
Network Working Group N. Brownlee
Request for Comments: 2723 The University of Auckland
Category: Informational October 1999

 SRL: A Language for Describing Traffic Flows and
 Specifying Actions for Flow Groups

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This document describes a language for specifying rulesets, i.e.
 configuration files which may be loaded into a traffic flow meter so
 as to specify which traffic flows are measured by the meter, and the
 information it will store for each flow.

Table of Contents

 1 Purpose and Scope . 2
 1.1 RTFM Meters and Traffic Flows 2
 1.2 SRL Overview . 3
 2 SRL Language Description 4
 2.1 Define Directive . 4
 2.2 Program . 5
 2.3 Declaration . 5
 3 Statement . 5
 3.1 IF_statement . 6
 3.1.1 expression . 6
 3.1.2 term . 6
 3.1.3 factor . 6
 3.1.4 operand_list 6
 3.1.5 operand . 6
 3.1.6 Test Part . 7
 3.1.7 Action Part . 8
 3.1.8 ELSE Clause . 8
 3.2 Compound_statement 8
 3.3 Imperative_statement 9
 3.3.1 SAVE Statement 9
 3.3.2 COUNT Statement 10

Brownlee Informational [Page 1]

RFC 2723 SRL: A Traffic Flow Language October 1999

 3.3.3 EXIT Statement 10
 3.3.4 IGNORE Statement 10
 3.3.5 NOMATCH Statement 10
 3.3.6 STORE Statement 11
 3.3.7 RETURN Statement 11
 3.4 Subroutine_declaration 11
 3.5 CALL_statement . 12
 4 Example Programs . 13
 4.1 Classify IP Port Numbers 13
 4.2 Classify Traffic into Groups of Networks 14
 5 Security Considerations 15
 6 IANA Considerations . 15
 7 APPENDICES . 16
 7.1 Appendix A: SRL Syntax in BNF 16
 7.2 Appendix B: Syntax for Values and Masks 18
 7.3 Appendix C: RTFM Attribute Information 19
 8 Acknowledgments . 20
 9 References . 20
 10 Author’s Address . 21
 11 Full Copyright Statement 22

1 Purpose and Scope

 A ruleset for an RTFM Meter is a sequence of instructions to be
 executed by the meter’s Pattern Matching Engine (PME). The form of
 these instructions is described in detail in the ’RTFM Architecture’
 and ’RTFM Meter MIB’ documents [RTFM-ARC, RTFM-MIB], but most users -
 at least initially - find them confusing and difficult to write,
 mainly because the effect of each instruction is strongly dependent
 on the state of the meter’s Packet Matching Engine at the moment of
 its execution.

 SRL (the Simple Ruleset Language) is a procedural language for
 creating RTFM rulesets. It has been designed to be simple for people
 to understand, using statements which help to clarify the execution
 context in which they operate. SRL programs will be compiled into
 rulesets which can then be downloaded to RTFM meters.

 An SRL compiler is available as part of NeTraMet (a free-software
 implementation of the RTFM meter and manager), version 4.2
 [NETRAMET].

1.1 RTFM Meters and Traffic Flows

 The RTFM Architecture [RTFM-ARC] defines a set of ’attributes’ which
 apply to network traffic. Among the attributes are ’address
 attributes,’ such as PeerType, PeerAddress, TransType and
 TransAddress, which have meaning for many protocols, e.g. for IPv4

Brownlee Informational [Page 2]

RFC 2723 SRL: A Traffic Flow Language October 1999

 traffic (PeerType == 1) PeerAddress is an IP address, TransType is
 TCP(6), UDP(17), ICMP(1), etc., and TransAddress is usually an IP
 port number.

 An ’RTFM Traffic Flow’ is simply a stream of packets observed by a
 meter as they pass across a network between two end points (or
 to/from a single end point). Each ’end point’ of a flow is specified
 by the set of values of its address attributes.

 An ’RTFM Meter’ is a measuring device - e.g. a program running on a
 Unix or PC host - which observes passing packets and builds ’Flow
 Data Records’ for the flows of interest.

 RTFM traffic flows have another important property - they are bi-
 directional. This means that each flow data record in the meter has
 two sets of counters, one for packets travelling from source to
 destination, the other for returning packets. Within the RTFM
 architecture such counters appear as further attributes of the flow.

 An RTFM meter must be configured by the user, which means creating a
 ’Ruleset’ so as to specify which flows are to be measured, and how
 much information (i.e. which attributes) should be stored for each of
 them. A ruleset is effectively a program for a minimal virtual
 machine, the ’Packet Matching Engine (PME),’ which is described in
 detail in [RTFM-ARC]. An RTFM meter may run multiple rule sets, with
 every passing packet being processed by each of the rulesets. The
 rule ’actions’ in this document are described as though only a single
 ruleset were running.

 In the past creating a ruleset has meant writing machine code for the
 PME, which has proved rather difficult to do. SRL provides a high-
 level language which should enable users to create effective rulesets
 without having to understand the details of the PME.

 The language may be useful in other applications, being suitable for
 any application area which involves selecting traffic flows from a
 stream of packets.

1.2 SRL Overview

 An SRL program is executed from the beginning for each new packet
 arriving at the meter. It has two essential goals.

 (a) Decide whether the current packet is part of a flow which is of
 interest and, if necessary, determine its direction (i.e. decide
 which of its end-points is considered to be its source). Other
 packets will be ignored.

Brownlee Informational [Page 3]

RFC 2723 SRL: A Traffic Flow Language October 1999

 (b) SAVE whatever information is required to identify the flow and
 accumulate (COUNT) quantitative information for that flow.

 At execution, the meter’s Packet Matching Engine (PME) begins by
 using source and destination attributes as they appear ’on the wire.’
 If the attributes do not match those of a flow to be recorded, the
 PME will normally execute the program again, this time with the
 source and destination addresses interchanged. Because of this bi-
 directional matching, an RTFM meter is able to build up tables of
 flows with two sets of counters - one for forward packets, the other
 for backward packets. The programmer can, if required, suppress the
 reverse-direction matching and assign ’forward’ and ’backward’
 directions which conform to the conventions of the external context.

 Goal (a) is achieved using IF statements which perform comparisons on
 information from the packet or from SRL variables. Goal (b) is
 achieved using one or more SAVE statements to store the flow’s
 identification attributes; a COUNT statement then increments the
 statistical data accumulating for it.

2 SRL Language Description

 The SRL language is explained below using ’railway diagrams’ to
 describe the syntax. Flow through a diagram is from left to right.
 The only exception to this is that lines carrying a left arrow may
 only be traversed right to left. In the diagrams, keywords are
 written in capital letters; in practice an SRL compiler must be
 insensitive to case. Lower-case identifiers are explained in the
 text, or they refer to another diagram.

 The tokens of an SRL program obey the following rules:

 - Comments may appear on any line of an SRL program, following a #
 - White space is used to separate tokens
 - Semicolon is used as the terminator for most statements
 - Identifiers (e.g. for defines and labels) must start with a letter
 - Identifiers may contain letters, digits and underscores
 - The case of letters is not significant
 - Reserved words (shown in upper case in this document) may not be
 used as identifiers

2.1 Define Directive

 --- DEFINE -- defname ---- = ---- defined_text ------------------ ;

 Simple parameterless defines are supported via the syntax above. The
 define name, defname, is an identifier. The defined text starts
 after the equal sign, and continues up to (but not including) the

Brownlee Informational [Page 4]

RFC 2723 SRL: A Traffic Flow Language October 1999

 closing semicolon. If a semicolon is required within the defined
 text it must be preceded by a backslash, i.e. \; in an SRL define
 produces ; in the text.

 Wherever defname appears elsewhere in the program, it will be
 replaced by the defined text.

 For example,

 DEFINE ftp = (20, 21); # Well-known Port numbers from [ASG-NBR]
 DEFINE telnet = 23;
 DEFINE www = 80;

2.2 Program

 ------------+-------+-------- Statement -------+-------+-----------
 | | | |
 | +------- Declaration ------+ |
 | |
 +---------------------<--------------------+

 An SRL program is a sequence of statements or declarations. It does
 not have any special enclosing symbols. Statements and declarations
 terminate with a semicolon, except for compound statements, which
 terminate with a right brace.

2.3 Declaration

 ---------------------- Subroutine_declaration ---------------------

 SRL’s only explicit declaration is the subroutine declaration. Other
 implicit declarations are labels (declared where they appear in front
 of a statement) and subroutine parameters (declared in the subroutine
 header).

3 Statement

 ----------------+---- IF_statement ----------------+---------------
 | |
 +---- Compound_statement ----------+
 | |
 +---- Imperative_statement --------+
 | |
 +---- CALL_statement --------------+

 An SRL program is a sequence of SRL statements. There are four kinds
 of statements, as follows.

Brownlee Informational [Page 5]

RFC 2723 SRL: A Traffic Flow Language October 1999

3.1 IF_statement

 Test Part Action Part

 --- IF --- expression ---+------------+---- Statement ----+--->
 | | |
 +-- SAVE , --+ |
 | |
 +-- SAVE ; ----------------------+

 >-----------+-----------------------------+-----------------
 | |
 +-----ELSE --- Statement -----+

3.1.1 expression

 -------- term --------+------------------------+-------------------
 | |
 +--<-- term ----- || ----+ logical OR

3.1.2 term

 ------- factor -------+------------------------+-------------------
 | |
 +--<-- factor --- && ----+ logical AND

3.1.3 factor

 ------------+-------- attrib == operand_list --------+-----------
 | |
 +------------ (expression) --------------+

3.1.4 operand_list

 ----------+------------------ operand -----------------+-----------
 | |
 +-- (operand ---+-------------------+--) --+
 | |
 +-<-- operand , ---+

3.1.5 operand

 ------------- value ---------+----------------------+--------------
 | |
 +------- / width ------+
 | |
 +------- & mask -------+

Brownlee Informational [Page 6]

RFC 2723 SRL: A Traffic Flow Language October 1999

3.1.6 Test Part

 The IF statement evaluates a logical expression. If the expression
 value is TRUE, the action indicated in the ’Action Part’ of the
 diagram is executed. If the value is FALSE and the IF has an ELSE
 clause, that ELSE clause is executed (see below).

 The simplest form of expression is a test for equality (== operator);
 in this an RTFM attribute value (from the packet or from an SRL
 variable) is ANDed with a mask and compared with a value. A list of
 RTFM attributes is given in Appendix C. More complicated expressions
 may be built up using parentheses and the && (logical AND) and ||
 (logical OR) operators.

 Operand values may be specified as dotted decimal, hexadecimal or as
 a character constant (enclosed in apostrophes). The syntax for
 operand values is given in Appendix B.

 Masks may be specified as numbers,
 dotted decimal e.g. &255.255
 or hexadecimal e.g. &FF-FF
 or as a width in bits e.g. /16

 If a mask is not specified, an all-ones mask is used.

 In SRL a value is always combined with a mask; this combination is
 referred to as an operand. For example, if we were interested in
 flows originating from IP network 130.216, we might write:

 IF SourcePeerAddress == 130.216.0.0 & 255.255.0.0 SAVE;

 or equivalently

 IF SourcePeerAddress == 130.216/16 SAVE;

 A list of values enclosed in parentheses may also be specified; the
 test succeeds if the masked attribute equals any of the values in the
 list. For example:

 IF SourcePeerAddress == (130.216.7/24, 130.216.34/24) SAVE;

 As this last example indicates, values are right-padded with zeroes,
 i.e. the given numbers specify the leading bytes of masks and values.

 The operand values and masks used in an IF statement must be
 consistent with the attribute being tested. For example, a four-byte
 value is acceptable as a peer address, but would not be accepted as a
 transport address (which may not be longer than two bytes).

Brownlee Informational [Page 7]

RFC 2723 SRL: A Traffic Flow Language October 1999

3.1.7 Action Part

 A SAVE action (i.e. SAVE , or SAVE ;) saves attribute(s), mask(s) and
 value(s) as given in the statement. If the IF expression tests more
 than one attribute, the masks and values are saved for all the
 matched attributes. For each value_list in the statement the value
 saved is the one which the packet actually matched. See below for
 further description of SAVE statements.

 Other actions are described in detail under "Imperative statements"
 below. Note that the RETURN action is valid only within subroutines.

3.1.8 ELSE Clause

 An ELSE Clause provides a statement which will be executed if the
 IF’s test fails. The statement following ELSE will often be another
 IF statement, providing SRL’s version of a ’select’ statement. Note
 that an ELSE clause always matches the immediately preceding IF.

3.2 Compound_statement

 -------+-------------+----- { ---+---- Statement ----+--- } -------
 | | | |
 +-- label : --+ +--------<----------+

 A compound statement is a sequence of statements enclosed in braces.
 Each statement will terminate with a semicolon, unless it is another
 compound statement (which terminates with a right brace).

 A compound statement may be labelled, i.e. preceded by an identifier
 followed by a semi-colon. Each statement inside the braces is
 executed in sequence unless an EXIT statement is performed, as
 explained below.

 Labels have a well-defined scope, within which they must be unique.
 Labels within a subroutine (i.e. between a SUBROUTINE and its
 matching ENDSUB) are local to that subroutine and are not visible
 outside it. Labels outside subroutines are part of a program’s outer
 block.

Brownlee Informational [Page 8]

RFC 2723 SRL: A Traffic Flow Language October 1999

3.3 Imperative_statement

 ------+---+------ ;
 | |
 +-- SAVE attrib --+--+-----------+--+---------------+
 | | | | | |
 | | +- / width -+ | |
 | | | | | |
 | | +- & mask --+ | |
 | | | |
 | +--- = operand ---+ |
 | |
 +-- COUNT --+
 | |
 +-- EXIT label ------------------------------------+
 | |
 +-- IGNORE ---+
 | |
 +-- NOMATCH --+
 | |
 +-- RETURN --+-------+------------------------------+
 | | | |
 | +-- n --+ |
 | |
 +-- STORE variable := value ------------------------+

3.3.1 SAVE Statement

 The SAVE statement saves information which will (later) identify the
 flow in the meter’s flow table. It does not actually record anything
 in the table; this is done when a subsequent COUNT statement
 executes.

 SAVE has two possible forms:

 SAVE attrib = operand ; saves the attribute, mask and value as given
 in the statement. This form of the SAVE statement is similar to
 that allowed in an IF statement, except that - since imperative
 statements do not perform a test - you may save an arbitrary
 value.

 SAVE attrib ;
 SAVE attrib / width ;
 SAVE attrib & mask ; saves the attribute and mask from the statement,
 and the value resulting from their application to the current
 packet. This is most useful when used to save a value with a
 wider mask than than was used to select the packet. For
 example:

Brownlee Informational [Page 9]

RFC 2723 SRL: A Traffic Flow Language October 1999

 IF DestPeerAddress == 130.216/16
 NOMATCH;
 ELSE IF SourcePeerAddress == 130.216/16 {
 SAVE SourcePeerAddress /24;
 COUNT;
 }
 ELSE IGNORE;

3.3.2 COUNT Statement

 The COUNT statement appears after all testing and saving is complete;
 it instructs the PME to build the flow identifier from the attributes
 which have been SAVEd, find it in the meter’s flow table (creating a
 new entry if this is the first packet observed for the flow), and
 increment its counters. The meter then moves on to examine the next
 incoming packet.

3.3.3 EXIT Statement

 The EXIT statement exits a labelled compound statement. The next
 statement to be executed will be the one following that compound
 statement. This provides a well-defined way to jump to a clearly
 identified point in a program. For example:

 outer: {
 ...
 if SourcePeerAddress == 192.168/16
 exit outer; # exits the statement labelled ’outer’
 ...
 }
 # execution resumes here

 In practice the language provides sufficient logical structure that
 one seldom - if ever - needs to use the EXIT statement.

3.3.4 IGNORE Statement

 The IGNORE statement terminates examination of the current packet
 without saving any information from it. The meter then moves on to
 examine the next incoming packet, beginning again at the first
 statement of its program.

3.3.5 NOMATCH Statement

 The NOMATCH statement indicates that matching has failed for this
 execution of the program. If it is executed when a packet is being
 processed with its addresses in ’on the wire’ order, the PME will

Brownlee Informational [Page 10]

RFC 2723 SRL: A Traffic Flow Language October 1999

 perform the program again from the beginning with source and
 destination addresses interchanged. If it is executed following such
 an interchange, the packet will be IGNOREd.

 NOMATCH is illustrated in the SAVE example (section 3.3.1), where it
 is used to ensure that flows having 130.216/16 as an end-point are
 counted as though 130.216 had been those flows’ source peer (IP)
 address.

3.3.6 STORE Statement

 The STORE statement assigns a value to an SRL variable and SAVEs it.
 There are six SRL variables:

 SourceClass SourceKind
 DestClass DestKind
 FlowClass FlowKind

 Their names have no particular significance; they were arbitrarily
 chosen as likely RTFM attributes but can be used to store any
 single-byte integer values. Their values are set to zero each time
 examination of a new packet begins. For example:

 STORE SourceClass := 3;
 STORE FlowKind := ’W’

3.3.7 RETURN Statement

 The RETURN statement is used to return from subroutines and can be
 used only within the context of a subroutine. It is described in
 detail below (CALL statement).

3.4 Subroutine_declaration

 -- SUBROUTINE subname (--+-----------------------------+--) -->
 | |
 +--+-- ADDRESS --- pname --+--+
 | |
 +-- VARIABLE -- pname --+
 | |
 +------<------- , ------+

 >------+-------- Statement ---------+----- ENDSUB -------- ;
 | |
 +-------------<--------------+

Brownlee Informational [Page 11]

RFC 2723 SRL: A Traffic Flow Language October 1999

 A Subroutine declaration has three parts:

 the subname is an identifier, used to name the subroutine.

 the parameter list specifies the subroutine’s parameters. Each
 parameter is preceded with a keyword indicating its type -
 VARIABLE indicates an SRL variable (see the STORE statement
 above), ADDRESS indicates any other RTFM attribute. A
 parameter name may be any identifier, and its scope is limited
 to the subroutine’s body.

 the body specifies what processing the subroutine will perform.
 This is simply a sequence of Statements, terminated by the
 ENDSUB keyword.

 Note that EXITs in a subroutine may not refer to labels outside it.
 The only way to leave a subroutine is via a RETURN statement.

3.5 CALL_statement

 ---- CALL subname (--+---------------------+--) ---->
 | |
 +--+-- parameter --+--+
 | |
 +----<--- , ----+

 >---+-------------------------------------+--- ENDCALL ---- ;
 | |
 +---+--+-- n : --+--- Statement --+---+
 | | | |
 | +----<----+ |
 | |
 +--------------<--------------+

 The CALL statement invokes an SRL subroutine. The parameters are SRL
 variables or other RTFM attributes, and their types must match those
 in the subroutine declaration. Following the parameters is a
 sequence of statements, each preceded by an integer label. These
 labels will normally be 1:, 2:, 3:, etc, but they do not have to be
 contiguous, nor in any particular order. They are referred to in
 RETURN statements within the subroutine body.

 e.g. RETURN 2; would return to the statement labelled 2:
 within in the CALL statement.

 Execution of the labelled statement completes the CALL.

Brownlee Informational [Page 12]

RFC 2723 SRL: A Traffic Flow Language October 1999

 If the return statement does not specify a return label, the first
 statement executed after RETURN will be the statement immediately
 following ENDCALL.

4 Example Programs

4.1 Classify IP Port Numbers

 #
 # Classify IP port numbers
 #
 define IPv4 = 1; # Address Family number from [ASG-NBR]
 #
 define ftp = (20, 21); # Well-Known Port numbers from [ASG-NBR]
 define telnet = 23;
 define www = 80;
 #
 define tcp = 6; # Protocol numbers from [ASG-NBR]
 define udp = 17;
 #
 if SourcePeerType == IPv4 save;
 else ignore; # Not an IPv4 packet
 #
 if (SourceTransType == tcp || SourceTransType == udp) save, {
 if SourceTransAddress == (www, ftp, telnet) nomatch;
 # We want the well-known port as Dest
 #
 if DestTransAddress == telnet
 save, store FlowKind := ’T’;
 else if DestTransAddress == www
 save, store FlowKind := ’W’;
 else if DestTransAddress == ftp
 save, store FlowKind := ’F’;
 else {
 save DestTransAddress;
 store FlowKind := ’?’;
 }
 }
 else save SourceTransType = 0;
 #
 save SourcePeerAddress /32;
 save DestPeerAddress /32;
 count;
 #

Brownlee Informational [Page 13]

RFC 2723 SRL: A Traffic Flow Language October 1999

 This program counts only IP packets, saving SourceTransType (tcp, udp
 or 0), Source- and DestPeerAddress (32-bit IP addresses) and FlowKind
 (’W’ for www, ’F’ for ftp, ’T’ for telnet, ’?’ for unclassified).
 The program uses a NOMATCH action to specify the packet direction -
 its resulting flows will have the well-known ports as their
 destination.

4.2 Classify Traffic into Groups of Networks

 #
 # SRL program to classify traffic into network groups
 #
 define my_net = 130.216/16;
 define k_nets = (130.217/16, 130.123/16, 130.195/16,
 132.181/16, 138.75/16, 139.80/16);
 #
 call net_kind (SourcePeerAddress, SourceKind)
 endcall;
 call net_kind (DestPeerAddress, DestKind)
 endcall;
 count;
 #
 subroutine net_kind (address addr, variable net)
 if addr == my_net save, {
 store net := 10; return 1;
 }
 else if addr == k_nets save, {
 store net := 20; return 2;
 }
 save addr/24; # Not my_net or in k_nets
 store net := 30; return 3;
 endsub;
 #

 The net_kind subroutine determines whether addr is my network
 (130.216), one of the Kawaihiko networks (in the k_nets list), or
 some other network. It saves the network address from addr (16 bits
 for my_net and the k_net networks, 24 bits for others), stores a
 value of 10, 20 or 30 in net, and returns to 1:, 2: or 3:. Note
 that the network numbers used are contained within the two DEFINEs,
 making them easy to change.

 net_kind is called twice, saving Source- and DestPeerAddress and
 Source- and DestKind; the COUNT statement produces flows identified
 by these four RTFM attributes, with no particular source-dest
 ordering.

Brownlee Informational [Page 14]

RFC 2723 SRL: A Traffic Flow Language October 1999

 In the program no use is made of return numbers and they could have
 been omitted. However, we might wish to re-use the subroutine in
 another program doing different things for different return numbers,
 as in the version below.

 call net_kind (DestPeerAddress, DestKind)
 1: nomatch; # We want my_net as source
 endcall;
 call net_kind (SourcePeerAddress, SourceKind)
 1: count; # my_net -> other networks
 endcall;
 save SourcePeerAddress /24;
 save DestPeerAddress /24;
 count;

 This version uses a NOMATCH statement to ensure that its resulting
 flows have my_net as their source. The NOMATCH also rejects my_net
 -> my_net traffic. Traffic which doesn’t have my_net as source or
 destination saves 24 bits of its peer addresses (the subroutine might
 only have saved 16) before counting such an unusual flow.

5 Security Considerations

 SRL is a language for creating rulesets (i.e. configuration files)
 for RTFM Traffic Meters - it does not present any security issues in
 itself.

 On the other hand, flow data gathered using such rulesets may well be
 valuable. It is therefore important to take proper precautions to
 ensure that access to the meter and its data is secure. Ways to
 achieve this are discussed in detail in the Architecture and Meter
 MIB documents [RTFM-ARC, RTFM-MIB].

6 IANA Considerations

 Appendix C below lists the RTFM attributes by name. Since SRL only
 refers to attributes by name, SRL users do not have to know the
 attribute numbers.

 The size (in bytes) of the various attribute values is also listed in
 Appendix C. These sizes reflect the object sizes for the attribute
 values as they are stored in the RTFM Meter MIB [RTFM-MIB].

 IANA considerations for allocating new attributes are discussed in
 detail in the RTFM Architecture document [RTFM-ARC].

Brownlee Informational [Page 15]

RFC 2723 SRL: A Traffic Flow Language October 1999

7 APPENDICES

7.1 Appendix A: SRL Syntax in BNF

 <SRL program> ::= <S or D> | <SRL program> <S or D>

 <S or D> ::= <statement> | <declaration>

 <declaration> ::= <Subroutine declaration>

 <statement> ::= <IF statement> |
 <Compound statement> |
 <Imperative statement> |
 <CALL statement>

 <IF statement> ::= IF <expression> <if action> <opt else>

 <if action> ::= SAVE ; |
 SAVE , <statement> |
 <statement>

 <opt else> ::= <null> |
 ELSE <statement>

 <expression> ::= <term> | <term> || <term>

 <term> ::= <factor> | <factor> && <factor>

 <factor> ::= <attribute> == <operand list> |
 (<expression>)

 <operand list> ::= <operand> | (<actual operand list>)

 <actual operand list> ::= <operand> |
 <actual operand list> , <operand>

 <operand> ::= <value> |
 <value> / <width> |
 <value> & <mask>

 <Compound statement> ::= <opt label> { <statement seq> }

 <opt label> ::= <null> |
 <identifier> :

 <statement seq> ::= <statement> | <statement seq> <statement>

 <Imperative statement> ::= ; |

Brownlee Informational [Page 16]

RFC 2723 SRL: A Traffic Flow Language October 1999

 SAVE <attribute> <opt operand> ; |
 COUNT ; |
 EXIT <label> ; |
 IGNORE ; |
 NOMATCH ; |
 RETURN <integer> ; |
 RETURN ; |
 STORE <variable> := <value> ;

 <opt operand> ::= <null> |
 <width or mask> |
 = <operand>

 <width or mask> ::= / <width> | & <mask>

 <Subroutine declaration> ::=
 SUBROUTINE <sub header> <sub body> ENDSUB ;

 <sub header> ::= <subname> () |
 <subname> (<sub param list>)

 <sub param list> ::= <sub param> | <sub param list> , <sub param>

 <sub param> ::= ADDRESS <pname> | VARIABLE <pname>

 <pname> ::= <identifier>

 <sub body> ::= <statement sequence>

 <CALL statement> ::= CALL <call header> <opt call body> ENDCALL ;

 <call header> ::= <subname> () |
 <subname> (<call param list>)

 <call param list> ::= <call param> |
 <call param list> , <call param>

 <call param> ::= <attribute> | <variable>

 <opt call body> ::= <null> |
 <actual call body>

 <actual call body> ::= <numbered statement> |
 <actual call body> <numbered statement>

 <numbered statement> ::= <int label seq> <statement>

 <int label seq> ::= <integer> : | <int label seq> <integer> :

Brownlee Informational [Page 17]

RFC 2723 SRL: A Traffic Flow Language October 1999

 The following are terminals, recognised by the scanner:

 <identifier> Described in section 2
 <integer> A decimal integer

 <attribute> Attribute name, as listed in Appendix C

 <value>, <mask> Described in section 5.2

 <width> ::= <integer>
 <label> ::= <identifier>

 <variable> ::= SourceClass | DestClass | FlowClass |
 SourceKind | DestKind | FlowKind

7.2 Appendix B: Syntax for Values and Masks

 Values and masks consist of sequences of numeric fields, each of one
 or more bytes. The non-blank character following a field indicates
 the field width, and whether the number is decimal or hexadecimal.
 These ’field type’ characters may be:

 . period decimal, single byte
 - minus hex, single byte
 ! exclaim decimal, two bytes

 For example, 130.216.0.0 is an IP address (in dotted decimal), and
 FF-FF-00-00 is an IP address in hexadecimal.

 The last field of a value or mask has no field width character.
 Instead it takes the same width as the preceding field. For example,
 1.3.10!50 and 1.3.0.10.0.50 are two different ways to specify the
 same value.

 Unspecified fields (at the right-hand side of a value or mask) are
 set to zero, i.e. 130.216 is the same as 130.216.0.0.

 If only a single field is specified (no field width character), the
 value given fills the whole field. For example, 23 and 0.23 specify
 the same value for a SourceTransAddress operand. For variables
 (which have one-byte values) a C-style character constant may also be
 used.

 IPv6 addresses and masks may also be used, following the conventions
 set out in the IP Version 6 Addressing Architecture RFC [V6-ADR].

Brownlee Informational [Page 18]

RFC 2723 SRL: A Traffic Flow Language October 1999

7.3 Appendix C: RTFM Attribute Information

 The following attributes may be tested in an IF statement, and their
 values may be SAVEd (except for MatchingStoD). Their maximum size (in
 bytes) is shown to the left, and a brief description is given for
 each. The names given here are reserved words in SRL (they are
 <attribute> terminals in the grammar given in Appendix A).

 Note that this table gives only a very brief summary. The Meter MIB
 [RTFM-MIB] provides the definitive specification of attributes and
 their allowed values. The MIB variables which represent flow
 attributes have ’flowData’ prepended to their names to indicate that
 they belong to the MIB’s flowData table.

 1 SourceInterface, DestInterface
 Interface(s) on which the flow was observed

 1 SourceAdjacentType, DestAdjacentType
 Indicates the interface type(s), i.e. an ifType from [ASG-NBR],
 or an Address Family Number (if metering within a tunnel)

 0 SourceAdjacentAddress, DestAdjacentAddress
 For IEEE 802.x interfaces, the MAC addresses for the flow

 1 SourcePeerType, DestPeerType
 Peer protocol types, i.e. Address Family Number from [ASG-NBR],
 such as IPv4, Novell, Ethertalk, ..

 0 SourcePeerAddress, DestPeerAddress
 Peer Addresses (size varies, e.g. 4 for IPv4, 3 for Ethertalk))

 1 SourceTransType, DestTransType
 Transport layer type, i.e. Protocol Number from [ASG-NBR]
 such as tcp(6), udp(17), ospf(89), ..

 2 SourceTransAddress, DestTransAddress
 Transport layer addresses (e.g. port numbers for TCP and UDP)

 1 FlowRuleset
 Rule set number for the flow

 1 MatchingStoD
 Indicates whether the packet is being matched with its
 addresses in ’wire order.’ See [RTFM-ARC] for details.

 The following variables may be tested in an IF, and their values may
 be set by a STORE. They all have one-byte values.

Brownlee Informational [Page 19]

RFC 2723 SRL: A Traffic Flow Language October 1999

 SourceClass, DestClass, FlowClass,
 SourceKind, DestKind, FlowKind

 The following RTFM attributes are not address attributes - they are
 measured attributes of a flow. Their values may be read from an RTFM
 meter. (For example, NeTraMet uses a FORMAT statement to specify
 which attribute values are to be read from the meter.)

 8 ToOctets, FromOctets
 Total number of octets seen for each direction of the flow

 8 ToPDUs, FromPDUs
 Total number of PDUs seen for each direction of the flow

 4 FirstTime, LastActiveTime
 Time (in centiseconds) that first and last PDUs were seen
 for the flow

 Other attributes will be defined by the RTFM working group from time
 to time.

8 Acknowledgments

 The SRL language is part of the RTFM Working Group’s efforts to make
 the RTFM traffic measurement system easier to use. Initial work on
 the language was done by Cyndi Mills and Brad Frazee in Boston. SRL
 was developed in Auckland; it was greatly assisted by detailed
 discussion with John White and Russell Fulton. Discussion has
 continued on the RTFM and NeTraMet mailing lists.

9 References

 [ASG-NBR] Reynolds, J. and J. Postel, "Assigned Numbers",
 STD 2, RFC 1700, October 1994.

 [NETRAMET] Brownlee, N., NeTraMet home page,
 http://www.auckland.ac.nz/net/NeTraMet

 [RTFM-ARC] Brownlee, N., Mills, C. and G. Ruth, "Traffic Flow
 Measurement: Architecture", RFC 2722, October 1999.

 [RTFM-MIB] Brownlee, N., "Traffic Flow Measurement: Meter MIB",
 RFC 2720, October 1999.

 [V6-ADDR] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture," RFC 2373, July 1998.

Brownlee Informational [Page 20]

RFC 2723 SRL: A Traffic Flow Language October 1999

10 Author’s Address

 Nevil Brownlee
 Information Technology Systems & Services
 The University of Auckland
 Private Bag 92-019
 Auckland, New Zealand

 Phone: +64 9 373 7599 x8941
 EMail: n.brownlee@auckland.ac.nz

Brownlee Informational [Page 21]

RFC 2723 SRL: A Traffic Flow Language October 1999

11 Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Brownlee Informational [Page 22]

