
Network Working Group J. Linn
Request for Comments: 2743 RSA Laboratories
Obsoletes: 2078 January 2000
Category: Standards Track

 Generic Security Service Application Program Interface
 Version 2, Update 1

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 The Generic Security Service Application Program Interface (GSS-API),
 Version 2, as defined in [RFC-2078], provides security services to
 callers in a generic fashion, supportable with a range of underlying
 mechanisms and technologies and hence allowing source-level
 portability of applications to different environments. This
 specification defines GSS-API services and primitives at a level
 independent of underlying mechanism and programming language
 environment, and is to be complemented by other, related
 specifications:

 documents defining specific parameter bindings for particular
 language environments

 documents defining token formats, protocols, and procedures to be
 implemented in order to realize GSS-API services atop particular
 security mechanisms

 This memo obsoletes [RFC-2078], making specific, incremental changes
 in response to implementation experience and liaison requests. It is
 intended, therefore, that this memo or a successor version thereto
 will become the basis for subsequent progression of the GSS-API
 specification on the standards track.

Linn Standards Track [Page 1]

RFC 2743 GSS-API January 2000

TABLE OF CONTENTS

 1: GSS-API Characteristics and Concepts 4
 1.1: GSS-API Constructs . 6
 1.1.1: Credentials . 6
 1.1.1.1: Credential Constructs and Concepts 6
 1.1.1.2: Credential Management 7
 1.1.1.3: Default Credential Resolution 8
 1.1.2: Tokens . 9
 1.1.3: Security Contexts 11
 1.1.4: Mechanism Types . 12
 1.1.5: Naming . 13
 1.1.6: Channel Bindings 16
 1.2: GSS-API Features and Issues 17
 1.2.1: Status Reporting and Optional Service Support 17
 1.2.1.1: Status Reporting 17
 1.2.1.2: Optional Service Support 19
 1.2.2: Per-Message Security Service Availability 20
 1.2.3: Per-Message Replay Detection and Sequencing 21
 1.2.4: Quality of Protection 24
 1.2.5: Anonymity Support 25
 1.2.6: Initialization . 25
 1.2.7: Per-Message Protection During Context Establishment . . 26
 1.2.8: Implementation Robustness 27
 1.2.9: Delegation . 28
 1.2.10: Interprocess Context Transfer 28
 2: Interface Descriptions 29
 2.1: Credential management calls 31
 2.1.1: GSS_Acquire_cred call 31
 2.1.2: GSS_Release_cred call 34
 2.1.3: GSS_Inquire_cred call 35
 2.1.4: GSS_Add_cred call 37
 2.1.5: GSS_Inquire_cred_by_mech call 40
 2.2: Context-level calls 41
 2.2.1: GSS_Init_sec_context call 42
 2.2.2: GSS_Accept_sec_context call 49
 2.2.3: GSS_Delete_sec_context call 53
 2.2.4: GSS_Process_context_token call 54
 2.2.5: GSS_Context_time call 55
 2.2.6: GSS_Inquire_context call 56
 2.2.7: GSS_Wrap_size_limit call 57
 2.2.8: GSS_Export_sec_context call 59
 2.2.9: GSS_Import_sec_context call 61
 2.3: Per-message calls . 62
 2.3.1: GSS_GetMIC call . 63
 2.3.2: GSS_VerifyMIC call 64
 2.3.3: GSS_Wrap call . 65
 2.3.4: GSS_Unwrap call . 66

Linn Standards Track [Page 2]

RFC 2743 GSS-API January 2000

 2.4: Support calls . 68
 2.4.1: GSS_Display_status call 68
 2.4.2: GSS_Indicate_mechs call 69
 2.4.3: GSS_Compare_name call 70
 2.4.4: GSS_Display_name call 71
 2.4.5: GSS_Import_name call 72
 2.4.6: GSS_Release_name call 73
 2.4.7: GSS_Release_buffer call 74
 2.4.8: GSS_Release_OID_set call 74
 2.4.9: GSS_Create_empty_OID_set call 75
 2.4.10: GSS_Add_OID_set_member call 76
 2.4.11: GSS_Test_OID_set_member call 76
 2.4.12: GSS_Inquire_names_for_mech call 77
 2.4.13: GSS_Inquire_mechs_for_name call 77
 2.4.14: GSS_Canonicalize_name call 78
 2.4.15: GSS_Export_name call 79
 2.4.16: GSS_Duplicate_name call 80
 3: Data Structure Definitions for GSS-V2 Usage 81
 3.1: Mechanism-Independent Token Format 81
 3.2: Mechanism-Independent Exported Name Object Format 84
 4: Name Type Definitions 85
 4.1: Host-Based Service Name Form 85
 4.2: User Name Form . 86
 4.3: Machine UID Form . 87
 4.4: String UID Form . 87
 4.5: Anonymous Nametype . 87
 4.6: GSS_C_NO_OID . 88
 4.7: Exported Name Object 88
 4.8: GSS_C_NO_NAME . 88
 5: Mechanism-Specific Example Scenarios 88
 5.1: Kerberos V5, single-TGT 89
 5.2: Kerberos V5, double-TGT 89
 5.3: X.509 Authentication Framework 90
 6: Security Considerations 91
 7: Related Activities . 92
 8: Referenced Documents 93
 Appendix A: Mechanism Design Constraints 94
 Appendix B: Compatibility with GSS-V1 94
 Appendix C: Changes Relative to RFC-2078 96
 Author’s Address .100
 Full Copyright Statement 101

Linn Standards Track [Page 3]

RFC 2743 GSS-API January 2000

1: GSS-API Characteristics and Concepts

 GSS-API operates in the following paradigm. A typical GSS-API caller
 is itself a communications protocol, calling on GSS-API in order to
 protect its communications with authentication, integrity, and/or
 confidentiality security services. A GSS-API caller accepts tokens
 provided to it by its local GSS-API implementation and transfers the
 tokens to a peer on a remote system; that peer passes the received
 tokens to its local GSS-API implementation for processing. The
 security services available through GSS-API in this fashion are
 implementable (and have been implemented) over a range of underlying
 mechanisms based on secret-key and public-key cryptographic
 technologies.

 The GSS-API separates the operations of initializing a security
 context between peers, achieving peer entity authentication
 (GSS_Init_sec_context() and GSS_Accept_sec_context() calls), from the
 operations of providing per-message data origin authentication and
 data integrity protection (GSS_GetMIC() and GSS_VerifyMIC() calls)
 for messages subsequently transferred in conjunction with that
 context. (The definition for the peer entity authentication service,
 and other definitions used in this document, corresponds to that
 provided in [ISO-7498-2].) When establishing a security context, the
 GSS-API enables a context initiator to optionally permit its
 credentials to be delegated, meaning that the context acceptor may
 initiate further security contexts on behalf of the initiating
 caller. Per-message GSS_Wrap() and GSS_Unwrap() calls provide the
 data origin authentication and data integrity services which
 GSS_GetMIC() and GSS_VerifyMIC() offer, and also support selection of
 confidentiality services as a caller option. Additional calls provide
 supportive functions to the GSS-API’s users.

 The following paragraphs provide an example illustrating the
 dataflows involved in use of the GSS-API by a client and server in a
 mechanism-independent fashion, establishing a security context and
 transferring a protected message. The example assumes that credential
 acquisition has already been completed. The example also assumes
 that the underlying authentication technology is capable of
 authenticating a client to a server using elements carried within a
 single token, and of authenticating the server to the client (mutual
 authentication) with a single returned token; this assumption holds
 for some presently-documented CAT mechanisms but is not necessarily
 true for other cryptographic technologies and associated protocols.

 The client calls GSS_Init_sec_context() to establish a security
 context to the server identified by targ_name, and elects to set the
 mutual_req_flag so that mutual authentication is performed in the
 course of context establishment. GSS_Init_sec_context() returns an

Linn Standards Track [Page 4]

RFC 2743 GSS-API January 2000

 output_token to be passed to the server, and indicates
 GSS_S_CONTINUE_NEEDED status pending completion of the mutual
 authentication sequence. Had mutual_req_flag not been set, the
 initial call to GSS_Init_sec_context() would have returned
 GSS_S_COMPLETE status. The client sends the output_token to the
 server.

 The server passes the received token as the input_token parameter to
 GSS_Accept_sec_context(). GSS_Accept_sec_context indicates
 GSS_S_COMPLETE status, provides the client’s authenticated identity
 in the src_name result, and provides an output_token to be passed to
 the client. The server sends the output_token to the client.

 The client passes the received token as the input_token parameter to
 a successor call to GSS_Init_sec_context(), which processes data
 included in the token in order to achieve mutual authentication from
 the client’s viewpoint. This call to GSS_Init_sec_context() returns
 GSS_S_COMPLETE status, indicating successful mutual authentication
 and the completion of context establishment for this example.

 The client generates a data message and passes it to GSS_Wrap().
 GSS_Wrap() performs data origin authentication, data integrity, and
 (optionally) confidentiality processing on the message and
 encapsulates the result into output_message, indicating
 GSS_S_COMPLETE status. The client sends the output_message to the
 server.

 The server passes the received message to GSS_Unwrap(). GSS_Unwrap()
 inverts the encapsulation performed by GSS_Wrap(), deciphers the
 message if the optional confidentiality feature was applied, and
 validates the data origin authentication and data integrity checking
 quantities. GSS_Unwrap() indicates successful validation by returning
 GSS_S_COMPLETE status along with the resultant output_message.

 For purposes of this example, we assume that the server knows by
 out-of-band means that this context will have no further use after
 one protected message is transferred from client to server. Given
 this premise, the server now calls GSS_Delete_sec_context() to flush
 context-level information. Optionally, the server-side application
 may provide a token buffer to GSS_Delete_sec_context(), to receive a
 context_token to be transferred to the client in order to request
 that client-side context-level information be deleted.

 If a context_token is transferred, the client passes the
 context_token to GSS_Process_context_token(), which returns
 GSS_S_COMPLETE status after deleting context-level information at the
 client system.

Linn Standards Track [Page 5]

RFC 2743 GSS-API January 2000

 The GSS-API design assumes and addresses several basic goals,
 including:

 Mechanism independence: The GSS-API defines an interface to
 cryptographically implemented strong authentication and other
 security services at a generic level which is independent of
 particular underlying mechanisms. For example, GSS-API-provided
 services have been implemented using secret-key technologies
 (e.g., Kerberos, per [RFC-1964]) and with public-key approaches
 (e.g., SPKM, per [RFC-2025]).

 Protocol environment independence: The GSS-API is independent of
 the communications protocol suites with which it is employed,
 permitting use in a broad range of protocol environments. In
 appropriate environments, an intermediate implementation "veneer"
 which is oriented to a particular communication protocol may be
 interposed between applications which call that protocol and the
 GSS-API (e.g., as defined in [RFC-2203] for Open Network Computing
 Remote Procedure Call (RPC)), thereby invoking GSS-API facilities
 in conjunction with that protocol’s communications invocations.

 Protocol association independence: The GSS-API’s security context
 construct is independent of communications protocol association
 constructs. This characteristic allows a single GSS-API
 implementation to be utilized by a variety of invoking protocol
 modules on behalf of those modules’ calling applications. GSS-API
 services can also be invoked directly by applications, wholly
 independent of protocol associations.

 Suitability to a range of implementation placements: GSS-API
 clients are not constrained to reside within any Trusted Computing
 Base (TCB) perimeter defined on a system where the GSS-API is
 implemented; security services are specified in a manner suitable
 to both intra-TCB and extra-TCB callers.

1.1: GSS-API Constructs

 This section describes the basic elements comprising the GSS-API.

1.1.1: Credentials

1.1.1.1: Credential Constructs and Concepts

 Credentials provide the prerequisites which permit GSS-API peers to
 establish security contexts with each other. A caller may designate
 that the credential elements which are to be applied for context
 initiation or acceptance be selected by default. Alternately, those
 GSS-API callers which need to make explicit selection of particular

Linn Standards Track [Page 6]

RFC 2743 GSS-API January 2000

 credentials structures may make references to those credentials
 through GSS-API-provided credential handles ("cred_handles"). In all
 cases, callers’ credential references are indirect, mediated by GSS-
 API implementations and not requiring callers to access the selected
 credential elements.

 A single credential structure may be used to initiate outbound
 contexts and to accept inbound contexts. Callers needing to operate
 in only one of these modes may designate this fact when credentials
 are acquired for use, allowing underlying mechanisms to optimize
 their processing and storage requirements. The credential elements
 defined by a particular mechanism may contain multiple cryptographic
 keys, e.g., to enable authentication and message encryption to be
 performed with different algorithms.

 A GSS-API credential structure may contain multiple credential
 elements, each containing mechanism-specific information for a
 particular underlying mechanism (mech_type), but the set of elements
 within a given credential structure represent a common entity. A
 credential structure’s contents will vary depending on the set of
 mech_types supported by a particular GSS-API implementation. Each
 credential element identifies the data needed by its mechanism in
 order to establish contexts on behalf of a particular principal, and
 may contain separate credential references for use in context
 initiation and context acceptance. Multiple credential elements
 within a given credential having overlapping combinations of
 mechanism, usage mode, and validity period are not permitted.

 Commonly, a single mech_type will be used for all security contexts
 established by a particular initiator to a particular target. A major
 motivation for supporting credential sets representing multiple
 mech_types is to allow initiators on systems which are equipped to
 handle multiple types to initiate contexts to targets on other
 systems which can accommodate only a subset of the set supported at
 the initiator’s system.

1.1.1.2: Credential Management

 It is the responsibility of underlying system-specific mechanisms and
 OS functions below the GSS-API to ensure that the ability to acquire
 and use credentials associated with a given identity is constrained
 to appropriate processes within a system. This responsibility should
 be taken seriously by implementors, as the ability for an entity to
 utilize a principal’s credentials is equivalent to the entity’s
 ability to successfully assert that principal’s identity.

Linn Standards Track [Page 7]

RFC 2743 GSS-API January 2000

 Once a set of GSS-API credentials is established, the transferability
 of that credentials set to other processes or analogous constructs
 within a system is a local matter, not defined by the GSS-API. An
 example local policy would be one in which any credentials received
 as a result of login to a given user account, or of delegation of
 rights to that account, are accessible by, or transferable to,
 processes running under that account.

 The credential establishment process (particularly when performed on
 behalf of users rather than server processes) is likely to require
 access to passwords or other quantities which should be protected
 locally and exposed for the shortest time possible. As a result, it
 will often be appropriate for preliminary credential establishment to
 be performed through local means at user login time, with the
 result(s) cached for subsequent reference. These preliminary
 credentials would be set aside (in a system-specific fashion) for
 subsequent use, either:

 to be accessed by an invocation of the GSS-API GSS_Acquire_cred()
 call, returning an explicit handle to reference that credential

 to comprise default credential elements to be installed, and to be
 used when default credential behavior is requested on behalf of a
 process

1.1.1.3: Default Credential Resolution

 The GSS_Init_sec_context() and GSS_Accept_sec_context() routines
 allow the value GSS_C_NO_CREDENTIAL to be specified as their
 credential handle parameter. This special credential handle
 indicates a desire by the application to act as a default principal.
 In support of application portability, support for the default
 resolution behavior described below for initiator credentials
 (GSS_Init_sec_context() usage) is mandated; support for the default
 resolution behavior described below for acceptor credentials
 (GSS_Accept_sec_context() usage) is recommended. If default
 credential resolution fails, GSS_S_NO_CRED status is to be returned.

 GSS_Init_sec_context:

 (i) If there is only a single principal capable of initiating
 security contexts that the application is authorized to act on
 behalf of, then that principal shall be used, otherwise

Linn Standards Track [Page 8]

RFC 2743 GSS-API January 2000

 (ii) If the platform maintains a concept of a default network-
 identity, and if the application is authorized to act on behalf
 of that identity for the purpose of initiating security
 contexts, then the principal corresponding to that identity
 shall be used, otherwise

 (iii) If the platform maintains a concept of a default local
 identity, and provides a means to map local identities into
 network-identities, and if the application is authorized to act
 on behalf of the network-identity image of the default local
 identity for the purpose of initiating security contexts, then
 the principal corresponding to that identity shall be used,
 otherwise

 (iv) A user-configurable default identity should be used.

 GSS_Accept_sec_context:

 (i) If there is only a single authorized principal identity
 capable of accepting security contexts, then that principal
 shall be used, otherwise

 (ii) If the mechanism can determine the identity of the target
 principal by examining the context-establishment token, and if
 the accepting application is authorized to act as that
 principal for the purpose of accepting security contexts, then
 that principal identity shall be used, otherwise

 (iii) If the mechanism supports context acceptance by any
 principal, and mutual authentication was not requested, any
 principal that the application is authorized to accept security
 contexts under may be used, otherwise

 (iv) A user-configurable default identity shall be used.

 The purpose of the above rules is to allow security contexts to be
 established by both initiator and acceptor using the default behavior
 wherever possible. Applications requesting default behavior are
 likely to be more portable across mechanisms and platforms than those
 that use GSS_Acquire_cred() to request a specific identity.

1.1.2: Tokens

 Tokens are data elements transferred between GSS-API callers, and are
 divided into two classes. Context-level tokens are exchanged in order
 to establish and manage a security context between peers. Per-message
 tokens relate to an established context and are exchanged to provide

Linn Standards Track [Page 9]

RFC 2743 GSS-API January 2000

 protective security services (i.e., data origin authentication,
 integrity, and optional confidentiality) for corresponding data
 messages.

 The first context-level token obtained from GSS_Init_sec_context() is
 required to indicate at its very beginning a globally-interpretable
 mechanism identifier, i.e., an Object Identifier (OID) of the
 security mechanism. The remaining part of this token as well as the
 whole content of all other tokens are specific to the particular
 underlying mechanism used to support the GSS-API. Section 3.1 of this
 document provides, for designers of GSS-API mechanisms, the
 description of the header of the first context-level token which is
 then followed by mechanism-specific information.

 Tokens’ contents are opaque from the viewpoint of GSS-API callers.
 They are generated within the GSS-API implementation at an end
 system, provided to a GSS-API caller to be transferred to the peer
 GSS-API caller at a remote end system, and processed by the GSS-API
 implementation at that remote end system.

 Context-level tokens may be output by GSS-API calls (and should be
 transferred to GSS-API peers) whether or not the calls’ status
 indicators indicate successful completion. Per-message tokens, in
 contrast, are to be returned only upon successful completion of per-
 message calls. Zero-length tokens are never returned by GSS routines
 for transfer to a peer. Token transfer may take place in an in-band
 manner, integrated into the same protocol stream used by the GSS-API
 callers for other data transfers, or in an out-of-band manner across
 a logically separate channel.

 Different GSS-API tokens are used for different purposes (e.g.,
 context initiation, context acceptance, protected message data on an
 established context), and it is the responsibility of a GSS-API
 caller receiving tokens to distinguish their types, associate them
 with corresponding security contexts, and pass them to appropriate
 GSS-API processing routines. Depending on the caller protocol
 environment, this distinction may be accomplished in several ways.

 The following examples illustrate means through which tokens’ types
 may be distinguished:

 - implicit tagging based on state information (e.g., all tokens on
 a new association are considered to be context establishment
 tokens until context establishment is completed, at which point
 all tokens are considered to be wrapped data objects for that
 context),

Linn Standards Track [Page 10]

RFC 2743 GSS-API January 2000

 - explicit tagging at the caller protocol level,

 - a hybrid of these approaches.

 Commonly, the encapsulated data within a token includes internal
 mechanism-specific tagging information, enabling mechanism-level
 processing modules to distinguish tokens used within the mechanism
 for different purposes. Such internal mechanism-level tagging is
 recommended to mechanism designers, and enables mechanisms to
 determine whether a caller has passed a particular token for
 processing by an inappropriate GSS-API routine.

 Development of GSS-API mechanisms based on a particular underlying
 cryptographic technique and protocol (i.e., conformant to a specific
 GSS-API mechanism definition) does not necessarily imply that GSS-API
 callers using that GSS-API mechanism will be able to interoperate
 with peers invoking the same technique and protocol outside the GSS-
 API paradigm, or with peers implementing a different GSS-API
 mechanism based on the same underlying technology. The format of
 GSS-API tokens defined in conjunction with a particular mechanism,
 and the techniques used to integrate those tokens into callers’
 protocols, may not be interoperable with the tokens used by non-GSS-
 API callers of the same underlying technique.

1.1.3: Security Contexts

 Security contexts are established between peers, using credentials
 established locally in conjunction with each peer or received by
 peers via delegation. Multiple contexts may exist simultaneously
 between a pair of peers, using the same or different sets of
 credentials. Coexistence of multiple contexts using different
 credentials allows graceful rollover when credentials expire.
 Distinction among multiple contexts based on the same credentials
 serves applications by distinguishing different message streams in a
 security sense.

 The GSS-API is independent of underlying protocols and addressing
 structure, and depends on its callers to transport GSS-API-provided
 data elements. As a result of these factors, it is a caller
 responsibility to parse communicated messages, separating GSS-API-
 related data elements from caller-provided data. The GSS-API is
 independent of connection vs. connectionless orientation of the
 underlying communications service.

 No correlation between security context and communications protocol
 association is dictated. (The optional channel binding facility,
 discussed in Section 1.1.6 of this document, represents an
 intentional exception to this rule, supporting additional protection

Linn Standards Track [Page 11]

RFC 2743 GSS-API January 2000

 features within GSS-API supporting mechanisms.) This separation
 allows the GSS-API to be used in a wide range of communications
 environments, and also simplifies the calling sequences of the
 individual calls. In many cases (depending on underlying security
 protocol, associated mechanism, and availability of cached
 information), the state information required for context setup can be
 sent concurrently with initial signed user data, without interposing
 additional message exchanges. Messages may be protected and
 transferred in both directions on an established GSS-API security
 context concurrently; protection of messages in one direction does
 not interfere with protection of messages in the reverse direction.

 GSS-API implementations are expected to retain inquirable context
 data on a context until the context is released by a caller, even
 after the context has expired, although underlying cryptographic data
 elements may be deleted after expiration in order to limit their
 exposure.

1.1.4: Mechanism Types

 In order to successfully establish a security context with a target
 peer, it is necessary to identify an appropriate underlying mechanism
 type (mech_type) which both initiator and target peers support. The
 definition of a mechanism embodies not only the use of a particular
 cryptographic technology (or a hybrid or choice among alternative
 cryptographic technologies), but also definition of the syntax and
 semantics of data element exchanges which that mechanism will employ
 in order to support security services.

 It is recommended that callers initiating contexts specify the
 "default" mech_type value, allowing system-specific functions within
 or invoked by the GSS-API implementation to select the appropriate
 mech_type, but callers may direct that a particular mech_type be
 employed when necessary.

 For GSS-API purposes, the phrase "negotiating mechanism" refers to a
 mechanism which itself performs negotiation in order to select a
 concrete mechanism which is shared between peers and is then used for
 context establishment. Only those mechanisms which are defined in
 their specifications as negotiating mechanisms are to yield selected
 mechanisms with different identifier values than the value which is
 input by a GSS-API caller, except for the case of a caller requesting
 the "default" mech_type.

 The means for identifying a shared mech_type to establish a security
 context with a peer will vary in different environments and
 circumstances; examples include (but are not limited to):

Linn Standards Track [Page 12]

RFC 2743 GSS-API January 2000

 use of a fixed mech_type, defined by configuration, within an
 environment

 syntactic convention on a target-specific basis, through
 examination of a target’s name lookup of a target’s name in a
 naming service or other database in order to identify mech_types
 supported by that target

 explicit negotiation between GSS-API callers in advance of
 security context setup

 use of a negotiating mechanism

 When transferred between GSS-API peers, mech_type specifiers (per
 Section 3 of this document, represented as Object Identifiers (OIDs))
 serve to qualify the interpretation of associated tokens. (The
 structure and encoding of Object Identifiers is defined in [ISOIEC-
 8824] and [ISOIEC-8825].) Use of hierarchically structured OIDs
 serves to preclude ambiguous interpretation of mech_type specifiers.
 The OID representing the DASS ([RFC-1507]) MechType, for example, is
 1.3.12.2.1011.7.5, and that of the Kerberos V5 mechanism ([RFC-
 1964]), having been advanced to the level of Proposed Standard, is
 1.2.840.113554.1.2.2.

1.1.5: Naming

 The GSS-API avoids prescribing naming structures, treating the names
 which are transferred across the interface in order to initiate and
 accept security contexts as opaque objects. This approach supports
 the GSS-API’s goal of implementability atop a range of underlying
 security mechanisms, recognizing the fact that different mechanisms
 process and authenticate names which are presented in different
 forms. Generalized services offering translation functions among
 arbitrary sets of naming environments are outside the scope of the
 GSS-API; availability and use of local conversion functions to
 translate among the naming formats supported within a given end
 system is anticipated.

 Different classes of name representations are used in conjunction
 with different GSS-API parameters:

 - Internal form (denoted in this document by INTERNAL NAME),
 opaque to callers and defined by individual GSS-API
 implementations. GSS-API implementations supporting multiple
 namespace types must maintain internal tags to disambiguate the
 interpretation of particular names. A Mechanism Name (MN) is a
 special case of INTERNAL NAME, guaranteed to contain elements

Linn Standards Track [Page 13]

RFC 2743 GSS-API January 2000

 corresponding to one and only one mechanism; calls which are
 guaranteed to emit MNs or which require MNs as input are so
 identified within this specification.

 - Contiguous string ("flat") form (denoted in this document by
 OCTET STRING); accompanied by OID tags identifying the namespace
 to which they correspond. Depending on tag value, flat names may
 or may not be printable strings for direct acceptance from and
 presentation to users. Tagging of flat names allows GSS-API
 callers and underlying GSS-API mechanisms to disambiguate name
 types and to determine whether an associated name’s type is one
 which they are capable of processing, avoiding aliasing problems
 which could result from misinterpreting a name of one type as a
 name of another type.

 - The GSS-API Exported Name Object, a special case of flat name
 designated by a reserved OID value, carries a canonicalized form
 of a name suitable for binary comparisons.

 In addition to providing means for names to be tagged with types,
 this specification defines primitives to support a level of naming
 environment independence for certain calling applications. To provide
 basic services oriented towards the requirements of callers which
 need not themselves interpret the internal syntax and semantics of
 names, GSS-API calls for name comparison (GSS_Compare_name()),
 human-readable display (GSS_Display_name()), input conversion
 (GSS_Import_name()), internal name deallocation (GSS_Release_name()),
 and internal name duplication (GSS_Duplicate_name()) functions are
 defined. (It is anticipated that these proposed GSS-API calls will be
 implemented in many end systems based on system-specific name
 manipulation primitives already extant within those end systems;
 inclusion within the GSS-API is intended to offer GSS-API callers a
 portable means to perform specific operations, supportive of
 authorization and audit requirements, on authenticated names.)

 GSS_Import_name() implementations can, where appropriate, support
 more than one printable syntax corresponding to a given namespace
 (e.g., alternative printable representations for X.500 Distinguished
 Names), allowing flexibility for their callers to select among
 alternative representations. GSS_Display_name() implementations
 output a printable syntax selected as appropriate to their
 operational environments; this selection is a local matter. Callers
 desiring portability across alternative printable syntaxes should
 refrain from implementing comparisons based on printable name forms
 and should instead use the GSS_Compare_name() call to determine
 whether or not one internal-format name matches another.

Linn Standards Track [Page 14]

RFC 2743 GSS-API January 2000

 When used in large access control lists, the overhead of invoking
 GSS_Import_name() and GSS_Compare_name() on each name from the ACL
 may be prohibitive. As an alternative way of supporting this case,
 GSS-API defines a special form of the contiguous string name which
 may be compared directly (e.g., with memcmp()). Contiguous names
 suitable for comparison are generated by the GSS_Export_name()
 routine, which requires an MN as input. Exported names may be re-
 imported by the GSS_Import_name() routine, and the resulting internal
 name will also be an MN. The symbolic constant GSS_C_NT_EXPORT_NAME
 identifies the "export name" type. Structurally, an exported name
 object consists of a header containing an OID identifying the
 mechanism that authenticated the name, and a trailer containing the
 name itself, where the syntax of the trailer is defined by the
 individual mechanism specification. The precise format of an
 exported name is defined in Section 3.2 of this specification.

 Note that the results obtained by using GSS_Compare_name() will in
 general be different from those obtained by invoking
 GSS_Canonicalize_name() and GSS_Export_name(), and then comparing the
 exported names. The first series of operations determines whether
 two (unauthenticated) names identify the same principal; the second
 whether a particular mechanism would authenticate them as the same
 principal. These two operations will in general give the same
 results only for MNs.

 The following diagram illustrates the intended dataflow among name-
 related GSS-API processing routines.

Linn Standards Track [Page 15]

RFC 2743 GSS-API January 2000

 GSS-API library defaults
 |
 |
 V text, for
 text --------------> internal_name (IN) -----------> display only
 import_name() / display_name()
 /
 /
 /
 accept_sec_context() /
 | /
 | /
 | / canonicalize_name()
 | /
 | /
 | /
 | /
 | /
 | |
 V V <---------------------
 single mechanism import_name() exported name: flat
 internal_name (MN) binary "blob" usable
 ----------------------> for access control
 export_name()

1.1.6: Channel Bindings

 The GSS-API accommodates the concept of caller-provided channel
 binding ("chan_binding") information. Channel bindings are used to
 strengthen the quality with which peer entity authentication is
 provided during context establishment, by limiting the scope within
 which an intercepted context establishment token can be reused by an
 attacker. Specifically, they enable GSS-API callers to bind the
 establishment of a security context to relevant characteristics
 (e.g., addresses, transformed representations of encryption keys) of
 the underlying communications channel, of protection mechanisms
 applied to that communications channel, and to application-specific
 data.

 The caller initiating a security context must determine the
 appropriate channel binding values to provide as input to the
 GSS_Init_sec_context() call, and consistent values must be provided
 to GSS_Accept_sec_context() by the context’s target, in order for
 both peers’ GSS-API mechanisms to validate that received tokens
 possess correct channel-related characteristics. Use or non-use of
 the GSS-API channel binding facility is a caller option. GSS-API
 mechanisms can operate in an environment where NULL channel bindings
 are presented; mechanism implementors are encouraged, but not

Linn Standards Track [Page 16]

RFC 2743 GSS-API January 2000

 required, to make use of caller-provided channel binding data within
 their mechanisms. Callers should not assume that underlying
 mechanisms provide confidentiality protection for channel binding
 information.

 When non-NULL channel bindings are provided by callers, certain
 mechanisms can offer enhanced security value by interpreting the
 bindings’ content (rather than simply representing those bindings, or
 integrity check values computed on them, within tokens) and will
 therefore depend on presentation of specific data in a defined
 format. To this end, agreements among mechanism implementors are
 defining conventional interpretations for the contents of channel
 binding arguments, including address specifiers (with content
 dependent on communications protocol environment) for context
 initiators and acceptors. (These conventions are being incorporated
 in GSS-API mechanism specifications and into the GSS-API C language
 bindings specification.) In order for GSS-API callers to be portable
 across multiple mechanisms and achieve the full security
 functionality which each mechanism can provide, it is strongly
 recommended that GSS-API callers provide channel bindings consistent
 with these conventions and those of the networking environment in
 which they operate.

1.2: GSS-API Features and Issues

 This section describes aspects of GSS-API operations, of the security
 services which the GSS-API provides, and provides commentary on
 design issues.

1.2.1: Status Reporting and Optional Service Support

1.2.1.1: Status Reporting

 Each GSS-API call provides two status return values. Major_status
 values provide a mechanism-independent indication of call status
 (e.g., GSS_S_COMPLETE, GSS_S_FAILURE, GSS_S_CONTINUE_NEEDED),
 sufficient to drive normal control flow within the caller in a
 generic fashion. Table 1 summarizes the defined major_status return
 codes in tabular fashion.

 Sequencing-related informatory major_status codes
 (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and
 GSS_S_GAP_TOKEN) can be indicated in conjunction with either
 GSS_S_COMPLETE or GSS_S_FAILURE status for GSS-API per-message calls.
 For context establishment calls, these sequencing-related codes will
 be indicated only in conjunction with GSS_S_FAILURE status (never in

Linn Standards Track [Page 17]

RFC 2743 GSS-API January 2000

 conjunction with GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED), and,
 therefore, always correspond to fatal failures if encountered during
 the context establishment phase.

 Table 1: GSS-API Major Status Codes

 FATAL ERROR CODES

 GSS_S_BAD_BINDINGS channel binding mismatch
 GSS_S_BAD_MECH unsupported mechanism requested
 GSS_S_BAD_NAME invalid name provided
 GSS_S_BAD_NAMETYPE name of unsupported type provided
 GSS_S_BAD_STATUS invalid input status selector
 GSS_S_BAD_SIG token had invalid integrity check
 GSS_S_BAD_MIC preferred alias for GSS_S_BAD_SIG
 GSS_S_CONTEXT_EXPIRED specified security context expired
 GSS_S_CREDENTIALS_EXPIRED expired credentials detected
 GSS_S_DEFECTIVE_CREDENTIAL defective credential detected
 GSS_S_DEFECTIVE_TOKEN defective token detected
 GSS_S_FAILURE failure, unspecified at GSS-API
 level
 GSS_S_NO_CONTEXT no valid security context specified
 GSS_S_NO_CRED no valid credentials provided
 GSS_S_BAD_QOP unsupported QOP value
 GSS_S_UNAUTHORIZED operation unauthorized
 GSS_S_UNAVAILABLE operation unavailable
 GSS_S_DUPLICATE_ELEMENT duplicate credential element requested
 GSS_S_NAME_NOT_MN name contains multi-mechanism elements

 INFORMATORY STATUS CODES

 GSS_S_COMPLETE normal completion
 GSS_S_CONTINUE_NEEDED continuation call to routine
 required
 GSS_S_DUPLICATE_TOKEN duplicate per-message token
 detected
 GSS_S_OLD_TOKEN timed-out per-message token
 detected
 GSS_S_UNSEQ_TOKEN reordered (early) per-message token
 detected
 GSS_S_GAP_TOKEN skipped predecessor token(s)
 detected

 Minor_status provides more detailed status information which may
 include status codes specific to the underlying security mechanism.
 Minor_status values are not specified in this document.

Linn Standards Track [Page 18]

RFC 2743 GSS-API January 2000

 GSS_S_CONTINUE_NEEDED major_status returns, and optional message
 outputs, are provided in GSS_Init_sec_context() and
 GSS_Accept_sec_context() calls so that different mechanisms’
 employment of different numbers of messages within their
 authentication sequences need not be reflected in separate code paths
 within calling applications. Instead, such cases are accommodated
 with sequences of continuation calls to GSS_Init_sec_context() and
 GSS_Accept_sec_context(). The same facility is used to encapsulate
 mutual authentication within the GSS-API’s context initiation calls.

 For mech_types which require interactions with third-party servers in
 order to establish a security context, GSS-API context establishment
 calls may block pending completion of such third-party interactions.
 On the other hand, no GSS-API calls pend on serialized interactions
 with GSS-API peer entities. As a result, local GSS-API status
 returns cannot reflect unpredictable or asynchronous exceptions
 occurring at remote peers, and reflection of such status information
 is a caller responsibility outside the GSS-API.

1.2.1.2: Optional Service Support

 A context initiator may request various optional services at context
 establishment time. Each of these services is requested by setting a
 flag in the req_flags input parameter to GSS_Init_sec_context().

 The optional services currently defined are:

 - Delegation - The (usually temporary) transfer of rights from
 initiator to acceptor, enabling the acceptor to authenticate
 itself as an agent of the initiator.

 - Mutual Authentication - In addition to the initiator
 authenticating its identity to the context acceptor, the context
 acceptor should also authenticate itself to the initiator.

 - Replay detection - In addition to providing message integrity
 services, GSS_GetMIC() and GSS_Wrap() should include message
 numbering information to enable GSS_VerifyMIC() and GSS_Unwrap()
 to detect if a message has been duplicated.

 - Out-of-sequence detection - In addition to providing message
 integrity services, GSS_GetMIC() and GSS_Wrap() should include
 message sequencing information to enable GSS_VerifyMIC() and
 GSS_Unwrap() to detect if a message has been received out of
 sequence.

Linn Standards Track [Page 19]

RFC 2743 GSS-API January 2000

 - Anonymous authentication - The establishment of the security
 context should not reveal the initiator’s identity to the context
 acceptor.

 - Available per-message confidentiality - requests that per-
 message confidentiality services be available on the context.

 - Available per-message integrity - requests that per-message
 integrity services be available on the context.

 Any currently undefined bits within such flag arguments should be
 ignored by GSS-API implementations when presented by an application,
 and should be set to zero when returned to the application by the
 GSS-API implementation.

 Some mechanisms may not support all optional services, and some
 mechanisms may only support some services in conjunction with others.
 Both GSS_Init_sec_context() and GSS_Accept_sec_context() inform the
 applications which services will be available from the context when
 the establishment phase is complete, via the ret_flags output
 parameter. In general, if the security mechanism is capable of
 providing a requested service, it should do so, even if additional
 services must be enabled in order to provide the requested service.
 If the mechanism is incapable of providing a requested service, it
 should proceed without the service, leaving the application to abort
 the context establishment process if it considers the requested
 service to be mandatory.

 Some mechanisms may specify that support for some services is
 optional, and that implementors of the mechanism need not provide it.
 This is most commonly true of the confidentiality service, often
 because of legal restrictions on the use of data-encryption, but may
 apply to any of the services. Such mechanisms are required to send
 at least one token from acceptor to initiator during context
 establishment when the initiator indicates a desire to use such a
 service, so that the initiating GSS-API can correctly indicate
 whether the service is supported by the acceptor’s GSS-API.

1.2.2: Per-Message Security Service Availability

 When a context is established, two flags are returned to indicate the
 set of per-message protection security services which will be
 available on the context:

 the integ_avail flag indicates whether per-message integrity and
 data origin authentication services are available

Linn Standards Track [Page 20]

RFC 2743 GSS-API January 2000

 the conf_avail flag indicates whether per-message confidentiality
 services are available, and will never be returned TRUE unless the
 integ_avail flag is also returned TRUE

 GSS-API callers desiring per-message security services should check
 the values of these flags at context establishment time, and must be
 aware that a returned FALSE value for integ_avail means that
 invocation of GSS_GetMIC() or GSS_Wrap() primitives on the associated
 context will apply no cryptographic protection to user data messages.

 The GSS-API per-message integrity and data origin authentication
 services provide assurance to a receiving caller that protection was
 applied to a message by the caller’s peer on the security context,
 corresponding to the entity named at context initiation. The GSS-API
 per-message confidentiality service provides assurance to a sending
 caller that the message’s content is protected from access by
 entities other than the context’s named peer.

 The GSS-API per-message protection service primitives, as the
 category name implies, are oriented to operation at the granularity
 of protocol data units. They perform cryptographic operations on the
 data units, transfer cryptographic control information in tokens,
 and, in the case of GSS_Wrap(), encapsulate the protected data unit.
 As such, these primitives are not oriented to efficient data
 protection for stream-paradigm protocols (e.g., Telnet) if
 cryptography must be applied on an octet-by-octet basis.

1.2.3: Per-Message Replay Detection and Sequencing

 Certain underlying mech_types offer support for replay detection
 and/or sequencing of messages transferred on the contexts they
 support. These optionally-selectable protection features are distinct
 from replay detection and sequencing features applied to the context
 establishment operation itself; the presence or absence of context-
 level replay or sequencing features is wholly a function of the
 underlying mech_type’s capabilities, and is not selected or omitted
 as a caller option.

 The caller initiating a context provides flags (replay_det_req_flag
 and sequence_req_flag) to specify whether the use of per-message
 replay detection and sequencing features is desired on the context
 being established. The GSS-API implementation at the initiator system
 can determine whether these features are supported (and whether they
 are optionally selectable) as a function of the selected mechanism,
 without need for bilateral negotiation with the target. When enabled,
 these features provide recipients with indicators as a result of
 GSS-API processing of incoming messages, identifying whether those
 messages were detected as duplicates or out-of-sequence. Detection of

Linn Standards Track [Page 21]

RFC 2743 GSS-API January 2000

 such events does not prevent a suspect message from being provided to
 a recipient; the appropriate course of action on a suspect message is
 a matter of caller policy.

 The semantics of the replay detection and sequencing services applied
 to received messages, as visible across the interface which the GSS-
 API provides to its clients, are as follows:

 When replay_det_state is TRUE, the possible major_status returns for
 well-formed and correctly signed messages are as follows:

 1. GSS_S_COMPLETE, without concurrent indication of
 GSS_S_DUPLICATE_TOKEN or GSS_S_OLD_TOKEN, indicates that the
 message was within the window (of time or sequence space) allowing
 replay events to be detected, and that the message was not a
 replay of a previously-processed message within that window.

 2. GSS_S_DUPLICATE_TOKEN indicates that the cryptographic
 checkvalue on the received message was correct, but that the
 message was recognized as a duplicate of a previously-processed
 message. In addition to identifying duplicated tokens originated
 by a context’s peer, this status may also be used to identify
 reflected copies of locally-generated tokens; it is recommended
 that mechanism designers include within their protocols facilities
 to detect and report such tokens.

 3. GSS_S_OLD_TOKEN indicates that the cryptographic checkvalue on
 the received message was correct, but that the message is too old
 to be checked for duplication.

 When sequence_state is TRUE, the possible major_status returns for
 well-formed and correctly signed messages are as follows:

 1. GSS_S_COMPLETE, without concurrent indication of
 GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, or
 GSS_S_GAP_TOKEN, indicates that the message was within the window
 (of time or sequence space) allowing replay events to be detected,
 that the message was not a replay of a previously-processed
 message within that window, and that no predecessor sequenced
 messages are missing relative to the last received message (if
 any) processed on the context with a correct cryptographic
 checkvalue.

 2. GSS_S_DUPLICATE_TOKEN indicates that the integrity check value
 on the received message was correct, but that the message was
 recognized as a duplicate of a previously-processed message. In
 addition to identifying duplicated tokens originated by a
 context’s peer, this status may also be used to identify reflected

Linn Standards Track [Page 22]

RFC 2743 GSS-API January 2000

 copies of locally-generated tokens; it is recommended that
 mechanism designers include within their protocols facilities to
 detect and report such tokens.

 3. GSS_S_OLD_TOKEN indicates that the integrity check value on the
 received message was correct, but that the token is too old to be
 checked for duplication.

 4. GSS_S_UNSEQ_TOKEN indicates that the cryptographic checkvalue
 on the received message was correct, but that it is earlier in a
 sequenced stream than a message already processed on the context.
 [Note: Mechanisms can be architected to provide a stricter form of
 sequencing service, delivering particular messages to recipients
 only after all predecessor messages in an ordered stream have been
 delivered. This type of support is incompatible with the GSS-API
 paradigm in which recipients receive all messages, whether in
 order or not, and provide them (one at a time, without intra-GSS-
 API message buffering) to GSS-API routines for validation. GSS-
 API facilities provide supportive functions, aiding clients to
 achieve strict message stream integrity in an efficient manner in
 conjunction with sequencing provisions in communications
 protocols, but the GSS-API does not offer this level of message
 stream integrity service by itself.]

 5. GSS_S_GAP_TOKEN indicates that the cryptographic checkvalue on
 the received message was correct, but that one or more predecessor
 sequenced messages have not been successfully processed relative
 to the last received message (if any) processed on the context
 with a correct cryptographic checkvalue.

 As the message stream integrity features (especially sequencing) may
 interfere with certain applications’ intended communications
 paradigms, and since support for such features is likely to be
 resource intensive, it is highly recommended that mech_types
 supporting these features allow them to be activated selectively on
 initiator request when a context is established. A context initiator
 and target are provided with corresponding indicators
 (replay_det_state and sequence_state), signifying whether these
 features are active on a given context.

 An example mech_type supporting per-message replay detection could
 (when replay_det_state is TRUE) implement the feature as follows: The
 underlying mechanism would insert timestamps in data elements output
 by GSS_GetMIC() and GSS_Wrap(), and would maintain (within a time-
 limited window) a cache (qualified by originator-recipient pair)
 identifying received data elements processed by GSS_VerifyMIC() and
 GSS_Unwrap(). When this feature is active, exception status returns
 (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN) will be provided when

Linn Standards Track [Page 23]

RFC 2743 GSS-API January 2000

 GSS_VerifyMIC() or GSS_Unwrap() is presented with a message which is
 either a detected duplicate of a prior message or which is too old to
 validate against a cache of recently received messages.

1.2.4: Quality of Protection

 Some mech_types provide their users with fine granularity control
 over the means used to provide per-message protection, allowing
 callers to trade off security processing overhead dynamically against
 the protection requirements of particular messages. A per-message
 quality-of-protection parameter (analogous to quality-of-service, or
 QOS) selects among different QOP options supported by that mechanism.
 On context establishment for a multi-QOP mech_type, context-level
 data provides the prerequisite data for a range of protection
 qualities.

 It is expected that the majority of callers will not wish to exert
 explicit mechanism-specific QOP control and will therefore request
 selection of a default QOP. Definitions of, and choices among, non-
 default QOP values are mechanism-specific, and no ordered sequences
 of QOP values can be assumed equivalent across different mechanisms.
 Meaningful use of non-default QOP values demands that callers be
 familiar with the QOP definitions of an underlying mechanism or
 mechanisms, and is therefore a non-portable construct. The
 GSS_S_BAD_QOP major_status value is defined in order to indicate that
 a provided QOP value is unsupported for a security context, most
 likely because that value is unrecognized by the underlying
 mechanism.

 In the interests of interoperability, mechanisms which allow optional
 support of particular QOP values shall satisfy one of the following
 conditions. Either:

 (i) All implementations of the mechanism are required to be
 capable of processing messages protected using any QOP value,
 regardless of whether they can apply protection corresponding to
 that QOP, or

 (ii) The set of mutually-supported receiver QOP values must be
 determined during context establishment, and messages may be
 protected by either peer using only QOP values from this
 mutually-supported set.

 NOTE: (i) is just a special-case of (ii), where implementations are
 required to support all QOP values on receipt.

Linn Standards Track [Page 24]

RFC 2743 GSS-API January 2000

1.2.5: Anonymity Support

 In certain situations or environments, an application may wish to
 authenticate a peer and/or protect communications using GSS-API per-
 message services without revealing its own identity. For example,
 consider an application which provides read access to a research
 database, and which permits queries by arbitrary requestors. A
 client of such a service might wish to authenticate the service, to
 establish trust in the information received from it, but might not
 wish to disclose its identity to the service for privacy reasons.

 In ordinary GSS-API usage, a context initiator’s identity is made
 available to the context acceptor as part of the context
 establishment process. To provide for anonymity support, a facility
 (input anon_req_flag to GSS_Init_sec_context()) is provided through
 which context initiators may request that their identity not be
 provided to the context acceptor. Mechanisms are not required to
 honor this request, but a caller will be informed (via returned
 anon_state indicator from GSS_Init_sec_context()) whether or not the
 request is honored. Note that authentication as the anonymous
 principal does not necessarily imply that credentials are not
 required in order to establish a context.

 Section 4.5 of this document defines the Object Identifier value used
 to identify an anonymous principal.

 Four possible combinations of anon_state and mutual_state are
 possible, with the following results:

 anon_state == FALSE, mutual_state == FALSE: initiator
 authenticated to target.

 anon_state == FALSE, mutual_state == TRUE: initiator authenticated
 to target, target authenticated to initiator.

 anon_state == TRUE, mutual_state == FALSE: initiator authenticated
 as anonymous principal to target.

 anon_state == TRUE, mutual_state == TRUE: initiator authenticated
 as anonymous principal to target, target authenticated to
 initiator.

1.2.6: Initialization

 No initialization calls (i.e., calls which must be invoked prior to
 invocation of other facilities in the interface) are defined in GSS-
 API. As an implication of this fact, GSS-API implementations must
 themselves be self-initializing.

Linn Standards Track [Page 25]

RFC 2743 GSS-API January 2000

1.2.7: Per-Message Protection During Context Establishment

 A facility is defined in GSS-V2 to enable protection and buffering of
 data messages for later transfer while a security context’s
 establishment is in GSS_S_CONTINUE_NEEDED status, to be used in cases
 where the caller side already possesses the necessary session key to
 enable this processing. Specifically, a new state Boolean, called
 prot_ready_state, is added to the set of information returned by
 GSS_Init_sec_context(), GSS_Accept_sec_context(), and
 GSS_Inquire_context().

 For context establishment calls, this state Boolean is valid and
 interpretable when the associated major_status is either
 GSS_S_CONTINUE_NEEDED, or GSS_S_COMPLETE. Callers of GSS-API (both
 initiators and acceptors) can assume that per-message protection (via
 GSS_Wrap(), GSS_Unwrap(), GSS_GetMIC() and GSS_VerifyMIC()) is
 available and ready for use if either: prot_ready_state == TRUE, or
 major_status == GSS_S_COMPLETE, though mutual authentication (if
 requested) cannot be guaranteed until GSS_S_COMPLETE is returned.
 Callers making use of per-message protection services in advance of
 GSS_S_COMPLETE status should be aware of the possibility that a
 subsequent context establishment step may fail, and that certain
 context data (e.g., mech_type) as returned for subsequent calls may
 change.

 This approach achieves full, transparent backward compatibility for
 GSS-API V1 callers, who need not even know of the existence of
 prot_ready_state, and who will get the expected behavior from
 GSS_S_COMPLETE, but who will not be able to use per-message
 protection before GSS_S_COMPLETE is returned.

 It is not a requirement that GSS-V2 mechanisms ever return TRUE
 prot_ready_state before completion of context establishment (indeed,
 some mechanisms will not evolve usable message protection keys,
 especially at the context acceptor, before context establishment is
 complete). It is expected but not required that GSS-V2 mechanisms
 will return TRUE prot_ready_state upon completion of context
 establishment if they support per-message protection at all (however
 GSS-V2 applications should not assume that TRUE prot_ready_state will
 always be returned together with the GSS_S_COMPLETE major_status,
 since GSS-V2 implementations may continue to support GSS-V1 mechanism
 code, which will never return TRUE prot_ready_state).

 When prot_ready_state is returned TRUE, mechanisms shall also set
 those context service indicator flags (deleg_state, mutual_state,
 replay_det_state, sequence_state, anon_state, trans_state,
 conf_avail, integ_avail) which represent facilities confirmed, at
 that time, to be available on the context being established. In

Linn Standards Track [Page 26]

RFC 2743 GSS-API January 2000

 situations where prot_ready_state is returned before GSS_S_COMPLETE,
 it is possible that additional facilities may be confirmed and
 subsequently indicated when GSS_S_COMPLETE is returned.

1.2.8: Implementation Robustness

 This section recommends aspects of GSS-API implementation behavior in
 the interests of overall robustness.

 Invocation of GSS-API calls is to incur no undocumented side effects
 visible at the GSS-API level.

 If a token is presented for processing on a GSS-API security context
 and that token generates a fatal error in processing or is otherwise
 determined to be invalid for that context, the context’s state should
 not be disrupted for purposes of processing subsequent valid tokens.

 Certain local conditions at a GSS-API implementation (e.g.,
 unavailability of memory) may preclude, temporarily or permanently,
 the successful processing of tokens on a GSS-API security context,
 typically generating GSS_S_FAILURE major_status returns along with
 locally-significant minor_status. For robust operation under such
 conditions, the following recommendations are made:

 Failing calls should free any memory they allocate, so that
 callers may retry without causing further loss of resources.

 Failure of an individual call on an established context should not
 preclude subsequent calls from succeeding on the same context.

 Whenever possible, it should be possible for
 GSS_Delete_sec_context() calls to be successfully processed even
 if other calls cannot succeed, thereby enabling context-related
 resources to be released.

 A failure of GSS_GetMIC() or GSS_Wrap() due to an attempt to use an
 unsupported QOP will not interfere with context validity, nor shall
 such a failure impact the ability of the application to subsequently
 invoke GSS_GetMIC() or GSS_Wrap() using a supported QOP. Any state
 information concerning sequencing of outgoing messages shall be
 unchanged by an unsuccessful call of GSS_GetMIC() or GSS_Wrap().

Linn Standards Track [Page 27]

RFC 2743 GSS-API January 2000

1.2.9: Delegation

 The GSS-API allows delegation to be controlled by the initiating
 application via a Boolean parameter to GSS_Init_sec_context(), the
 routine that establishes a security context. Some mechanisms do not
 support delegation, and for such mechanisms attempts by an
 application to enable delegation are ignored.

 The acceptor of a security context for which the initiator enabled
 delegation will receive (via the delegated_cred_handle parameter of
 GSS_Accept_sec_context()) a credential handle that contains the
 delegated identity, and this credential handle may be used to
 initiate subsequent GSS-API security contexts as an agent or delegate
 of the initiator. If the original initiator’s identity is "A" and
 the delegate’s identity is "B", then, depending on the underlying
 mechanism, the identity embodied by the delegated credential may be
 either "A" or "B acting for A".

 For many mechanisms that support delegation, a simple Boolean does
 not provide enough control. Examples of additional aspects of
 delegation control that a mechanism might provide to an application
 are duration of delegation, network addresses from which delegation
 is valid, and constraints on the tasks that may be performed by a
 delegate. Such controls are presently outside the scope of the GSS-
 API. GSS-API implementations supporting mechanisms offering
 additional controls should provide extension routines that allow
 these controls to be exercised (perhaps by modifying the initiator’s
 GSS-API credential prior to its use in establishing a context).
 However, the simple delegation control provided by GSS-API should
 always be able to over-ride other mechanism-specific delegation
 controls; if the application instructs GSS_Init_sec_context() that
 delegation is not desired, then the implementation must not permit
 delegation to occur. This is an exception to the general rule that a
 mechanism may enable services even if they are not requested;
 delegation may only be provided at the explicit request of the
 application.

1.2.10: Interprocess Context Transfer

 GSS-API V2 provides routines (GSS_Export_sec_context() and
 GSS_Import_sec_context()) which allow a security context to be
 transferred between processes on a single machine. The most common
 use for such a feature is a client-server design where the server is
 implemented as a single process that accepts incoming security
 contexts, which then launches child processes to deal with the data
 on these contexts. In such a design, the child processes must have
 access to the security context data structure created within the

Linn Standards Track [Page 28]

RFC 2743 GSS-API January 2000

 parent by its call to GSS_Accept_sec_context() so that they can use
 per-message protection services and delete the security context when
 the communication session ends.

 Since the security context data structure is expected to contain
 sequencing information, it is impractical in general to share a
 context between processes. Thus GSS-API provides a call
 (GSS_Export_sec_context()) that the process which currently owns the
 context can call to declare that it has no intention to use the
 context subsequently, and to create an inter-process token containing
 information needed by the adopting process to successfully import the
 context. After successful completion of this call, the original
 security context is made inaccessible to the calling process by GSS-
 API, and any context handles referring to this context are no longer
 valid. The originating process transfers the inter-process token to
 the adopting process, which passes it to GSS_Import_sec_context(),
 and a fresh context handle is created such that it is functionally
 identical to the original context.

 The inter-process token may contain sensitive data from the original
 security context (including cryptographic keys). Applications using
 inter-process tokens to transfer security contexts must take
 appropriate steps to protect these tokens in transit.
 Implementations are not required to support the inter-process
 transfer of security contexts. The ability to transfer a security
 context is indicated when the context is created, by
 GSS_Init_sec_context() or GSS_Accept_sec_context() indicating a TRUE
 trans_state return value.

2: Interface Descriptions

 This section describes the GSS-API’s service interface, dividing the
 set of calls offered into four groups. Credential management calls
 are related to the acquisition and release of credentials by
 principals. Context-level calls are related to the management of
 security contexts between principals. Per-message calls are related
 to the protection of individual messages on established security
 contexts. Support calls provide ancillary functions useful to GSS-API
 callers. Table 2 groups and summarizes the calls in tabular fashion.

 Table 2: GSS-API Calls

 CREDENTIAL MANAGEMENT

 GSS_Acquire_cred acquire credentials for use
 GSS_Release_cred release credentials after use
 GSS_Inquire_cred display information about
 credentials

Linn Standards Track [Page 29]

RFC 2743 GSS-API January 2000

 GSS_Add_cred construct credentials incrementally
 GSS_Inquire_cred_by_mech display per-mechanism credential
 information

 CONTEXT-LEVEL CALLS

 GSS_Init_sec_context initiate outbound security context
 GSS_Accept_sec_context accept inbound security context
 GSS_Delete_sec_context flush context when no longer needed
 GSS_Process_context_token process received control token on
 context
 GSS_Context_time indicate validity time remaining on
 context
 GSS_Inquire_context display information about context
 GSS_Wrap_size_limit determine GSS_Wrap token size limit
 GSS_Export_sec_context transfer context to other process
 GSS_Import_sec_context import transferred context

 PER-MESSAGE CALLS

 GSS_GetMIC apply integrity check, receive as
 token separate from message
 GSS_VerifyMIC validate integrity check token
 along with message
 GSS_Wrap sign, optionally encrypt,
 encapsulate
 GSS_Unwrap decapsulate, decrypt if needed,
 validate integrity check

 SUPPORT CALLS

 GSS_Display_status translate status codes to printable
 form
 GSS_Indicate_mechs indicate mech_types supported on
 local system
 GSS_Compare_name compare two names for equality
 GSS_Display_name translate name to printable form
 GSS_Import_name convert printable name to
 normalized form
 GSS_Release_name free storage of normalized-form
 name
 GSS_Release_buffer free storage of general GSS-allocated
 object
 GSS_Release_OID_set free storage of OID set object
 GSS_Create_empty_OID_set create empty OID set
 GSS_Add_OID_set_member add member to OID set
 GSS_Test_OID_set_member test if OID is member of OID set
 GSS_Inquire_names_for_mech indicate name types supported by

Linn Standards Track [Page 30]

RFC 2743 GSS-API January 2000

 mechanism
 GSS_Inquire_mechs_for_name indicates mechanisms supporting name
 type
 GSS_Canonicalize_name translate name to per-mechanism form
 GSS_Export_name externalize per-mechanism name
 GSS_Duplicate_name duplicate name object

2.1: Credential management calls

 These GSS-API calls provide functions related to the management of
 credentials. Their characterization with regard to whether or not
 they may block pending exchanges with other network entities (e.g.,
 directories or authentication servers) depends in part on OS-specific
 (extra-GSS-API) issues, so is not specified in this document.

 The GSS_Acquire_cred() call is defined within the GSS-API in support
 of application portability, with a particular orientation towards
 support of portable server applications. It is recognized that (for
 certain systems and mechanisms) credentials for interactive users may
 be managed differently from credentials for server processes; in such
 environments, it is the GSS-API implementation’s responsibility to
 distinguish these cases and the procedures for making this
 distinction are a local matter. The GSS_Release_cred() call provides
 a means for callers to indicate to the GSS-API that use of a
 credentials structure is no longer required. The GSS_Inquire_cred()
 call allows callers to determine information about a credentials
 structure. The GSS_Add_cred() call enables callers to append
 elements to an existing credential structure, allowing iterative
 construction of a multi-mechanism credential. The
 GSS_Inquire_cred_by_mech() call enables callers to extract per-
 mechanism information describing a credentials structure.

2.1.1: GSS_Acquire_cred call

 Inputs:

 o desired_name INTERNAL NAME, -- NULL requests locally-determined
 -- default

 o lifetime_req INTEGER, -- in seconds; 0 requests default

 o desired_mechs SET OF OBJECT IDENTIFIER, -- NULL requests
 -- system-selected default

 o cred_usage INTEGER -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
 -- 2=ACCEPT-ONLY

Linn Standards Track [Page 31]

RFC 2743 GSS-API January 2000

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o output_cred_handle CREDENTIAL HANDLE, -- if returned non-NULL,
 -- caller must release with GSS_Release_cred()

 o actual_mechs SET OF OBJECT IDENTIFIER, -- if returned non-NULL,
 -- caller must release with GSS_Release_oid_set()

 o lifetime_rec INTEGER -- in seconds, or reserved value for
 -- INDEFINITE

 Return major_status codes:

 o GSS_S_COMPLETE indicates that requested credentials were
 successfully established, for the duration indicated in lifetime_rec,
 suitable for the usage requested in cred_usage, for the set of
 mech_types indicated in actual_mechs, and that those credentials can
 be referenced for subsequent use with the handle returned in
 output_cred_handle.

 o GSS_S_BAD_MECH indicates that a mech_type unsupported by the GSS-
 API implementation type was requested, causing the credential
 establishment operation to fail.

 o GSS_S_BAD_NAMETYPE indicates that the provided desired_name is
 uninterpretable or of a type unsupported by the applicable underlying
 GSS-API mechanism(s), so no credentials could be established for the
 accompanying desired_name.

 o GSS_S_BAD_NAME indicates that the provided desired_name is
 inconsistent in terms of internally-incorporated type specifier
 information, so no credentials could be established for the
 accompanying desired_name.

 o GSS_S_CREDENTIALS_EXPIRED indicates that underlying credential
 elements corresponding to the requested desired_name have expired, so
 requested credentials could not be established.

 o GSS_S_NO_CRED indicates that no credential elements corresponding
 to the requested desired_name and usage could be accessed, so
 requested credentials could not be established. In particular, this
 status should be returned upon temporary user-fixable conditions

Linn Standards Track [Page 32]

RFC 2743 GSS-API January 2000

 preventing successful credential establishment and upon lack of
 authorization to establish and use credentials associated with the
 identity named in the input desired_name argument.

 o GSS_S_FAILURE indicates that credential establishment failed for
 reasons unspecified at the GSS-API level.

 GSS_Acquire_cred() is used to acquire credentials so that a principal
 can (as a function of the input cred_usage parameter) initiate and/or
 accept security contexts under the identity represented by the
 desired_name input argument. On successful completion, the returned
 output_cred_handle result provides a handle for subsequent references
 to the acquired credentials. Typically, single-user client processes
 requesting that default credential behavior be applied for context
 establishment purposes will have no need to invoke this call.

 A caller may provide the value NULL (GSS_C_NO_NAME) for desired_name,
 which will be interpreted as a request for a credential handle that
 will invoke default behavior when passed to GSS_Init_sec_context(),
 if cred_usage is GSS_C_INITIATE or GSS_C_BOTH, or
 GSS_Accept_sec_context(), if cred_usage is GSS_C_ACCEPT or
 GSS_C_BOTH. It is possible that multiple pre-established credentials
 may exist for the same principal identity (for example, as a result
 of multiple user login sessions) when GSS_Acquire_cred() is called;
 the means used in such cases to select a specific credential are
 local matters. The input lifetime_req argument to GSS_Acquire_cred()
 may provide useful information for local GSS-API implementations to
 employ in making this disambiguation in a manner which will best
 satisfy a caller’s intent.

 This routine is expected to be used primarily by context acceptors,
 since implementations are likely to provide mechanism-specific ways
 of obtaining GSS-API initiator credentials from the system login
 process. Some implementations may therefore not support the
 acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via
 GSS_Acquire_cred() for any name other than GSS_C_NO_NAME, or a name
 resulting from applying GSS_Inquire_context() to an active context,
 or a name resulting from applying GSS_Inquire_cred() against a
 credential handle corresponding to default behavior. It is important
 to recognize that the explicit name which is yielded by resolving a
 default reference may change over time, e.g., as a result of local
 credential element management operations outside GSS-API; once
 resolved, however, the value of such an explicit name will remain
 constant.

 The lifetime_rec result indicates the length of time for which the
 acquired credentials will be valid, as an offset from the present. A
 mechanism may return a reserved value indicating INDEFINITE if no

Linn Standards Track [Page 33]

RFC 2743 GSS-API January 2000

 constraints on credential lifetime are imposed. A caller of
 GSS_Acquire_cred() can request a length of time for which acquired
 credentials are to be valid (lifetime_req argument), beginning at the
 present, or can request credentials with a default validity interval.
 (Requests for postdated credentials are not supported within the
 GSS-API.) Certain mechanisms and implementations may bind in
 credential validity period specifiers at a point preliminary to
 invocation of the GSS_Acquire_cred() call (e.g., in conjunction with
 user login procedures). As a result, callers requesting non-default
 values for lifetime_req must recognize that such requests cannot
 always be honored and must be prepared to accommodate the use of
 returned credentials with different lifetimes as indicated in
 lifetime_rec.

 The caller of GSS_Acquire_cred() can explicitly specify a set of
 mech_types which are to be accommodated in the returned credentials
 (desired_mechs argument), or can request credentials for a system-
 defined default set of mech_types. Selection of the system-specified
 default set is recommended in the interests of application
 portability. The actual_mechs return value may be interrogated by the
 caller to determine the set of mechanisms with which the returned
 credentials may be used.

2.1.2: GSS_Release_cred call

 Input:

 o cred_handle CREDENTIAL HANDLE -- if GSS_C_NO_CREDENTIAL
 -- is specified, the call will complete successfully, but
 -- will have no effect; no credential elements will be
 -- released.

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the credentials referenced by the
 input cred_handle were released for purposes of subsequent access by
 the caller. The effect on other processes which may be authorized
 shared access to such credentials is a local matter.

Linn Standards Track [Page 34]

RFC 2743 GSS-API January 2000

 o GSS_S_NO_CRED indicates that no release operation was performed,
 either because the input cred_handle was invalid or because the
 caller lacks authorization to access the referenced credentials.

 o GSS_S_FAILURE indicates that the release operation failed for
 reasons unspecified at the GSS-API level.

 Provides a means for a caller to explicitly request that credentials
 be released when their use is no longer required. Note that system-
 specific credential management functions are also likely to exist,
 for example to assure that credentials shared among processes are
 properly deleted when all affected processes terminate, even if no
 explicit release requests are issued by those processes. Given the
 fact that multiple callers are not precluded from gaining authorized
 access to the same credentials, invocation of GSS_Release_cred()
 cannot be assumed to delete a particular set of credentials on a
 system-wide basis.

2.1.3: GSS_Inquire_cred call

 Input:

 o cred_handle CREDENTIAL HANDLE -- if GSS_C_NO_CREDENTIAL
 -- is specified, default initiator credentials are queried

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o cred_name INTERNAL NAME, -- caller must release with
 -- GSS_Release_name()

 o lifetime_rec INTEGER -- in seconds, or reserved value for
 -- INDEFINITE

 o cred_usage INTEGER, -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
 -- 2=ACCEPT-ONLY

 o mech_set SET OF OBJECT IDENTIFIER -- caller must release
 -- with GSS_Release_oid_set()

Linn Standards Track [Page 35]

RFC 2743 GSS-API January 2000

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the credentials referenced by the
 input cred_handle argument were valid, and that the output cred_name,
 lifetime_rec, and cred_usage values represent, respectively, the
 credentials’ associated principal name, remaining lifetime, suitable
 usage modes, and supported mechanism types.

 o GSS_S_NO_CRED indicates that no information could be returned
 about the referenced credentials, either because the input
 cred_handle was invalid or because the caller lacks authorization to
 access the referenced credentials.

 o GSS_S_DEFECTIVE_CREDENTIAL indicates that the referenced
 credentials are invalid.

 o GSS_S_CREDENTIALS_EXPIRED indicates that the referenced
 credentials have expired.

 o GSS_S_FAILURE indicates that the operation failed for reasons
 unspecified at the GSS-API level.

 The GSS_Inquire_cred() call is defined primarily for the use of those
 callers which request use of default credential behavior rather than
 acquiring credentials explicitly with GSS_Acquire_cred(). It enables
 callers to determine a credential structure’s associated principal
 name, remaining validity period, usability for security context
 initiation and/or acceptance, and supported mechanisms.

 For a multi-mechanism credential, the returned "lifetime" specifier
 indicates the shortest lifetime of any of the mechanisms’ elements in
 the credential (for either context initiation or acceptance
 purposes).

 GSS_Inquire_cred() should indicate INITIATE-AND-ACCEPT for
 "cred_usage" if both of the following conditions hold:

 (1) there exists in the credential an element which allows context
 initiation using some mechanism

 (2) there exists in the credential an element which allows context
 acceptance using some mechanism (allowably, but not necessarily,
 one of the same mechanism(s) qualifying for (1)).

 If condition (1) holds but not condition (2), GSS_Inquire_cred()
 should indicate INITIATE-ONLY for "cred_usage". If condition (2)
 holds but not condition (1), GSS_Inquire_cred() should indicate
 ACCEPT-ONLY for "cred_usage".

Linn Standards Track [Page 36]

RFC 2743 GSS-API January 2000

 Callers requiring finer disambiguation among available combinations
 of lifetimes, usage modes, and mechanisms should call the
 GSS_Inquire_cred_by_mech() routine, passing that routine one of the
 mech OIDs returned by GSS_Inquire_cred().

2.1.4: GSS_Add_cred call

 Inputs:

 o input_cred_handle CREDENTIAL HANDLE -- handle to credential
 -- structure created with prior GSS_Acquire_cred() or
 -- GSS_Add_cred() call; see text for definition of behavior
 -- when GSS_C_NO_CREDENTIAL provided.

 o desired_name INTERNAL NAME

 o initiator_time_req INTEGER -- in seconds; 0 requests default

 o acceptor_time_req INTEGER -- in seconds; 0 requests default

 o desired_mech OBJECT IDENTIFIER

 o cred_usage INTEGER -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
 -- 2=ACCEPT-ONLY

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o output_cred_handle CREDENTIAL HANDLE, -- NULL to request that
 -- credential elements be added "in place" to the credential
 -- structure identified by input_cred_handle,
 -- non-NULL pointer to request that
 -- a new credential structure and handle be created.
 -- if credential handle returned, caller must release with
 -- GSS_Release_cred()

 o actual_mechs SET OF OBJECT IDENTIFIER, -- if returned, caller must
 -- release with GSS_Release_oid_set()

 o initiator_time_rec INTEGER -- in seconds, or reserved value for
 -- INDEFINITE

 o acceptor_time_rec INTEGER -- in seconds, or reserved value for
 -- INDEFINITE

Linn Standards Track [Page 37]

RFC 2743 GSS-API January 2000

 o cred_usage INTEGER, -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
 -- 2=ACCEPT-ONLY

 o mech_set SET OF OBJECT IDENTIFIER -- full set of mechanisms
 -- supported by resulting credential.

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the credentials referenced by the
 input_cred_handle argument were valid, and that the resulting
 credential from GSS_Add_cred() is valid for the durations indicated
 in initiator_time_rec and acceptor_time_rec, suitable for the usage
 requested in cred_usage, and for the mechanisms indicated in
 actual_mechs.

 o GSS_S_DUPLICATE_ELEMENT indicates that the input desired_mech
 specified a mechanism for which the referenced credential already
 contained a credential element with overlapping cred_usage and
 validity time specifiers.

 o GSS_S_BAD_MECH indicates that the input desired_mech specified a
 mechanism unsupported by the GSS-API implementation, causing the
 GSS_Add_cred() operation to fail.

 o GSS_S_BAD_NAMETYPE indicates that the provided desired_name is
 uninterpretable or of a type unsupported by the applicable underlying
 GSS-API mechanism(s), so the GSS_Add_cred() operation could not be
 performed for that name.

 o GSS_S_BAD_NAME indicates that the provided desired_name is
 inconsistent in terms of internally-incorporated type specifier
 information, so the GSS_Add_cred() operation could not be performed
 for that name.

 o GSS_S_NO_CRED indicates that the input_cred_handle referenced
 invalid or inaccessible credentials. In particular, this status
 should be returned upon temporary user-fixable conditions preventing
 successful credential establishment or upon lack of authorization to
 establish or use credentials representing the requested identity.

 o GSS_S_CREDENTIALS_EXPIRED indicates that referenced credential
 elements have expired, so the GSS_Add_cred() operation could not be
 performed.

 o GSS_S_FAILURE indicates that the operation failed for reasons
 unspecified at the GSS-API level.

Linn Standards Track [Page 38]

RFC 2743 GSS-API January 2000

 GSS_Add_cred() enables callers to construct credentials iteratively
 by adding credential elements in successive operations, corresponding
 to different mechanisms. This offers particular value in multi-
 mechanism environments, as the major_status and minor_status values
 returned on each iteration are individually visible and can therefore
 be interpreted unambiguously on a per-mechanism basis. A credential
 element is identified by the name of the principal to which it
 refers. GSS-API implementations must impose a local access control
 policy on callers of this routine to prevent unauthorized callers
 from acquiring credential elements to which they are not entitled.
 This routine is not intended to provide a "login to the network"
 function, as such a function would involve the creation of new
 mechanism-specific authentication data, rather than merely acquiring
 a GSS-API handle to existing data. Such functions, if required,
 should be defined in implementation-specific extension routines.

 If credential acquisition is time-consuming for a mechanism, the
 mechanism may choose to delay the actual acquisition until the
 credential is required (e.g. by GSS_Init_sec_context() or
 GSS_Accept_sec_context()). Such mechanism-specific implementation
 decisions should be invisible to the calling application; thus a call
 of GSS_Inquire_cred() immediately following the call of
 GSS_Acquire_cred() must return valid credential data, and may
 therefore incur the overhead of a deferred credential acquisition.

 If GSS_C_NO_CREDENTIAL is specified as input_cred_handle, a non-NULL
 output_cred_handle must be supplied. For the case of
 GSS_C_NO_CREDENTIAL as input_cred_handle, GSS_Add_cred() will create
 the credential referenced by its output_cred_handle based on default
 behavior. That is, the call will have the same effect as if the
 caller had previously called GSS_Acquire_cred(), specifying the same
 usage and passing GSS_C_NO_NAME as the desired_name parameter
 (thereby obtaining an explicit credential handle corresponding to
 default behavior), had passed that credential handle to
 GSS_Add_cred(), and had finally called GSS_Release_cred() on the
 credential handle received from GSS_Acquire_cred().

 This routine is expected to be used primarily by context acceptors,
 since implementations are likely to provide mechanism-specific ways
 of obtaining GSS-API initiator credentials from the system login
 process. Some implementations may therefore not support the
 acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via
 GSS_Acquire_cred() for any name other than GSS_C_NO_NAME, or a name
 resulting from applying GSS_Inquire_context() to an active context,
 or a name resulting from applying GSS_Inquire_cred() against a
 credential handle corresponding to default behavior. It is important
 to recognize that the explicit name which is yielded by resolving a
 default reference may change over time, e.g., as a result of local

Linn Standards Track [Page 39]

RFC 2743 GSS-API January 2000

 credential element management operations outside GSS-API; once
 resolved, however, the value of such an explicit name will remain
 constant.

 A caller may provide the value NULL (GSS_C_NO_NAME) for desired_name,
 which will be interpreted as a request for a credential handle that
 will invoke default behavior when passed to GSS_Init_sec_context(),
 if cred_usage is GSS_C_INITIATE or GSS_C_BOTH, or
 GSS_Accept_sec_context(), if cred_usage is GSS_C_ACCEPT or
 GSS_C_BOTH.

 The same input desired_name, or default reference, should be used on
 all GSS_Acquire_cred() and GSS_Add_cred() calls corresponding to a
 particular credential.

2.1.5: GSS_Inquire_cred_by_mech call

 Inputs:

 o cred_handle CREDENTIAL HANDLE -- if GSS_C_NO_CREDENTIAL
 -- specified, default initiator credentials are queried

 o mech_type OBJECT IDENTIFIER -- specific mechanism for
 -- which credentials are being queried

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o cred_name INTERNAL NAME, -- guaranteed to be MN; caller must
 -- release with GSS_Release_name()

 o lifetime_rec_initiate INTEGER -- in seconds, or reserved value for
 -- INDEFINITE

 o lifetime_rec_accept INTEGER -- in seconds, or reserved value for
 -- INDEFINITE

 o cred_usage INTEGER, -- 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
 -- 2=ACCEPT-ONLY

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the credentials referenced by the
 input cred_handle argument were valid, that the mechanism indicated
 by the input mech_type was represented with elements within those

Linn Standards Track [Page 40]

RFC 2743 GSS-API January 2000

 credentials, and that the output cred_name, lifetime_rec_initiate,
 lifetime_rec_accept, and cred_usage values represent, respectively,
 the credentials’ associated principal name, remaining lifetimes, and
 suitable usage modes.

 o GSS_S_NO_CRED indicates that no information could be returned
 about the referenced credentials, either because the input
 cred_handle was invalid or because the caller lacks authorization to
 access the referenced credentials.

 o GSS_S_DEFECTIVE_CREDENTIAL indicates that the referenced
 credentials are invalid.

 o GSS_S_CREDENTIALS_EXPIRED indicates that the referenced
 credentials have expired.

 o GSS_S_BAD_MECH indicates that the referenced credentials do not
 contain elements for the requested mechanism.

 o GSS_S_FAILURE indicates that the operation failed for reasons
 unspecified at the GSS-API level.

 The GSS_Inquire_cred_by_mech() call enables callers in multi-
 mechanism environments to acquire specific data about available
 combinations of lifetimes, usage modes, and mechanisms within a
 credential structure. The lifetime_rec_initiate result indicates the
 available lifetime for context initiation purposes; the
 lifetime_rec_accept result indicates the available lifetime for
 context acceptance purposes.

2.2: Context-level calls

 This group of calls is devoted to the establishment and management of
 security contexts between peers. A context’s initiator calls
 GSS_Init_sec_context(), resulting in generation of a token which the
 caller passes to the target. At the target, that token is passed to
 GSS_Accept_sec_context(). Depending on the underlying mech_type and
 specified options, additional token exchanges may be performed in the
 course of context establishment; such exchanges are accommodated by
 GSS_S_CONTINUE_NEEDED status returns from GSS_Init_sec_context() and
 GSS_Accept_sec_context().

 Either party to an established context may invoke
 GSS_Delete_sec_context() to flush context information when a context
 is no longer required. GSS_Process_context_token() is used to process
 received tokens carrying context-level control information.
 GSS_Context_time() allows a caller to determine the length of time
 for which an established context will remain valid.

Linn Standards Track [Page 41]

RFC 2743 GSS-API January 2000

 GSS_Inquire_context() returns status information describing context
 characteristics. GSS_Wrap_size_limit() allows a caller to determine
 the size of a token which will be generated by a GSS_Wrap()
 operation. GSS_Export_sec_context() and GSS_Import_sec_context()
 enable transfer of active contexts between processes on an end
 system.

2.2.1: GSS_Init_sec_context call

 Inputs:

 o claimant_cred_handle CREDENTIAL HANDLE, -- NULL specifies "use
 -- default"

 o input_context_handle CONTEXT HANDLE, -- 0
 -- (GSS_C_NO_CONTEXT) specifies "none assigned yet"

 o targ_name INTERNAL NAME,

 o mech_type OBJECT IDENTIFIER, -- NULL parameter specifies "use
 -- default"

 o deleg_req_flag BOOLEAN,

 o mutual_req_flag BOOLEAN,

 o replay_det_req_flag BOOLEAN,

 o sequence_req_flag BOOLEAN,

 o anon_req_flag BOOLEAN,

 o conf_req_flag BOOLEAN,

 o integ_req_flag BOOLEAN,

 o lifetime_req INTEGER, -- 0 specifies default lifetime

 o chan_bindings OCTET STRING,

 o input_token OCTET STRING -- NULL or token received from target

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

Linn Standards Track [Page 42]

RFC 2743 GSS-API January 2000

 o output_context_handle CONTEXT HANDLE, -- once returned non-NULL,
 -- caller must release with GSS_Delete_sec_context()

 o mech_type OBJECT IDENTIFIER, -- actual mechanism always
 -- indicated, never NULL; caller should treat as read-only
 -- and should not attempt to release

 o output_token OCTET STRING, -- NULL or token to pass to context
 -- target; caller must release with GSS_Release_buffer()

 o deleg_state BOOLEAN,

 o mutual_state BOOLEAN,

 o replay_det_state BOOLEAN,

 o sequence_state BOOLEAN,

 o anon_state BOOLEAN,

 o trans_state BOOLEAN,

 o prot_ready_state BOOLEAN, -- see Section 1.2.7

 o conf_avail BOOLEAN,

 o integ_avail BOOLEAN,

 o lifetime_rec INTEGER -- in seconds, or reserved value for
 -- INDEFINITE

 This call may block pending network interactions for those mech_types
 in which an authentication server or other network entity must be
 consulted on behalf of a context initiator in order to generate an
 output_token suitable for presentation to a specified target.

 Return major_status codes:

 o GSS_S_COMPLETE indicates that context-level information was
 successfully initialized, and that the returned output_token will
 provide sufficient information for the target to perform per-message
 processing on the newly-established context.

 o GSS_S_CONTINUE_NEEDED indicates that control information in the
 returned output_token must be sent to the target, and that a reply
 must be received and passed as the input_token argument

Linn Standards Track [Page 43]

RFC 2743 GSS-API January 2000

 to a continuation call to GSS_Init_sec_context(), before per-message
 processing can be performed in conjunction with this context (unless
 the prot_ready_state value is concurrently returned TRUE).

 o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
 on the input_token failed, preventing further processing from being
 performed based on that token.

 o GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks
 performed on the credential structure referenced by
 claimant_cred_handle failed, preventing further processing from being
 performed using that credential structure.

 o GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that the received
 input_token contains an incorrect integrity check, so context setup
 cannot be accomplished.

 o GSS_S_NO_CRED indicates that no context was established, either
 because the input cred_handle was invalid, because the referenced
 credentials are valid for context acceptor use only, because the
 caller lacks authorization to access the referenced credentials, or
 because the resolution of default credentials failed.

 o GSS_S_CREDENTIALS_EXPIRED indicates that the credentials provided
 through the input claimant_cred_handle argument are no longer valid,
 so context establishment cannot be completed.

 o GSS_S_BAD_BINDINGS indicates that a mismatch between the caller-
 provided chan_bindings and those extracted from the input_token was
 detected, signifying a security-relevant event and preventing context
 establishment. (This result will be returned by
 GSS_Init_sec_context() only for contexts where mutual_state is TRUE.)

 o GSS_S_OLD_TOKEN indicates that the input_token is too old to be
 checked for integrity. This is a fatal error during context
 establishment.

 o GSS_S_DUPLICATE_TOKEN indicates that the input token has a correct
 integrity check, but is a duplicate of a token already processed.
 This is a fatal error during context establishment.

 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided; this major status will be
 returned only for successor calls following GSS_S_CONTINUE_ NEEDED
 status returns.

Linn Standards Track [Page 44]

RFC 2743 GSS-API January 2000

 o GSS_S_BAD_NAMETYPE indicates that the provided targ_name is of a
 type uninterpretable or unsupported by the applicable underlying
 GSS-API mechanism(s), so context establishment cannot be completed.

 o GSS_S_BAD_NAME indicates that the provided targ_name is
 inconsistent in terms of internally-incorporated type specifier
 information, so context establishment cannot be accomplished.

 o GSS_S_BAD_MECH indicates receipt of a context establishment token
 or of a caller request specifying a mechanism unsupported by the
 local system or with the caller’s active credentials

 o GSS_S_FAILURE indicates that context setup could not be
 accomplished for reasons unspecified at the GSS-API level, and that
 no interface-defined recovery action is available.

 This routine is used by a context initiator, and ordinarily emits an
 output_token suitable for use by the target within the selected
 mech_type’s protocol. For the case of a multi-step exchange, this
 output_token will be one in a series, each generated by a successive
 call. Using information in the credentials structure referenced by
 claimant_cred_handle, GSS_Init_sec_context() initializes the data
 structures required to establish a security context with target
 targ_name.

 The targ_name may be any valid INTERNAL NAME; it need not be an MN.
 In addition to support for other name types, it is recommended (newly
 as of GSS-V2, Update 1) that mechanisms be able to accept
 GSS_C_NO_NAME as an input type for targ_name. While recommended,
 such support is not required, and it is recognized that not all
 mechanisms can construct tokens without explicitly naming the context
 target, even when mutual authentication of the target is not
 obtained. Callers wishing to make use of this facility and concerned
 with portability should be aware that support for GSS_C_NO_NAME as
 input targ_name type is unlikely to be provided within mechanism
 definitions specified prior to GSS-V2, Update 1.

 The claimant_cred_handle must correspond to the same valid
 credentials structure on the initial call to GSS_Init_sec_context()
 and on any successor calls resulting from GSS_S_CONTINUE_NEEDED
 status returns; different protocol sequences modeled by the
 GSS_S_CONTINUE_NEEDED facility will require access to credentials at
 different points in the context establishment sequence.

 The caller-provided input_context_handle argument is to be 0
 (GSS_C_NO_CONTEXT), specifying "not yet assigned", on the first
 GSS_Init_sec_context() call relating to a given context. If
 successful (i.e., if accompanied by major_status GSS_S_COMPLETE or

Linn Standards Track [Page 45]

RFC 2743 GSS-API January 2000

 GSS_S_CONTINUE_NEEDED), and only if successful, the initial
 GSS_Init_sec_context() call returns a non-zero output_context_handle
 for use in future references to this context. Once a non-zero
 output_context_handle has been returned, GSS-API callers should call
 GSS_Delete_sec_context() to release context-related resources if
 errors occur in later phases of context establishment, or when an
 established context is no longer required. If GSS_Init_sec_context()
 is passed the handle of a context which is already fully established,
 GSS_S_FAILURE status is returned.

 When continuation attempts to GSS_Init_sec_context() are needed to
 perform context establishment, the previously-returned non-zero
 handle value is entered into the input_context_handle argument and
 will be echoed in the returned output_context_handle argument. On
 such continuation attempts (and only on continuation attempts) the
 input_token value is used, to provide the token returned from the
 context’s target.

 The chan_bindings argument is used by the caller to provide
 information binding the security context to security-related
 characteristics (e.g., addresses, cryptographic keys) of the
 underlying communications channel. See Section 1.1.6 of this document
 for more discussion of this argument’s usage.

 The input_token argument contains a message received from the target,
 and is significant only on a call to GSS_Init_sec_context() which
 follows a previous return indicating GSS_S_CONTINUE_NEEDED
 major_status.

 It is the caller’s responsibility to establish a communications path
 to the target, and to transmit any returned output_token (independent
 of the accompanying returned major_status value) to the target over
 that path. The output_token can, however, be transmitted along with
 the first application-provided input message to be processed by
 GSS_GetMIC() or GSS_Wrap() in conjunction with a successfully-
 established context. (Note: when the GSS-V2 prot_ready_state
 indicator is returned TRUE, it can be possible to transfer a
 protected message before context establishment is complete: see also
 Section 1.2.7)

 The initiator may request various context-level functions through
 input flags: the deleg_req_flag requests delegation of access rights,
 the mutual_req_flag requests mutual authentication, the
 replay_det_req_flag requests that replay detection features be
 applied to messages transferred on the established context, and the
 sequence_req_flag requests that sequencing be enforced. (See Section

Linn Standards Track [Page 46]

RFC 2743 GSS-API January 2000

 1.2.3 for more information on replay detection and sequencing
 features.) The anon_req_flag requests that the initiator’s identity
 not be transferred within tokens to be sent to the acceptor.

 The conf_req_flag and integ_req_flag provide informatory inputs to
 the GSS-API implementation as to whether, respectively, per-message
 confidentiality and per-message integrity services will be required
 on the context. This information is important as an input to
 negotiating mechanisms. It is important to recognize, however, that
 the inclusion of these flags (which are newly defined for GSS-V2)
 introduces a backward incompatibility with callers implemented to
 GSS-V1, where the flags were not defined. Since no GSS-V1 callers
 would set these flags, even if per-message services are desired,
 GSS-V2 mechanism implementations which enable such services
 selectively based on the flags’ values may fail to provide them to
 contexts established for GSS-V1 callers. It may be appropriate under
 certain circumstances, therefore, for such mechanism implementations
 to infer these service request flags to be set if a caller is known
 to be implemented to GSS-V1.

 Not all of the optionally-requestable features will be available in
 all underlying mech_types. The corresponding return state values
 deleg_state, mutual_state, replay_det_state, and sequence_state
 indicate, as a function of mech_type processing capabilities and
 initiator-provided input flags, the set of features which will be
 active on the context. The returned trans_state value indicates
 whether the context is transferable to other processes through use of
 GSS_Export_sec_context(). These state indicators’ values are
 undefined unless either the routine’s major_status indicates
 GSS_S_COMPLETE, or TRUE prot_ready_state is returned along with
 GSS_S_CONTINUE_NEEDED major_status; for the latter case, it is
 possible that additional features, not confirmed or indicated along
 with TRUE prot_ready_state, will be confirmed and indicated when
 GSS_S_COMPLETE is subsequently returned.

 The returned anon_state and prot_ready_state values are significant
 for both GSS_S_COMPLETE and GSS_S_CONTINUE_NEEDED major_status
 returns from GSS_Init_sec_context(). When anon_state is returned
 TRUE, this indicates that neither the current token nor its
 predecessors delivers or has delivered the initiator’s identity.
 Callers wishing to perform context establishment only if anonymity
 support is provided should transfer a returned token from
 GSS_Init_sec_context() to the peer only if it is accompanied by a
 TRUE anon_state indicator. When prot_ready_state is returned TRUE in
 conjunction with GSS_S_CONTINUE_NEEDED major_status, this indicates
 that per-message protection operations may be applied on the context:
 see Section 1.2.7 for further discussion of this facility.

Linn Standards Track [Page 47]

RFC 2743 GSS-API January 2000

 Failure to provide the precise set of features requested by the
 caller does not cause context establishment to fail; it is the
 caller’s prerogative to delete the context if the feature set
 provided is unsuitable for the caller’s use.

 The returned mech_type value indicates the specific mechanism
 employed on the context; it will never indicate the value for
 "default". A valid mech_type result must be returned along with a
 GSS_S_COMPLETE status return; GSS-API implementations may (but are
 not required to) also return mech_type along with predecessor calls
 indicating GSS_S_CONTINUE_NEEDED status or (if a mechanism is
 determinable) in conjunction with fatal error cases. For the case of
 mechanisms which themselves perform negotiation, the returned
 mech_type result may indicate selection of a mechanism identified by
 an OID different than that passed in the input mech_type argument,
 and the returned value may change between successive calls returning
 GSS_S_CONTINUE_NEEDED and the final call returning GSS_S_COMPLETE.

 The conf_avail return value indicates whether the context supports
 per-message confidentiality services, and so informs the caller
 whether or not a request for encryption through the conf_req_flag
 input to GSS_Wrap() can be honored. In similar fashion, the
 integ_avail return value indicates whether per-message integrity
 services are available (through either GSS_GetMIC() or GSS_Wrap()) on
 the established context. These state indicators’ values are undefined
 unless either the routine’s major_status indicates GSS_S_COMPLETE, or
 TRUE prot_ready_state is returned along with GSS_S_CONTINUE_NEEDED
 major_status.

 The lifetime_req input specifies a desired upper bound for the
 lifetime of the context to be established, with a value of 0 used to
 request a default lifetime. The lifetime_rec return value indicates
 the length of time for which the context will be valid, expressed as
 an offset from the present; depending on mechanism capabilities,
 credential lifetimes, and local policy, it may not correspond to the
 value requested in lifetime_req. If no constraints on context
 lifetime are imposed, this may be indicated by returning a reserved
 value representing INDEFINITE lifetime_req. The value of lifetime_rec
 is undefined unless the routine’s major_status indicates
 GSS_S_COMPLETE.

 If the mutual_state is TRUE, this fact will be reflected within the
 output_token. A call to GSS_Accept_sec_context() at the target in
 conjunction with such a context will return a token, to be processed
 by a continuation call to GSS_Init_sec_context(), in order to achieve
 mutual authentication.

Linn Standards Track [Page 48]

RFC 2743 GSS-API January 2000

2.2.2: GSS_Accept_sec_context call

 Inputs:

 o acceptor_cred_handle CREDENTIAL HANDLE, -- NULL specifies
 -- "use default"

 o input_context_handle CONTEXT HANDLE, -- 0
 -- (GSS_C_NO_CONTEXT) specifies "not yet assigned"

 o chan_bindings OCTET STRING,

 o input_token OCTET STRING

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o src_name INTERNAL NAME, -- guaranteed to be MN
 -- once returned, caller must release with GSS_Release_name()

 o mech_type OBJECT IDENTIFIER, -- caller should treat as
 -- read-only; does not need to be released

 o output_context_handle CONTEXT HANDLE, -- once returned
 -- non-NULL in context establishment sequence, caller
 -- must release with GSS_Delete_sec_context()

 o deleg_state BOOLEAN,

 o mutual_state BOOLEAN,

 o replay_det_state BOOLEAN,

 o sequence_state BOOLEAN,

 o anon_state BOOLEAN,

 o trans_state BOOLEAN,

 o prot_ready_state BOOLEAN, -- see Section 1.2.7 for discussion

 o conf_avail BOOLEAN,

 o integ_avail BOOLEAN,

Linn Standards Track [Page 49]

RFC 2743 GSS-API January 2000

 o lifetime_rec INTEGER, -- in seconds, or reserved value for
 -- INDEFINITE

 o delegated_cred_handle CREDENTIAL HANDLE, -- if returned non-NULL,
 -- caller must release with GSS_Release_cred()

 o output_token OCTET STRING -- NULL or token to pass to context
 -- initiator; if returned non-NULL, caller must release with
 -- GSS_Release_buffer()

 This call may block pending network interactions for those mech_types
 in which a directory service or other network entity must be
 consulted on behalf of a context acceptor in order to validate a
 received input_token.

 Return major_status codes:

 o GSS_S_COMPLETE indicates that context-level data structures were
 successfully initialized, and that per-message processing can now be
 performed in conjunction with this context.

 o GSS_S_CONTINUE_NEEDED indicates that control information in the
 returned output_token must be sent to the initiator, and that a
 response must be received and passed as the input_token argument to a
 continuation call to GSS_Accept_sec_context(), before per-message
 processing can be performed in conjunction with this context.

 o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
 on the input_token failed, preventing further processing from being
 performed based on that token.

 o GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks
 performed on the credential structure referenced by
 acceptor_cred_handle failed, preventing further processing from being
 performed using that credential structure.

 o GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that the received
 input_token contains an incorrect integrity check, so context setup
 cannot be accomplished.

 o GSS_S_DUPLICATE_TOKEN indicates that the integrity check on the
 received input_token was correct, but that the input_token was
 recognized as a duplicate of an input_token already processed. No new
 context is established.

Linn Standards Track [Page 50]

RFC 2743 GSS-API January 2000

 o GSS_S_OLD_TOKEN indicates that the integrity check on the received
 input_token was correct, but that the input_token is too old to be
 checked for duplication against previously-processed input_tokens. No
 new context is established.

 o GSS_S_NO_CRED indicates that no context was established, either
 because the input cred_handle was invalid, because the referenced
 credentials are valid for context initiator use only, because the
 caller lacks authorization to access the referenced credentials, or
 because the procedure for default credential resolution failed.

 o GSS_S_CREDENTIALS_EXPIRED indicates that the credentials provided
 through the input acceptor_cred_handle argument are no longer valid,
 so context establishment cannot be completed.

 o GSS_S_BAD_BINDINGS indicates that a mismatch between the caller-
 provided chan_bindings and those extracted from the input_token was
 detected, signifying a security-relevant event and preventing context
 establishment.

 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided; this major status will be
 returned only for successor calls following GSS_S_CONTINUE_ NEEDED
 status returns.

 o GSS_S_BAD_MECH indicates receipt of a context establishment token
 specifying a mechanism unsupported by the local system or with the
 caller’s active credentials.

 o GSS_S_FAILURE indicates that context setup could not be
 accomplished for reasons unspecified at the GSS-API level, and that
 no interface-defined recovery action is available.

 The GSS_Accept_sec_context() routine is used by a context target.
 Using information in the credentials structure referenced by the
 input acceptor_cred_handle, it verifies the incoming input_token and
 (following the successful completion of a context establishment
 sequence) returns the authenticated src_name and the mech_type used.
 The returned src_name is guaranteed to be an MN, processed by the
 mechanism under which the context was established. The
 acceptor_cred_handle must correspond to the same valid credentials
 structure on the initial call to GSS_Accept_sec_context() and on any
 successor calls resulting from GSS_S_CONTINUE_NEEDED status returns;
 different protocol sequences modeled by the GSS_S_CONTINUE_NEEDED
 mechanism will require access to credentials at different points in
 the context establishment sequence.

Linn Standards Track [Page 51]

RFC 2743 GSS-API January 2000

 The caller-provided input_context_handle argument is to be 0
 (GSS_C_NO_CONTEXT), specifying "not yet assigned", on the first
 GSS_Accept_sec_context() call relating to a given context. If
 successful (i.e., if accompanied by major_status GSS_S_COMPLETE or
 GSS_S_CONTINUE_NEEDED), and only if successful, the initial
 GSS_Accept_sec_context() call returns a non-zero
 output_context_handle for use in future references to this context.
 Once a non-zero output_context_handle has been returned, GSS-API
 callers should call GSS_Delete_sec_context() to release context-
 related resources if errors occur in later phases of context
 establishment, or when an established context is no longer required.
 If GSS_Accept_sec_context() is passed the handle of a context which
 is already fully established, GSS_S_FAILURE status is returned.

 The chan_bindings argument is used by the caller to provide
 information binding the security context to security-related
 characteristics (e.g., addresses, cryptographic keys) of the
 underlying communications channel. See Section 1.1.6 of this document
 for more discussion of this argument’s usage.

 The returned state results (deleg_state, mutual_state,
 replay_det_state, sequence_state, anon_state, trans_state, and
 prot_ready_state) reflect the same information as described for
 GSS_Init_sec_context(), and their values are significant under the
 same return state conditions.

 The conf_avail return value indicates whether the context supports
 per-message confidentiality services, and so informs the caller
 whether or not a request for encryption through the conf_req_flag
 input to GSS_Wrap() can be honored. In similar fashion, the
 integ_avail return value indicates whether per-message integrity
 services are available (through either GSS_GetMIC() or GSS_Wrap())
 on the established context. These values are significant under the
 same return state conditions as described under
 GSS_Init_sec_context().

 The lifetime_rec return value is significant only in conjunction with
 GSS_S_COMPLETE major_status, and indicates the length of time for
 which the context will be valid, expressed as an offset from the
 present.

 The returned mech_type value indicates the specific mechanism
 employed on the context; it will never indicate the value for
 "default". A valid mech_type result must be returned whenever
 GSS_S_COMPLETE status is indicated; GSS-API implementations may (but
 are not required to) also return mech_type along with predecessor
 calls indicating GSS_S_CONTINUE_NEEDED status or (if a mechanism is
 determinable) in conjunction with fatal error cases. For the case of

Linn Standards Track [Page 52]

RFC 2743 GSS-API January 2000

 mechanisms which themselves perform negotiation, the returned
 mech_type result may indicate selection of a mechanism identified by
 an OID different than that passed in the input mech_type argument,
 and the returned value may change between successive calls returning
 GSS_S_CONTINUE_NEEDED and the final call returning GSS_S_COMPLETE.

 The delegated_cred_handle result is significant only when deleg_state
 is TRUE, and provides a means for the target to reference the
 delegated credentials. The output_token result, when non-NULL,
 provides a context-level token to be returned to the context
 initiator to continue a multi-step context establishment sequence. As
 noted with GSS_Init_sec_context(), any returned token should be
 transferred to the context’s peer (in this case, the context
 initiator), independent of the value of the accompanying returned
 major_status.

 Note: A target must be able to distinguish a context-level
 input_token, which is passed to GSS_Accept_sec_context(), from the
 per-message data elements passed to GSS_VerifyMIC() or GSS_Unwrap().
 These data elements may arrive in a single application message, and
 GSS_Accept_sec_context() must be performed before per-message
 processing can be performed successfully.

2.2.3: GSS_Delete_sec_context call

 Input:

 o context_handle CONTEXT HANDLE

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o output_context_token OCTET STRING

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the context was recognized, and that
 relevant context-specific information was flushed. If the caller
 provides a non-null buffer to receive an output_context_token, and
 the mechanism returns a non-NULL token into that buffer, the returned
 output_context_token is ready for transfer to the context’s peer.

 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided, so no deletion was performed.

Linn Standards Track [Page 53]

RFC 2743 GSS-API January 2000

 o GSS_S_FAILURE indicates that the context is recognized, but that
 the GSS_Delete_sec_context() operation could not be performed for
 reasons unspecified at the GSS-API level.

 This call can be made by either peer in a security context, to flush
 context-specific information. Once a non-zero output_context_handle
 has been returned by context establishment calls, GSS-API callers
 should call GSS_Delete_sec_context() to release context-related
 resources if errors occur in later phases of context establishment,
 or when an established context is no longer required. This call may
 block pending network interactions for mech_types in which active
 notification must be made to a central server when a security context
 is to be deleted.

 If a non-null output_context_token parameter is provided by the
 caller, an output_context_token may be returned to the caller. If an
 output_context_token is provided to the caller, it can be passed to
 the context’s peer to inform the peer’s GSS-API implementation that
 the peer’s corresponding context information can also be flushed.
 (Once a context is established, the peers involved are expected to
 retain cached credential and context-related information until the
 information’s expiration time is reached or until a
 GSS_Delete_sec_context() call is made.)

 The facility for context_token usage to signal context deletion is
 retained for compatibility with GSS-API Version 1. For current
 usage, it is recommended that both peers to a context invoke
 GSS_Delete_sec_context() independently, passing a null
 output_context_token buffer to indicate that no context_token is
 required. Implementations of GSS_Delete_sec_context() should delete
 relevant locally-stored context information.

 Attempts to perform per-message processing on a deleted context will
 result in error returns.

2.2.4: GSS_Process_context_token call

 Inputs:

 o context_handle CONTEXT HANDLE,

 o input_context_token OCTET STRING

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

Linn Standards Track [Page 54]

RFC 2743 GSS-API January 2000

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the input_context_token was
 successfully processed in conjunction with the context referenced by
 context_handle.

 o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
 on the received context_token failed, preventing further processing
 from being performed with that token.

 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided.

 o GSS_S_FAILURE indicates that the context is recognized, but that
 the GSS_Process_context_token() operation could not be performed for
 reasons unspecified at the GSS-API level.

 This call is used to process context_tokens received from a peer once
 a context has been established, with corresponding impact on
 context-level state information. One use for this facility is
 processing of the context_tokens generated by
 GSS_Delete_sec_context(); GSS_Process_context_token() will not block
 pending network interactions for that purpose. Another use is to
 process tokens indicating remote-peer context establishment failures
 after the point where the local GSS-API implementation has already
 indicated GSS_S_COMPLETE status.

2.2.5: GSS_Context_time call

 Input:

 o context_handle CONTEXT HANDLE,

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o lifetime_rec INTEGER -- in seconds, or reserved value for
 -- INDEFINITE

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the referenced context is valid, and
 will remain valid for the amount of time indicated in lifetime_rec.

Linn Standards Track [Page 55]

RFC 2743 GSS-API January 2000

 o GSS_S_CONTEXT_EXPIRED indicates that data items related to the
 referenced context have expired.

 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided.

 o GSS_S_FAILURE indicates that the requested operation failed for
 reasons unspecified at the GSS-API level.

 This call is used to determine the amount of time for which a
 currently established context will remain valid.

2.2.6: GSS_Inquire_context call

 Input:

 o context_handle CONTEXT HANDLE,

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o src_name INTERNAL NAME, -- name of context initiator,
 -- guaranteed to be MN;
 -- caller must release with GSS_Release_name() if returned

 o targ_name INTERNAL NAME, -- name of context target,
 -- guaranteed to be MN;
 -- caller must release with GSS_Release_name() if returned

 o lifetime_rec INTEGER -- in seconds, or reserved value for
 -- INDEFINITE or EXPIRED

 o mech_type OBJECT IDENTIFIER, -- the mechanism supporting this
 -- security context; caller should treat as read-only and not
 -- attempt to release

 o deleg_state BOOLEAN,

 o mutual_state BOOLEAN,

 o replay_det_state BOOLEAN,

 o sequence_state BOOLEAN,

 o anon_state BOOLEAN,

Linn Standards Track [Page 56]

RFC 2743 GSS-API January 2000

 o trans_state BOOLEAN,

 o prot_ready_state BOOLEAN,

 o conf_avail BOOLEAN,

 o integ_avail BOOLEAN,

 o locally_initiated BOOLEAN, -- TRUE if initiator, FALSE if acceptor

 o open BOOLEAN, -- TRUE if context fully established, FALSE
 -- if partly established (in CONTINUE_NEEDED state)

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the referenced context is valid and
 that deleg_state, mutual_state, replay_det_state, sequence_state,
 anon_state, trans_state, prot_ready_state, conf_avail, integ_avail,
 locally_initiated, and open return values describe the corresponding
 characteristics of the context. If open is TRUE, lifetime_rec is
 also returned: if open is TRUE and the context peer’s name is known,
 src_name and targ_name are valid in addition to the values listed
 above. The mech_type value must be returned for contexts where open
 is TRUE and may be returned for contexts where open is FALSE.

 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided. Return values other than
 major_status and minor_status are undefined.

 o GSS_S_FAILURE indicates that the requested operation failed for
 reasons unspecified at the GSS-API level. Return values other than
 major_status and minor_status are undefined.

 This call is used to extract information describing characteristics
 of a security context. Note that GSS-API implementations are
 expected to retain inquirable context data on a context until the
 context is released by a caller, even after the context has expired,
 although underlying cryptographic data elements may be deleted after
 expiration in order to limit their exposure.

2.2.7: GSS_Wrap_size_limit call

 Inputs:

 o context_handle CONTEXT HANDLE,

 o conf_req_flag BOOLEAN,

Linn Standards Track [Page 57]

RFC 2743 GSS-API January 2000

 o qop INTEGER,

 o output_size INTEGER

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o max_input_size INTEGER

 Return major_status codes:

 o GSS_S_COMPLETE indicates a successful token size determination:
 an input message with a length in octets equal to the returned
 max_input_size value will, when passed to GSS_Wrap() for processing
 on the context identified by the context_handle parameter with the
 confidentiality request state as provided in conf_req_flag and with
 the quality of protection specifier provided in the qop parameter,
 yield an output token no larger than the value of the provided
 output_size parameter.

 o GSS_S_CONTEXT_EXPIRED indicates that the provided input
 context_handle is recognized, but that the referenced context has
 expired. Return values other than major_status and minor_status are
 undefined.

 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided. Return values other than
 major_status and minor_status are undefined.

 o GSS_S_BAD_QOP indicates that the provided QOP value is not
 recognized or supported for the context.

 o GSS_S_FAILURE indicates that the requested operation failed for
 reasons unspecified at the GSS-API level. Return values other than
 major_status and minor_status are undefined.

 This call is used to determine the largest input datum which may be
 passed to GSS_Wrap() without yielding an output token larger than a
 caller-specified value.

Linn Standards Track [Page 58]

RFC 2743 GSS-API January 2000

2.2.8: GSS_Export_sec_context call

 Inputs:

 o context_handle CONTEXT HANDLE

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o interprocess_token OCTET STRING -- caller must release
 -- with GSS_Release_buffer()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the referenced context has been
 successfully exported to a representation in the interprocess_token,
 and is no longer available for use by the caller.

 o GSS_S_UNAVAILABLE indicates that the context export facility is
 not available for use on the referenced context. (This status should
 occur only for contexts for which the trans_state value is FALSE.)
 Return values other than major_status and minor_status are undefined.

 o GSS_S_CONTEXT_EXPIRED indicates that the provided input
 context_handle is recognized, but that the referenced context has
 expired. Return values other than major_status and minor_status are
 undefined.

 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided. Return values other than
 major_status and minor_status are undefined.

 o GSS_S_FAILURE indicates that the requested operation failed for
 reasons unspecified at the GSS-API level. Return values other than
 major_status and minor_status are undefined.

 This call generates an interprocess token for transfer to another
 process within an end system, in order to transfer control of a
 security context to that process. The recipient of the interprocess
 token will call GSS_Import_sec_context() to accept the transfer. The
 GSS_Export_sec_context() operation is defined for use only with
 security contexts which are fully and successfully established (i.e.,
 those for which GSS_Init_sec_context() and GSS_Accept_sec_context()
 have returned GSS_S_COMPLETE major_status).

Linn Standards Track [Page 59]

RFC 2743 GSS-API January 2000

 A successful GSS_Export_sec_context() operation deactivates the
 security context for the calling process; for this case, the GSS-API
 implementation shall deallocate all process-wide resources associated
 with the security context and shall set the context_handle to
 GSS_C_NO_CONTEXT. In the event of an error that makes it impossible
 to complete export of the security context, the GSS-API
 implementation must not return an interprocess token and should
 strive to leave the security context referenced by the context_handle
 untouched. If this is impossible, it is permissible for the
 implementation to delete the security context, provided that it also
 sets the context_handle parameter to GSS_C_NO_CONTEXT.

 Portable callers must not assume that a given interprocess token can
 be imported by GSS_Import_sec_context() more than once, thereby
 creating multiple instantiations of a single context. GSS-API
 implementations may detect and reject attempted multiple imports, but
 are not required to do so.

 The internal representation contained within the interprocess token
 is an implementation-defined local matter. Interprocess tokens
 cannot be assumed to be transferable across different GSS-API
 implementations.

 It is recommended that GSS-API implementations adopt policies suited
 to their operational environments in order to define the set of
 processes eligible to import a context, but specific constraints in
 this area are local matters. Candidate examples include transfers
 between processes operating on behalf of the same user identity, or
 processes comprising a common job. However, it may be impossible to
 enforce such policies in some implementations.

 In support of the above goals, implementations may protect the
 transferred context data by using cryptography to protect data within
 the interprocess token, or by using interprocess tokens as a means to
 reference local interprocess communication facilities (protected by
 other means) rather than storing the context data directly within the
 tokens.

 Transfer of an open context may, for certain mechanisms and
 implementations, reveal data about the credential which was used to
 establish the context. Callers should, therefore, be cautious about
 the trustworthiness of processes to which they transfer contexts.
 Although the GSS-API implementation may provide its own set of
 protections over the exported context, the caller is responsible for
 protecting the interprocess token from disclosure, and for taking
 care that the context is transferred to an appropriate destination
 process.

Linn Standards Track [Page 60]

RFC 2743 GSS-API January 2000

2.2.9: GSS_Import_sec_context call

 Inputs:

 o interprocess_token OCTET STRING

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o context_handle CONTEXT HANDLE -- if successfully returned,
 -- caller must release with GSS_Delete_sec_context()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the context represented by the input
 interprocess_token has been successfully transferred to the caller,
 and is available for future use via the output context_handle.

 o GSS_S_NO_CONTEXT indicates that the context represented by the
 input interprocess_token was invalid. Return values other than
 major_status and minor_status are undefined.

 o GSS_S_DEFECTIVE_TOKEN indicates that the input interprocess_token
 was defective. Return values other than major_status and
 minor_status are undefined.

 o GSS_S_UNAVAILABLE indicates that the context import facility is
 not available for use on the referenced context. Return values other
 than major_status and minor_status are undefined.

 o GSS_S_UNAUTHORIZED indicates that the context represented by the
 input interprocess_token is unauthorized for transfer to the caller.
 Return values other than major_status and minor_status are undefined.

 o GSS_S_FAILURE indicates that the requested operation failed for
 reasons unspecified at the GSS-API level. Return values other than
 major_status and minor_status are undefined.

 This call processes an interprocess token generated by
 GSS_Export_sec_context(), making the transferred context available
 for use by the caller. After a successful GSS_Import_sec_context()
 operation, the imported context is available for use by the importing
 process. In particular, the imported context is usable for all per-
 message operations and may be deleted or exported by its importer.
 The inability to receive delegated credentials through

Linn Standards Track [Page 61]

RFC 2743 GSS-API January 2000

 gss_import_sec_context() precludes establishment of new contexts
 based on information delegated to the importer’s end system within
 the context which is being imported, unless those delegated
 credentials are obtained through separate routines (e.g., XGSS-API
 calls) outside the GSS-V2 definition.

 For further discussion of the security and authorization issues
 regarding this call, please see the discussion in Section 2.2.8.

2.3: Per-message calls

 This group of calls is used to perform per-message protection
 processing on an established security context. None of these calls
 block pending network interactions. These calls may be invoked by a
 context’s initiator or by the context’s target. The four members of
 this group should be considered as two pairs; the output from
 GSS_GetMIC() is properly input to GSS_VerifyMIC(), and the output
 from GSS_Wrap() is properly input to GSS_Unwrap().

 GSS_GetMIC() and GSS_VerifyMIC() support data origin authentication
 and data integrity services. When GSS_GetMIC() is invoked on an input
 message, it yields a per-message token containing data items which
 allow underlying mechanisms to provide the specified security
 services. The original message, along with the generated per-message
 token, is passed to the remote peer; these two data elements are
 processed by GSS_VerifyMIC(), which validates the message in
 conjunction with the separate token.

 GSS_Wrap() and GSS_Unwrap() support caller-requested confidentiality
 in addition to the data origin authentication and data integrity
 services offered by GSS_GetMIC() and GSS_VerifyMIC(). GSS_Wrap()
 outputs a single data element, encapsulating optionally enciphered
 user data as well as associated token data items. The data element
 output from GSS_Wrap() is passed to the remote peer and processed by
 GSS_Unwrap() at that system. GSS_Unwrap() combines decipherment (as
 required) with validation of data items related to authentication and
 integrity.

 Although zero-length tokens are never returned by GSS calls for
 transfer to a context’s peer, a zero-length object may be passed by a
 caller into GSS_Wrap(), in which case the corresponding peer calling
 GSS_Unwrap() on the transferred token will receive a zero-length
 object as output from GSS_Unwrap(). Similarly, GSS_GetMIC() can be
 called on an empty object, yielding a MIC which GSS_VerifyMIC() will
 successfully verify against the active security context in
 conjunction with a zero-length object.

Linn Standards Track [Page 62]

RFC 2743 GSS-API January 2000

2.3.1: GSS_GetMIC call

 Note: This call is functionally equivalent to the GSS_Sign call as
 defined in previous versions of this specification. In the interests
 of backward compatibility, it is recommended that implementations
 support this function under both names for the present; future
 references to this function as GSS_Sign are deprecated.

 Inputs:

 o context_handle CONTEXT HANDLE,

 o qop_req INTEGER, -- 0 specifies default QOP

 o message OCTET STRING

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o per_msg_token OCTET STRING -- caller must release
 -- with GSS_Release_buffer()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that an integrity check, suitable for an
 established security context, was successfully applied and that the
 message and corresponding per_msg_token are ready for transmission.

 o GSS_S_CONTEXT_EXPIRED indicates that context-related data items
 have expired, so that the requested operation cannot be performed.

 o GSS_S_NO_CONTEXT indicates that no context was recognized for the
 input context_handle provided.

 o GSS_S_BAD_QOP indicates that the provided QOP value is not
 recognized or supported for the context.

 o GSS_S_FAILURE indicates that the context is recognized, but that
 the requested operation could not be performed for reasons
 unspecified at the GSS-API level.

 Using the security context referenced by context_handle, apply an
 integrity check to the input message (along with timestamps and/or
 other data included in support of mech_type-specific mechanisms) and
 (if GSS_S_COMPLETE status is indicated) return the result in

Linn Standards Track [Page 63]

RFC 2743 GSS-API January 2000

 per_msg_token. The qop_req parameter, interpretation of which is
 discussed in Section 1.2.4, allows quality-of-protection control. The
 caller passes the message and the per_msg_token to the target.

 The GSS_GetMIC() function completes before the message and
 per_msg_token is sent to the peer; successful application of
 GSS_GetMIC() does not guarantee that a corresponding GSS_VerifyMIC()
 has been (or can necessarily be) performed successfully when the
 message arrives at the destination.

 Mechanisms which do not support per-message protection services
 should return GSS_S_FAILURE if this routine is called.

2.3.2: GSS_VerifyMIC call

 Note: This call is functionally equivalent to the GSS_Verify call as
 defined in previous versions of this specification. In the interests
 of backward compatibility, it is recommended that implementations
 support this function under both names for the present; future
 references to this function as GSS_Verify are deprecated.

 Inputs:

 o context_handle CONTEXT HANDLE,

 o message OCTET STRING,

 o per_msg_token OCTET STRING

 Outputs:

 o qop_state INTEGER,

 o major_status INTEGER,

 o minor_status INTEGER,

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the message was successfully
 verified.

 o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
 on the received per_msg_token failed, preventing further processing
 from being performed with that token.

 o GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that the received
 per_msg_token contains an incorrect integrity check for the message.

Linn Standards Track [Page 64]

RFC 2743 GSS-API January 2000

 o GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and
 GSS_S_GAP_TOKEN values appear in conjunction with the optional per-
 message replay detection features described in Section 1.2.3; their
 semantics are described in that section.

 o GSS_S_CONTEXT_EXPIRED indicates that context-related data items
 have expired, so that the requested operation cannot be performed.

 o GSS_S_NO_CONTEXT indicates that no context was recognized for the
 input context_handle provided.

 o GSS_S_FAILURE indicates that the context is recognized, but that
 the GSS_VerifyMIC() operation could not be performed for reasons
 unspecified at the GSS-API level.

 Using the security context referenced by context_handle, verify that
 the input per_msg_token contains an appropriate integrity check for
 the input message, and apply any active replay detection or
 sequencing features. Returns an indication of the quality-of-
 protection applied to the processed message in the qop_state result.

 Mechanisms which do not support per-message protection services
 should return GSS_S_FAILURE if this routine is called.

2.3.3: GSS_Wrap call

 Note: This call is functionally equivalent to the GSS_Seal call as
 defined in previous versions of this specification. In the interests
 of backward compatibility, it is recommended that implementations
 support this function under both names for the present; future
 references to this function as GSS_Seal are deprecated.

 Inputs:

 o context_handle CONTEXT HANDLE,

 o conf_req_flag BOOLEAN,

 o qop_req INTEGER, -- 0 specifies default QOP

 o input_message OCTET STRING

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

Linn Standards Track [Page 65]

RFC 2743 GSS-API January 2000

 o conf_state BOOLEAN,

 o output_message OCTET STRING -- caller must release with
 -- GSS_Release_buffer()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the input_message was successfully
 processed and that the output_message is ready for transmission.

 o GSS_S_CONTEXT_EXPIRED indicates that context-related data items
 have expired, so that the requested operation cannot be performed.

 o GSS_S_NO_CONTEXT indicates that no context was recognized for the
 input context_handle provided.

 o GSS_S_BAD_QOP indicates that the provided QOP value is not
 recognized or supported for the context.

 o GSS_S_FAILURE indicates that the context is recognized, but that
 the GSS_Wrap() operation could not be performed for reasons
 unspecified at the GSS-API level.

 Performs the data origin authentication and data integrity functions
 of GSS_GetMIC(). If the input conf_req_flag is TRUE, requests that
 confidentiality be applied to the input_message. Confidentiality may
 not be supported in all mech_types or by all implementations; the
 returned conf_state flag indicates whether confidentiality was
 provided for the input_message. The qop_req parameter, interpretation
 of which is discussed in Section 1.2.4, allows quality-of-protection
 control.

 When GSS_S_COMPLETE status is returned, the GSS_Wrap() call yields a
 single output_message data element containing (optionally enciphered)
 user data as well as control information.

 Mechanisms which do not support per-message protection services
 should return GSS_S_FAILURE if this routine is called.

2.3.4: GSS_Unwrap call

 Note: This call is functionally equivalent to the GSS_Unseal call as
 defined in previous versions of this specification. In the interests
 of backward compatibility, it is recommended that implementations
 support this function under both names for the present; future
 references to this function as GSS_Unseal are deprecated.

Linn Standards Track [Page 66]

RFC 2743 GSS-API January 2000

 Inputs:

 o context_handle CONTEXT HANDLE,

 o input_message OCTET STRING

 Outputs:

 o conf_state BOOLEAN,

 o qop_state INTEGER,

 o major_status INTEGER,

 o minor_status INTEGER,

 o output_message OCTET STRING -- caller must release with
 -- GSS_Release_buffer()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the input_message was successfully
 processed and that the resulting output_message is available.

 o GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
 on the per_msg_token extracted from the input_message failed,
 preventing further processing from being performed.

 o GSS_S_BAD_SIG (GSS_S_BAD_MIC) indicates that an incorrect
 integrity check was detected for the message.

 o GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and
 GSS_S_GAP_TOKEN values appear in conjunction with the optional per-
 message replay detection features described in Section 1.2.3; their
 semantics are described in that section.

 o GSS_S_CONTEXT_EXPIRED indicates that context-related data items
 have expired, so that the requested operation cannot be performed.

 o GSS_S_NO_CONTEXT indicates that no context was recognized for the
 input context_handle provided.

 o GSS_S_FAILURE indicates that the context is recognized, but that
 the GSS_Unwrap() operation could not be performed for reasons
 unspecified at the GSS-API level.

Linn Standards Track [Page 67]

RFC 2743 GSS-API January 2000

 Processes a data element generated (and optionally enciphered) by
 GSS_Wrap(), provided as input_message. The returned conf_state value
 indicates whether confidentiality was applied to the input_message.
 If conf_state is TRUE, GSS_Unwrap() has deciphered the input_message.
 Returns an indication of the quality-of-protection applied to the
 processed message in the qop_state result. GSS_Unwrap() performs the
 data integrity and data origin authentication checking functions of
 GSS_VerifyMIC() on the plaintext data. Plaintext data is returned in
 output_message.

 Mechanisms which do not support per-message protection services
 should return GSS_S_FAILURE if this routine is called.

2.4: Support calls

 This group of calls provides support functions useful to GSS-API
 callers, independent of the state of established contexts. Their
 characterization with regard to blocking or non-blocking status in
 terms of network interactions is unspecified.

2.4.1: GSS_Display_status call

 Inputs:

 o status_value INTEGER, -- GSS-API major_status or minor_status
 -- return value

 o status_type INTEGER, -- 1 if major_status, 2 if minor_status

 o mech_type OBJECT IDENTIFIER -- mech_type to be used for
 -- minor_status translation

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o status_string_set SET OF OCTET STRING -- required calls for
 -- release by caller are specific to language bindings

 Return major_status codes:

 o GSS_S_COMPLETE indicates that a valid printable status
 representation (possibly representing more than one status event
 encoded within the status_value) is available in the returned
 status_string_set.

Linn Standards Track [Page 68]

RFC 2743 GSS-API January 2000

 o GSS_S_BAD_MECH indicates that translation in accordance with an
 unsupported mech_type was requested, so translation could not be
 performed.

 o GSS_S_BAD_STATUS indicates that the input status_value was
 invalid, or that the input status_type carried a value other than 1
 or 2, so translation could not be performed.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 Provides a means for callers to translate GSS-API-returned major and
 minor status codes into printable string representations. Note: some
 language bindings may employ an iterative approach in order to emit
 successive status components; this approach is acceptable but not
 required for conformance with the current specification.

 Although not contemplated in [RFC-2078], it has been observed that
 some existing GSS-API implementations return GSS_S_CONTINUE_NEEDED
 status when iterating through successive messages returned from
 GSS_Display_status(). This behavior is deprecated;
 GSS_S_CONTINUE_NEEDED should be returned only by
 GSS_Init_sec_context() and GSS_Accept_sec_context(). For maximal
 portability, however, it is recommended that defensive callers be
 able to accept and ignore GSS_S_CONTINUE_NEEDED status if indicated
 by GSS_Display_status() or any other call other than
 GSS_Init_sec_context() or GSS_Accept_sec_context().

2.4.2: GSS_Indicate_mechs call

 Input:

 o (none)

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o mech_set SET OF OBJECT IDENTIFIER -- caller must release
 -- with GSS_Release_oid_set()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that a set of available mechanisms has
 been returned in mech_set.

Linn Standards Track [Page 69]

RFC 2743 GSS-API January 2000

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 Allows callers to determine the set of mechanism types available on
 the local system. This call is intended for support of specialized
 callers who need to request non-default mech_type sets from GSS-API
 calls which accept input mechanism type specifiers.

2.4.3: GSS_Compare_name call

 Inputs:

 o name1 INTERNAL NAME,

 o name2 INTERNAL NAME

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o name_equal BOOLEAN

 Return major_status codes:

 o GSS_S_COMPLETE indicates that name1 and name2 were comparable, and
 that the name_equal result indicates whether name1 and name2
 represent the same entity.

 o GSS_S_BAD_NAMETYPE indicates that the two input names’ types are
 different and incomparable, so that the comparison operation could
 not be completed.

 o GSS_S_BAD_NAME indicates that one or both of the input names was
 ill-formed in terms of its internal type specifier, so the comparison
 operation could not be completed.

 o GSS_S_FAILURE indicates that the call’s operation could not be
 performed for reasons unspecified at the GSS-API level.

 Allows callers to compare two internal name representations to
 determine whether they refer to the same entity. If either name
 presented to GSS_Compare_name() denotes an anonymous principal,
 GSS_Compare_name() shall indicate FALSE. It is not required that
 either or both inputs name1 and name2 be MNs; for some

Linn Standards Track [Page 70]

RFC 2743 GSS-API January 2000

 implementations and cases, GSS_S_BAD_NAMETYPE may be returned,
 indicating name incomparability, for the case where neither input
 name is an MN.

2.4.4: GSS_Display_name call

 Inputs:

 o name INTERNAL NAME

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o name_string OCTET STRING, -- caller must release
 -- with GSS_Release_buffer()

 o name_type OBJECT IDENTIFIER -- caller should treat
 -- as read-only; does not need to be released

 Return major_status codes:

 o GSS_S_COMPLETE indicates that a valid printable name
 representation is available in the returned name_string.

 o GSS_S_BAD_NAME indicates that the contents of the provided name
 were inconsistent with the internally-indicated name type, so no
 printable representation could be generated.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 Allows callers to translate an internal name representation into a
 printable form with associated namespace type descriptor. The syntax
 of the printable form is a local matter.

 If the input name represents an anonymous identity, a reserved value
 (GSS_C_NT_ANONYMOUS) shall be returned for name_type.

 The GSS_C_NO_OID name type is to be returned only when the
 corresponding internal name was created through import with
 GSS_C_NO_OID. It is acceptable for mechanisms to normalize names
 imported with GSS_C_NO_OID into other supported types and, therefore,
 to display them with types other than GSS_C_NO_OID.

Linn Standards Track [Page 71]

RFC 2743 GSS-API January 2000

2.4.5: GSS_Import_name call

 Inputs:

 o input_name_string OCTET STRING,

 o input_name_type OBJECT IDENTIFIER

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o output_name INTERNAL NAME -- caller must release with
 -- GSS_Release_name()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that a valid name representation is
 output in output_name and described by the type value in
 output_name_type.

 o GSS_S_BAD_NAMETYPE indicates that the input_name_type is
 unsupported by the applicable underlying GSS-API mechanism(s), so the
 import operation could not be completed.

 o GSS_S_BAD_NAME indicates that the provided input_name_string is
 ill-formed in terms of the input_name_type, so the import operation
 could not be completed.

 o GSS_S_BAD_MECH indicates that the input presented for import was
 an exported name object and that its enclosed mechanism type was not
 recognized or was unsupported by the GSS-API implementation.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 Allows callers to provide a name representation as a contiguous octet
 string, designate the type of namespace in conjunction with which it
 should be parsed, and convert that representation to an internal form
 suitable for input to other GSS-API routines. The syntax of the
 input_name_string is defined in conjunction with its associated name
 type; depending on the input_name_type, the associated
 input_name_string may or may not be a printable string. If the
 input_name_type’s value is GSS_C_NO_OID, a mechanism-specific default
 printable syntax (which shall be specified in the corresponding GSS-
 V2 mechanism specification) is assumed for the input_name_string;

Linn Standards Track [Page 72]

RFC 2743 GSS-API January 2000

 other input_name_type values as registered by GSS-API implementations
 can be used to indicate specific non-default name syntaxes. Note: The
 input_name_type argument serves to describe and qualify the
 interpretation of the associated input_name_string; it does not
 specify the data type of the returned output_name.

 If a mechanism claims support for a particular name type, its
 GSS_Import_name() operation shall be able to accept all possible
 values conformant to the external name syntax as defined for that
 name type. These imported values may correspond to:

 (1) locally registered entities (for which credentials may be
 acquired),

 (2) non-local entities (for which local credentials cannot be
 acquired, but which may be referenced as targets of initiated
 security contexts or initiators of accepted security contexts), or
 to

 (3) neither of the above.

 Determination of whether a particular name belongs to class (1), (2),
 or (3) as described above is not guaranteed to be performed by the
 GSS_Import_name() function.

 The internal name generated by a GSS_Import_name() operation may be a
 single-mechanism MN, and is likely to be an MN within a single-
 mechanism implementation, but portable callers must not depend on
 this property (and must not, therefore, assume that the output from
 GSS_Import_name() can be passed directly to GSS_Export_name() without
 first being processed through GSS_Canonicalize_name()).

2.4.6: GSS_Release_name call

 Inputs:

 o name INTERNAL NAME

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the storage associated with the
 input name was successfully released.

Linn Standards Track [Page 73]

RFC 2743 GSS-API January 2000

 o GSS_S_BAD_NAME indicates that the input name argument did not
 contain a valid name.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 Allows callers to release the storage associated with an internal
 name representation. This call’s specific behavior depends on the
 language and programming environment within which a GSS-API
 implementation operates, and is therefore detailed within applicable
 bindings specifications; in particular, implementation and invocation
 of this call may be superfluous (and may be omitted) within bindings
 where memory management is automatic.

2.4.7: GSS_Release_buffer call

 Inputs:

 o buffer OCTET STRING

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the storage associated with the
 input buffer was successfully released.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 Allows callers to release the storage associated with an OCTET STRING
 buffer allocated by another GSS-API call. This call’s specific
 behavior depends on the language and programming environment within
 which a GSS-API implementation operates, and is therefore detailed
 within applicable bindings specifications; in particular,
 implementation and invocation of this call may be superfluous (and
 may be omitted) within bindings where memory management is automatic.

2.4.8: GSS_Release_OID_set call

 Inputs:

 o buffer SET OF OBJECT IDENTIFIER

Linn Standards Track [Page 74]

RFC 2743 GSS-API January 2000

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the storage associated with the
 input object identifier set was successfully released.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 Allows callers to release the storage associated with an object
 identifier set object allocated by another GSS-API call. This call’s
 specific behavior depends on the language and programming environment
 within which a GSS-API implementation operates, and is therefore
 detailed within applicable bindings specifications; in particular,
 implementation and invocation of this call may be superfluous (and
 may be omitted) within bindings where memory management is automatic.

2.4.9: GSS_Create_empty_OID_set call

 Inputs:

 o (none)

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o oid_set SET OF OBJECT IDENTIFIER -- caller must release
 -- with GSS_Release_oid_set()

 Return major_status codes:

 o GSS_S_COMPLETE indicates successful completion

 o GSS_S_FAILURE indicates that the operation failed

 Creates an object identifier set containing no object identifiers, to
 which members may be subsequently added using the
 GSS_Add_OID_set_member() routine. These routines are intended to be
 used to construct sets of mechanism object identifiers, for input to
 GSS_Acquire_cred().

Linn Standards Track [Page 75]

RFC 2743 GSS-API January 2000

2.4.10: GSS_Add_OID_set_member call

 Inputs:

 o member_oid OBJECT IDENTIFIER,

 o oid_set SET OF OBJECT IDENTIFIER

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 Return major_status codes:

 o GSS_S_COMPLETE indicates successful completion

 o GSS_S_FAILURE indicates that the operation failed

 Adds an Object Identifier to an Object Identifier set. This routine
 is intended for use in conjunction with GSS_Create_empty_OID_set()
 when constructing a set of mechanism OIDs for input to
 GSS_Acquire_cred().

2.4.11: GSS_Test_OID_set_member call

 Inputs:

 o member OBJECT IDENTIFIER,

 o set SET OF OBJECT IDENTIFIER

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o present BOOLEAN

 Return major_status codes:

 o GSS_S_COMPLETE indicates successful completion

 o GSS_S_FAILURE indicates that the operation failed

Linn Standards Track [Page 76]

RFC 2743 GSS-API January 2000

 Interrogates an Object Identifier set to determine whether a
 specified Object Identifier is a member. This routine is intended to
 be used with OID sets returned by GSS_Indicate_mechs(),
 GSS_Acquire_cred(), and GSS_Inquire_cred().

2.4.12: GSS_Inquire_names_for_mech call

 Input:

 o input_mech_type OBJECT IDENTIFIER, -- mechanism type

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o name_type_set SET OF OBJECT IDENTIFIER -- caller must release
 -- with GSS_Release_oid_set()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the output name_type_set contains a
 list of name types which are supported by the locally available
 mechanism identified by input_mech_type.

 o GSS_S_BAD_MECH indicates that the mechanism identified by
 input_mech_type was unsupported within the local implementation,
 causing the query to fail.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 Allows callers to determine the set of name types which are
 supportable by a specific locally-available mechanism.

2.4.13: GSS_Inquire_mechs_for_name call

 Inputs:

 o input_name INTERNAL NAME,

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

Linn Standards Track [Page 77]

RFC 2743 GSS-API January 2000

 o mech_types SET OF OBJECT IDENTIFIER -- caller must release
 -- with GSS_Release_oid_set()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that a set of object identifiers,
 corresponding to the set of mechanisms suitable for processing the
 input_name, is available in mech_types.

 o GSS_S_BAD_NAME indicates that the input_name was ill-formed and
 could not be processed.

 o GSS_S_BAD_NAMETYPE indicates that the input_name parameter
 contained an invalid name type or a name type unsupported by the
 GSS-API implementation.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 This routine returns the mechanism set with which the input_name may
 be processed.

 Each mechanism returned will recognize at least one element within
 the name. It is permissible for this routine to be implemented within
 a mechanism-independent GSS-API layer, using the type information
 contained within the presented name, and based on registration
 information provided by individual mechanism implementations. This
 means that the returned mech_types result may indicate that a
 particular mechanism will understand a particular name when in fact
 it would refuse to accept that name as input to
 GSS_Canonicalize_name(), GSS_Init_sec_context(), GSS_Acquire_cred(),
 or GSS_Add_cred(), due to some property of the particular name rather
 than a property of the name type. Thus, this routine should be used
 only as a pre-filter for a call to a subsequent mechanism-specific
 routine.

2.4.14: GSS_Canonicalize_name call

 Inputs:

 o input_name INTERNAL NAME,

 o mech_type OBJECT IDENTIFIER -- must be explicit mechanism,
 -- not "default" specifier or identifier of negotiating mechanism

 Outputs:

 o major_status INTEGER,

Linn Standards Track [Page 78]

RFC 2743 GSS-API January 2000

 o minor_status INTEGER,

 o output_name INTERNAL NAME -- caller must release with
 -- GSS_Release_name()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that a mechanism-specific reduction of
 the input_name, as processed by the mechanism identified by
 mech_type, is available in output_name.

 o GSS_S_BAD_MECH indicates that the identified mechanism is
 unsupported for this operation; this may correspond either to a
 mechanism wholly unsupported by the local GSS-API implementation or
 to a negotiating mechanism with which the canonicalization operation
 cannot be performed.

 o GSS_S_BAD_NAMETYPE indicates that the input name does not contain
 an element with suitable type for processing by the identified
 mechanism.

 o GSS_S_BAD_NAME indicates that the input name contains an element
 with suitable type for processing by the identified mechanism, but
 that this element could not be processed successfully.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 This routine reduces a GSS-API internal name input_name, which may in
 general contain elements corresponding to multiple mechanisms, to a
 mechanism-specific Mechanism Name (MN) output_name by applying the
 translations corresponding to the mechanism identified by mech_type.
 The contents of input_name are unaffected by the
 GSS_Canonicalize_name() operation. References to output_name will
 remain valid until output_name is released, independent of whether or
 not input_name is subsequently released.

2.4.15: GSS_Export_name call

 Inputs:

 o input_name INTERNAL NAME, -- required to be MN

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

Linn Standards Track [Page 79]

RFC 2743 GSS-API January 2000

 o output_name OCTET STRING -- caller must release
 -- with GSS_Release_buffer()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that a flat representation of the input
 name is available in output_name.

 o GSS_S_NAME_NOT_MN indicates that the input name contained elements
 corresponding to multiple mechanisms, so cannot be exported into a
 single-mechanism flat form.

 o GSS_S_BAD_NAME indicates that the input name was an MN, but could
 not be processed.

 o GSS_S_BAD_NAMETYPE indicates that the input name was an MN, but
 that its type is unsupported by the GSS-API implementation.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 This routine creates a flat name representation, suitable for
 bytewise comparison or for input to GSS_Import_name() in conjunction
 with the reserved GSS-API Exported Name Object OID, from a internal-
 form Mechanism Name (MN) as emitted, e.g., by GSS_Canonicalize_name()
 or GSS_Accept_sec_context().

 The emitted GSS-API Exported Name Object is self-describing; no
 associated parameter-level OID need be emitted by this call. This
 flat representation consists of a mechanism-independent wrapper
 layer, defined in Section 3.2 of this document, enclosing a
 mechanism-defined name representation.

 In all cases, the flat name output by GSS_Export_name() to correspond
 to a particular input MN must be invariant over time within a
 particular installation.

 The GSS_S_NAME_NOT_MN status code is provided to enable
 implementations to reject input names which are not MNs. It is not,
 however, required for purposes of conformance to this specification
 that all non-MN input names must necessarily be rejected.

2.4.16: GSS_Duplicate_name call

 Inputs:

 o src_name INTERNAL NAME

Linn Standards Track [Page 80]

RFC 2743 GSS-API January 2000

 Outputs:

 o major_status INTEGER,

 o minor_status INTEGER,

 o dest_name INTERNAL NAME -- caller must release
 -- with GSS_Release_name()

 Return major_status codes:

 o GSS_S_COMPLETE indicates that dest_name references an internal
 name object containing the same name as passed to src_name.

 o GSS_S_BAD_NAME indicates that the input name was invalid.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 This routine takes input internal name src_name, and returns another
 reference (dest_name) to that name which can be used even if src_name
 is later freed. (Note: This may be implemented by copying or through
 use of reference counts.)

3: Data Structure Definitions for GSS-V2 Usage

 Subsections of this section define, for interoperability and
 portability purposes, certain data structures for use with GSS-V2.

3.1: Mechanism-Independent Token Format

 This section specifies a mechanism-independent level of encapsulating
 representation for the initial token of a GSS-API context
 establishment sequence, incorporating an identifier of the mechanism
 type to be used on that context and enabling tokens to be interpreted
 unambiguously at GSS-API peers. Use of this format is required for
 initial context establishment tokens of Internet standards-track
 GSS-API mechanisms; use in non-initial tokens is optional.

 The encoding format for the token tag is derived from ASN.1 and DER
 (per illustrative ASN.1 syntax included later within this
 subsection), but its concrete representation is defined directly in
 terms of octets rather than at the ASN.1 level in order to facilitate
 interoperable implementation without use of general ASN.1 processing
 code. The token tag consists of the following elements, in order:

 1. 0x60 -- Tag for [APPLICATION 0] SEQUENCE; indicates that
 -- constructed form, definite length encoding follows.

Linn Standards Track [Page 81]

RFC 2743 GSS-API January 2000

 2. Token length octets, specifying length of subsequent data
 (i.e., the summed lengths of elements 3-5 in this list, and of the
 mechanism-defined token object following the tag). This element
 comprises a variable number of octets:

 2a. If the indicated value is less than 128, it shall be
 represented in a single octet with bit 8 (high order) set to
 "0" and the remaining bits representing the value.

 2b. If the indicated value is 128 or more, it shall be
 represented in two or more octets, with bit 8 of the first
 octet set to "1" and the remaining bits of the first octet
 specifying the number of additional octets. The subsequent
 octets carry the value, 8 bits per octet, most significant
 digit first. The minimum number of octets shall be used to
 encode the length (i.e., no octets representing leading zeros
 shall be included within the length encoding).

 3. 0x06 -- Tag for OBJECT IDENTIFIER

 4. Object identifier length -- length (number of octets) of
 -- the encoded object identifier contained in element 5,
 -- encoded per rules as described in 2a. and 2b. above.

 5. Object identifier octets -- variable number of octets,
 -- encoded per ASN.1 BER rules:

 5a. The first octet contains the sum of two values: (1) the
 top-level object identifier component, multiplied by 40
 (decimal), and (2) the second-level object identifier
 component. This special case is the only point within an
 object identifier encoding where a single octet represents
 contents of more than one component.

 5b. Subsequent octets, if required, encode successively-lower
 components in the represented object identifier. A component’s
 encoding may span multiple octets, encoding 7 bits per octet
 (most significant bits first) and with bit 8 set to "1" on all
 but the final octet in the component’s encoding. The minimum
 number of octets shall be used to encode each component (i.e.,
 no octets representing leading zeros shall be included within a
 component’s encoding).

 (Note: In many implementations, elements 3-5 may be stored and
 referenced as a contiguous string constant.)

Linn Standards Track [Page 82]

RFC 2743 GSS-API January 2000

 The token tag is immediately followed by a mechanism-defined token
 object. Note that no independent size specifier intervenes following
 the object identifier value to indicate the size of the mechanism-
 defined token object. While ASN.1 usage within mechanism-defined
 tokens is permitted, there is no requirement that the mechanism-
 specific innerContextToken, innerMsgToken, and sealedUserData data
 elements must employ ASN.1 BER/DER encoding conventions.

 The following ASN.1 syntax is included for descriptive purposes only,
 to illustrate structural relationships among token and tag objects.
 For interoperability purposes, token and tag encoding shall be
 performed using the concrete encoding procedures described earlier in
 this subsection.

 GSS-API DEFINITIONS ::=

 BEGIN

 MechType ::= OBJECT IDENTIFIER
 -- data structure definitions
 -- callers must be able to distinguish among
 -- InitialContextToken, SubsequentContextToken,
 -- PerMsgToken, and SealedMessage data elements
 -- based on the usage in which they occur

 InitialContextToken ::=
 -- option indication (delegation, etc.) indicated within
 -- mechanism-specific token
 [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType,
 innerContextToken ANY DEFINED BY thisMech
 -- contents mechanism-specific
 -- ASN.1 structure not required
 }

 SubsequentContextToken ::= innerContextToken ANY
 -- interpretation based on predecessor InitialContextToken
 -- ASN.1 structure not required

 PerMsgToken ::=
 -- as emitted by GSS_GetMIC and processed by GSS_VerifyMIC
 -- ASN.1 structure not required
 innerMsgToken ANY

 SealedMessage ::=
 -- as emitted by GSS_Wrap and processed by GSS_Unwrap
 -- includes internal, mechanism-defined indicator
 -- of whether or not encrypted

Linn Standards Track [Page 83]

RFC 2743 GSS-API January 2000

 -- ASN.1 structure not required
 sealedUserData ANY

 END

3.2: Mechanism-Independent Exported Name Object Format

 This section specifies a mechanism-independent level of encapsulating
 representation for names exported via the GSS_Export_name() call,
 including an object identifier representing the exporting mechanism.
 The format of names encapsulated via this representation shall be
 defined within individual mechanism drafts. The Object Identifier
 value to indicate names of this type is defined in Section 4.7 of
 this document.

 No name type OID is included in this mechanism-independent level of
 format definition, since (depending on individual mechanism
 specifications) the enclosed name may be implicitly typed or may be
 explicitly typed using a means other than OID encoding.

 The bytes within MECH_OID_LEN and NAME_LEN elements are represented
 most significant byte first (equivalently, in IP network byte order).

 Length Name Description

 2 TOK_ID Token Identifier
 For exported name objects, this
 must be hex 04 01.
 2 MECH_OID_LEN Length of the Mechanism OID
 MECH_OID_LEN MECH_OID Mechanism OID, in DER
 4 NAME_LEN Length of name
 NAME_LEN NAME Exported name; format defined in
 applicable mechanism draft.

 A concrete example of the contents of an exported name object,
 derived from the Kerberos Version 5 mechanism, is as follows:

 04 01 00 0B 06 09 2A 86 48 86 F7 12 01 02 02 hx xx xx xl pp qq ... zz

 04 01 mandatory token identifier

 00 0B 2-byte length of the immediately following DER-encoded
 ASN.1 value of type OID, most significant octet first

Linn Standards Track [Page 84]

RFC 2743 GSS-API January 2000

 06 09 2A 86 48 86 F7 12 01 02 02 DER-encoded ASN.1 value
 of type OID; Kerberos V5
 mechanism OID indicates
 Kerberos V5 exported name

 in Detail: 06 Identifier octet (6=OID)
 09 Length octet(s)
 2A 86 48 86 F7 12 01 02 02 Content octet(s)

 hx xx xx xl 4-byte length of the immediately following exported
 name blob, most significant octet first

 pp qq ... zz exported name blob of specified length,
 bits and bytes specified in the
 (Kerberos 5) GSS-API v2 mechanism spec

4: Name Type Definitions

 This section includes definitions for name types and associated
 syntaxes which are defined in a mechanism-independent fashion at the
 GSS-API level rather than being defined in individual mechanism
 specifications.

4.1: Host-Based Service Name Form

 This name form shall be represented by the Object Identifier:

 {iso(1) member-body(2) United States(840) mit(113554) infosys(1)
 "gssapi(2) generic(1) service_name(4)}.

 The recommended symbolic name for this type is
 "GSS_C_NT_HOSTBASED_SERVICE".

 For reasons of compatibility with existing implementations, it is
 recommended that this OID be used rather than the alternate value as
 included in [RFC-2078]:

 {1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes),
 2(gss-host-based-services)}

 While it is not recommended that this alternate value be emitted on
 output by GSS implementations, it is recommended that it be accepted
 on input as equivalent to the recommended value.

Linn Standards Track [Page 85]

RFC 2743 GSS-API January 2000

 This name type is used to represent services associated with host
 computers. Support for this name form is recommended to mechanism
 designers in the interests of portability, but is not mandated by
 this specification. This name form is constructed using two elements,
 "service" and "hostname", as follows:

 service@hostname

 When a reference to a name of this type is resolved, the "hostname"
 may (as an example implementation strategy) be canonicalized by
 attempting a DNS lookup and using the fully-qualified domain name
 which is returned, or by using the "hostname" as provided if the DNS
 lookup fails. The canonicalization operation also maps the host’s
 name into lower-case characters.

 The "hostname" element may be omitted. If no "@" separator is
 included, the entire name is interpreted as the service specifier,
 with the "hostname" defaulted to the canonicalized name of the local
 host.

 Documents specifying means for GSS integration into a particular
 protocol should state either:

 (a) that a specific IANA-registered name associated with that
 protocol shall be used for the "service" element (this admits, if
 needed, the possibility that a single name can be registered and
 shared among a related set of protocols), or

 (b) that the generic name "host" shall be used for the "service"
 element, or

 (c) that, for that protocol, fallback in specified order (a, then
 b) or (b, then a) shall be applied.

 IANA registration of specific names per (a) should be handled in
 accordance with the "Specification Required" assignment policy,
 defined by BCP 26, RFC 2434 as follows: "Values and their meaning
 must be documented in an RFC or other available reference, in
 sufficient detail so that interoperability between independent
 implementations is possible."

4.2: User Name Form

 This name form shall be represented by the Object Identifier {iso(1)
 member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
 generic(1) user_name(1)}. The recommended mechanism-independent
 symbolic name for this type is "GSS_C_NT_USER_NAME". (Note: the same

Linn Standards Track [Page 86]

RFC 2743 GSS-API January 2000

 name form and OID is defined within the Kerberos V5 GSS-API
 mechanism, but the symbolic name recommended there begins with a
 "GSS_KRB5_NT_" prefix.)

 This name type is used to indicate a named user on a local system.
 Its syntax and interpretation may be OS-specific. This name form is
 constructed as:

 username

4.3: Machine UID Form

 This name form shall be represented by the Object Identifier {iso(1)
 member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
 generic(1) machine_uid_name(2)}. The recommended mechanism-
 independent symbolic name for this type is
 "GSS_C_NT_MACHINE_UID_NAME". (Note: the same name form and OID is
 defined within the Kerberos V5 GSS-API mechanism, but the symbolic
 name recommended there begins with a "GSS_KRB5_NT_" prefix.)

 This name type is used to indicate a numeric user identifier
 corresponding to a user on a local system. Its interpretation is
 OS-specific. The gss_buffer_desc representing a name of this type
 should contain a locally-significant user ID, represented in host
 byte order. The GSS_Import_name() operation resolves this uid into a
 username, which is then treated as the User Name Form.

4.4: String UID Form

 This name form shall be represented by the Object Identifier {iso(1)
 member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
 generic(1) string_uid_name(3)}. The recommended symbolic name for
 this type is "GSS_C_NT_STRING_UID_NAME". (Note: the same name form
 and OID is defined within the Kerberos V5 GSS-API mechanism, but the
 symbolic name recommended there begins with a "GSS_KRB5_NT_" prefix.)

 This name type is used to indicate a string of digits representing
 the numeric user identifier of a user on a local system. Its
 interpretation is OS-specific. This name type is similar to the
 Machine UID Form, except that the buffer contains a string
 representing the user ID.

4.5: Anonymous Nametype

 The following Object Identifier value is provided as a means to
 identify anonymous names, and can be compared against in order to
 determine, in a mechanism-independent fashion, whether a name refers
 to an anonymous principal:

Linn Standards Track [Page 87]

RFC 2743 GSS-API January 2000

 {1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes),
 3(gss-anonymous-name)}

 The recommended symbolic name corresponding to this definition is
 GSS_C_NT_ANONYMOUS.

4.6: GSS_C_NO_OID

 The recommended symbolic name GSS_C_NO_OID corresponds to a null
 input value instead of an actual object identifier. Where specified,
 it indicates interpretation of an associated name based on a
 mechanism-specific default printable syntax.

4.7: Exported Name Object

 Name objects of the Mechanism-Independent Exported Name Object type,
 as defined in Section 3.2 of this document, will be identified with
 the following Object Identifier:

 {1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nametypes),
 4(gss-api-exported-name)}

 The recommended symbolic name corresponding to this definition is
 GSS_C_NT_EXPORT_NAME.

4.8: GSS_C_NO_NAME

 The recommended symbolic name GSS_C_NO_NAME indicates that no name is
 being passed within a particular value of a parameter used for the
 purpose of transferring names. Note: GSS_C_NO_NAME is not an actual
 name type, and is not represented by an OID; its acceptability in
 lieu of an actual name is confined to specific calls
 (GSS_Acquire_cred(), GSS_Add_cred(), and GSS_Init_sec_context()) with
 usages as identified within this specification.

5: Mechanism-Specific Example Scenarios

 This section provides illustrative overviews of the use of various
 candidate mechanism types to support the GSS-API. These discussions
 are intended primarily for readers familiar with specific security
 technologies, demonstrating how GSS-API functions can be used and
 implemented by candidate underlying mechanisms. They should not be
 regarded as constrictive to implementations or as defining the only
 means through which GSS-API functions can be realized with a
 particular underlying technology, and do not demonstrate all GSS-API
 features with each technology.

Linn Standards Track [Page 88]

RFC 2743 GSS-API January 2000

5.1: Kerberos V5, single-TGT

 OS-specific login functions yield a TGT to the local realm Kerberos
 server; TGT is placed in a credentials structure for the client.
 Client calls GSS_Acquire_cred() to acquire a cred_handle in order to
 reference the credentials for use in establishing security contexts.

 Client calls GSS_Init_sec_context(). If the requested service is
 located in a different realm, GSS_Init_sec_context() gets the
 necessary TGT/key pairs needed to traverse the path from local to
 target realm; these data are placed in the owner’s TGT cache. After
 any needed remote realm resolution, GSS_Init_sec_context() yields a
 service ticket to the requested service with a corresponding session
 key; these data are stored in conjunction with the context. GSS-API
 code sends KRB_TGS_REQ request(s) and receives KRB_TGS_REP
 response(s) (in the successful case) or KRB_ERROR.

 Assuming success, GSS_Init_sec_context() builds a Kerberos-formatted
 KRB_AP_REQ message, and returns it in output_token. The client sends
 the output_token to the service.

 The service passes the received token as the input_token argument to
 GSS_Accept_sec_context(), which verifies the authenticator, provides
 the service with the client’s authenticated name, and returns an
 output_context_handle.

 Both parties now hold the session key associated with the service
 ticket, and can use this key in subsequent GSS_GetMIC(),
 GSS_VerifyMIC(), GSS_Wrap(), and GSS_Unwrap() operations.

5.2: Kerberos V5, double-TGT

 TGT acquisition as above.

 Note: To avoid unnecessary frequent invocations of error paths when
 implementing the GSS-API atop Kerberos V5, it seems appropriate to
 represent "single-TGT K-V5" and "double-TGT K-V5" with separate
 mech_types, and this discussion makes that assumption.

 Based on the (specified or defaulted) mech_type,
 GSS_Init_sec_context() determines that the double-TGT protocol
 should be employed for the specified target. GSS_Init_sec_context()
 returns GSS_S_CONTINUE_NEEDED major_status, and its returned
 output_token contains a request to the service for the service’s TGT.
 (If a service TGT with suitably long remaining lifetime already
 exists in a cache, it may be usable, obviating the need for this
 step.) The client passes the output_token to the service. Note: this
 scenario illustrates a different use for the GSS_S_CONTINUE_NEEDED

Linn Standards Track [Page 89]

RFC 2743 GSS-API January 2000

 status return facility than for support of mutual authentication;
 note that both uses can coexist as successive operations within a
 single context establishment operation.

 The service passes the received token as the input_token argument to
 GSS_Accept_sec_context(), which recognizes it as a request for TGT.
 (Note that current Kerberos V5 defines no intra-protocol mechanism to
 represent such a request.) GSS_Accept_sec_context() returns
 GSS_S_CONTINUE_NEEDED major_status and provides the service’s TGT in
 its output_token. The service sends the output_token to the client.

 The client passes the received token as the input_token argument to a
 continuation of GSS_Init_sec_context(). GSS_Init_sec_context() caches
 the received service TGT and uses it as part of a service ticket
 request to the Kerberos authentication server, storing the returned
 service ticket and session key in conjunction with the context.
 GSS_Init_sec_context() builds a Kerberos-formatted authenticator, and
 returns it in output_token along with GSS_S_COMPLETE return
 major_status. The client sends the output_token to the service.

 Service passes the received token as the input_token argument to a
 continuation call to GSS_Accept_sec_context().
 GSS_Accept_sec_context() verifies the authenticator, provides the
 service with the client’s authenticated name, and returns
 major_status GSS_S_COMPLETE.

 GSS_GetMIC(), GSS_VerifyMIC(), GSS_Wrap(), and GSS_Unwrap() as
 above.

5.3: X.509 Authentication Framework

 This example illustrates use of the GSS-API in conjunction with
 public-key mechanisms, consistent with the X.509 Directory
 Authentication Framework.

 The GSS_Acquire_cred() call establishes a credentials structure,
 making the client’s private key accessible for use on behalf of the
 client.

 The client calls GSS_Init_sec_context(), which interrogates the
 Directory to acquire (and validate) a chain of public-key
 certificates, thereby collecting the public key of the service. The
 certificate validation operation determines that suitable integrity
 checks were applied by trusted authorities and that those
 certificates have not expired. GSS_Init_sec_context() generates a
 secret key for use in per-message protection operations on the
 context, and enciphers that secret key under the service’s public
 key.

Linn Standards Track [Page 90]

RFC 2743 GSS-API January 2000

 The enciphered secret key, along with an authenticator quantity
 signed with the client’s private key, is included in the output_token
 from GSS_Init_sec_context(). The output_token also carries a
 certification path, consisting of a certificate chain leading from
 the service to the client; a variant approach would defer this path
 resolution to be performed by the service instead of being asserted
 by the client. The client application sends the output_token to the
 service.

 The service passes the received token as the input_token argument to
 GSS_Accept_sec_context(). GSS_Accept_sec_context() validates the
 certification path, and as a result determines a certified binding
 between the client’s distinguished name and the client’s public key.
 Given that public key, GSS_Accept_sec_context() can process the
 input_token’s authenticator quantity and verify that the client’s
 private key was used to sign the input_token. At this point, the
 client is authenticated to the service. The service uses its private
 key to decipher the enciphered secret key provided to it for per-
 message protection operations on the context.

 The client calls GSS_GetMIC() or GSS_Wrap() on a data message, which
 causes per-message authentication, integrity, and (optional)
 confidentiality facilities to be applied to that message. The service
 uses the context’s shared secret key to perform corresponding
 GSS_VerifyMIC() and GSS_Unwrap() calls.

6: Security Considerations

 This document specifies a service interface for security facilities
 and services; as such, security considerations are considered
 throughout the specification. Nonetheless, it is appropriate to
 summarize certain specific points relevant to GSS-API implementors
 and calling applications. Usage of the GSS-API interface does not in
 itself provide security services or assurance; instead, these
 attributes are dependent on the underlying mechanism(s) which support
 a GSS-API implementation. Callers must be attentive to the requests
 made to GSS-API calls and to the status indicators returned by GSS-
 API, as these specify the security service characteristics which
 GSS-API will provide. When the interprocess context transfer
 facility is used, appropriate local controls should be applied to
 constrain access to interprocess tokens and to the sensitive data
 which they contain.

Linn Standards Track [Page 91]

RFC 2743 GSS-API January 2000

7: Related Activities

 In order to implement the GSS-API atop existing, emerging, and future
 security mechanisms:

 object identifiers must be assigned to candidate GSS-API
 mechanisms and the name types which they support

 concrete data element formats and processing procedures must be
 defined for candidate mechanisms

 Calling applications must implement formatting conventions which will
 enable them to distinguish GSS-API tokens from other data carried in
 their application protocols.

 Concrete language bindings are required for the programming
 environments in which the GSS-API is to be employed, as [RFC-1509]
 defines for the C programming language and GSS-V1. C Language
 bindings for GSS-V2 are defined in [RFC-2744].

Linn Standards Track [Page 92]

RFC 2743 GSS-API January 2000

8: Referenced Documents

 [ISO-7498-2] International Standard ISO 7498-2-1988(E), Security
 Architecture.

 [ISOIEC-8824] ISO/IEC 8824, "Specification of Abstract Syntax
 Notation One (ASN.1)".

 [ISOIEC-8825] ISO/IEC 8825, "Specification of Basic Encoding Rules
 for Abstract Syntax Notation One (ASN.1)".)

 [RFC-1507]: Kaufman, C., "DASS: Distributed Authentication Security
 Service", RFC 1507, September 1993.

 [RFC-1508]: Linn, J., "Generic Security Service Application Program
 Interface", RFC 1508, September 1993.

 [RFC-1509]: Wray, J., "Generic Security Service API: C-bindings",
 RFC 1509, September 1993.

 [RFC-1964]: Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
 RFC 1964, June 1996.

 [RFC-2025]: Adams, C., "The Simple Public-Key GSS-API Mechanism
 (SPKM)", RFC 2025, October 1996.

 [RFC-2078]: Linn, J., "Generic Security Service Application Program
 Interface, Version 2", RFC 2078, January 1997.

 [RFC-2203]: Eisler, M., Chiu, A. and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

 [RFC-2744]: Wray, J., "Generic Security Service API Version 2 :
 C-bindings", RFC 2744, January 2000.

Linn Standards Track [Page 93]

RFC 2743 GSS-API January 2000

APPENDIX A

MECHANISM DESIGN CONSTRAINTS

 The following constraints on GSS-API mechanism designs are adopted in
 response to observed caller protocol requirements, and adherence
 thereto is anticipated in subsequent descriptions of GSS-API
 mechanisms to be documented in standards-track Internet
 specifications.

 It is strongly recommended that mechanisms offering per-message
 protection services also offer at least one of the replay detection
 and sequencing services, as mechanisms offering neither of the latter
 will fail to satisfy recognized requirements of certain candidate
 caller protocols.

APPENDIX B

COMPATIBILITY WITH GSS-V1

 It is the intent of this document to define an interface and
 procedures which preserve compatibility between GSS-V1 [RFC-1508]
 callers and GSS-V2 providers. All calls defined in GSS-V1 are
 preserved, and it has been a goal that GSS-V1 callers should be able
 to operate atop GSS-V2 provider implementations. Certain detailed
 changes, summarized in this section, have been made in order to
 resolve omissions identified in GSS-V1.

 The following GSS-V1 constructs, while supported within GSS-V2, are
 deprecated:

 Names for per-message processing routines: GSS_Seal() deprecated
 in favor of GSS_Wrap(); GSS_Sign() deprecated in favor of
 GSS_GetMIC(); GSS_Unseal() deprecated in favor of GSS_Unwrap();
 GSS_Verify() deprecated in favor of GSS_VerifyMIC().

 GSS_Delete_sec_context() facility for context_token usage,
 allowing mechanisms to signal context deletion, is retained for
 compatibility with GSS-V1. For current usage, it is recommended
 that both peers to a context invoke GSS_Delete_sec_context()
 independently, passing a null output_context_token buffer to
 indicate that no context_token is required. Implementations of
 GSS_Delete_sec_context() should delete relevant locally-stored
 context information.

 This GSS-V2 specification adds the following calls which are not
 present in GSS-V1:

Linn Standards Track [Page 94]

RFC 2743 GSS-API January 2000

 Credential management calls: GSS_Add_cred(),
 GSS_Inquire_cred_by_mech().

 Context-level calls: GSS_Inquire_context(), GSS_Wrap_size_limit(),
 GSS_Export_sec_context(), GSS_Import_sec_context().

 Per-message calls: No new calls. Existing calls have been
 renamed.

 Support calls: GSS_Create_empty_OID_set(),
 GSS_Add_OID_set_member(), GSS_Test_OID_set_member(),
 GSS_Inquire_names_for_mech(), GSS_Inquire_mechs_for_name(),
 GSS_Canonicalize_name(), GSS_Export_name(), GSS_Duplicate_name().

 This GSS-V2 specification introduces three new facilities applicable
 to security contexts, indicated using the following context state
 values which are not present in GSS-V1:

 anon_state, set TRUE to indicate that a context’s initiator is
 anonymous from the viewpoint of the target; Section 1.2.5 of this
 specification provides a summary description of the GSS-V2
 anonymity support facility, support and use of which is optional.

 prot_ready_state, set TRUE to indicate that a context may be used
 for per-message protection before final completion of context
 establishment; Section 1.2.7 of this specification provides a
 summary description of the GSS-V2 facility enabling mechanisms to
 selectively permit per-message protection during context
 establishment, support and use of which is optional.

 trans_state, set TRUE to indicate that a context is transferable
 to another process using the GSS-V2 GSS_Export_sec_context()
 facility.

 These state values are represented (at the C bindings level) in
 positions within a bit vector which are unused in GSS-V1, and may be
 safely ignored by GSS-V1 callers.

 New conf_req_flag and integ_req_flag inputs are defined for
 GSS_Init_sec_context(), primarily to provide information to
 negotiating mechanisms. This introduces a compatibility issue with
 GSS-V1 callers, discussed in section 2.2.1 of this specification.

Linn Standards Track [Page 95]

RFC 2743 GSS-API January 2000

 Relative to GSS-V1, GSS-V2 provides additional guidance to GSS-API
 implementors in the following areas: implementation robustness,
 credential management, behavior in multi-mechanism configurations,
 naming support, and inclusion of optional sequencing services. The
 token tagging facility as defined in GSS-V2, Section 3.1, is now
 described directly in terms of octets to facilitate interoperable
 implementation without general ASN.1 processing code; the
 corresponding ASN.1 syntax, included for descriptive purposes, is
 unchanged from that in GSS-V1. For use in conjunction with added
 naming support facilities, a new Exported Name Object construct is
 added. Additional name types are introduced in Section 4.

 This GSS-V2 specification adds the following major_status values
 which are not defined in GSS-V1:

 GSS_S_BAD_QOP unsupported QOP value
 GSS_S_UNAUTHORIZED operation unauthorized
 GSS_S_UNAVAILABLE operation unavailable
 GSS_S_DUPLICATE_ELEMENT duplicate credential element
 requested
 GSS_S_NAME_NOT_MN name contains multi-mechanism
 elements
 GSS_S_GAP_TOKEN skipped predecessor token(s)
 detected

 Of these added status codes, only two values are defined to be
 returnable by calls existing in GSS-V1: GSS_S_BAD_QOP (returnable by
 GSS_GetMIC() and GSS_Wrap()), and GSS_S_GAP_TOKEN (returnable by
 GSS_VerifyMIC() and GSS_Unwrap()).

 Additionally, GSS-V2 descriptions of certain calls present in GSS-V1
 have been updated to allow return of additional major_status values
 from the set as defined in GSS-V1: GSS_Inquire_cred() has
 GSS_S_DEFECTIVE_CREDENTIAL and GSS_S_CREDENTIALS_EXPIRED defined as
 returnable, GSS_Init_sec_context() has GSS_S_OLD_TOKEN,
 GSS_S_DUPLICATE_TOKEN, and GSS_S_BAD_MECH defined as returnable, and
 GSS_Accept_sec_context() has GSS_S_BAD_MECH defined as returnable.

APPENDIX C

CHANGES RELATIVE TO RFC-2078

 This document incorporates a number of changes relative to RFC-2078,
 made primarily in response to implementation experience, for purposes
 of alignment with the GSS-V2 C language bindings document, and to add
 informative clarification. This section summarizes technical changes
 incorporated.

Linn Standards Track [Page 96]

RFC 2743 GSS-API January 2000

 General:

 Clarified usage of object release routines, and incorporated
 statement that some may be omitted within certain operating
 environments.

 Removed GSS_Release_OID, GSS_OID_to_str(), and GSS_Str_to_OID()
 routines.

 Clarified circumstances under which zero-length tokens may validly
 exist as inputs and outputs to/from GSS-API calls.

 Added GSS_S_BAD_MIC status code as alias for GSS_S_BAD_SIG.

 For GSS_Display_status(), deferred to language bindings the choice
 of whether to return multiple status values in parallel or via
 iteration, and added commentary deprecating return of
 GSS_S_CONTINUE_NEEDED.

 Adapted and incorporated clarifying material on optional service
 support, delegation, and interprocess context transfer from C
 bindings document.

 Added and updated references to related documents, and to current
 status of cited Kerberos mechanism OID.

 Added general statement about GSS-API calls having no side effects
 visible at the GSS-API level.

 Context-related (including per-message protection issues):

 Clarified GSS_Delete_sec_context() usage for partially-established
 contexts.

 Added clarification on GSS_Export_sec_context() and
 GSS_Import_sec_context() behavior and context usage following an
 export-import sequence.

 Added informatory conf_req_flag, integ_req_flag inputs to
 GSS_Init_sec_context(). (Note: this facility introduces a
 backward incompatibility with GSS-V1 callers, discussed in Section
 2.2.1; this implication was recognized and accepted in working
 group discussion.)

 Stated that GSS_S_FAILURE is to be returned if
 GSS_Init_sec_context() or GSS_Accept_sec_context() is passed the
 handle of a context which is already fully established.

Linn Standards Track [Page 97]

RFC 2743 GSS-API January 2000

 Re GSS_Inquire_sec_context(), stated that src_name and targ_name
 are not returned until GSS_S_COMPLETE status is reached; removed
 use of GSS_S_CONTEXT_EXPIRED status code (replacing with EXPIRED
 lifetime return value); stated requirement to retain inquirable
 data until context released by caller; added result value
 indicating whether or not context is fully open.

 Added discussion of interoperability conditions for mechanisms
 permitting optional support of QOPs. Removed reference to
 structured QOP elements in GSS_Verify_MIC().

 Added discussion of use of GSS_S_DUPLICATE_TOKEN status to
 indicate reflected per-message tokens.

 Clarified use of informational sequencing codes from per-message
 protection calls in conjunction with GSS_S_COMPLETE and
 GSS_S_FAILURE major_status returns, adjusting status code
 descriptions accordingly.

 Added specific statements about impact of GSS_GetMIC() and
 GSS_Wrap() failures on context state information, and generalized
 existing statements about impact of processing failures on
 received per-message tokens.

 For GSS_Init_sec_context() and GSS_Accept_sec_context(), permitted
 returned mech_type to be valid before GSS_S_COMPLETE, recognizing
 that the value may change on successive continuation calls in the
 negotiated mechanism case.

 Deleted GSS_S_CONTEXT_EXPIRED status from
 GSS_Import_sec_context().

 Added conf_req_flag input to GSS_Wrap_size_limit().

 Stated requirement for mechanisms’ support of per-message
 protection services to be usable concurrently in both directions
 on a context.

 Credential-related:

 For GSS_Acquire_cred() and GSS_Add_cred(), aligned with C bindings
 statement of likely non-support for INITIATE or BOTH credentials
 if input name is neither empty nor a name resulting from applying
 GSS_Inquire_cred() against the default credential. Further,
 stated that an explicit name returned by GSS_Inquire_context()
 should also be accepted. Added commentary about potentially
 time-variant results of default resolution and attendant
 implications. Aligned with C bindings re behavior when

Linn Standards Track [Page 98]

RFC 2743 GSS-API January 2000

 GSS_C_NO_NAME provided for desired_name. In GSS_Acquire_cred(),
 stated that NULL, rather than empty OID set, should be used for
 desired_mechs in order to request default mechanism set.

 Added GSS_S_CREDENTIALS_EXPIRED as returnable major_status for
 GSS_Acquire_cred(), GSS_Add_cred(), also specifying GSS_S_NO_CRED
 as appropriate return for temporary, user-fixable credential
 unavailability. GSS_Acquire_cred() and GSS_Add_cred() are also to
 return GSS_S_NO_CRED if an authorization failure is encountered
 upon credential acquisition.

 Removed GSS_S_CREDENTIALS_EXPIRED status return from per-message
 protection, GSS_Context_time(), and GSS_Inquire_context() calls.

 For GSS_Add_cred(), aligned with C bindings’ description of
 behavior when addition of elements to the default credential is
 requested.

 Upgraded recommended default credential resolution algorithm to
 status of requirement for initiator credentials.

 For GSS_Release_cred(), GSS_Inquire_cred(), and
 GSS_Inquire_cred_by_mech(), clarified behavior for input
 GSS_C_NO_CREDENTIAL.

 Name-related:

 Aligned GSS_Inquire_mechs_for_name() description with C bindings.

 Removed GSS_S_BAD_NAMETYPE status return from
 GSS_Duplicate_name(), GSS_Display_name(); constrained its
 applicability for GSS_Compare_name().

 Aligned with C bindings statement re GSS_Import_name() behavior
 with GSS_C_NO_OID input name type, and stated that GSS-V2
 mechanism specifications are to define processing procedures
 applicable to their mechanisms. Also clarified GSS_C_NO_OID usage
 with GSS_Display_name().

 Downgraded reference to name canonicalization via DNS lookup to an
 example.

 For GSS_Canonicalize_name(), stated that neither negotiated
 mechanisms nor the default mechanism are supported input
 mech_types for this operation, and specified GSS_S_BAD_MECH status
 to be returned in this case. Clarified that the
 GSS_Canonicalize_name() operation is non-destructive to its input
 name.

Linn Standards Track [Page 99]

RFC 2743 GSS-API January 2000

 Clarified semantics of GSS_C_NT_USER_NAME name type.

 Added descriptions of additional name types. Also added
 discussion of GSS_C_NO_NAME and its constrained usage with
 specific GSS calls.

 Adapted and incorporated C bindings discussion about name
 comparisons with exported name objects.

 Added recommendation to mechanism designers for support of host-
 based service name type, deferring any requirement statement to
 individual mechanism specifications. Added discussion of host-
 based service’s service name element and proposed approach for
 IANA registration policy therefor.

 Clarified byte ordering within exported name object. Stated that
 GSS_S_BAD_MECH is to be returned if, in the course of attempted
 import of an exported name object, the name object’s enclosed
 mechanism type is unrecognized or unsupported.

 Stated that mechanisms may optionally accept GSS_C_NO_NAME as an
 input target name to GSS_Init_sec_context(), with comment that
 such support is unlikely within mechanisms predating GSS-V2,
 Update 1.

AUTHOR’S ADDRESS

 John Linn
 RSA Laboratories
 20 Crosby Drive
 Bedford, MA 01730 USA

 Phone: +1 781.687.7817
 EMail: jlinn@rsasecurity.com

Linn Standards Track [Page 100]

RFC 2743 GSS-API January 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Linn Standards Track [Page 101]

