1.4"

 [DH-POP] H. Prafullchandra, J. Schaad, "Diffie-Hellman Proof-of-
 Possession Algorithms", Work in Progress.

 [HMAC] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [PKCS1] Kaliski, B., "PKCS #1: RSA Encryption, Version 1.5", RFC
 2313, March 1998.

 [PKCS7] Kaliski, B., "PKCS #7: Cryptographic Message Syntax v1.5",
 RFC 2315, October 1997.

 [PKCS8] RSA Laboratories, "PKCS#8: Private-Key Information Syntax
 Standard, Version 1.2", November 1, 1993.

 [PKCS10] Kaliski, B., "PKCS #10: Certification Request Syntax
 v1.5", RFC 2314, October 1997.

 [PKIXCERT] Housley, R., Ford, W., Polk, W. and D. Solo "Internet
 X.509 Public Key Infrastructure Certificate and CRL
 Profile", RFC 2459, January 1999.

 [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [SMIMEV2] Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L. and L.
 Repka, "S/MIME Version 2 Message Specification", RFC 2311,
 March 1998.

Myers, et al. Standards Track [Page 39]

RFC 2797 Certificate Management Messages over CMS April 2000

 [SMIMEV3] Ramsdell, B., "S/MIME Version 3 Message Specification",
 RFC 2633, June 1999.

 [X942] Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
 2631, June 1999.

12. Authors’ Addresses

 Michael Myers
 VeriSign Inc.
 1350 Charleston Road
 Mountain View, CA, 94043

 Phone: (650) 429-3402
 EMail: mmyers@verisign.com

 Xiaoyi Liu
 Cisco Systems
 170 West Tasman Drive
 San Jose, CA 95134

 Phone: (480) 526-7430
 EMail: xliu@cisco.com

 Jim Schaad

 EMail: jimsch@nwlink.com

 Jeff Weinstein

 EMail: jsw@meer.net

Myers, et al. Standards Track [Page 40]

RFC 2797 Certificate Management Messages over CMS April 2000

Appendix A ASN.1 Module

EnrollmentMessageSyntax
 { iso(1) identified-organization(3) dod(4) internet(1)
 security(5) mechansims(5) pkix(7) id-mod(0) id-mod-cmc(6) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 -- EXPORTS All --
 -- The types and values defined in this module are exported for use
 -- in the other ASN.1 modules. Other applications may use them for
 -- their own purposes.

 IMPORTS

 -- Information Directory Framework (X.501)
 Name
 FROM InformationFramework { joint-iso-itu-t ds(5)
 modules(1) informationFramework(1) 3 }

 -- Directory Authentication Framework (X.509)
 AlgorithmIdentifier, AttributeCertificate, Certificate,
 CertificateList, CertificateSerialNumber
 FROM AuthenticationFramework { joint-iso-itu-t ds(5)
 module(1) authenticationFramework(7) 3 }

 -- PKIX Part 1 - Implicit
 GeneralName, CRLReason, ReasonFlags
 FROM PKIX1Implicit88 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-implicit-88(2)}

 -- PKIX Part 1 - Explicit
 SubjectPublicKeyInfo, Extension
 FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit-88(1)}

 -- Cryptographic Message Syntax
 ContentInfo, Attribute
 FROM CryptographicMessageSyntax { 1 2 840 113549 1 9 16 0 1}

 -- CRMF
 CertReqMsg
 FROM CRMF { 1 3 6 1 5 5 7 0 5 };

 id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)

Myers, et al. Standards Track [Page 41]

RFC 2797 Certificate Management Messages over CMS April 2000

 dod(6) internet(1) security(5) mechanisms(5) pkix(7) }

 id-cmc OBJECT IDENTIFIER ::= {id-pkix 7} -- CMC controls
 id-cct OBJECT IDENTIFIER ::= {id-pkix 12} -- CMC content types

 -- The following controls have simple type content (usually OCTET
STRING)

 id-cmc-identification OBJECT IDENTIFIER ::= {id-cmc 2}
 id-cmc-identityProof OBJECT IDENTIFIER ::= {id-cmc 3}
 id-cmc-dataReturn OBJECT IDENTIFIER ::= {id-cmc 4}
 id-cmc-transactionId OBJECT IDENTIFIER ::= {id-cmc 5}
 id-cmc-senderNonce OBJECT IDENTIFIER ::= {id-cmc 6}
 id-cmc-recipientNonce OBJECT IDENTIFIER ::= {id-cmc 7}
 id-cmc-regInfo OBJECT IDENTIFIER ::= {id-cmc 18}
 id-cmc-responseInfo OBJECT IDENTIFIER ::= {id-cmc 19}
 id-cmc-queryPending OBJECT IDENTIFIER ::= {id-cmc 21}
 id-cmc-popLinkRandom OBJECT IDENTIFIER ::= {id-cmc 22)
 id-cmc-popLinkWitness OBJECT IDENTIFIER ::= (id-cmc 23)

 -- This is the content type used for a request message in the
protocol

 id-cct-PKIData OBJECT IDENTIFIER ::= { id-cct 2 }

 PKIData ::= SEQUENCE {
 controlSequence SEQUENCE SIZE(0..MAX) OF TaggedAttribute,
 reqSequence SEQUENCE SIZE(0..MAX) OF TaggedRequest,
 cmsSequence SEQUENCE SIZE(0..MAX) OF TaggedContentInfo,
 otherMsgSequence SEQUENCE SIZE(0..MAX) OF OtherMsg
 }

 bodyIdMax INTEGER ::= 4294967295

 BodyPartID ::= INTEGER(0..bodyIdMax)

 TaggedAttribute ::= SEQUENCE {
 bodyPartID BodyPartId,
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue
 }

 AttributeValue ::= ANY

 TaggedRequest ::= CHOICE {
 tcr [0] TaggedCertificationRequest,
 crm [1] CertReqMsg

Myers, et al. Standards Track [Page 42]

RFC 2797 Certificate Management Messages over CMS April 2000

 }

 TaggedCertificationRequest ::= SEQUENCE {
 bodyPartID BodyPartID,
 certificationRequest CertificationRequest
 }

 CertificationRequest ::= SEQUENCE {
 certificationRequestInfo SEQUENCE {
 version INTEGER,
 subject Name,
 subjectPublicKeyInfo SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING },
 attributes [0] IMPLICIT SET OF Attribute },
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING
 }

 TaggedContentInfo ::= SEQUENCE {
 bodyPartID BodyPartId,
 contentInfo ContentInfo
 }

 OtherMsg ::= SEQUENCE {
 bodyPartID BodyPartID,
 otherMsgType OBJECT IDENTIFIER,
 otherMsgValue ANY DEFINED BY otherMsgType }

 -- This defines the response message in the protocol
 id-cct-PKIResponse OBJECT IDENTIFIER ::= { id-cct 3 }

 ResponseBody ::= SEQUENCE {
 controlSequence SEQUENCE SIZE(0..MAX) OF TaggedAttribute,
 cmsSequence SEQUENCE SIZE(0..MAX) OF TaggedContentInfo,
 otherMsgSequence SEQUENCE SIZE(0..MAX) OF OtherMsg
 }

 -- Used to return status state in a response

 id-cmc-cMCStatusInfo OBJECT IDENTIFIER ::= {id-cmc 1}

 CMCStatusInfo ::= SEQUENCE {
 cMCStatus CMCStatus,
 bodyList SEQUENCE SIZE (1..MAX) OF INTEGER,
 statusString UTF8String OPTIONAL,
 otherInfo CHOICE {
 failInfo CMCFailInfo,

Myers, et al. Standards Track [Page 43]

RFC 2797 Certificate Management Messages over CMS April 2000

 pendInfo PendInfo } OPTIONAL
 }

 PendInfo ::= SEQUENCE {
 pendToken INTEGER,
 pendTime GENERALIZEDTIME
 }

 CMCStatus ::= INTEGER {
 success (0),
 -- you got exactly what you asked for
 failed (2),
 -- you don’t get it, more information elsewhere in the message
 pending (3),
 -- the request body part has not yet been processed,
 -- requester is responsible to poll back on this
 noSupport (4)
 -- the requested operation is not supported
 }

 CMCFailInfo ::= INTEGER {
 badAlg (0),
 -- Unrecognized or unsupported algorithm
 badMessageCheck (1),
 -- integrity check failed
 badRequest (2),
 -- transaction not permitted or supported
 badTime (3),
 -- Message time field was not sufficiently close to the system
time
 badCertId (4),
 -- No certificate could be identified matching the provided
criteria
 unsuportedExt (5),
 -- A requested X.509 extension is not supported by the recipient
CA.
 mustArchiveKeys (6),
 -- Private key material must be supplied
 badIdentity (7),
 -- Identification Attribute failed to verify
 popRequired (8),
 -- Server requires a POP proof before issuing certificate
 popFailed (9),
 -- Server failed to get an acceptable POP for the request
 noKeyReuse (10)
 -- Server policy does not allow key re-use
 internalCAError (11)
 tryLater (12)

Myers, et al. Standards Track [Page 44]

RFC 2797 Certificate Management Messages over CMS April 2000

 }

 -- Used for LRAs to add extensions to certificate requests
 id-cmc-addExtensions OBJECT IDENTIFIER ::= {id-cmc 8}

 AddExtensions ::= SEQUENCE {
 pkiDataReference BodyPartID,
 certReferences SEQUENCE OF BodyPartID,
 extensions SEQUENCE OF Extension
 }

 id-cmc-encryptedPOP OBJECT IDENTIFIER ::= {id-cmc 9}
 id-cmc-decryptedPOP OBJECT IDENTIFIER ::= {id-cmc 10}

 EncryptedPOP ::= SEQUENCE {
 request TaggedRequest,
 cms ContentInfo,
 thePOPAlgID AlgorithmIdentifier,
 witnessAlgID AlgorithmIdentifier,
 witness OCTET STRING
 }

 DecryptedPOP ::= SEQUENCE {
 bodyPartID BodyPartID,
 thePOPAlgID AlgorithmIdentifier,
 thePOP OCTET STRING
 }

 id-cmc-lraPOPWitness OBJECT IDENTIFIER ::= {id-cmc 11}

 LraPopWitness ::= SEQUENCE {
 pkiDataBodyid BodyPartID,
 bodyIds SEQUENCE OF BodyPartID
 }

 --
 id-cmc-getCert OBJECT IDENTIFIER ::= {id-cmc 15}

 GetCert ::= SEQUENCE {
 issuerName GeneralName,
 serialNumber INTEGER }

 id-cmc-getCRL OBJECT IDENTIFIER ::= {id-cmc 16}

 GetCRL ::= SEQUENCE {

Myers, et al. Standards Track [Page 45]

RFC 2797 Certificate Management Messages over CMS April 2000

 issuerName Name,
 cRLName GeneralName OPTIONAL,
 time GeneralizedTime OPTIONAL,
 reasons ReasonFlags OPTIONAL }

 id-cmc-revokeRequest OBJECT IDENTIFIER ::= {id-cmc 17}

 RevRequest ::= SEQUENCE {
 issuerName Name,
 serialNumber INTEGER,
 reason CRLReason,
 invalidityDate GeneralizedTime OPTIONAL,
 passphrase OCTET STRING OPTIONAL,
 comment UTF8String OPTIONAL }

 id-cmc-confirmCertAcceptance OBJECT IDENTIFIER ::= {pkix-cmc 24}

 CMCCertId ::= IssuerSerial

 -- The following is used to request V3 extensions be added to a
certificate

 id-ExtensionReq OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) 14}

 ExtensionReq ::= SEQUENCE OF Extension

 -- The following exists to allow Diffie-Hellman Certificate Requests
Messages to be
 -- well-formed

 id-alg-noSignature OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 2}

 NoSignatureValue ::= OCTET STRING

END

Myers, et al. Standards Track [Page 46]

RFC 2797 Certificate Management Messages over CMS April 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Myers, et al. Standards Track [Page 47]

