
Network Working Group K. McCloghrie
Request for Comments: 2737 Cisco Systems, Inc.
Obsoletes: 2037 A. Bierman
 Cisco Systems, Inc.
 December 1999

 Entity MIB (Version 2)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 In particular, it describes managed objects used for managing
 multiple logical and physical entities managed by a single SNMP
 agent.

Table of Contents

 1 The SNMP Management Framework 2
 2 Overview .. 3
 2.1 Terms ... 4
 2.2 Relationship to Community Strings 5
 2.3 Relationship to SNMP Contexts 5
 2.4 Relationship to Proxy Mechanisms 6
 2.5 Relationship to a Chassis MIB 6
 2.6 Relationship to the Interfaces MIB 6
 2.7 Relationship to the Other MIBs 7
 2.8 Relationship to Naming Scopes 7
 2.9 Multiple Instances of the Entity MIB 7
 2.10 Re-Configuration of Entities 8
 2.11 Textual Convention Change 8
 2.12 MIB Structure .. 8
 2.12.1 entityPhysical Group 9
 2.12.2 entityLogical Group 10
 2.12.3 entityMapping Group 10

McCloghrie & Bierman Standards Track [Page 1]

RFC 2737 Entity MIB (Version 2) December 1999

 2.12.4 entityGeneral Group 11
 2.12.5 entityNotifications Group 11
 2.13 Multiple Agents .. 11
 2.14 Changes Since RFC 2037 11
 2.14.1 Textual Conventions 11
 2.14.2 New entPhysicalTable Objects 12
 2.14.3 New entLogicalTable Objects 12
 2.14.4 Bugfixes ... 12
 3 Definitions ... 13
 4 Usage Examples .. 38
 4.1 Router/Bridge ... 38
 4.2 Repeaters ... 44
 5 Intellectual Property 51
 6 Acknowledgements .. 51
 7 References .. 51
 8 Security Considerations 53
 9 Authors’ Addresses .. 55
 10 Full Copyright Statement 56

1. The SNMP Management Framework

 The SNMP Management Framework presently consists of five major
 components:

 o An overall architecture, described in RFC 2571 [RFC2571].

 o Mechanisms for describing and naming objects and events for the
 purpose of management. The first version of this Structure of
 Management Information (SMI) is called SMIv1 and described in STD
 16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC 1215
 [RFC1215]. The second version, called SMIv2, is described in STD
 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC
 2580 [RFC2580].

 o Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1 and
 described in STD 15, RFC 1157 [RFC1157]. A second version of the
 SNMP message protocol, which is not an Internet standards track
 protocol, is called SNMPv2c and described in RFC 1901 [RFC1901]
 and RFC 1906 [RFC1906]. The third version of the message protocol
 is called SNMPv3 and described in RFC 1906 [RFC1906], RFC 2572
 [RFC2572] and RFC 2574 [RFC2574].

 o Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in STD 15, RFC 1157 [RFC1157]. A second set of protocol
 operations and associated PDU formats is described in RFC 1905
 [RFC1905].

McCloghrie & Bierman Standards Track [Page 2]

RFC 2737 Entity MIB (Version 2) December 1999

 o A set of fundamental applications described in RFC 2573 [RFC2573]
 and the view-based access control mechanism described in RFC 2575
 [RFC2575].

 A more detailed introduction to the current SNMP Management Framework
 can be found in RFC 2570 [RFC2570].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

 This memo specifies a MIB module that is compliant to the SMIv2. A
 MIB conforming to the SMIv1 can be produced through the appropriate
 translations. The resulting translated MIB must be semantically
 equivalent, except where objects or events are omitted because no
 translation is possible (use of Counter64). Some machine readable
 information in SMIv2 will be converted into textual descriptions in
 SMIv1 during the translation process. However, this loss of machine
 readable information is not considered to change the semantics of the
 MIB.

2. Overview

 There is a need for a standardized way of representing a single agent
 which supports multiple instances of one MIB. This is presently true
 for at least 3 standard MIBs, and is likely to become true for more
 and more MIBs as time passes. For example:

 - multiple instances of a bridge supported within a single device
 having a single agent;

 - multiple repeaters supported by a single agent;

 - multiple OSPF backbone areas, each one operating as part of its
 own Autonomous System, and each identified by the same area-id
 (e.g., 0.0.0.0), supported inside a single router with one
 agent.

 The fact that it is a single agent in each of these cases implies
 there is some relationship which binds all of these entities
 together. Effectively, there is some "overall" physical entity which
 houses the sum of the things managed by that one agent, i.e., there
 are multiple "logical" entities within a single physical entity.
 Sometimes, the overall physical entity contains multiple (smaller)
 physical entities and each logical entity is associated with a
 particular physical entity. Sometimes, the overall physical entity
 is a "compound" of multiple physical entities (e.g., a stack of
 stackable hubs).

McCloghrie & Bierman Standards Track [Page 3]

RFC 2737 Entity MIB (Version 2) December 1999

 What is needed is a way to determine exactly what logical entities
 are managed by the agent (with some version of SNMP), and thereby to
 be able to communicate with the agent about a particular logical
 entity. When different logical entities are associated with
 different physical entities within the overall physical entity, it is
 also useful to be able to use this information to distinguish between
 logical entities.

 In these situations, there is no need for varbinds for multiple
 logical entities to be referenced in the same SNMP message (although
 that might be useful in the future). Rather, it is sufficient, and
 in some situations preferable, to have the context/community in the
 message identify the logical entity to which the varbinds apply.

 Version 2 of this MIB addresses new requirements that have emerged
 since the publication of the first Entity MIB (RFC 2037 [RFC2037]).
 There is a need for a standardized way of providing non-volatile,
 administratively assigned identifiers for physical components
 represented with the Entity MIB. There is also a need to align the
 Entity MIB with the SNMPv3 administrative framework (RFC 2571
 [RFC2571]). Implementation experience has shown that additional
 physical component attributes are also desirable.

2.1. Terms

 Some new terms are used throughout this document:

 - Naming Scope
 A "naming scope" represents the set of information that may be
 potentially accessed through a single SNMP operation. All
 instances within the naming scope share the same unique
 identifier space. For SNMPv1, a naming scope is identified by
 the value of the associated ’entLogicalCommunity’ instance. For
 SNMPv3, the term ’context’ is used instead of ’naming scope’.
 The complete definition of an SNMP context can be found in
 section 3.3.1 of RFC 2571 [RFC2571].

 - Multi-Scoped Object
 A MIB object, for which identical instance values identify
 different managed information in different naming scopes, is
 called a "multi-scoped" MIB object.

 - Single-Scoped Object
 A MIB object, for which identical instance values identify the
 same managed information in different naming scopes, is called a
 "single-scoped" MIB object.

McCloghrie & Bierman Standards Track [Page 4]

RFC 2737 Entity MIB (Version 2) December 1999

 - Logical Entity
 A managed system contains one or more logical entities, each
 represented by at most one instantiation of each of a particular
 set of MIB objects. A set of management functions is associated
 with each logical entity. Examples of logical entities include
 routers, bridges, print-servers, etc.

 - Physical Entity
 A "physical entity" or "physical component" represents an
 identifiable physical resource within a managed system. Zero or
 more logical entities may utilize a physical resource at any
 given time. It is an implementation-specific manner as to which
 physical components are represented by an agent in the
 EntPhysicalTable. Typically, physical resources (e.g.,
 communications ports, backplanes, sensors, daughter-cards, power
 supplies, the overall chassis) which can be managed via
 functions associated with one or more logical entities are
 included in the MIB.

 - Containment Tree
 Each physical component may be modeled as ’contained’ within
 another physical component. A "containment-tree" is the
 conceptual sequence of entPhysicalIndex values which uniquely
 specifies the exact physical location of a physical component
 within the managed system. It is generated by ’following and
 recording’ each ’entPhysicalContainedIn’ instance ’up the tree
 towards the root’, until a value of zero indicating no further
 containment is found.

2.2. Relationship to Community Strings

 For community-based SNMP, distinguishing between different logical
 entities is one (but not the only) purpose of the community string
 (STD 15, RFC 1157 [RFC1157]). This is accommodated by representing
 each community string as a logical entity.

 Note that different logical entities may share the same naming scope
 (and therefore the same values of entLogicalCommunity). This is
 possible, providing they have no need for the same instance of a MIB
 object to represent different managed information.

2.3. Relationship to SNMP Contexts

 Version 2 of the Entity MIB contains support for associating SNMPv3
 contexts with logical entities. Two new MIB objects, defining an
 SnmpEngineID and ContextName pair, are used together to identify an
 SNMP context associated with a logical entity. This context can be

McCloghrie & Bierman Standards Track [Page 5]

RFC 2737 Entity MIB (Version 2) December 1999

 used (in conjunction with the entLogicalTAddress and
 entLogicalTDomain MIB objects) to send SNMPv3 messages on behalf of a
 particular logical entity.

2.4. Relationship to Proxy Mechanisms

 The Entity MIB is designed to allow functional component discovery.
 The administrative relationships between different logical entities
 are not visible in any Entity MIB tables. An NMS cannot determine
 whether MIB instances in different naming scopes are realized locally
 or remotely (e.g., via some proxy mechanism) by examining any
 particular Entity MIB objects.

 The management of administrative framework functions is not an
 explicit goal of the Entity MIB WG at this time. This new area of
 functionality may be revisited after some operational experience with
 the Entity MIB is gained.

 Note that for community-based versions of SNMP, a network
 administrator will likely be able to associate community strings with
 naming scopes with proprietary mechanisms, as a matter of
 configuration. There are no mechanisms for managing naming scopes
 defined in this MIB.

2.5. Relationship to a Chassis MIB

 Some readers may recall that a previous IETF working group attempted
 to define a Chassis MIB. No consensus was reached by that working
 group, possibly because its scope was too broad. As such, it is not
 the purpose of this MIB to be a "Chassis MIB replacement", nor is it
 within the scope of this MIB to contain all the information which
 might be necessary to manage a "chassis". On the other hand, the
 entities represented by an implementation of this MIB might well be
 contained in a chassis.

2.6. Relationship to the Interfaces MIB

 The Entity MIB contains a mapping table identifying physical
 components that have ’external values’ (e.g., ifIndex) associated
 with them within a given naming scope. This table can be used to
 identify the physical location of each interface in the ifTable (RFC
 2233 [RFC2233]). Since ifIndex values in different contexts are not
 related to one another, the interface to physical component
 associations are relative to the same logical entity within the
 agent.

McCloghrie & Bierman Standards Track [Page 6]

RFC 2737 Entity MIB (Version 2) December 1999

 The Entity MIB also contains ’entPhysicalName’ and ’entPhysicalAlias’
 objects, which approximate the semantics of the ’ifName’ and ’
 ifAlias’ objects (respectively) from the Interfaces MIB [RFC2233],
 for all types of physical components.

2.7. Relationship to the Other MIBs

 The Entity MIB contains a mapping table identifying physical
 components that have identifiers from other standard MIBs associated
 with them. For example, this table can be used along with the
 physical mapping table to identify the physical location of each
 repeater port in the rptrPortTable, or each interface in the ifTable.

2.8. Relationship to Naming Scopes

 There is some question as to which MIB objects may be returned within
 a given naming scope. MIB objects which are not multi-scoped within a
 managed system are likely to ignore context information in
 implementation. In such a case, it is likely such objects will be
 returned in all naming scopes (e.g., not just the ’default’ naming
 scope or the SNMPv3 default context).

 For example, a community string used to access the management
 information for logical device ’bridge2’ may allow access to all the
 non-bridge related objects in the ’default’ naming scope, as well as
 a second instance of the Bridge MIB (RFC 1493 [RFC1493]).

 It is an implementation-specific matter as to the isolation of
 single-scoped MIB objects by the agent. An agent may wish to limit
 the objects returned in a particular naming scope to just the multi-
 scoped objects in that naming scope (e.g., system group and the
 Bridge MIB). In this case, all single-scoped management information
 would belong to a common naming scope (e.g., ’default’), which itself
 may contain some multi-scoped objects (e.g., system group).

2.9. Multiple Instances of the Entity MIB

 It is possible that more than one agent exists in a managed system,
 and in such cases, multiple instances of the Entity MIB (representing
 the same managed objects) may be available to an NMS.

 In order to reduce complexity for agent implementation, multiple
 instances of the Entity MIB are not required to be equivalent or even
 consistent. An NMS may be able to ’align’ instances returned by
 different agents by examining the columns of each table, but vendor-
 specific identifiers and (especially) index values are likely to be
 different. Each agent may be managing different subsets of the entire
 chassis as well.

McCloghrie & Bierman Standards Track [Page 7]

RFC 2737 Entity MIB (Version 2) December 1999

 When all of a physically-modular device is represented by a single
 agent, the entry for which entPhysicalContainedIn has the value zero
 would likely have ’chassis’ as the value of its entPhysicalClass;
 alternatively, for an agent on a module where the agent represents
 only the physical entities on that module (not those on other
 modules), the entry for which entPhysicalContainedIn has the value
 zero would likely have ’module’ as the value of its entPhysicalClass.

 An agent implementation of the entLogicalTable is not required to
 contain information about logical entities managed primarily by other
 agents. That is, the entLogicalTAddress and entLogicalTDomain objects
 in the entLogicalTable are provided to support an historical
 multiplexing mechanism, not to identify other SNMP agents.

 Note that the Entity MIB is a single-scoped MIB, in the event an
 agent represents the MIB in different naming scopes.

2.10. Re-Configuration of Entities

 Most of the MIB objects defined in this MIB have at most a read-only
 MAX-ACCESS clause. This is a conscious decision by the working group
 to limit this MIB’s scope. The second version of the Entity MIB
 allows a network administrator to configure some common attributes of
 physical components.

2.11. Textual Convention Change

 Version 1 of the Entity MIB contains three MIB objects defined with
 the (now obsolete) DisplayString textual convention. In version 2 of
 the Entity MIB, the syntax for these objects has been updated to use
 the (now preferred) SnmpAdminString textual convention.

 The working group realizes that this change is not strictly supported
 by SMIv2. In our judgment, the alternative of deprecating the old
 objects and defining new objects would have a more adverse impact on
 backward compatibility and interoperability, given the particular
 semantics of these objects.

2.12. MIB Structure

 The Entity MIB contains five groups of MIB objects:

 - entityPhysical group
 Describes the physical entities managed by a single agent.

 - entityLogical group
 Describes the logical entities managed by a single agent.

McCloghrie & Bierman Standards Track [Page 8]

RFC 2737 Entity MIB (Version 2) December 1999

 - entityMapping group
 Describes the associations between the physical entities,
 logical entities, interfaces, and non-interface ports managed by
 a single agent.

 - entityGeneral group
 Describes general system attributes shared by potentially all
 types of entities managed by a single agent.

 - entityNotifications group
 Contains status indication notifications.

2.12.1. entityPhysical Group

 This group contains a single table to identify physical system
 components, called the entPhysicalTable.

 The entPhysicalTable contains one row per physical entity, and must
 always contain at least one row for an "overall" physical entity,
 which should have an entPhysicalClass value of ’stack(11)’, ’
 chassis(3)’ or ’module(9)’.

 Each row is indexed by an arbitrary, small integer, and contains a
 description and type of the physical entity. It also optionally
 contains the index number of another entPhysicalEntry indicating a
 containment relationship between the two.

 Version 2 of the Entity MIB provides additional MIB objects for each
 physical entity. Some common read-only attributes have been added, as
 well as three writable string objects.

 - entPhysicalAlias
 This string can be used by an NMS as a non-volatile identifier
 for the physical component. Maintaining a non-volatile string
 for every physical component represented in the entPhysicalTable
 can be costly and unnecessary. An agent may algorithmically
 generate ’entPhysicalAlias’ strings for particular entries
 (e.g., based on the entPhysicalClass value).

 - entPhysicalAssetID
 This string is provided to store a user-specific asset
 identifier for removable physical components. In order to
 reduce the non-volatile storage needed by a particular agent, a
 network administrator should only assign asset identifiers to
 physical entities which are field-replaceable (i.e., not
 permanently contained within another physical entity).

McCloghrie & Bierman Standards Track [Page 9]

RFC 2737 Entity MIB (Version 2) December 1999

 - entPhysicalSerialNum
 This string is provided to store a vendor-specific serial number
 string for physical components. This is a writable object in
 case an agent cannot identify the serial numbers of all
 installed physical entities, and a network administrator wishes
 to configure the non-volatile serial number strings manually
 (via an NMS application).

2.12.2. entityLogical Group

 This group contains a single table to identify logical entities,
 called the entLogicalTable.

 The entLogicalTable contains one row per logical entity. Each row is
 indexed by an arbitrary, small integer and contains a name,
 description, and type of the logical entity. It also contains
 information to allow access to the MIB information for the logical
 entity. This includes SNMP versions that use a community name (with
 some form of implied context representation) and SNMP versions that
 use the SNMP ARCH [RFC2571] method of context identification.

 If a agent represents multiple logical entities with this MIB, then
 this group must be implemented for all logical entities known to the
 agent.

 If an agent represents a single logical entity, or multiple logical
 entities within a single naming scope, then implementation of this
 group may be omitted by the agent.

2.12.3. entityMapping Group

 This group contains three tables to identify associations between
 different system components.

 The entLPMappingTable contains mappings between entLogicalIndex
 values (logical entities) and entPhysicalIndex values (the physical
 components supporting that entity). A logical entity can map to more
 than one physical component, and more than one logical entity can map
 to (share) the same physical component. If an agent represents a
 single logical entity, or multiple logical entities within a single
 naming scope, then implementation of this table may be omitted by the
 agent.

 The entAliasMappingTable contains mappings between entLogicalIndex,
 entPhysicalIndex pairs and ’alias’ object identifier values. This
 allows resources managed with other MIBs (e.g., repeater ports,
 bridge ports, physical and logical interfaces) to be identified in
 the physical entity hierarchy. Note that each alias identifier is

McCloghrie & Bierman Standards Track [Page 10]

RFC 2737 Entity MIB (Version 2) December 1999

 only relevant in a particular naming scope. If an agent represents a
 single logical entity, or multiple logical entities within a single
 naming scope, then implementation of this table may be omitted by the
 agent.

 The entPhysicalContainsTable contains simple mappings between
 ’entPhysicalContainedIn’ values for each container/’containee’
 relationship in the managed system. The indexing of this table allows
 an NMS to quickly discover the ’entPhysicalIndex’ values for all
 children of a given physical entity.

2.12.4. entityGeneral Group

 This group contains general information relating to the other object
 groups.

 At this time, the entGeneral group contains a single scalar object
 (entLastChangeTime), which represents the value of sysUptime when any
 part of the Entity MIB configuration last changed.

2.12.5. entityNotifications Group

 This group contains notification definitions relating to the overall
 status of the Entity MIB instantiation.

2.13. Multiple Agents

 Even though a primary motivation for this MIB is to represent the
 multiple logical entities supported by a single agent, it is also
 possible to use it to represent multiple logical entities supported
 by multiple agents (in the same "overall" physical entity). Indeed,
 it is implicit in the SNMP architecture, that the number of agents is
 transparent to a network management station.

 However, there is no agreement at this time as to the degree of
 cooperation which should be expected for agent implementations.
 Therefore, multiple agents within the same managed system are free to
 implement the Entity MIB independently. (Refer the section on
 "Multiple Instances of the Entity MIB" for more details).

2.14. Changes Since RFC 2037

2.14.1. Textual Conventions

 The PhysicalClass TC text has been clarified, and a new enumeration
 to support ’stackable’ components has been added. The
 SnmpEngineIdOrNone TC has been added to support SNMPv3.

McCloghrie & Bierman Standards Track [Page 11]

RFC 2737 Entity MIB (Version 2) December 1999

2.14.2. New entPhysicalTable Objects

 The entPhysicalHardwareRev, entPhysicalFirmwareRev, and
 entPhysicalSoftwareRev objects have been added for revision
 identification.

 The entPhysicalSerialNum, entPhysicalMfgName, entPhysicalModelName,
 and entPhysicalIsFru objects have been added for better vendor
 identification for physical components. The entPhysicalSerialNum
 object can be set by a management station in the event the agent
 cannot identify this information.

 The entPhysicalAlias and entPhysicalAssetID objects have been added
 for better user component identification. These objects are intended
 to be set by a management station and preserved by the agent across
 restarts.

2.14.3. New entLogicalTable Objects

 The entLogicalContextEngineID and entLogicalContextName objects have
 been added to provide an SNMP context for SNMPv3 access on behalf of
 a logical entity.

2.14.4. Bugfixes

 A bug was fixed in the entLogicalCommunity object. The subrange was
 incorrect (1..255) and is now (0..255). The description clause has
 also been clarified. This object is now deprecated.

 The entLastChangeTime object description has been changed to
 generalize the events which cause an update to the last change
 timestamp.

 The syntax was changed from DisplayString to SnmpAdminString for the
 entPhysicalDescr, entPhysicalName, and entLogicalDescr objects.

McCloghrie & Bierman Standards Track [Page 12]

RFC 2737 Entity MIB (Version 2) December 1999

3. Definitions

ENTITY-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, mib-2, NOTIFICATION-TYPE
 FROM SNMPv2-SMI
 TDomain, TAddress, TEXTUAL-CONVENTION,
 AutonomousType, RowPointer, TimeStamp, TruthValue
 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB;

entityMIB MODULE-IDENTITY
 LAST-UPDATED "9912070000Z" -- December 7, 1999
 ORGANIZATION "IETF ENTMIB Working Group"
 CONTACT-INFO
 " WG E-mail: entmib@cisco.com
 Subscribe: majordomo@cisco.com
 msg body: subscribe entmib

 Keith McCloghrie
 ENTMIB Working Group Chair
 Cisco Systems Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 +1 408-526-5260
 kzm@cisco.com

 Andy Bierman
 ENTMIB Working Group Editor
 Cisco Systems Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 +1 408-527-3711
 abierman@cisco.com"
 DESCRIPTION
 "The MIB module for representing multiple logical
 entities supported by a single SNMP agent."
 REVISION "9912070000Z"
 DESCRIPTION
 "Initial Version of Entity MIB (Version 2).
 This revision obsoletes RFC 2037.
 This version published as RFC 2737."
 REVISION "9610310000Z"
 DESCRIPTION

McCloghrie & Bierman Standards Track [Page 13]

RFC 2737 Entity MIB (Version 2) December 1999

 "Initial version (version 1), published as
 RFC 2037."
 ::= { mib-2 47 }

entityMIBObjects OBJECT IDENTIFIER ::= { entityMIB 1 }

-- MIB contains four groups
entityPhysical OBJECT IDENTIFIER ::= { entityMIBObjects 1 }
entityLogical OBJECT IDENTIFIER ::= { entityMIBObjects 2 }
entityMapping OBJECT IDENTIFIER ::= { entityMIBObjects 3 }
entityGeneral OBJECT IDENTIFIER ::= { entityMIBObjects 4 }

-- Textual Conventions
PhysicalIndex ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "An arbitrary value which uniquely identifies the physical
 entity. The value should be a small positive integer; index
 values for different physical entities are not necessarily
 contiguous."
 SYNTAX INTEGER (1..2147483647)

PhysicalClass ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "An enumerated value which provides an indication of the
 general hardware type of a particular physical entity.
 There are no restrictions as to the number of
 entPhysicalEntries of each entPhysicalClass, which must be
 instantiated by an agent.

 The enumeration ’other’ is applicable if the physical entity
 class is known, but does not match any of the supported
 values.

 The enumeration ’unknown’ is applicable if the physical
 entity class is unknown to the agent.

 The enumeration ’chassis’ is applicable if the physical
 entity class is an overall container for networking
 equipment. Any class of physical entity except a stack may
 be contained within a chassis, and a chassis may only be
 contained within a stack.

 The enumeration ’backplane’ is applicable if the physical
 entity class is some sort of device for aggregating and
 forwarding networking traffic, such as a shared backplane in
 a modular ethernet switch. Note that an agent may model a

McCloghrie & Bierman Standards Track [Page 14]

RFC 2737 Entity MIB (Version 2) December 1999

 backplane as a single physical entity, which is actually
 implemented as multiple discrete physical components (within
 a chassis or stack).

 The enumeration ’container’ is applicable if the physical
 entity class is capable of containing one or more removable
 physical entities, possibly of different types. For example,
 each (empty or full) slot in a chassis will be modeled as a
 container. Note that all removable physical entities should
 be modeled within a container entity, such as field-
 replaceable modules, fans, or power supplies. Note that all
 known containers should be modeled by the agent, including
 empty containers.

 The enumeration ’powerSupply’ is applicable if the physical
 entity class is a power-supplying component.

 The enumeration ’fan’ is applicable if the physical entity
 class is a fan or other heat-reduction component.

 The enumeration ’sensor’ is applicable if the physical
 entity class is some sort of sensor, such as a temperature
 sensor within a router chassis.

 The enumeration ’module’ is applicable if the physical
 entity class is some sort of self-contained sub-system. If
 it is removable, then it should be modeled within a
 container entity, otherwise it should be modeled directly
 within another physical entity (e.g., a chassis or another
 module).

 The enumeration ’port’ is applicable if the physical entity
 class is some sort of networking port, capable of receiving
 and/or transmitting networking traffic.

 The enumeration ’stack’ is applicable if the physical entity
 class is some sort of super-container (possibly virtual),
 intended to group together multiple chassis entities. A
 stack may be realized by a ’virtual’ cable, a real
 interconnect cable, attached to multiple chassis, or may in
 fact be comprised of multiple interconnect cables. A stack
 should not be modeled within any other physical entities,
 but a stack may be contained within another stack. Only
 chassis entities should be contained within a stack."
 SYNTAX INTEGER {
 other(1),
 unknown(2),
 chassis(3),

McCloghrie & Bierman Standards Track [Page 15]

RFC 2737 Entity MIB (Version 2) December 1999

 backplane(4),
 container(5), -- e.g., chassis slot or daughter-card holder
 powerSupply(6),
 fan(7),
 sensor(8),
 module(9), -- e.g., plug-in card or daughter-card
 port(10),
 stack(11) -- e.g., stack of multiple chassis entities
 }

SnmpEngineIdOrNone ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "A specially formatted SnmpEngineID string for use with the
 Entity MIB.

 If an instance of an object of SYNTAX SnmpEngineIdOrNone has
 a non-zero length, then the object encoding and semantics
 are defined by the SnmpEngineID textual convention (see RFC
 2571 [RFC2571]).

 If an instance of an object of SYNTAX SnmpEngineIdOrNone
 contains a zero-length string, then no appropriate
 SnmpEngineID is associated with the logical entity (i.e.,
 SNMPv3 not supported)."
 SYNTAX OCTET STRING (SIZE(0..32)) -- empty string or SnmpEngineID

-- The Physical Entity Table
entPhysicalTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EntPhysicalEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table contains one row per physical entity. There is
 always at least one row for an ’overall’ physical entity."
 ::= { entityPhysical 1 }

entPhysicalEntry OBJECT-TYPE
 SYNTAX EntPhysicalEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a particular physical entity.

 Each entry provides objects (entPhysicalDescr,
 entPhysicalVendorType, and entPhysicalClass) to help an NMS
 identify and characterize the entry, and objects
 (entPhysicalContainedIn and entPhysicalParentRelPos) to help

McCloghrie & Bierman Standards Track [Page 16]

RFC 2737 Entity MIB (Version 2) December 1999

 an NMS relate the particular entry to other entries in this
 table."
 INDEX { entPhysicalIndex }
 ::= { entPhysicalTable 1 }

EntPhysicalEntry ::= SEQUENCE {
 entPhysicalIndex PhysicalIndex,
 entPhysicalDescr SnmpAdminString,
 entPhysicalVendorType AutonomousType,
 entPhysicalContainedIn INTEGER,
 entPhysicalClass PhysicalClass,
 entPhysicalParentRelPos INTEGER,
 entPhysicalName SnmpAdminString,
 entPhysicalHardwareRev SnmpAdminString,
 entPhysicalFirmwareRev SnmpAdminString,
 entPhysicalSoftwareRev SnmpAdminString,
 entPhysicalSerialNum SnmpAdminString,
 entPhysicalMfgName SnmpAdminString,
 entPhysicalModelName SnmpAdminString,
 entPhysicalAlias SnmpAdminString,
 entPhysicalAssetID SnmpAdminString,
 entPhysicalIsFRU TruthValue
}

entPhysicalIndex OBJECT-TYPE
 SYNTAX PhysicalIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The index for this entry."
 ::= { entPhysicalEntry 1 }

entPhysicalDescr OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A textual description of physical entity. This object
 should contain a string which identifies the manufacturer’s
 name for the physical entity, and should be set to a
 distinct value for each version or model of the physical
 entity. "
 ::= { entPhysicalEntry 2 }

entPhysicalVendorType OBJECT-TYPE
 SYNTAX AutonomousType
 MAX-ACCESS read-only
 STATUS current

McCloghrie & Bierman Standards Track [Page 17]

RFC 2737 Entity MIB (Version 2) December 1999

 DESCRIPTION
 "An indication of the vendor-specific hardware type of the
 physical entity. Note that this is different from the
 definition of MIB-II’s sysObjectID.

 An agent should set this object to a enterprise-specific
 registration identifier value indicating the specific
 equipment type in detail. The associated instance of
 entPhysicalClass is used to indicate the general type of
 hardware device.

 If no vendor-specific registration identifier exists for
 this physical entity, or the value is unknown by this agent,
 then the value { 0 0 } is returned."
 ::= { entPhysicalEntry 3 }

entPhysicalContainedIn OBJECT-TYPE
 SYNTAX INTEGER (0..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of entPhysicalIndex for the physical entity which
 ’contains’ this physical entity. A value of zero indicates
 this physical entity is not contained in any other physical
 entity. Note that the set of ’containment’ relationships
 define a strict hierarchy; that is, recursion is not
 allowed.

 In the event a physical entity is contained by more than one
 physical entity (e.g., double-wide modules), this object
 should identify the containing entity with the lowest value
 of entPhysicalIndex."
 ::= { entPhysicalEntry 4 }

entPhysicalClass OBJECT-TYPE
 SYNTAX PhysicalClass
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "An indication of the general hardware type of the physical
 entity.

 An agent should set this object to the standard enumeration
 value which most accurately indicates the general class of
 the physical entity, or the primary class if there is more
 than one.

 If no appropriate standard registration identifier exists

McCloghrie & Bierman Standards Track [Page 18]

RFC 2737 Entity MIB (Version 2) December 1999

 for this physical entity, then the value ’other(1)’ is
 returned. If the value is unknown by this agent, then the
 value ’unknown(2)’ is returned."
 ::= { entPhysicalEntry 5 }

entPhysicalParentRelPos OBJECT-TYPE
 SYNTAX INTEGER (-1..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "An indication of the relative position of this ’child’
 component among all its ’sibling’ components. Sibling
 components are defined as entPhysicalEntries which share the
 same instance values of each of the entPhysicalContainedIn
 and entPhysicalClass objects.

 An NMS can use this object to identify the relative ordering
 for all sibling components of a particular parent
 (identified by the entPhysicalContainedIn instance in each
 sibling entry).

 This value should match any external labeling of the
 physical component if possible. For example, for a container
 (e.g., card slot) labeled as ’slot #3’,
 entPhysicalParentRelPos should have the value ’3’. Note
 that the entPhysicalEntry for the module plugged in slot 3
 should have an entPhysicalParentRelPos value of ’1’.

 If the physical position of this component does not match
 any external numbering or clearly visible ordering, then
 user documentation or other external reference material
 should be used to determine the parent-relative position. If
 this is not possible, then the the agent should assign a
 consistent (but possibly arbitrary) ordering to a given set
 of ’sibling’ components, perhaps based on internal
 representation of the components.

 If the agent cannot determine the parent-relative position
 for some reason, or if the associated value of
 entPhysicalContainedIn is ’0’, then the value ’-1’ is
 returned. Otherwise a non-negative integer is returned,
 indicating the parent-relative position of this physical
 entity.

 Parent-relative ordering normally starts from ’1’ and
 continues to ’N’, where ’N’ represents the highest
 positioned child entity. However, if the physical entities
 (e.g., slots) are labeled from a starting position of zero,

McCloghrie & Bierman Standards Track [Page 19]

RFC 2737 Entity MIB (Version 2) December 1999

 then the first sibling should be associated with a
 entPhysicalParentRelPos value of ’0’. Note that this
 ordering may be sparse or dense, depending on agent
 implementation.

 The actual values returned are not globally meaningful, as
 each ’parent’ component may use different numbering
 algorithms. The ordering is only meaningful among siblings
 of the same parent component.

 The agent should retain parent-relative position values
 across reboots, either through algorithmic assignment or use
 of non-volatile storage."
 ::= { entPhysicalEntry 6 }

entPhysicalName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The textual name of the physical entity. The value of this
 object should be the name of the component as assigned by
 the local device and should be suitable for use in commands
 entered at the device’s ‘console’. This might be a text
 name, such as ‘console’ or a simple component number (e.g.,
 port or module number), such as ‘1’, depending on the
 physical component naming syntax of the device.

 If there is no local name, or this object is otherwise not
 applicable, then this object contains a zero-length string.

 Note that the value of entPhysicalName for two physical
 entities will be the same in the event that the console
 interface does not distinguish between them, e.g., slot-1
 and the card in slot-1."
 ::= { entPhysicalEntry 7 }

entPhysicalHardwareRev OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The vendor-specific hardware revision string for the
 physical entity. The preferred value is the hardware
 revision identifier actually printed on the component itself
 (if present).

 Note that if revision information is stored internally in a

McCloghrie & Bierman Standards Track [Page 20]

RFC 2737 Entity MIB (Version 2) December 1999

 non-printable (e.g., binary) format, then the agent must
 convert such information to a printable format, in an
 implementation-specific manner.

 If no specific hardware revision string is associated with
 the physical component, or this information is unknown to
 the agent, then this object will contain a zero-length
 string."
 ::= { entPhysicalEntry 8 }

entPhysicalFirmwareRev OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The vendor-specific firmware revision string for the
 physical entity.

 Note that if revision information is stored internally in a
 non-printable (e.g., binary) format, then the agent must
 convert such information to a printable format, in an
 implementation-specific manner.

 If no specific firmware programs are associated with the
 physical component, or this information is unknown to the
 agent, then this object will contain a zero-length string."
 ::= { entPhysicalEntry 9 }

entPhysicalSoftwareRev OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The vendor-specific software revision string for the
 physical entity.

 Note that if revision information is stored internally in a
 non-printable (e.g., binary) format, then the agent must
 convert such information to a printable format, in an
 implementation-specific manner.

 If no specific software programs are associated with the
 physical component, or this information is unknown to the
 agent, then this object will contain a zero-length string."
 ::= { entPhysicalEntry 10 }

entPhysicalSerialNum OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))

McCloghrie & Bierman Standards Track [Page 21]

RFC 2737 Entity MIB (Version 2) December 1999

 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The vendor-specific serial number string for the physical
 entity. The preferred value is the serial number string
 actually printed on the component itself (if present).

 On the first instantiation of an physical entity, the value
 of entPhysicalSerialNum associated with that entity is set
 to the correct vendor-assigned serial number, if this
 information is available to the agent. If a serial number
 is unknown or non-existent, the entPhysicalSerialNum will be
 set to a zero-length string instead.

 Note that implementations which can correctly identify the
 serial numbers of all installed physical entities do not
 need to provide write access to the entPhysicalSerialNum
 object. Agents which cannot provide non-volatile storage for
 the entPhysicalSerialNum strings are not required to
 implement write access for this object.

 Not every physical component will have a serial number, or
 even need one. Physical entities for which the associated
 value of the entPhysicalIsFRU object is equal to ’false(2)’
 (e.g., the repeater ports within a repeater module), do not
 need their own unique serial number. An agent does not have
 to provide write access for such entities, and may return a
 zero-length string.

 If write access is implemented for an instance of
 entPhysicalSerialNum, and a value is written into the
 instance, the agent must retain the supplied value in the
 entPhysicalSerialNum instance associated with the same
 physical entity for as long as that entity remains
 instantiated. This includes instantiations across all re-
 initializations/reboots of the network management system,
 including those which result in a change of the physical
 entity’s entPhysicalIndex value."
 ::= { entPhysicalEntry 11 }

entPhysicalMfgName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The name of the manufacturer of this physical component.
 The preferred value is the manufacturer name string actually
 printed on the component itself (if present).

McCloghrie & Bierman Standards Track [Page 22]

RFC 2737 Entity MIB (Version 2) December 1999

 Note that comparisons between instances of the
 entPhysicalModelName, entPhysicalFirmwareRev,
 entPhysicalSoftwareRev, and the entPhysicalSerialNum
 objects, are only meaningful amongst entPhysicalEntries with
 the same value of entPhysicalMfgName.

 If the manufacturer name string associated with the physical
 component is unknown to the agent, then this object will
 contain a zero-length string."
 ::= { entPhysicalEntry 12 }

entPhysicalModelName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The vendor-specific model name identifier string associated
 with this physical component. The preferred value is the
 customer-visible part number, which may be printed on the
 component itself.

 If the model name string associated with the physical
 component is unknown to the agent, then this object will
 contain a zero-length string."
 ::= { entPhysicalEntry 13 }

entPhysicalAlias OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object is an ’alias’ name for the physical entity as
 specified by a network manager, and provides a non-volatile
 ’handle’ for the physical entity.

 On the first instantiation of an physical entity, the value
 of entPhysicalAlias associated with that entity is set to
 the zero-length string. However, agent may set the value to
 a locally unique default value, instead of a zero-length
 string.

 If write access is implemented for an instance of
 entPhysicalAlias, and a value is written into the instance,
 the agent must retain the supplied value in the
 entPhysicalAlias instance associated with the same physical
 entity for as long as that entity remains instantiated.
 This includes instantiations across all re-
 initializations/reboots of the network management system,

McCloghrie & Bierman Standards Track [Page 23]

RFC 2737 Entity MIB (Version 2) December 1999

 including those which result in a change of the physical
 entity’s entPhysicalIndex value."
 ::= { entPhysicalEntry 14 }

entPhysicalAssetID OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object is a user-assigned asset tracking identifier
 for the physical entity as specified by a network manager,
 and provides non-volatile storage of this information.

 On the first instantiation of an physical entity, the value
 of entPhysicalAssetID associated with that entity is set to
 the zero-length string.

 Not every physical component will have a asset tracking
 identifier, or even need one. Physical entities for which
 the associated value of the entPhysicalIsFRU object is equal
 to ’false(2)’ (e.g., the repeater ports within a repeater
 module), do not need their own unique asset tracking
 identifier. An agent does not have to provide write access
 for such entities, and may instead return a zero-length
 string.

 If write access is implemented for an instance of
 entPhysicalAssetID, and a value is written into the
 instance, the agent must retain the supplied value in the
 entPhysicalAssetID instance associated with the same
 physical entity for as long as that entity remains
 instantiated. This includes instantiations across all re-
 initializations/reboots of the network management system,
 including those which result in a change of the physical
 entity’s entPhysicalIndex value.

 If no asset tracking information is associated with the
 physical component, then this object will contain a zero-
 length string."
 ::= { entPhysicalEntry 15 }

entPhysicalIsFRU OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object indicates whether or not this physical entity
 is considered a ’field replaceable unit’ by the vendor. If

McCloghrie & Bierman Standards Track [Page 24]

RFC 2737 Entity MIB (Version 2) December 1999

 this object contains the value ’true(1)’ then this
 entPhysicalEntry identifies a field replaceable unit. For
 all entPhysicalEntries which represent components that are
 permanently contained within a field replaceable unit, the
 value ’false(2)’ should be returned for this object."

 ::= { entPhysicalEntry 16 }

-- The Logical Entity Table
entLogicalTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EntLogicalEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table contains one row per logical entity. For agents
 which implement more than one naming scope, at least one
 entry must exist. Agents which instantiate all MIB objects
 within a single naming scope are not required to implement
 this table."
 ::= { entityLogical 1 }

entLogicalEntry OBJECT-TYPE
 SYNTAX EntLogicalEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a particular logical entity. Entities
 may be managed by this agent or other SNMP agents (possibly)
 in the same chassis."
 INDEX { entLogicalIndex }
 ::= { entLogicalTable 1 }

EntLogicalEntry ::= SEQUENCE {
 entLogicalIndex INTEGER,
 entLogicalDescr SnmpAdminString,
 entLogicalType AutonomousType,
 entLogicalCommunity OCTET STRING,
 entLogicalTAddress TAddress,
 entLogicalTDomain TDomain,
 entLogicalContextEngineID SnmpEngineIdOrNone,
 entLogicalContextName SnmpAdminString
}

entLogicalIndex OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION

McCloghrie & Bierman Standards Track [Page 25]

RFC 2737 Entity MIB (Version 2) December 1999

 "The value of this object uniquely identifies the logical
 entity. The value should be a small positive integer; index
 values for different logical entities are are not
 necessarily contiguous."
 ::= { entLogicalEntry 1 }

entLogicalDescr OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A textual description of the logical entity. This object
 should contain a string which identifies the manufacturer’s
 name for the logical entity, and should be set to a distinct
 value for each version of the logical entity. "
 ::= { entLogicalEntry 2 }

entLogicalType OBJECT-TYPE
 SYNTAX AutonomousType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "An indication of the type of logical entity. This will
 typically be the OBJECT IDENTIFIER name of the node in the
 SMI’s naming hierarchy which represents the major MIB
 module, or the majority of the MIB modules, supported by the
 logical entity. For example:
 a logical entity of a regular host/router -> mib-2
 a logical entity of a 802.1d bridge -> dot1dBridge
 a logical entity of a 802.3 repeater -> snmpDot3RptrMgmt
 If an appropriate node in the SMI’s naming hierarchy cannot
 be identified, the value ’mib-2’ should be used."
 ::= { entLogicalEntry 3 }

entLogicalCommunity OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0..255))
 MAX-ACCESS read-only
 STATUS deprecated
 DESCRIPTION
 "An SNMPv1 or SNMPv2C community-string which can be used to
 access detailed management information for this logical
 entity. The agent should allow read access with this
 community string (to an appropriate subset of all managed
 objects) and may also return a community string based on the
 privileges of the request used to read this object. Note
 that an agent may return a community string with read-only
 privileges, even if this object is accessed with a read-
 write community string. However, the agent must take care

McCloghrie & Bierman Standards Track [Page 26]

RFC 2737 Entity MIB (Version 2) December 1999

 not to return a community string which allows more
 privileges than the community string used to access this
 object.

 A compliant SNMP agent may wish to conserve naming scopes by
 representing multiple logical entities in a single ’default’
 naming scope. This is possible when the logical entities
 represented by the same value of entLogicalCommunity have no
 object instances in common. For example, ’bridge1’ and
 ’repeater1’ may be part of the main naming scope, but at
 least one additional community string is needed to represent
 ’bridge2’ and ’repeater2’.

 Logical entities ’bridge1’ and ’repeater1’ would be
 represented by sysOREntries associated with the ’default’
 naming scope.

 For agents not accessible via SNMPv1 or SNMPv2C, the value
 of this object is the empty string. This object may also
 contain an empty string if a community string has not yet
 been assigned by the agent, or no community string with
 suitable access rights can be returned for a particular SNMP
 request.

 Note that this object is deprecated. Agents which implement
 SNMPv3 access should use the entLogicalContextEngineID and
 entLogicalContextName objects to identify the context
 associated with each logical entity. SNMPv3 agents may
 return a zero-length string for this object, or may continue
 to return a community string (e.g., tri-lingual agent
 support)."
 ::= { entLogicalEntry 4 }

entLogicalTAddress OBJECT-TYPE
 SYNTAX TAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The transport service address by which the logical entity
 receives network management traffic, formatted according to
 the corresponding value of entLogicalTDomain.

 For snmpUDPDomain, a TAddress is 6 octets long, the initial
 4 octets containing the IP-address in network-byte order and
 the last 2 containing the UDP port in network-byte order.
 Consult ’Transport Mappings for Version 2 of the Simple
 Network Management Protocol’ (RFC 1906 [RFC1906]) for
 further information on snmpUDPDomain."

McCloghrie & Bierman Standards Track [Page 27]

RFC 2737 Entity MIB (Version 2) December 1999

 ::= { entLogicalEntry 5 }

entLogicalTDomain OBJECT-TYPE
 SYNTAX TDomain
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Indicates the kind of transport service by which the
 logical entity receives network management traffic.
 Possible values for this object are presently found in the
 Transport Mappings for SNMPv2 document (RFC 1906
 [RFC1906])."
 ::= { entLogicalEntry 6 }

entLogicalContextEngineID OBJECT-TYPE
 SYNTAX SnmpEngineIdOrNone
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The authoritative contextEngineID that can be used to send
 an SNMP message concerning information held by this logical
 entity, to the address specified by the associated
 ’entLogicalTAddress/entLogicalTDomain’ pair.

 This object, together with the associated
 entLogicalContextName object, defines the context associated
 with a particular logical entity, and allows access to SNMP
 engines identified by a contextEngineId and contextName
 pair.

 If no value has been configured by the agent, a zero-length
 string is returned, or the agent may choose not to
 instantiate this object at all."
 ::= { entLogicalEntry 7 }

entLogicalContextName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The contextName that can be used to send an SNMP message
 concerning information held by this logical entity, to the
 address specified by the associated
 ’entLogicalTAddress/entLogicalTDomain’ pair.

 This object, together with the associated
 entLogicalContextEngineID object, defines the context
 associated with a particular logical entity, and allows

McCloghrie & Bierman Standards Track [Page 28]

RFC 2737 Entity MIB (Version 2) December 1999

 access to SNMP engines identified by a contextEngineId and
 contextName pair.

 If no value has been configured by the agent, a zero-length
 string is returned, or the agent may choose not to
 instantiate this object at all."
 ::= { entLogicalEntry 8 }

entLPMappingTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EntLPMappingEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table contains zero or more rows of logical entity to
 physical equipment associations. For each logical entity
 known by this agent, there are zero or more mappings to the
 physical resources which are used to realize that logical
 entity.

 An agent should limit the number and nature of entries in
 this table such that only meaningful and non-redundant
 information is returned. For example, in a system which
 contains a single power supply, mappings between logical
 entities and the power supply are not useful and should not
 be included.

 Also, only the most appropriate physical component which is
 closest to the root of a particular containment tree should
 be identified in an entLPMapping entry.

 For example, suppose a bridge is realized on a particular
 module, and all ports on that module are ports on this
 bridge. A mapping between the bridge and the module would be
 useful, but additional mappings between the bridge and each
 of the ports on that module would be redundant (since the
 entPhysicalContainedIn hierarchy can provide the same
 information). If, on the other hand, more than one bridge
 was utilizing ports on this module, then mappings between
 each bridge and the ports it used would be appropriate.

 Also, in the case of a single backplane repeater, a mapping
 for the backplane to the single repeater entity is not
 necessary."
 ::= { entityMapping 1 }

entLPMappingEntry OBJECT-TYPE
 SYNTAX EntLPMappingEntry
 MAX-ACCESS not-accessible

McCloghrie & Bierman Standards Track [Page 29]

RFC 2737 Entity MIB (Version 2) December 1999

 STATUS current
 DESCRIPTION
 "Information about a particular logical entity to physical
 equipment association. Note that the nature of the
 association is not specifically identified in this entry.
 It is expected that sufficient information exists in the
 MIBs used to manage a particular logical entity to infer how
 physical component information is utilized."
 INDEX { entLogicalIndex, entLPPhysicalIndex }
 ::= { entLPMappingTable 1 }

EntLPMappingEntry ::= SEQUENCE {
 entLPPhysicalIndex PhysicalIndex
}

entLPPhysicalIndex OBJECT-TYPE
 SYNTAX PhysicalIndex
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of this object identifies the index value of a
 particular entPhysicalEntry associated with the indicated
 entLogicalEntity."
 ::= { entLPMappingEntry 1 }

-- logical entity/component to alias table
entAliasMappingTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EntAliasMappingEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table contains zero or more rows, representing
 mappings of logical entity and physical component to
 external MIB identifiers. Each physical port in the system
 may be associated with a mapping to an external identifier,
 which itself is associated with a particular logical
 entity’s naming scope. A ’wildcard’ mechanism is provided
 to indicate that an identifier is associated with more than
 one logical entity."
 ::= { entityMapping 2 }

entAliasMappingEntry OBJECT-TYPE
 SYNTAX EntAliasMappingEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a particular physical equipment, logical
 entity to external identifier binding. Each logical

McCloghrie & Bierman Standards Track [Page 30]

RFC 2737 Entity MIB (Version 2) December 1999

 entity/physical component pair may be associated with one
 alias mapping. The logical entity index may also be used as
 a ’wildcard’ (refer to the entAliasLogicalIndexOrZero object
 DESCRIPTION clause for details.)

 Note that only entPhysicalIndex values which represent
 physical ports (i.e. associated entPhysicalClass value is
 ’port(10)’) are permitted to exist in this table."
 INDEX { entPhysicalIndex, entAliasLogicalIndexOrZero }
 ::= { entAliasMappingTable 1 }

EntAliasMappingEntry ::= SEQUENCE {
 entAliasLogicalIndexOrZero INTEGER,
 entAliasMappingIdentifier RowPointer
}

entAliasLogicalIndexOrZero OBJECT-TYPE
 SYNTAX INTEGER (0..2147483647)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The value of this object identifies the logical entity
 which defines the naming scope for the associated instance
 of the ’entAliasMappingIdentifier’ object.

 If this object has a non-zero value, then it identifies the
 logical entity named by the same value of entLogicalIndex.

 If this object has a value of zero, then the mapping between
 the physical component and the alias identifier for this
 entAliasMapping entry is associated with all unspecified
 logical entities. That is, a value of zero (the default
 mapping) identifies any logical entity which does not have
 an explicit entry in this table for a particular
 entPhysicalIndex/entAliasMappingIdentifier pair.

 For example, to indicate that a particular interface (e.g.,
 physical component 33) is identified by the same value of
 ifIndex for all logical entities, the following instance
 might exist:

 entAliasMappingIdentifier.33.0 = ifIndex.5

 In the event an entPhysicalEntry is associated differently
 for some logical entities, additional entAliasMapping
 entries may exist, e.g.:

 entAliasMappingIdentifier.33.0 = ifIndex.6

McCloghrie & Bierman Standards Track [Page 31]

RFC 2737 Entity MIB (Version 2) December 1999

 entAliasMappingIdentifier.33.4 = ifIndex.1
 entAliasMappingIdentifier.33.5 = ifIndex.1
 entAliasMappingIdentifier.33.10 = ifIndex.12

 Note that entries with non-zero entAliasLogicalIndexOrZero
 index values have precedence over any zero-indexed entry. In
 this example, all logical entities except 4, 5, and 10,
 associate physical entity 33 with ifIndex.6."
 ::= { entAliasMappingEntry 1 }

entAliasMappingIdentifier OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of this object identifies a particular conceptual
 row associated with the indicated entPhysicalIndex and
 entLogicalIndex pair.

 Since only physical ports are modeled in this table, only
 entries which represent interfaces or ports are allowed. If
 an ifEntry exists on behalf of a particular physical port,
 then this object should identify the associated ’ifEntry’.
 For repeater ports, the appropriate row in the
 ’rptrPortGroupTable’ should be identified instead.

 For example, suppose a physical port was represented by
 entPhysicalEntry.3, entLogicalEntry.15 existed for a
 repeater, and entLogicalEntry.22 existed for a bridge. Then
 there might be two related instances of
 entAliasMappingIdentifier:
 entAliasMappingIdentifier.3.15 == rptrPortGroupIndex.5.2
 entAliasMappingIdentifier.3.22 == ifIndex.17
 It is possible that other mappings (besides interfaces and
 repeater ports) may be defined in the future, as required.

 Bridge ports are identified by examining the Bridge MIB and
 appropriate ifEntries associated with each ’dot1dBasePort’,
 and are thus not represented in this table."
 ::= { entAliasMappingEntry 2 }

-- physical mapping table
entPhysicalContainsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EntPhysicalContainsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table which exposes the container/’containee’

McCloghrie & Bierman Standards Track [Page 32]

RFC 2737 Entity MIB (Version 2) December 1999

 relationships between physical entities. This table provides
 all the information found by constructing the virtual
 containment tree for a given entPhysicalTable, but in a more
 direct format.

 In the event a physical entity is contained by more than one
 other physical entity (e.g., double-wide modules), this
 table should include these additional mappings, which cannot
 be represented in the entPhysicalTable virtual containment
 tree."
 ::= { entityMapping 3 }

entPhysicalContainsEntry OBJECT-TYPE
 SYNTAX EntPhysicalContainsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A single container/’containee’ relationship."
 INDEX { entPhysicalIndex, entPhysicalChildIndex }
 ::= { entPhysicalContainsTable 1 }

EntPhysicalContainsEntry ::= SEQUENCE {
 entPhysicalChildIndex PhysicalIndex
}

entPhysicalChildIndex OBJECT-TYPE
 SYNTAX PhysicalIndex
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of entPhysicalIndex for the contained physical
 entity."
 ::= { entPhysicalContainsEntry 1 }

-- last change time stamp for the whole MIB
entLastChangeTime OBJECT-TYPE
 SYNTAX TimeStamp
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of sysUpTime at the time a conceptual row is
 created, modified, or deleted in any of these tables:
 - entPhysicalTable
 - entLogicalTable
 - entLPMappingTable
 - entAliasMappingTable
 - entPhysicalContainsTable
 "

McCloghrie & Bierman Standards Track [Page 33]

RFC 2737 Entity MIB (Version 2) December 1999

 ::= { entityGeneral 1 }

-- Entity MIB Trap Definitions
entityMIBTraps OBJECT IDENTIFIER ::= { entityMIB 2 }
entityMIBTrapPrefix OBJECT IDENTIFIER ::= { entityMIBTraps 0 }

entConfigChange NOTIFICATION-TYPE
 STATUS current
 DESCRIPTION
 "An entConfigChange notification is generated when the value
 of entLastChangeTime changes. It can be utilized by an NMS
 to trigger logical/physical entity table maintenance polls.

 An agent should not generate more than one entConfigChange
 ’notification-event’ in a given time interval (five seconds
 is the suggested default). A ’notification-event’ is the
 transmission of a single trap or inform PDU to a list of
 notification destinations.

 If additional configuration changes occur within the
 throttling period, then notification-events for these
 changes should be suppressed by the agent until the current
 throttling period expires. At the end of a throttling
 period, one notification-event should be generated if any
 configuration changes occurred since the start of the
 throttling period. In such a case, another throttling period
 is started right away.

 An NMS should periodically check the value of
 entLastChangeTime to detect any missed entConfigChange
 notification-events, e.g., due to throttling or transmission
 loss."
 ::= { entityMIBTrapPrefix 1 }

-- conformance information
entityConformance OBJECT IDENTIFIER ::= { entityMIB 3 }

entityCompliances OBJECT IDENTIFIER ::= { entityConformance 1 }
entityGroups OBJECT IDENTIFIER ::= { entityConformance 2 }

-- compliance statements
entityCompliance MODULE-COMPLIANCE
 STATUS deprecated
 DESCRIPTION
 "The compliance statement for SNMP entities which implement
 version 1 of the Entity MIB."
 MODULE -- this module
 MANDATORY-GROUPS {

McCloghrie & Bierman Standards Track [Page 34]

RFC 2737 Entity MIB (Version 2) December 1999

 entityPhysicalGroup,
 entityLogicalGroup,
 entityMappingGroup,
 entityGeneralGroup,
 entityNotificationsGroup
 }
 ::= { entityCompliances 1 }

entity2Compliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which implement
 version 2 of the Entity MIB."
 MODULE -- this module
 MANDATORY-GROUPS {
 entityPhysicalGroup,
 entityPhysical2Group,
 entityGeneralGroup,
 entityNotificationsGroup
 }
 GROUP entityLogical2Group
 DESCRIPTION
 "Implementation of this group is not mandatory for agents
 which model all MIB object instances within a single naming
 scope."

 GROUP entityMappingGroup
 DESCRIPTION
 "Implementation of the entPhysicalContainsTable is mandatory
 for all agents. Implementation of the entLPMappingTable and
 entAliasMappingTables are not mandatory for agents which
 model all MIB object instances within a single naming scope.

 Note that the entAliasMappingTable may be useful for all
 agents, however implementation of the entityLogicalGroup or
 entityLogical2Group is required to support this table."

 OBJECT entPhysicalSerialNum
 MIN-ACCESS not-accessible
 DESCRIPTION
 "Read and write access is not required for agents which
 cannot identify serial number information for physical
 entities, and/or cannot provide non-volatile storage for
 NMS-assigned serial numbers.

 Write access is not required for agents which can identify
 serial number information for physical entities, but cannot
 provide non-volatile storage for NMS-assigned serial

McCloghrie & Bierman Standards Track [Page 35]

RFC 2737 Entity MIB (Version 2) December 1999

 numbers.

 Write access is not required for physical entities for
 physical entities for which the associated value of the
 entPhysicalIsFRU object is equal to ’false(2)’."

 OBJECT entPhysicalAlias
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is required only if the associated
 entPhysicalClass value is equal to ’chassis(3)’."

 OBJECT entPhysicalAssetID
 MIN-ACCESS not-accessible
 DESCRIPTION
 "Read and write access is not required for agents which
 cannot provide non-volatile storage for NMS-assigned asset
 identifiers.

 Write access is not required for physical entities for which
 the associated value of entPhysicalIsFRU is equal to
 ’false(2)’."
 ::= { entityCompliances 2 }

-- MIB groupings
entityPhysicalGroup OBJECT-GROUP
 OBJECTS {
 entPhysicalDescr,
 entPhysicalVendorType,
 entPhysicalContainedIn,
 entPhysicalClass,
 entPhysicalParentRelPos,
 entPhysicalName
 }
 STATUS current
 DESCRIPTION
 "The collection of objects which are used to represent
 physical system components, for which a single agent
 provides management information."
 ::= { entityGroups 1 }

entityLogicalGroup OBJECT-GROUP
 OBJECTS {
 entLogicalDescr,
 entLogicalType,
 entLogicalCommunity,
 entLogicalTAddress,
 entLogicalTDomain

McCloghrie & Bierman Standards Track [Page 36]

RFC 2737 Entity MIB (Version 2) December 1999

 }
 STATUS deprecated
 DESCRIPTION
 "The collection of objects which are used to represent the
 list of logical entities for which a single agent provides
 management information."
 ::= { entityGroups 2 }

entityMappingGroup OBJECT-GROUP
 OBJECTS {
 entLPPhysicalIndex,
 entAliasMappingIdentifier,
 entPhysicalChildIndex
 }
 STATUS current
 DESCRIPTION
 "The collection of objects which are used to represent the
 associations between multiple logical entities, physical
 components, interfaces, and port identifiers for which a
 single agent provides management information."
 ::= { entityGroups 3 }

entityGeneralGroup OBJECT-GROUP
 OBJECTS {
 entLastChangeTime
 }
 STATUS current
 DESCRIPTION
 "The collection of objects which are used to represent
 general entity information for which a single agent provides
 management information."
 ::= { entityGroups 4 }

entityNotificationsGroup NOTIFICATION-GROUP
 NOTIFICATIONS { entConfigChange }
 STATUS current
 DESCRIPTION
 "The collection of notifications used to indicate Entity MIB
 data consistency and general status information."
 ::= { entityGroups 5 }

entityPhysical2Group OBJECT-GROUP
 OBJECTS {
 entPhysicalHardwareRev,
 entPhysicalFirmwareRev,
 entPhysicalSoftwareRev,
 entPhysicalSerialNum,
 entPhysicalMfgName,

McCloghrie & Bierman Standards Track [Page 37]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalModelName,
 entPhysicalAlias,
 entPhysicalAssetID,
 entPhysicalIsFRU
 }

 STATUS current
 DESCRIPTION
 "The collection of objects which are used to represent
 physical system components, for which a single agent
 provides management information. This group augments the
 objects contained in the entityPhysicalGroup."
 ::= { entityGroups 6 }

entityLogical2Group OBJECT-GROUP
 OBJECTS {
 entLogicalDescr,
 entLogicalType,
 entLogicalTAddress,
 entLogicalTDomain,
 entLogicalContextEngineID,
 entLogicalContextName
 }
 STATUS current
 DESCRIPTION
 "The collection of objects which are used to represent the
 list of logical entities for which a single SNMP entity
 provides management information."
 ::= { entityGroups 7 }

END

4. Usage Examples

 The following sections iterate the instance values for two example
 networking devices. These examples are kept simple to make them more
 understandable. Auxiliary components, such as fans, sensors, empty
 slots, and sub-modules are not shown, but might be modeled in real
 implementations.

4.1. Router/Bridge

 A router containing two slots. Each slot contains a 3 port
 router/bridge module. Each port is represented in the ifTable. There
 are two logical instances of OSPF running and two logical bridges:

 Physical entities -- entPhysicalTable:
 1 Field-replaceable physical chassis:

McCloghrie & Bierman Standards Track [Page 38]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalDescr.1 == ’Acme Chassis Model 100’
 entPhysicalVendorType.1 == acmeProducts.chassisTypes.1
 entPhysicalContainedIn.1 == 0
 entPhysicalClass.1 == chassis(3)
 entPhysicalParentRelPos.1 == 0
 entPhysicalName.1 == ’100-A’
 entPhysicalHardwareRev.1 == ’A(1.00.02)’
 entPhysicalSoftwareRev.1 == ’’
 entPhysicalFirmwareRev.1 == ’’
 entPhysicalSerialNum.1 == ’C100076544’
 entPhysicalMfgName.1 == ’Acme’
 entPhysicalModelName.1 == ’100’
 entPhysicalAlias.1 == ’cl-SJ17-3-006:rack1:rtr-U3’
 entPhysicalAssetID.1 == ’0007372293’
 entPhysicalIsFRU.1 == true(1)

 2 slots within the chassis:
 entPhysicalDescr.2 == ’Acme Chassis Slot Type AA’
 entPhysicalVendorType.2 == acmeProducts.slotTypes.1
 entPhysicalContainedIn.2 == 1
 entPhysicalClass.2 == container(5)
 entPhysicalParentRelPos.2 == 1
 entPhysicalName.2 == ’S1’
 entPhysicalHardwareRev.2 == ’B(1.00.01)’
 entPhysicalSoftwareRev.2 == ’’
 entPhysicalFirmwareRev.2 == ’’
 entPhysicalSerialNum.2 == ’’
 entPhysicalMfgName.2 == ’Acme’
 entPhysicalModelName.2 == ’AA’
 entPhysicalAlias.2 == ’’
 entPhysicalAssetID.2 == ’’
 entPhysicalIsFRU.2 == false(2)

 entPhysicalDescr.3 == ’Acme Chassis Slot Type AA’
 entPhysicalVendorType.3 = acmeProducts.slotTypes.1
 entPhysicalContainedIn.3 == 1
 entPhysicalClass.3 == container(5)
 entPhysicalParentRelPos.3 == 2
 entPhysicalName.3 == ’S2’
 entPhysicalHardwareRev.3 == ’1.00.07’
 entPhysicalSoftwareRev.3 == ’’
 entPhysicalFirmwareRev.3 == ’’
 entPhysicalSerialNum.3 == ’’
 entPhysicalMfgName.3 == ’Acme’
 entPhysicalModelName.3 == ’AA’
 entPhysicalAlias.3 == ’’
 entPhysicalAssetID.3 == ’’
 entPhysicalIsFRU.3 == false(2)

McCloghrie & Bierman Standards Track [Page 39]

RFC 2737 Entity MIB (Version 2) December 1999

 2 Field-replaceable modules:
 Slot 1 contains a module with 3 ports:
 entPhysicalDescr.4 == ’Acme Router-100’
 entPhysicalVendorType.4 == acmeProducts.moduleTypes.14
 entPhysicalContainedIn.4 == 2
 entPhysicalClass.4 == module(9)
 entPhysicalParentRelPos.4 == 1
 entPhysicalName.4 == ’M1’
 entPhysicalHardwareRev.4 == ’1.00.07’
 entPhysicalSoftwareRev.4 == ’1.4.1’
 entPhysicalFirmwareRev.4 == ’A(1.1)’
 entPhysicalSerialNum.4 == ’C100087363’
 entPhysicalMfgName.4 == ’Acme’
 entPhysicalModelName.4 == ’R100-FE’
 entPhysicalAlias.4 == ’rtr-U3:m1:SJ17-3-eng’
 entPhysicalAssetID.4 == ’0007372462’
 entPhysicalIsFRU.4 == true(1)

 entPhysicalDescr.5 == ’Acme Ethernet-100 Port’
 entPhysicalVendorType.5 == acmeProducts.portTypes.2
 entPhysicalContainedIn.5 == 4
 entPhysicalClass.5 == port(10)
 entPhysicalParentRelPos.5 == 1
 entPhysicalName.5 == ’P1’
 entPhysicalHardwareRev.5 == ’G(1.02)’
 entPhysicalSoftwareRev.5 == ’’
 entPhysicalFirmwareRev.5 == ’1.1’
 entPhysicalSerialNum.5 == ’’
 entPhysicalMfgName.5 == ’Acme’
 entPhysicalModelName.5 == ’FE-100’
 entPhysicalAlias.5 == ’’
 entPhysicalAssetID.5 == ’’
 entPhysicalIsFRU.5 == false(2)

 entPhysicalDescr.6 == ’Acme Ethernet-100 Port’
 entPhysicalVendorType.6 == acmeProducts.portTypes.2
 entPhysicalContainedIn.6 == 4
 entPhysicalClass.6 == port(10)
 entPhysicalParentRelPos.6 == 2
 entPhysicalName.6 == ’P2’
 entPhysicalHardwareRev.6 == ’G(1.02)’
 entPhysicalSoftwareRev.6 == ’’
 entPhysicalFirmwareRev.6 == ’1.1’
 entPhysicalSerialNum.6 == ’’
 entPhysicalMfgName.6 == ’Acme’
 entPhysicalModelName.6 == ’FE-100’
 entPhysicalAlias.6 == ’’
 entPhysicalAssetID.6 == ’’

McCloghrie & Bierman Standards Track [Page 40]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalIsFRU.6 == false(2)

 entPhysicalDescr.7 == ’Acme Router-100 FDDI-Port’
 entPhysicalVendorType.7 == acmeProducts.portTypes.3
 entPhysicalContainedIn.7 == 4
 entPhysicalClass.7 == port(10)
 entPhysicalParentRelPos.7 == 3
 entPhysicalName.7 == ’P3’
 entPhysicalHardwareRev.7 == ’B(1.03)’
 entPhysicalSoftwareRev.7 == ’2.5.1’
 entPhysicalFirmwareRev.7 == ’2.5F’
 entPhysicalSerialNum.7 == ’’
 entPhysicalMfgName.7 == ’Acme’
 entPhysicalModelName.7 == ’FDDI-100’
 entPhysicalAlias.7 == ’’
 entPhysicalAssetID.7 == ’’
 entPhysicalIsFRU.7 == false(2)

 Slot 2 contains another 3-port module:
 entPhysicalDescr.8 == ’Acme Router-100 Comm Module’
 entPhysicalVendorType.8 == acmeProducts.moduleTypes.15
 entPhysicalContainedIn.8 == 3
 entPhysicalClass.8 == module(9)
 entPhysicalParentRelPos.8 == 1
 entPhysicalName.8 == ’M2’
 entPhysicalHardwareRev.8 == ’2.01.00’
 entPhysicalSoftwareRev.8 == ’3.0.7’
 entPhysicalFirmwareRev.8 == ’A(1.2)’
 entPhysicalSerialNum.8 == ’C100098732’
 entPhysicalMfgName.8 == ’Acme’
 entPhysicalModelName.8 == ’C100’
 entPhysicalAlias.8 == ’rtr-U3:m2:SJ17-2-eng’
 entPhysicalAssetID.8 == ’0007373982’
 entPhysicalIsFRU.8 == true(1)

 entPhysicalDescr.9 == ’Acme Fddi-100 Port’
 entPhysicalVendorType.9 == acmeProducts.portTypes.5
 entPhysicalContainedIn.9 == 8
 entPhysicalClass.9 == port(10)
 entPhysicalParentRelPos.9 == 1
 entPhysicalName.9 == ’FDDI Primary’
 entPhysicalHardwareRev.9 == ’CC(1.07)’
 entPhysicalSoftwareRev.9 == ’2.0.34’
 entPhysicalFirmwareRev.9 == ’1.1’
 entPhysicalSerialNum.9 == ’’
 entPhysicalMfgName.9 == ’Acme’
 entPhysicalModelName.9 == ’FDDI-100’
 entPhysicalAlias.9 == ’’

McCloghrie & Bierman Standards Track [Page 41]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalAssetID.9 == ’’
 entPhysicalIsFRU.9 == false(2)

 entPhysicalDescr.10 == ’Acme Ethernet-100 Port’
 entPhysicalVendorType.10 == acmeProducts.portTypes.2
 entPhysicalContainedIn.10 == 8
 entPhysicalClass.10 == port(10)
 entPhysicalParentRelPos.10 == 2
 entPhysicalName.10 == ’Ethernet A’
 entPhysicalHardwareRev.10 == ’G(1.04)’
 entPhysicalSoftwareRev.10 == ’’
 entPhysicalFirmwareRev.10 == ’1.3’
 entPhysicalSerialNum.10 == ’’
 entPhysicalMfgName.10 == ’Acme’
 entPhysicalModelName.10 == ’FE-100’
 entPhysicalAlias.10 == ’’
 entPhysicalAssetID.10 == ’’
 entPhysicalIsFRU.10 == false(2)
 entPhysicalDescr.11 == ’Acme Ethernet-100 Port’
 entPhysicalVendorType.11 == acmeProducts.portTypes.2
 entPhysicalContainedIn.11 == 8
 entPhysicalClass.11 == port(10)
 entPhysicalParentRelPos.11 == 3
 entPhysicalName.11 == ’Ethernet B’
 entPhysicalHardwareRev.11 == ’G(1.04)’
 entPhysicalSoftwareRev.11 == ’’
 entPhysicalFirmwareRev.11 == ’1.3’
 entPhysicalSerialNum.11 == ’’
 entPhysicalMfgName.11 == ’Acme’
 entPhysicalModelName.11 == ’FE-100’
 entPhysicalAlias.11 == ’’
 entPhysicalAssetID.11 == ’’
 entPhysicalIsFRU.11 == false(2)

 Logical entities -- entLogicalTable; no SNMPv3 support
 2 OSPF instances:
 entLogicalDescr.1 == ’Acme OSPF v1.1’
 entLogicalType.1 == ospf
 entLogicalCommunity.1 == ’public-ospf1’
 entLogicalTAddress.1 == 124.125.126.127:161
 entLogicalTDomain.1 == snmpUDPDomain
 entLogicalContextEngineID.1 == ’’
 entLogicalContextName.1 == ’’

 entLogicalDescr.2 == ’Acme OSPF v1.1’
 entLogicalType.2 == ospf
 entLogicalCommunity.2 == ’public-ospf2’
 entLogicalTAddress.2 == 124.125.126.127:161

McCloghrie & Bierman Standards Track [Page 42]

RFC 2737 Entity MIB (Version 2) December 1999

 entLogicalTDomain.2 == snmpUDPDomain
 entLogicalContextEngineID.2 == ’’
 entLogicalContextName.2 == ’’

 2 logical bridges:
 entLogicalDescr.3 == ’Acme Bridge v2.1.1’
 entLogicalType.3 == dot1dBridge
 entLogicalCommunity.3 == ’public-bridge1’
 entLogicalTAddress.3 == 124.125.126.127:161
 entLogicalTDomain.3 == snmpUDPDomain
 entLogicalContextEngineID.3 == ’’
 entLogicalContextName.3 == ’’

 entLogicalDescr.4 == ’Acme Bridge v2.1.1’
 entLogicalType.4 == dot1dBridge
 entLogicalCommunity.4 == ’public-bridge2’
 entLogicalTAddress.4 == 124.125.126.127:161
 entLogicalTDomain.4 == snmpUDPDomain
 entLogicalContextEngineID.4 == ’’
 entLogicalContextName.4 == ’’

 Logical to Physical Mappings:
 1st OSPF instance: uses module 1-port 1
 entLPPhysicalIndex.1.5 == 5

 2nd OSPF instance: uses module 2-port 1
 entLPPhysicalIndex.2.9 == 9

 1st bridge group: uses module 1, all ports

 [ed. -- Note that these mappings are included in the table since
 another logical entity (1st OSPF) utilizes one of the
 ports. If this were not the case, then a single mapping
 to the module (e.g., entLPPhysicalIndex.3.4) would be
 present instead.]
 entLPPhysicalIndex.3.5 == 5
 entLPPhysicalIndex.3.6 == 6
 entLPPhysicalIndex.3.7 == 7

 2nd bridge group: uses module 2, all ports
 entLPPhysicalIndex.4.9 == 9
 entLPPhysicalIndex.4.10 == 10
 entLPPhysicalIndex.4.11 == 11

 Physical to Logical to MIB Alias Mappings -- entAliasMappingTable:
 Example 1: ifIndex values are global to all logical entities
 entAliasMappingIdentifier.5.0 == ifIndex.1
 entAliasMappingIdentifier.6.0 == ifIndex.2

McCloghrie & Bierman Standards Track [Page 43]

RFC 2737 Entity MIB (Version 2) December 1999

 entAliasMappingIdentifier.7.0 == ifIndex.3
 entAliasMappingIdentifier.9.0 == ifIndex.4
 entAliasMappingIdentifier.10.0 == ifIndex.5
 entAliasMappingIdentifier.11.0 == ifIndex.6

 Example 2: ifIndex values are not shared by all logical entities
 entAliasMappingIdentifier.5.0 == ifIndex.1
 entAliasMappingIdentifier.5.3 == ifIndex.101
 entAliasMappingIdentifier.6.0 == ifIndex.2
 entAliasMappingIdentifier.6.3 == ifIndex.102
 entAliasMappingIdentifier.7.0 == ifIndex.3
 entAliasMappingIdentifier.7.3 == ifIndex.103
 entAliasMappingIdentifier.9.0 == ifIndex.4
 entAliasMappingIdentifier.9.3 == ifIndex.204
 entAliasMappingIdentifier.10.0 == ifIndex.5
 entAliasMappingIdentifier.10.3 == ifIndex.205
 entAliasMappingIdentifier.11.0 == ifIndex.6
 entAliasMappingIdentifier.11.3 == ifIndex.206

 Physical Containment Tree -- entPhysicalContainsTable
 chassis has two containers:
 entPhysicalChildIndex.1.2 == 2
 entPhysicalChildIndex.1.3 == 3

 container 1 has a module:
 entPhysicalChildIndex.2.4 == 4

 container 2 has a module:
 entPhysicalChildIndex.3.8 == 8

 module 1 has 3 ports:
 entPhysicalChildIndex.4.5 == 5
 entPhysicalChildIndex.4.6 == 6
 entPhysicalChildIndex.4.7 == 7

 module 2 has 3 ports:
 entPhysicalChildIndex.8.9 == 9
 entPhysicalChildIndex.8.10 == 10
 entPhysicalChildIndex.1.11 == 11

4.2. Repeaters

 A 3-slot Hub with 2 backplane ethernet segments. Slot three is
 empty, and the remaining slots contain ethernet repeater modules.

 Note that this example assumes an older Repeater MIB implementation,
 (RFC 1516 [RFC1516]) rather than the new Repeater MIB (RFC 2108
 [RFC2108]). The new version contains an object called ’

McCloghrie & Bierman Standards Track [Page 44]

RFC 2737 Entity MIB (Version 2) December 1999

 rptrPortRptrId’, which should be used to identify repeater port
 groupings, rather than with community strings or contexts.

Physical entities -- entPhysicalTable:
 1 Field-replaceable physical chassis:
 entPhysicalDescr.1 == ’Acme Chassis Model 110’
 entPhysicalVendorType.1 == acmeProducts.chassisTypes.2
 entPhysicalContainedIn.1 == 0
 entPhysicalClass.1 == chassis(3)
 entPhysicalParentRelPos.1 == 0
 entPhysicalName.1 == ’110-B’
 entPhysicalHardwareRev.1 == ’A(1.02.00)’
 entPhysicalSoftwareRev.1 == ’’
 entPhysicalFirmwareRev.1 == ’’
 entPhysicalSerialNum.1 == ’C100079294’
 entPhysicalMfgName.1 == ’Acme’
 entPhysicalModelName.1 == ’110’
 entPhysicalAlias.1 == ’bldg09:floor1:rptr18:0067eea0229f’
 entPhysicalAssetID.1 == ’0007386327’
 entPhysicalIsFRU.1 == true(1)

 2 Chassis Ethernet Backplanes:
 entPhysicalDescr.2 == ’Acme Ethernet Backplane Type A’
 entPhysicalVendorType.2 == acmeProducts.backplaneTypes.1
 entPhysicalContainedIn.2 == 1
 entPhysicalClass.2 == backplane(4)
 entPhysicalParentRelPos.2 == 1
 entPhysicalName.2 == ’B1’
 entPhysicalHardwareRev.2 == ’A(2.04.01)’
 entPhysicalSoftwareRev.2 == ’’
 entPhysicalFirmwareRev.2 == ’’
 entPhysicalSerialNum.2 == ’’
 entPhysicalMfgName.2 == ’Acme’
 entPhysicalModelName.2 == ’BK-A’
 entPhysicalAlias.2 == ’’
 entPhysicalAssetID.2 == ’’
 entPhysicalIsFRU.2 == false(2)

 entPhysicalDescr.3 == ’Acme Ethernet Backplane Type A’
 entPhysicalVendorType.3 == acmeProducts.backplaneTypes.1
 entPhysicalContainedIn.3 == 1
 entPhysicalClass.3 == backplane(4)
 entPhysicalParentRelPos.3 == 2
 entPhysicalName.3 == ’B2’
 entPhysicalHardwareRev.3 == ’A(2.04.01)’
 entPhysicalSoftwareRev.3 == ’’
 entPhysicalFirmwareRev.3 == ’’
 entPhysicalSerialNum.3 == ’’

McCloghrie & Bierman Standards Track [Page 45]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalMfgName.3 == ’Acme’
 entPhysicalModelName.3 == ’BK-A’
 entPhysicalAlias.3 == ’’
 entPhysicalAssetID.3 == ’’
 entPhysicalIsFRU.3 == false(2)

 3 slots within the chassis:
 entPhysicalDescr.4 == ’Acme Hub Slot Type RB’
 entPhysicalVendorType.4 == acmeProducts.slotTypes.5
 entPhysicalContainedIn.4 == 1
 entPhysicalClass.4 == container(5)
 entPhysicalParentRelPos.4 == 1
 entPhysicalName.4 == ’Slot 1’
 entPhysicalHardwareRev.4 == ’B(1.00.03)’
 entPhysicalSoftwareRev.4 == ’’
 entPhysicalFirmwareRev.4 == ’’
 entPhysicalSerialNum.4 == ’’
 entPhysicalMfgName.4 == ’Acme’
 entPhysicalModelName.4 == ’RB’
 entPhysicalAlias.4 == ’’
 entPhysicalAssetID.4 == ’’
 entPhysicalIsFRU.4 == false(2)

 entPhysicalDescr.5 == ’Acme Hub Slot Type RB’
 entPhysicalVendorType.5 == acmeProducts.slotTypes.5
 entPhysicalContainedIn.5 == 1
 entPhysicalClass.5 == container(5)
 entPhysicalParentRelPos.5 == 2
 entPhysicalName.5 == ’Slot 2’
 entPhysicalHardwareRev.5 == ’B(1.00.03)’
 entPhysicalSoftwareRev.5 == ’’
 entPhysicalFirmwareRev.5 == ’’
 entPhysicalSerialNum.5 == ’’
 entPhysicalMfgName.5 == ’Acme’
 entPhysicalModelName.5 == ’RB’
 entPhysicalAlias.5 == ’’
 entPhysicalAssetID.5 == ’’
 entPhysicalIsFRU.5 == false(2)

 entPhysicalDescr.6 == ’Acme Hub Slot Type RB’
 entPhysicalVendorType.6 == acmeProducts.slotTypes.5
 entPhysicalContainedIn.6 == 1
 entPhysicalClass.6 == container(5)
 entPhysicalParentRelPos.6 == 3
 entPhysicalName.6 == ’Slot 3’
 entPhysicalHardwareRev.6 == ’B(1.00.03)’
 entPhysicalSoftwareRev.6 == ’’
 entPhysicalFirmwareRev.6 == ’’

McCloghrie & Bierman Standards Track [Page 46]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalSerialNum.6 == ’’
 entPhysicalMfgName.6 == ’Acme’
 entPhysicalModelName.6 == ’RB’
 entPhysicalAlias.6 == ’’
 entPhysicalAssetID.6 == ’’
 entPhysicalIsFRU.6 == false(2)

 Slot 1 contains a plug-in module with 4 10-BaseT ports:
 entPhysicalDescr.7 == ’Acme 10Base-T Module 114’
 entPhysicalVendorType.7 == acmeProducts.moduleTypes.32
 entPhysicalContainedIn.7 == 4
 entPhysicalClass.7 == module(9)
 entPhysicalParentRelPos.7 == 1
 entPhysicalName.7 == ’M1’
 entPhysicalHardwareRev.7 == ’A(1.02.01)’
 entPhysicalSoftwareRev.7 == ’1.7.2’
 entPhysicalFirmwareRev.7 == ’A(1.5)’
 entPhysicalSerialNum.7 == ’C100096244’
 entPhysicalMfgName.7 == ’Acme’
 entPhysicalModelName.7 = ’114’
 entPhysicalAlias.7 == ’bldg09:floor1:eng’
 entPhysicalAssetID.7 == ’0007962951’
 entPhysicalIsFRU.7 == true(1)

 entPhysicalDescr.8 == ’Acme 10Base-T Port RB’
 entPhysicalVendorType.8 == acmeProducts.portTypes.10
 entPhysicalContainedIn.8 == 7
 entPhysicalClass.8 == port(10)
 entPhysicalParentRelPos.8 == 1
 entPhysicalName.8 == ’Ethernet-A’
 entPhysicalHardwareRev.8 == ’A(1.04F)’
 entPhysicalSoftwareRev.8 == ’’
 entPhysicalFirmwareRev.8 == ’1.4’
 entPhysicalSerialNum.8 == ’’
 entPhysicalMfgName.8 == ’Acme’
 entPhysicalModelName.8 == ’RB’
 entPhysicalAlias.8 == ’’
 entPhysicalAssetID.8 == ’’
 entPhysicalIsFRU.8 == false(2)

 entPhysicalDescr.9 == ’Acme 10Base-T Port RB’
 entPhysicalVendorType.9 == acmeProducts.portTypes.10
 entPhysicalContainedIn.9 == 7
 entPhysicalClass.9 == port(10)
 entPhysicalParentRelPos.9 == 2
 entPhysicalName.9 == ’Ethernet-B’
 entPhysicalHardwareRev.9 == ’A(1.04F)’
 entPhysicalSoftwareRev.9 == ’’

McCloghrie & Bierman Standards Track [Page 47]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalFirmwareRev.9 == ’1.4’
 entPhysicalSerialNum.9 == ’’
 entPhysicalMfgName.9 == ’Acme’
 entPhysicalModelName.9 = ’RB’
 entPhysicalAlias.9 == ’’
 entPhysicalAssetID.9 == ’’
 entPhysicalIsFRU.9 == false(2)

 entPhysicalDescr.10 == ’Acme 10Base-T Port RB’
 entPhysicalVendorType.10 == acmeProducts.portTypes.10
 entPhysicalContainedIn.10 == 7
 entPhysicalClass.10 == port(10)
 entPhysicalParentRelPos.10 == 3
 entPhysicalName.10 == ’Ethernet-C’
 entPhysicalHardwareRev.10 == ’B(1.02.07)’
 entPhysicalSoftwareRev.10 == ’’
 entPhysicalFirmwareRev.10 == ’1.4’
 entPhysicalSerialNum.10 == ’’
 entPhysicalMfgName.10 == ’Acme’
 entPhysicalModelName.10 == ’RB’
 entPhysicalAlias.10 == ’’
 entPhysicalAssetID.10 == ’’
 entPhysicalIsFRU.10 == false(2)

 entPhysicalDescr.11 == ’Acme 10Base-T Port RB’
 entPhysicalVendorType.11 == acmeProducts.portTypes.10
 entPhysicalContainedIn.11 == 7
 entPhysicalClass.11 == port(10)
 entPhysicalParentRelPos.11 == 4
 entPhysicalName.11 == ’Ethernet-D’
 entPhysicalHardwareRev.11 == ’B(1.02.07)’
 entPhysicalSoftwareRev.11 == ’’
 entPhysicalFirmwareRev.11 == ’1.4’
 entPhysicalSerialNum.11 == ’’
 entPhysicalMfgName.11 == ’Acme’
 entPhysicalModelName.11 == ’RB’
 entPhysicalAlias.11 == ’’
 entPhysicalAssetID.11 == ’’
 entPhysicalIsFRU.11 == false(2)

 Slot 2 contains another ethernet module with 2 ports.
 entPhysicalDescr.12 == ’Acme 10Base-T Module Model 4’
 entPhysicalVendorType.12 == acmeProducts.moduleTypes.30
 entPhysicalContainedIn.12 = 5
 entPhysicalClass.12 == module(9)
 entPhysicalParentRelPos.12 == 1
 entPhysicalName.12 == ’M2’
 entPhysicalHardwareRev.12 == ’A(1.01.07)’

McCloghrie & Bierman Standards Track [Page 48]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalSoftwareRev.12 == ’1.8.4’
 entPhysicalFirmwareRev.12 == ’A(1.8)’
 entPhysicalSerialNum.12 == ’C100102384’
 entPhysicalMfgName.12 == ’Acme’
 entPhysicalModelName.12 == ’4’
 entPhysicalAlias.12 == ’bldg09:floor1:devtest’
 entPhysicalAssetID.12 == ’0007968462’
 entPhysicalIsFRU.12 == true(1)

 entPhysicalDescr.13 == ’Acme 802.3 AUI Port’
 entPhysicalVendorType.13 == acmeProducts.portTypes.11
 entPhysicalContainedIn.13 == 12
 entPhysicalClass.13 == port(10)
 entPhysicalParentRelPos.13 == 1
 entPhysicalName.13 == ’AUI’
 entPhysicalHardwareRev.13 == ’A(1.06F)’
 entPhysicalSoftwareRev.13 == ’’
 entPhysicalFirmwareRev.13 == ’1.5’
 entPhysicalSerialNum.13 == ’’
 entPhysicalMfgName.13 == ’Acme’
 entPhysicalModelName.13 == ’’
 entPhysicalAlias.13 == ’’
 entPhysicalAssetID.13 == ’’
 entPhysicalIsFRU.13 == false(2)

 entPhysicalDescr.14 == ’Acme 10Base-T Port RD’
 entPhysicalVendorType.14 == acmeProducts.portTypes.14
 entPhysicalContainedIn.14 == 12
 entPhysicalClass.14 == port(10)
 entPhysicalParentRelPos.14 == 2
 entPhysicalName.14 == ’E2’
 entPhysicalHardwareRev.14 == ’B(1.01.02)’
 entPhysicalSoftwareRev.14 == ’’
 entPhysicalFirmwareRev.14 == ’2.1’
 entPhysicalSerialNum.14 == ’’
 entPhysicalMfgName.14 == ’Acme’
 entPhysicalModelName.14 == ’’
 entPhysicalAlias.14 == ’’
 entPhysicalAssetID.14 == ’’
 entPhysicalIsFRU.14 == false(2)

Logical entities -- entLogicalTable; with SNMPv3 support
 Repeater 1--comprised of any ports attached to backplane 1
 entLogicalDescr.1 == ’Acme repeater v3.1’
 entLogicalType.1 == snmpDot3RptrMgt
 entLogicalCommunity.1 ’public-repeater1’
 entLogicalTAddress.1 == 124.125.126.127:161
 entLogicalTDomain.1 == snmpUDPDomain

McCloghrie & Bierman Standards Track [Page 49]

RFC 2737 Entity MIB (Version 2) December 1999

 entLogicalContextEngineID.1 == ’80000777017c7d7e7f’H
 entLogicalContextName.1 == ’repeater1’

 Repeater 2--comprised of any ports attached to backplane 2:
 entLogicalDescr.2 == ’Acme repeater v3.1’
 entLogicalType.2 == snmpDot3RptrMgt
 entLogicalCommunity.2 == ’public-repeater2’
 entLogicalTAddress.2 == 124.125.126.127:161
 entLogicalTDomain.2 == snmpUDPDomain
 entLogicalContextEngineID.2 == ’80000777017c7d7e7f’H
 entLogicalContextName.2 == ’repeater2’

Logical to Physical Mappings -- entLPMappingTable:

 repeater1 uses backplane 1, slot 1-ports 1 & 2, slot 2-port 1
 [ed. -- Note that a mapping to the module is not included,
 since in this example represents a port-switchable hub.
 Even though all ports on the module could belong to the
 same repeater as a matter of configuration, the LP port
 mappings should not be replaced dynamically with a single
 mapping for the module (e.g., entLPPhysicalIndex.1.7).
 If all ports on the module shared a single backplane connection,
 then a single mapping for the module would be more appropriate.]

 entLPPhysicalIndex.1.2 == 2
 entLPPhysicalIndex.1.8 == 8
 entLPPhysicalIndex.1.9 == 9
 entLPPhysicalIndex.1.13 == 13

 repeater2 uses backplane 2, slot 1-ports 3 & 4, slot 2-port 2
 entLPPhysicalIndex.2.3 == 3
 entLPPhysicalIndex.2.10 == 10
 entLPPhysicalIndex.2.11 == 11
 entLPPhysicalIndex.2.14 == 14

Physical to Logical to MIB Alias Mappings -- entAliasMappingTable:
 Repeater Port Identifier values are shared by both repeaters:
 entAliasMappingIdentifier.8.0 == rptrPortGroupIndex.1.1
 entAliasMappingIdentifier.9.0 == rptrPortGroupIndex.1.2
 entAliasMappingIdentifier.10.0 == rptrPortGroupIndex.1.3
 entAliasMappingIdentifier.11.0 == rptrPortGroupIndex.1.4
 entAliasMappingIdentifier.13.0 == rptrPortGroupIndex.2.1
 entAliasMappingIdentifier.14.0 == rptrPortGroupIndex.2.2

Physical Containment Tree -- entPhysicalContainsTable
 chassis has two backplanes and three containers:
 entPhysicalChildIndex.1.2 == 2
 entPhysicalChildIndex.1.3 == 3

McCloghrie & Bierman Standards Track [Page 50]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalChildIndex.1.4 == 4
 entPhysicalChildIndex.1.5 == 5
 entPhysicalChildIndex.1.6 == 6

 container 1 has a module:
 entPhysicalChildIndex.4.7 == 7

 container 2 has a module
 entPhysicalChildIndex.5.12 == 12
 [ed. - in this example, container 3 is empty.]

 module 1 has 4 ports:
 entPhysicalChildIndex.7.8 == 8
 entPhysicalChildIndex.7.9 == 9
 entPhysicalChildIndex.7.10 == 10
 entPhysicalChildIndex.7.11 == 11

 module 2 has 2 ports:
 entPhysicalChildIndex.12.13 == 13
 entPhysicalChildIndex.12.14 == 14

5. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

6. Acknowledgements

 This memo has been produced by the IETF’s Entity MIB working group.

7. References

McCloghrie & Bierman Standards Track [Page 51]

RFC 2737 Entity MIB (Version 2) December 1999

 [RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
 of Management Information for TCP/IP-based Internets", STD
 16, RFC 1155, May 1990.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
 Network Management Protocol", STD 15, RFC 1157, May 1990.

 [RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD
 16, RFC 1212, March 1991.

 [RFC1215] Rose, M., "A Convention for Defining Traps for use with the
 SNMP", RFC 1215, March 1991.

 [RFC1493] Decker, E., Langille, P., Rijsinghani, A. and K.
 McCloghrie, "Definitions of Managed Objects for Bridges",
 RFC 1493, July 1993.

 [RFC1516] McMaster, D. and K. McCloghrie, "Definitions of Managed
 Objects for IEEE 802.3 Repeater Devices", RFC 1516,
 September 1993.

 [RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901, January
 1996.

 [RFC1905] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Protocol Operations for Version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1905, January 1996.

 [RFC1906] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Transport Mappings for Version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1906, January 1996.

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 [RFC2037] McCloghrie, K. and A. Bierman, "Entity MIB using SMIv2",
 RFC 2037, October 1996.

 [RFC2108] de Graaf, K., Romascanu, D., McMaster, D. and K.
 McCloghrie, "Definitions of Managed Objects for IEEE 802.3
 Repeater Devices using SMIv2", RFC 2108, February 1997.

 [RFC2233] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB
 Using SMIv2", RFC 2233, November 1997.

McCloghrie & Bierman Standards Track [Page 52]

RFC 2737 Entity MIB (Version 2) December 1999

 [RFC2570] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction to Version 3 of the Internet-standard Network
 Management Framework", RFC 2570, April 1999.

 [RFC2571] Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture
 for Describing SNMP Management Frameworks", RFC 2571, April
 1999.

 [RFC2572] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
 Processing and Dispatching for the Simple Network
 Management Protocol (SNMP)", RFC 2572, April 1999.

 [RFC2573] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications",
 RFC 2573, April 1999.

 [RFC2574] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", RFC 2574, April 1999.

 [RFC2575] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", RFC 2575, April 1999.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

8. Security Considerations

 There are a number of management objects defined in this MIB that
 have a MAX-ACCESS clause of read-write and/or read-create. Such
 objects may be considered sensitive or vulnerable in some network
 environments. The support for SET operations in a non-secure
 environment without proper protection can have a negative effect on
 network operations.

 There are a number of managed objects in this MIB that may contain
 sensitive information. These are:

McCloghrie & Bierman Standards Track [Page 53]

RFC 2737 Entity MIB (Version 2) December 1999

 entPhysicalDescr
 entPhysicalVendorType
 entPhysicalHardwareRev
 entPhysicalFirmwareRev
 entPhysicalSoftwareRev
 entPhysicalSerialNum
 entPhysicalMfgName
 entPhysicalModelName

 These objects expose information about the physical entities within a
 managed system, which may be used to identify the vendor, model, and
 version information of each system component.

 entPhysicalAssetID

 This object can allow asset identifiers for various system components
 to be exposed, in the event this MIB object is actually configured by
 an NMS application.

 entLogicalDescr
 entLogicalType

 These objects expose the type of logical entities present in the
 managed system.

 entLogicalCommunity

 This object exposes community names associated with particular
 logical entites within the system.

 entLogicalTAddress
 entLogicalTDomain

 These objects expose network addresses that can be used to
 communicate with an SNMP agent on behalf of particular logical
 entities within the system.

 entLogicalContextEngineID
 entLogicalContextName

 These objects identify the authoritative SNMP engine that contains
 information on behalf of particular logical entities within the
 system.

 It is thus important to control even GET access to these objects and
 possibly to even encrypt the values of these object when sending them
 over the network via SNMP. Not all versions of SNMP provide features
 for such a secure environment.

McCloghrie & Bierman Standards Track [Page 54]

RFC 2737 Entity MIB (Version 2) December 1999

 SNMPv1 by itself is not a secure environment. Even if the network
 itself is secure (for example by using IPSec), even then, there is no
 control as to who on the secure network is allowed to access and
 GET/SET (read/change/create/delete) the objects in this MIB.

 It is recommended that the implementers consider the security
 features as provided by the SNMPv3 framework. Specifically, the use
 of the User-based Security Model RFC 2574 [RFC2574] and the View-
 based Access Control Model RFC 2575 [RFC2575] is recommended.

 It is then a customer/user responsibility to ensure that the SNMP
 entity giving access to an instance of this MIB, is properly
 configured to give access to the objects only to those principals
 (users) that have legitimate rights to indeed GET or SET
 (change/create/delete) them.

12. Authors’ Addresses

 Keith McCloghrie
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134 USA
 Phone: +1 408-526-5260
 EMail: kzm@cisco.com

 Andy Bierman
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134 USA
 Phone: +1 408-527-3711
 EMail: abierman@cisco.com

McCloghrie & Bierman Standards Track [Page 55]

RFC 2737 Entity MIB (Version 2) December 1999

9. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

McCloghrie & Bierman Standards Track [Page 56]

