
Network Working Group J. Allen
Request for Comments: 2653 WebTV Networks, Inc.
Category: Standards Track P. Leach
 Microsoft
 R. Hedberg
 Catalogix
 August 1999

 CIP Transport Protocols

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This document specifies three protocols for transporting CIP
 requests, responses and index objects, utilizing TCP, mail, and HTTP.
 The objects themselves are defined in [CIP-MIME] and the overall CIP
 architecture is defined in [CIP-ARCH].

1. Protocol

 In this section, the actual protocol for transmitting CIP index
 objects and maintaining the mesh is presented. While companion
 documents ([CIP-ARCH] and [CIP-MIME]) describe the concepts involved
 and the formats of the CIP MIME objects, this document is the
 authoritative definition of the message formats and transfer
 mechanisms of CIP used over TCP, HTTP and mail.

1.1 Philosophy

 The philosophy of the CIP protocol design is one of building-block
 design. Instead of relying on bulky protocol definition tools, or
 ad-hoc text encodings, CIP draws on existing, well understood
 Internet technologies like MIME, RFC-822, Whois++, FTP, and SMTP.
 Hopefully this will serve to ease implementation and consensus

Allen, et al. Standards Track [Page 1]

RFC 2653 CIP Transport Protocols August 1999

 building. It should also stand as an example of a simple way to
 leverage existing Internet technologies to easily implement new
 application-level services.

1.2 Conventions

 The key words "MUST" and "MAY" in this document are to be interpreted
 as described in "Key words for use in RFCs to Indicate Requirement
 Levels" [KEYWORDS].

 Formal syntax is defined using ABNF [ABNF].

 In examples octets sent by the sender-CIP are preceded by ">>> " and
 those sent by the receiver-CIP by "<<< ".

2 MIME message exchange mechanisms

 CIP relies on interchange of standard MIME messages for all requests
 and replies. These messages are passed over a bidirectional, reliable
 transport system. This document defines transport over reliable
 network streams (via TCP), via HTTP, and via the Internet mail
 infrastructure.

 The CIP server which initiates the connection (conventionally
 referred to as a client) will be referred to below as the sender-CIP.
 The CIP server which accepts a sender-CIP’s incoming connection and
 responds to the sender-CIP’s requests is called a receiver-CIP.

2.1 The Stream Transport

 CIP messages are transmitted over bi-directional TCP connections via
 a simple text protocol. The transaction can take place over any TCP
 port, as specified by the mesh configuration. There is no "well known
 port" for CIP transactions. All configuration information in the
 system must include both a hostname and a port.

 All sender-CIP actions (including requests, connection initiation,
 and connection finalization) are acknowledged by the receiver-CIP
 with a response code. See section 2.1.1 for the format of these
 codes, a list of the responses a CIP server may generate, and the
 expected sender-CIP action for each.

 In order to maintain backwards compatibility with existing Whois++
 servers, CIPv3 sender-CIPs MUST first verify that the newer protocol
 is supported. They do this by sending the following illegal Whois++
 system command: "# CIP-Version: 3<cr><lf>". On existing Whois++
 servers implementing version 1 and 2 of CIP, this results in a 500-
 series response code, and the server terminates the connection. If

Allen, et al. Standards Track [Page 2]

RFC 2653 CIP Transport Protocols August 1999

 the server implements CIPv3, it MUST instead respond with response
 code 300. Future versions of CIP can be correctly negotiated using
 this technique with a different string (i.e. "CIP-Version: 4"). An
 example of this short interchange is given below.

 Note: If a sender-CIP can safely assume that the server implements
 CIPv3, it may choose to send the "# CIP-Version: 3" string and
 immediately follow it with the CIPv3 request. This optimization,
 useful only in known homogeneous CIPv3 meshes, avoids waiting for the
 roundtrip inherent in the negotiation.

 Once a sender-CIP has successfully verified that the server supports
 CIPv3 requests, it can send the request, formatted as a MIME message
 with Mime-Version and Content-Type headers (only), using the network
 standard line ending: "<cr><lf>".

 Cip-Req = Req-Hdrs CRLF Req-Body

 Req-Hdrs = *(Version-Hdr | Req-Cntnt-Hdr)
 Req-Body = Body ; format of request body as in [CIP-MIME]

 Body = Data CRLF "." CRLF
 Data = ; data with CRLF "." CRLF replaced by
 ; CRLF ".." CRLF

 Version-Hdr = "Mime-Version:" "1.0" CRLF
 Req-Cntnt-Hdr = "Content-Type:" Req-Content CRLF
 Req-Content = ; format is specified in [CIP-MIME]

 Cip-Rsp = Rsp-Code CRLF [Rsp-Hdrs CRLF Rsp-Body]
 [Indx-Cntnt-Hdr CRLF Index-Body]
 Rsp-Code = DIGIT DIGIT DIGIT Comment
 Comment = ; any chars except CR and LF
 Rsp-Hdrs = *(Version-Hdr | Rsp-Cntnt-Hdr)
 Rsp-Cntnt-Hdr = "Content-Type:" Rsp-Content CRLF
 Rsp-Content = ; format is specified in [CIP-MIME]
 Rsp-Body = Body ; format of response body as in [CIP-MIME]

 Indx-Cntnt-Hdr = "Content-Type:" Indx-Obj-Type CRLF
 Indx-Obj-Type = ; any registered index object’s MIME-type
 ; the format is specified in [RFC2045]
 Index-Body = Body ; format defined in each index
 ; specifications

 CRLF = CR LF ; Internet standard newline
 CR = %x0D ; carriage return
 LF = %x0A ; linefeed
 DIGIT = %x30-39

Allen, et al. Standards Track [Page 3]

RFC 2653 CIP Transport Protocols August 1999

 The message is terminated using SMTP-style message termination. The
 data is sent octet-for-octet, except when the pattern
 <cr><lf>1*["."]<cr><lf> is seen, in which case one more period is
 added.

 When the data is finished, the octet pattern "<cr><lf>.<cr><lf>" is
 transmitted to the receiver-CIP.

 On the receiver-CIP’s side, the reverse transformation is applied,
 and the message read consists of all bytes up to, but not including,
 the terminating pattern.

 In response to the request, the receiver-CIP sends a response code,
 from either the 200, 400, or 500 series. The receiver-CIP then
 processes the request and replies, if necessary, with a MIME message.
 This reply is also delimited by an SMTP-style message terminator.

 After responding with a response code, the receiver-CIP MUST prepare
 to read another request message, resetting state to the point when
 the sender-CIP has just verified the CIP version. If the sender-CIP
 is finished making requests, it may close the connection. In response
 the receiver-CIP MUST abort reading the message and prepare for a new
 sender-CIP connection (resetting its state completely).

 An example is given below. It is again worth reiterating that the
 command format is defined in [CIP-MIME] whereas the message body is
 defined in each index object definition. In this example the index
 object definition in [CIP-TIO] will be used. Line endings are
 explicitly shown in anglebrackets; newlines in this text are added
 only for readability. Comments occur in curly-brackets.

 { sender-CIP connects to receiver-CIP }
 <<< % 220 Example CIP server ready<cr><lf>
 >>> # CIP-Version: 3<cr><lf>
 <<< % 300 CIPv3 OK!<cr><lf>
 >>> Mime-Version: 1.0<cr><lf>
 >>> Content-type: application/index.cmd.datachanged; type=
 >>> x-tagged-index-1; dsi=1.2.752.17.5.10<cr><lf>
 >>> <cr><lf>
 >>> updatetype: incremental tagbased<cr><lf>
 >>> thisupdate: 855938804<cr><lf>
 >>> lastupdate: 855940000<cr><lf>
 >>> .<cr><lf>
 <<< % 200 Good MIME message received
 >>> MIME-Version: 1.0<cr><lf>
 >>> Content-Type: application/index.obj.tagged;
 >>> dsi=1.2.752.17.5.10;
 >>> base-uri="ldap://ldap.umu.se/dc=umu,dc=se"<cr><lf>

Allen, et al. Standards Track [Page 4]

RFC 2653 CIP Transport Protocols August 1999

 >>> <cr><lf>
 >>> version: x-tagged-index-1<cr><lf>
 >>> updatetype: incremental<cr><lf>
 >>> lastupdate: 855940000<cr><lf>
 >>> thisupdate: 855938804<cr><lf>
 >>> BEGIN IO-schema<cr><lf>
 >>> cn: TOKEN<cr><lf>
 >>> sn: FULL<cr><lf>
 >>> title: FULL<cr><lf>
 >>> END IO-Schema<cr><lf>
 >>> BEGIN Update Block<cr><lf>
 >>> BEGIN Old<cr><lf>
 >>> title: 3/testpilot<cr><lf>
 >>> END Old<cr><lf>
 >>> BEGIN New<cr><lf>
 >>> title: 3/chiefpilot<cr><lf>
 >>> END New<cr><lf>
 >>> END Update Block<cr><lf>
 >>> .<cr><lf>
 <<< % 200 Good MIME message received
 { Sender-CIP shuts down socket for writing }
 <<< % 222 Connection closing in response to sender-CIP shutdown
 { receiver-CIP closes its side, resets, and awaits a
 new sender-CIP }

 An example of an unsuccessful version negotiation looks like this:

 { sender-CIP connects to receiver-CIP }
 <<< % 220 Whois++ server ready<cr><lf>
 >>> # CIP-Version: 3<cr><lf>
 <<< % 500 Syntax error<cr><lf>
 { server closes connection }

 The sender-CIP may attempt to retry using version 1 or 2 protocol.
 Sender-CIP may cache results of this unsuccessful negotiation to
 avoid later attempts.

2.1.1 Transport specific response codes

 The following response codes are used with the stream transport:

 Code Suggested description Sender-CIP action
 text

 200 MIME request received Expect no output, continue session
 and processed (or close)

Allen, et al. Standards Track [Page 5]

RFC 2653 CIP Transport Protocols August 1999

 201 MIME request received Read a response, delimited by SMTP-
 and processed, output style message delimiter.
 follows

 220 Initial server banner Continue with Whois++ interaction,
 message or attempt CIP version negotiation.

 222 Connection closing (in Done with transaction.
 response to sender-CIP
 close)

 300 Requested CIP version Continue with CIP transaction, in
 accepted the specified version.

 400 Temporarily unable to Retry at a later time. May be used
 process request to indicate that the server does not
 currently have the resources
 available to accept an index.

 500 Bad MIME message format Retry with correctly formatted MIME

 501 Unknown or missing Retry with correct CIP command
 request in
 application/index.cmd

 502 Request is missing Retry with correct CIP attributes.
 required CIP attributes

 520 Aborting connection for Alert local administrator.
 some unexpected reason

 530 Request requires valid Sign the request, if possible, and
 signature retry. Otherwise, report problem to
 the administrator.

 531 Request has invalid Report problem to the administrator.
 signature

 532 Cannot check signature Alert local administrator, who should
 cooperate with remote administrator
 tp diagnose and resolve the problem.
 (Probably missing a public key.)

Allen, et al. Standards Track [Page 6]

RFC 2653 CIP Transport Protocols August 1999

2.2 Internet mail infrastructure as transport

 As an alternative to TCP streams, CIP transactions can take place
 over the existing Internet mail infrastructure. There are two
 motivations for this feature of CIP. First, it lowers the barriers to
 entry for leaf servers. When the need for a full TCP implementation
 is relaxed, leaf nodes (which, by definition, only send index
 objects) can consist of as little as a database and an indexing
 program (possibly written in a very high level language) to
 participate in the mesh.

 Second, it keeps with the philosophy of making use of existing
 Internet technology. The MIME messages used for requests and
 responses are, by definition of the MIME specification, suitable for
 transport via the Internet mail infrastructure. With a few simple
 rules, we open up an entirely different way to interact with CIP
 servers which choose to implement this transport. See Protocol
 Conformance, below, for details on what options server implementers
 have about supporting the various transports.

 The basic rhythm of request/response is maintained when using the
 mail transport. The following sections clarify some special cases
 which need to be considered for mail transport of CIP objects. In
 general, all mail protocols and mail format specifications
 (especially MIME Security Multiparts) can be used with the CIP mail
 transport.

2.2.1 CIP-Version negotiation

 Since no information on which CIP-version is in use is present in the
 MIME message, this information has to be carried in the mailheader.
 Therefore CIP requests sent using the mail transport MUST include a
 CIP-version headerline, to be registered according to [MHREG].
 The format of this line is:

 DIGIT = %x30-39
 number = 1*DIGIT
 cipversion = "CIP-Version:" <sp> number["." number]

2.2.2 Return path

 When CIP transactions take place over a bidirectional stream, the
 return path for errors and results is implicit. Using mail as a
 transport introduces difficulties to the recipient, because it’s not
 always clear from the headers exactly where the reply should go,
 though in practice there are some heuristics used by MUA’s.

Allen, et al. Standards Track [Page 7]

RFC 2653 CIP Transport Protocols August 1999

 CIP solves this problem by fiat. CIP requests sent using the mail
 transport MUST include a Reply-To header as specified by RFC-822.
 Any mail received for processing by a CIP server implementing the
 mail transport without a Reply-To header MUST be ignored, and a
 message should be logged for the local administrator. The receiver
 MUST not attempt to reply with an error to any address derived from
 the incoming mail.

 If there are no circumstances under which a response is to be sent to
 a CIP request, the sender should include a Reply-To header with the
 address "<>" in it. Receivers MUST never attempt to send replies to
 that address, as it is defined to be invalid (both here, and by the
 BNF grammar in RFC-822). It should be noted that, in general, it is a
 bad idea to turn off error reporting in this way. However, in the
 simplest case of an index pushing program, this MAY be a desirable
 simplification.

2.3 HTTP transport

 HTTP MAY also be used to transport CIP objects, since they are just
 MIME objects. A transaction is performed by using the POST method to
 send an application/index.cmd and returning an
 application/index.response or an application/index.obj in the HTTP
 reply. The URL that is the target of the post is a configuration
 parameter of the CIP-sender to CIP-receiver relationship.

 Example:

 { the client opens the connection and sends a POST }
 >>> POST / HTTP/1.1<cr><lf>
 >>> Host: cip.some.corp<cr><lf>
 >>> Content-type: application/index.cmd.noop<cr><lf>
 >>> Date: Thu, 6 Jun 1997 18:16:03 GMT<cr><lf>
 >>> Content-Length: 2<cr><lf>
 >>> Connection: close<cr><lf>
 >>> <cr><lf>
 { the server processes the request }
 <<< HTTP/1.1 204 No Content<cr><lf>
 { the server closes the connection }

 In addition to leveraging the security capabilities that come with
 HTTP, there are other HTTP features that MAY be useful in a CIP
 context. A CIP client MAY use the Accept-Charset and Accept-Language
 HTTP headers to express a desire to retrieve an index in a particular
 character set or natural language. It MAY use the Accept-Encoding
 header to (e.g.) indicate that it can handle compressed responses,
 which the CIP server MAY send in conjunction with the Transfer-
 Encoding header. It MAY use the If-Modified-Since header to prevent

Allen, et al. Standards Track [Page 8]

RFC 2653 CIP Transport Protocols August 1999

 wasted transmission of an index that has not changed since the last
 poll. A CIP server can use the Retry-After header to request that the
 client retry later when the server is less busy.

3. Security Considerations

 There are two levels at which the index information can be protected;
 the first is by use of the technology available for securing MIME
 [MIME-SEC] objects, and secondly by using the technology available
 for securing the transport.

 When it comes to transport the stream transport can be protected by
 the use of TLS [TLS] . For HTTP the Security is handled by using HTTP
 Basic Authentication [RFC 2616], HTTP Message Digest Authentication
 [RFC2617] or SSL/TLS. Extra protection for the SMTP exchange can be
 achieve by the use of Secure SMTP over TLS [SMTPTLS].

4. References

 [RFC 2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC 2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC 2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A. and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617, June 1999.

 [CIP-ARCH] Allen, J. and M. Mealling, "The Architecture of the Common
 Indexing Protocol (CIP)", RFC 2651, August 1999.

 [CIP-MIME] Allen, J. and M. Mealling, "MIME Object Definitions for
 the Common Indexing Protocol (CIP)", RFC 2652, August
 1999.

 [ABNF] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [CIP-TIO] Hedberg, R., Greenblatt, B., Moats, R. and M. Wahl, "A
 Tagged Index Object for use in the Common Indexing
 Protocol", RFC 2654, August 1999.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Allen, et al. Standards Track [Page 9]

RFC 2653 CIP Transport Protocols August 1999

 [MIME-SEC] Galvin, J., Murphy, S., Crocker, S. and N. Freed,
 "Security Multiparts for MIME: Multipart/Signed and
 Multipart/Encrypted", RFC 1847, October 1995.

 [TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

 [SMTPTLS] Hoffman, P., "SMTP Service Extension for Secure SMTP over
 TLS", RFC 2487, January 1999.

 [MHREG] Jacob, P., "Mail and Netnews Header Registration
 Procedure", Work in Progress.

5. Authors’ Addresses

 Jeff R. Allen
 246 Hawthorne St.
 Palo Alto, CA 94301

 EMail: jeff.allen@acm.org

 Paul J. Leach
 Microsoft
 1 Microsoft Way
 Redmond, WA 98052

 EMail: paulle@microsoft.com

 Roland Hedberg
 Catalogix
 Dalsveien 53
 0775 Oslo
 Norway

 EMail: roland@catalogix.ac.se

Allen, et al. Standards Track [Page 10]

RFC 2653 CIP Transport Protocols August 1999

6. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Allen, et al. Standards Track [Page 11]

