Net wor k Wor ki ng Group B. Curtin
Request for Comments: 2640 Def ense I nformation Systens Agency
Updat es: 959 July 1999
Cat egory: Proposed Standard

Internationalization of the File Transfer Protocol
Status of this Meno

This docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (1999). Al Rights Reserved.
Abstract

The File Transfer Protocol, as defined in RFC 959 [RFC959] and RFC
1123 Section 4 [RFC1123], is one of the ol dest and wi dely used
protocols on the Internet. The protocol’s primary character set, 7
bit ASCII, has served the protocol well through the early growth
years of the Internet. However, as the Internet becones nore gl obal,
there is a need to support character sets beyond 7 bit ASCII.

Thi s docunent addresses the internationalization (118n) of FTP, which
i ncl udes supporting the nmultiple character sets and | anguages found

t hroughout the Internet comunity. This is achieved by extending the
FTP specification and giving recommendati ons for proper

i nternationalization support.

Tabl e of Contents

ABSTRACT . . ot 1
1 INTRODUCTI ON. . oo e e e e e e e e 2
1.1 Requirenents Termnol ogy. 2
2 INTERNATI ONALT ZATI ON. . oo e e e e 3
2.1 International Character Set........... 3
2.2 Transfer Encoding Set........ 4
3 PATHNANMES. 5
3.1 General conpliance. 5
3.2 Servers conpliance. e 6
3.3 Cients conpliance. 7
4 LANGUAGE SUPPORT. . . . e e s e e e s e e 7

Curtin Pr oposed Standard [Page 1]

RFC 2640 FTP Internalization July 1999

4.1 The LANG COMTBNG.ot e e e e e e 8
4.2 Syntax of the LANG conmmand. 9
4.3 Feat response for LANG comand. 11
4.3.1 Feat exanpl es. 11
5 SECURI TY CONSI DERATI ONS.o oo e e e e e e 12
6 ACKNOWLEDGVENTS. . . .o e e e e 12
7 GLOSSARY. . .o e 13
8 Bl BLI OGRAPHY. . . . ot 13
9 AUTHOR S ADDRESS. . . . ittt i e e e e e 15
ANNEX A - | MPLEMENTATI ON CONSIDERATIONS.o 16
A.1l General Considerations............ ... 16
A 2 Transition Considerati ons.c. .. 18
ANNEX B - SAVPLE CODE AND EXAMPLES. i 19
B.1 Valid UTF-8 check. i 19
B. 2 CONVEr Si ONS. . ..ttt e e e 20
B.2.1 Conversion from Local Character Set to UTF-8.......... 20
B.2.2 Conversion fromUTF-8 to Local Character Set.......... 23
B.2.3 ISOIEC 8859-8 Exanple.......... 25
B. 2.4 Vendor Codepage Exanple........... 25
B.3 Pseudo Code for Translating Servers...................... 26
Full Copyright Statement.........., 27

1

ntroducti on

As the Internet grows throughout the world the requirenent to support
character sets outside of the ASCII [ASCII] / Latin-1 [|SO 8859]
character set beconmes ever nore urgent. For FTP, because of the
large installed base, it is paranount that this is done w thout
breaking existing clients and servers. This docunent addresses this
need. In doing so it defines a solution which will still allow the
installed base to interoperate with new clients and servers.

Thi s docunent enhances the capabilities of the File Transfer Protoco
by renoving the 7-bit restrictions on pathnanes used in client
commands and server responses, RECOMMENDs the use of a Universa
Character Set (UCS) |SO | EC 10646 [|SO 10646], RECOMMENDs a UCS
transformation format (UTF) UTF-8 [UTF-8], and defines a new comand
for | anguage negoti ation.

The recommendations nmade in this docunent are consistent with the
recomendat i ons expressed by the | ETF policy related to character
sets and | anguages as defined in RFC 2277 [RFC2277].

1.1. Requirenents Term nol ogy
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in BCP 14 [BCP14].

Curtin Proposed Standard [Page 2]

RFC 2640 FTP Internalization July 1999

2 Internationalization

The File Transfer Protocol was devel oped when the predom nate
character sets were 7 bit ASCII and 8 bit EBCDI C. Today these
character sets cannot support the w de range of characters needed by
mul tinati onal systens. Gven that there are a nunber of character
sets in current use that provide nore characters than 7-bit ASCII, it
nmakes sense to decide on a convenient way to represent the union of
those possibilities. To work globally either requires support of a
nunber of character sets and to be able to convert between them or
the use of a single preferred character set. To assure gl oba
interoperability this docunent RECOMVENDS the | atter approach and
defines a single character set, in addition to NVT ASCI| and EBCDI C
whi ch is understandable by all systems. For FTP this character set
SHALL be | SO | EC 10646: 1993. For support of global conpatibility it
is STRONGLY RECOMVENDED t hat clients and servers use UTF-8 encodi ng
when exchangi ng pathnanmes. dients and servers are, however, under
no obligation to performany conversion on the contents of a file for
operations such as STOR or RETR

The character set used to store files SHALL remain a | ocal decision
and MAY depend on the capability of |ocal operating systenms. Prior to
t he exchange of pathnanmes they SHOULD be converted into a I SOOI EC
10646 format and UTF-8 encoded. This approach, while all ow ng

i nternational exchange of pathnanes, will still allow backward
conmpatibility with ol der systens because the code set positions for
ASCI | characters are identical to the one byte sequence in UTF-8.

Sections 2.1 and 2.2 give a brief description of the international
character set and transfer encodi ng RECOWENDED by this docunent. A
nore t horough description of UTF-8, |1SO | EC 10646, and UNI CODE

[UNI CODE], beyond that given in this docunent, can be found in RFC
2279 [RFC2279].

2.1 International Character Set

The character set defined for international support of FTP SHALL be
the Universal Character Set as defined in | SO 10646: 1993 as anended.
This standard i ncorporates the character sets of many existing

i nternational, national, and corporate standards. |1SQO | EC 10646
defines two alternate forns of encoding, UCS-4 and UCS-2. UCS-4 is a
four byte (31 bit) encoding containing 2**31 code positions divided
into 128 groups of 256 planes. Each plane consists of 256 rows of 256
cells. UCS-2 is a 2 byte (16 bit) character set consisting of plane
zero or the Basic Multilingual Plane (BMP). Currently, no codesets
have been defined outside of the 2 byte BW

Curtin Proposed Standard [Page 3]

RFC 2640 FTP Internalization July 1999

The Uni code standard version 2.0 [UNICODE] is consistent with the
UCS- 2 subset of |SQOIEC 10646. The Uni code standard version 2.0

i ncludes the repertoire of IS 10646 characters, anmendnents 1-7 of IS
10646, and editorial and technical corrigenda.

2.2 Transfer Encoding

UCS Transformation Format 8 (UTF-8), in the past referred to as UTF-2
or UTF-FSS, SHALL be used as a transfer encoding to transnit the

i nternational character set. UTF-8 is a file safe encodi ng which

avoi ds the use of byte values that have special significance during

t he parsing of pathnane character strings. UTF-8 is an 8 bit encoding
of the characters in the UCS. Sonme of UTF-8's benefits are that it is
conpatible with 7 bit ASCII, so it doesn't affect programs that give
speci al nmeanings to various ASCI|I characters; it is imune to
synchroni zation errors; its encoding rules allow for easy
identification; and it has enough space to support a |arge nunber of
character sets.

UTF-8 encodi ng represents each UCS character as a sequence of 1 to 6
bytes in length. For all sequences of one byte the nost significant
bit is ZERO For all sequences of nore than one byte the nunber of
ONE bits in the first byte, starting fromthe nost significant bit
position, indicates the nunber of bytes in the UTF-8 sequence
followed by a ZERO bit. For exanple, the first byte of a 3 byte UTF-8
sequence woul d have 1110 as its nost significant bits. Each
additional bytes (continuing bytes) in the UTF-8 sequence, contain a
ONE bit followed by a ZERO bit as their nost significant bits. The
remaining free bit positions in the continuing bytes are used to
identify characters in the UCS. The rel ationship between UCS and
UTF-8 is denonstrated in the foll owi ng table:

UCS-4 range(hex) UTF- 8 byt e sequence(binary)

00000000 - 0OOO0007F OXXXXXXX

00000080 - OOOOO7FF 110XXXXX 1OXXXXXX

00000800 - OOOOFFFF 1110xXXXX 1OXXXXXX L1OXXXXXX

00010000 - OO1FFFFF 11110xXXxX 1OXXXXXX L1OXXXXXX 1OXXXXXX

00200000 - O3FFFFFF 111110xX 1O0OXXXXXX L1OXXXXXX L1OXXXXXX
LOXXXXXX

04000000 - 7FFFFFFF 1111110 10XXXXXX L1OXXXXXX L1OXXXXXX

JOXXXXXX 1OXXXXXX

A beneficial property of UF-8 is that its single byte sequence is

consistent with the ASCI|I character set. This feature will allow a

transition where old ASCIl-only clients can still interoperate with
new servers that support the UTF-8 encodi ng.

Curtin Proposed Standard [Page 4]

RFC 2640 FTP Internalization July 1999

Anot her feature is that the encoding rules nmake it very unlikely that
a character sequence froma different character set will be mistaken
for a UTF-8 encoded character sequence. Clients and servers can use a
sinmple routine to determne if the character set being exchanged is
valid UTF-8. Section B.1 shows a code exanple of this check

3 Pat hnanes
3.1 General conpliance
- The 7-bit restriction for pathnanmes exchanged is dropped.

- Many operating systemallow the use of spaces <SP>, carriage return
<CR>, and line feed <LF> characters as part of the pathname. The
exchange of pathnames with these special command characters wll
cause the pathnames to be parsed inproperly. This is because ftp
commands associ ated with pat hnanmes have the form

COMVAND <SP> <pat hnane> <CRLF>.

To all ow t he exchange of pat hnames contai ning these characters, the
definition of pathnane is changed from

<pat hnane> ::= <string> ; in BNF fornat
to
pat hname = 1*(%01..%FF) ; in ABNF format [ABNF].

To avoid mistaking these characters w thin pathnanmes as speci al
command characters the following rules will apply:

There MUST be only one <SP> between a ftp command and the pat hnane.
| mpl enent ati ons MJST assune <SP> characters following the initia
<SP> as part of the pathnanme. For exanple the pathname in STOR
<SP><SP><SP>f 00. bar <CRLF> i s <SP><SP>f 00. bar.

Current inplenentations, which may allow nultiple <SP> characters as
separators between the conmand and pat hnane, MJST assure that they
comply with this single <SP> convention. Note: |nplenentations which
treat 3 character commands (e.g. CWD, MKD, etc.) as a fixed 4
character conmand by padding the conmand with a trailing <SP> are in
non- conpliance to this specification

When a <CR> character is encountered as part of a pathnane it MJST be
padded with a <NUL> character prior to sending the command. On
recei pt of a pathnane containing a <CR><NUL> sequence the <NUL>
character MJST be stripped away. This approach is described in the
Tel net protocol [RFC854] on pages 11 and 12. For exanple, to store a
pat hnane fo00<CR><LF>boo. bar the pat hnane woul d becone

Curtin Proposed Standard [Page 5]

RFC 2640 FTP Internalization July 1999

f 00<CR><NUL><LF>boo. bar prior to sending the comand STOR

<SP>f 00<CR><NUL><LF>boo. bar <CRLF>. Upon receipt of the altered
pat hnanme the <NUL> character follow ng the <CR> woul d be stripped
away to formthe original pathnane.

Conforming clients and servers MJST support UTF-8 for the transfer
and recei pt of pathnanes. Cients and servers MAY in addition give
users a choice of specifying interpretation of pathnanes in another
encodi ng. Note that configuring clients and servers to use
character sets / encoding other than UTF-8 is outside of the scope
of this docunent. Wiile it is recognized that in certain
operational scenarios this may be desirable, this is left as a
quality of inplenmentation and operational issue.

Pat hnames are sequences of bytes. The encodi ng of nanes that are
valid UTF-8 sequences is assuned to be UTF-8. The character set of
other nanes is undefined. Cients and servers, unless otherw se
configured to support a specific native character set, MJST check
for a valid UTF-8 byte sequence to deternine if the pathnane being
presented is UTF-8.

To avoid data loss, clients and servers SHOULD use the UTF-8
encoded pat hnanes when unable to convert themto a usable code set.

There nay be cases when the code set / encoding presented to the
server or client cannot be determned. In such cases the raw bytes
SHOULD be used.

3.2 Servers conpliance

Servers MJST support the UTF-8 feature in response to the FEAT
command [RFC2389]. The UTF-8 feature is a line containing the exact
string "UTF8". This string is not case sensitive, but SHOULD be
transmitted in upper case. The response to a FEAT command SHOULD
be:

C feat

S> 211- <any descriptive text>
5>

S> UTF8

>

S> 211 end

The el lipses indicate placehol ders where other features nay be
i ncl uded, but are NOT REQUI RED. The one space indentation of the
feature lines is mandatory [RFC2389].

Curtin Proposed Standard [Page 6]

RFC 2640 FTP Internalization July 1999

- Mrror servers nay want to exactly reflect the site that they are
mrroring. In such cases servers MAY store and present the exact
pat hnanme bytes that it received fromthe nmain server

3.3 Cients conpliance

- Clients which do not require display of pathnanes are under no
obligation to do so. Non-display clients do not need to conformto
requi renents associ ated with display.

- Cients, which are presented UTF-8 pathnanes by the server, SHOULD
parse UTF-8 correctly and attenpt to display the pathname within
the linmtation of the resources avail able.

- Cients MJST support the FEAT command and recogni ze the "UTF8"
feature (defined in 3.2 above) to determine if a server supports
UTF- 8 encodi ng.

- Character senantics of other nanmes shall renmain undefined. If a
client detects that a server is non UTF-8, it SHOULD change its
di splay appropriately. How a client inplenmentation handl es non
UTF-8 is a quality of inplementation issue. It MAY try to assume
some ot her encoding, give the user a chance to try to assune
sonet hing, or save encodi ng assunptions for a server fromone FTP
session to another.

- @yph rendering is outside the scope of this docunent. How a client
presents characters it cannot display is a quality of
i npl enment ation issue. This docunent RECOMVMVENDS that octets
correspondi ng to non-di spl ayabl e characters SHOULD be presented in
URL %H format defined in RFC 1738 [RFC1738]. They MAY, however,
di splay them as question marks, with their UCS hexadeci mal val ue,
or in any other suitable fashion

- Many existing clients interpret 8-bit pathnanes as being in the
| ocal character set. They MAY continue to do so for pathnanes that
are not valid UTF-8.

4. Language Support

The Character Set Wrkshop Report [RFC2130] suggests that clients and
servers SHOULD negotiate a | anguage for "greetings" and "error
messages". This specification interprets the use of the term "error
message", by RFC 2130, to nean any explanatory text string returned
by server-Pl in response to a user-Pl comand.

Curtin Proposed Standard [Page 7]

RFC 2640 FTP Internalization July 1999

| mpl enenters SHOULD note that FTP comands and nuneric responses are
protocol elenents. As such, their use is not affected by any gui dance
expressed by this specification

Language support of greetings and command responses shall be the
default |anguage supported by the server or the | anguage supported by
the server and selected by the client.

It may be possible to achieve | anguage support through a virtual host
as described in [MLST]. However, an FTP server might not support
virtual servers, or virtual servers mght be configured to support an
environnent without regard for |anguage. To allow | anguage
negotiation this specification defines a new LANG conmand. Cients
and servers that conply with this specification MUST support the LANG
conmand.

4.1 The LANG conmand

A new command "LANG' is added to the FTP command set to all ow
server-FTP process to determne in which | anguage to present server
greetings and the textual part of command responses. The paraneter
associated with the LANG command SHALL be one of the | anguage tags
defined in RFC 1766 [RFC1766]. If a LANG command wi t hout a paraneter
is issued the server’'s default |anguage will be used.

Greetings and responses issued prior to | anguage negoti ati on SHALL be
in the server’'s default |anguage. Paragraph 4.5 of [RFC2277] state
that this "default |anguage MJST be understandable by an Engli sh-
speaki ng person”. This specificati on RECOWENDS that the server
default |anguage be English encoded using ASCII. This text nay be
augrmented by text from other |anguages. Once negotiated, server-P
MUST return server nessages and textual part of conmand responses in
t he negoti ated | anguage and encoded in UTF-8. Server-Pl MAY wish to
re-send previously issued server nessages in the newy negoti ated

| anguage.

The LANG command only affects presentation of greeting nessages and
expl anatory text associated with conmand responses. No attenpt should
be made by the server to translate protocol elenments (FTP comrands
and nuneric responses) or data transmitted over the data connection.

User-Pl MAY issue the LANG conmand at any tine during an FTP session
In order to gain the full benefit of this command, it SHOULD be
presented prior to authentication. In general, it will be issued
after the HOST conmand [MLST]. Note that the issuance of a HOST or

Curtin Proposed Standard [Page 8]

RFC 2640 FTP Internalization July 1999

REIN command [RFC959] will negate the affect of the LANG comand.
User- Pl SHOULD be capabl e of supporting UTF-8 encoding for the

| anguage negotiated. @uidance on interpretation and rendering of
UTF-8, defined in section 3, SHALL apply.

Al t hough NOT REQUI RED by this specification, a user-Pl SHOULD i ssue a
FEAT comand [RFC2389] prior to a LANG comand. This will allow the
user-Pl to deternmine if the server supports the LANG conmmand and

whi ch | anguage opti ons.

In order to aid the server in identifying whether a connection has
been established with a client which conforns to this specification
or an older client, user-PlI MJST send a HOST [MLST] and/or LANG
command prior to issuing any other command (ot her than FEAT

[RFC2389]). If user-Pl issues a HOST conmand, and the server’s
default |anguage is acceptable, it need not issue a LANG conmand.
However, if the inplenentati on does not support the HOST command, a
LANG comand MUST be issued. Until server-Pl is presented with either
a HOST or LANG command it SHOULD assune that the user-Pl does not
comply with this specification.

4.2 Syntax of the LANG command
The LANG command i s defined as follows:

| ang- conmand "Lang" [(SP lang-tag)] CRLF

| ang-t ag = Primary-tag *("-" Sub-tag)
Primary-tag = 1*8ALPHA
Sub-t ag = 1*8ALPHA

| ang- r esponse
| ang- ok
error-response

| ang-ok / error-response

"200" [SP *(%00..%FF)] CRLF
conmand- unr ecogni zed / bad-argument /
not -i npl ement ed / unsupport ed- par anet er

conmand- unrecogni zed = "500" [SP *(%%O01..%FF)] CRLF
bad- ar gunent = "501" [SP *(%O01..%FF)] CRLF
not - i npl ement ed = "502" [SP *(%%O01..%FF)] CRLF

unsupport ed- paraneter = "504" [SP *(%O01l..%FF)] CRLF

The "lang" command word i s case independent and nay be specified in
any character case desired. Therefore "LANG', "lang", "Lang", and
"I AnG' are equi val ent comuands.

The OPTIONAL "Lang-tag" given as a paranmeter specifies the primary

| anguage tags and zero or nore sub-tags as defined in [RFC1766]. As
described in [RFCL766] | anguage tags are treated as case insensitive.
If omtted server-Pl MJST use the server’s default |anguage.

Curtin Proposed Standard [Page 9]

RFC 2640 FTP Internalization July 1999

Server-FTP responds to the "Lang" command with either "lang-ok" or
"error-response". "lang-ok" MJST be sent if Server-FTP supports the
"Lang" conmand and can support sonme formof the "lang-tag". Support
SHOULD be as foll ows:

- If server-FTP receives "Lang" with no paraneters it SHOULD return
messages and conmand responses in the server default |anguage.

- If server-FTP receives "Lang" with only a primary tag argunent
(e.g. en, fr, de, ja, zh, etc.), which it can support, it SHOULD
return nessages and command responses in the | anguage associ at ed
with that primary tag. It is possible that server-FTP will only
support the primary tag when conbined with a sub-tag (e.g. en-US
en-UK, etc.). In such cases, server-FTP MAY determ ne the
appropriate variant to use during the session. How server-FTP makes
that determination is outside the scope of this specification. If
server-FTP cannot determne if a sub-tag variant is appropriate it
SHOULD return an "unsupported-paraneter” (504) response.

- |If server-FTP receives "Lang" with a prinmary tag and sub-tag(s)
argument, which is inplemented, it SHOULD return nessages and
command responses in support of the |language argunment. It is
possi bl e that server-FTP can support the primary tag of the "Lang"
argunent but not the sub-tag(s). In such cases server-FTP MAY
return nessages and comand responses in the nost appropriate
variant of the primary tag that has been inpl enented. How server-
FTP nakes that determination is outside the scope of this
specification. If server-FTP cannot deternmine if a sub-tag variant
is appropriate it SHOULD return an "unsupported-paraneter” (504)
response.

For exanple if client-FTP sends a "LANG en-AU' comand and server-FTP
has i npl emrented | anguage tags en-US and en-UK it nay decide that the
nost appropriate |anguage tag is en-UK and return "200 en- AU not
supported. Language set to en-UK'. The nuneric response is a protoco
el ement and can not be changed. The associated string is for
illustrative purposes only.

Clients and servers that conformto this specification MJST support
the LANG conmand. dients SHOULD, however, anticipate receiving a 500
or 502 conmand response, in cases where ol der or non-conpliant
servers do not recogni ze or have not inplenented the "Lang". A 501
response SHOULD be sent if the argument to the "Lang" comand is not
syntactically correct. A 504 response SHOULD be sent if the "Lang"
argument, while syntactically correct, is not inplenmented. As noted
above, an argunent may be considered a | exicon match even though it
is not an exact syntax match

Curtin Proposed Standard [Page 10]

RFC 2640 FTP Internalization July 1999

4.3 Feat response for LANG comand

A server-FTP process that supports the LANG command, and | anguage
support for nessages and conmand responses, MJST include in the
response to the FEAT conmand [RFC2389], a feature line indicating
that the LANG command is supported and a fact list of the supported

| anguage tags. A response to a FEAT command SHALL be in the foll ow ng

format:
Lang-feat = SP "LANG' SP | ang-fact CRLF
| ang-fact = lang-tag ["*"] *(";" lang-tag ["*"])
| ang-tag = Primary-tag *("-" Sub-tag)
Primary-tag= 1*8ALPHA
Sub-t ag = 1*8ALPHA

The | ang-feat response contains the string "LANG' followed by a

| anguage fact. This string is not case sensitive, but SHOULD be
transmitted in upper case, as recomended in [RFC2389]. The initial
space shown in the Lang-feat response is REQUI RED by the FEAT
command. It MJST be a single space character. Mre or |ess space
characters are not permtted. The |lang-fact SHALL include the |ang-
tags whi ch server-FTP can support. At |east one |ang-tag MJST be

i ncluded with the FEAT response. The lang-tag SHALL be in the form
described earlier in this docunent. The OPTI ONAL asterisk, when
present, SHALL indicate the current |ang-tag being used by server-FTP
for messages and responses.

4.3.1 Feat exanples

C feat

S> 211- <any descriptive text>
5>

S> LANG EN

>

S> 211 end

In this exanpl e server-FTP can only support English, which is the
current |anguage (as shown by the asterisk) being used by the server
for messages and conmand responses.

C feat

S> 211- <any descriptive text>
>

S> LANG EN*; FR

5>

S> 211 end

Curtin Proposed Standard [Page 11]

RFC 2640 FTP Internalization July 1999

C LANG fr

S> 200 Le response sera changez au francais
C feat

S> 211- <quel conque descriptif texte>
5>

S> LANG EN, FR*

S>

S> 211 end

In this exanpl e server-FTP supports both English and French as shown
by the initial response to the FEAT command. The asterisk indicates
that English is the current |anguage in use by server-FTP. After a
LANG command is issued to change the | anguage to French, the FEAT
response shows French as the current |anguage in use.

In the above exanpl es ellipses indicate placehol ders where other
features may be included, but are NOT REQUI RED.

5 Security Considerations

Thi s docunent addresses the support of character sets beyond 1 byte
and a new | anguage negotiati on comnmand. Conformance to this docunent
shoul d not induce a security risk

6 Acknow edgnent s
The foll owi ng people have contributed to this docunent:

D. J. Bernstein
Martin J. Duerst
Mark Harris

Paul Het hnon

Al un Jones
Gregory Lundberg
Janes Matt hews
Kei t h Moore
Sandra O Donnel
Benj anmi n Ri ef enst ahl
St ephen Ti hor

(and others fromthe FTPEXT wor ki ng group)

Curtin Proposed Standard [Page 12]

RFC 2640 FTP Internalization July 1999

7 dossary

BIDI - abbreviation for Bi-directional, a reference to nixed right-
to-left and left-to-right text.

Character Set - a collection of characters used to represent textua
i nformati on in which each character has a nuneric val ue

Code Set - (see character set).
A yph - a character inmage represented on a display device.

18N - "I eighteen N', the first and last letters of the word
"internationalization" and the eighteen letters in between.

UCS-2 - the SO I EC 10646 two octet Universal Character Set form

UCs- 4 the SO | EC 10646 four octet Universal Character Set form

UTF-8 - the UCS Transformati on Fornat represented in 8 bits.

TF-16 - A 16-bit format including the BMP (directly encoded) and
surrogate pairs to represent characters in planes 01-16; equival ent
to Uni code.

8 Bi bl i ography

[ABNF] Crocker, D. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', RFC 2234, Novenber 1997.

[ASCI |] ANSI X3.4:1986 Coded Character Sets - 7 Bit Anerican
Nati onal Standard Code for Information Interchange (7-
bit ASCI 1)

[1 SO 8859] | SO 8859. International standard -- Information
processing -- 8-bit single-byte coded graphic character
sets -- Part 1:Latin al phabet No. 1 (1987) -- Part 2:
Latin al phabet No. 2 (1987) -- Part 3: Latin al phabet
No. 3 (1988) -- Part 4: Latin al phabet No. 4 (1988) --
Part 5: Latin/Cyrillic al phabet (1988) -- Part 6:
Latin/ Arabi c al phabet (1987) -- Part : Latin/ G eek
al phabet (1987) -- Part 8: Latin/Hebrew al phabet (1988)
-- Part 9: Latin al phabet No. 5 (1989) -- Part10: Latin
al phabet No. 6 (1992)

[BCP14] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

Curtin Proposed Standard [Page 13]

RFC 2640

[1 SO 10646]

[MLST]

[RFC854]

[RFC959]

[RFC1123]

[RFC1738]

[RFCL766]

[RFC2130]

[RFC2277]

[RFC2279]

[RFC2389]

[UNI CODE]

[UTF- 8]

Curtin

FTP Internalization July 1999

| SO'| EC 10646-1:1993. International standard --

I nformation technol ogy -- Universal nultiple-octet coded
character set (UCS) -- Part 1: Architecture and basic
mul tilingual plane.

Elz, R and P. Hethnon, "Extensions to FTP", Work in
Pr ogr ess.

Postel, J. and J. Reynolds, "Telnet Protocol
Speci fication", STD 8, RFC 854, My 1983.

Postel, J. and J. Reynolds, "File Transfer Protocol
(FTP)", STD 9, RFC 959, OCctober 1985.

Braden, R, "Requirenents for Internet Hosts --
Application and Support", STD 3, RFC 1123, Cctober 1989.

Berners-Lee, T., Masinter, L. and M MCahill, "Uniform
Resource Locators (URL)", RFC 1738, Decenber 1994.

Al vestrand, H., "Tags for the ldentification of
Languages", RFC 1766, March 1995.

Wi der, C., Preston, C, Sinonsen, K, Alvestrand, H,
At kinson, R, Crispin, M and P. Svanberg, "Character
Set Wbrkshop Report", RFC 2130, April 1997.

Al vestrand, H., | ETF Policy on Character Sets and
Languages", RFC 2277, January 1998.

Yergeau, F., "UTF-8, a transformation format of |SO
10646", RFC 2279, January 1998.

Elz, R and P. Hethnon, "Feature Negotiation Mechani sm
for the File Transfer Protocol", RFC 2389, August 1998.

The Uni code Consortium "The Uni code Standard - Version
2.0", Addison Westley Devel opers Press, July 1996.

| SO'| EC 10646-1: 1993 AMENDMENT 2 (1996). UCS
Transformation Format 8 (UTF-8).

Proposed Standard [Page 14]

RFC 2640 FTP Internalization July 1999

9 Aut hor’s Address
Bill Curtin
JI EO
Attn: JEBBD
Ft. Monnmouth, N J. 07703-5613

EMail: curtinw@tmdisa. ml

Curtin Proposed Standard [Page 15]

RFC 2640 FTP Internalization July 1999

Annex A - |nplenentation Considerations
A.1 General Considerations

- Inplementers should ensure that their code accounts for potenti al
probl ens, such as using a NULL character to termnate a string or
no |l onger being able to steal the high order bit for internal use,
when supporting the extended character set.

- Inmplementers should be aware that there is a chance that pathnanes
that are non UTF-8 nmay be parsed as valid UTF-8. The probabilities
are low for sone encoding or statistically zero to zero for others
A recent non-scientific analysis found that EUC encoded Japanese
words had a 2. 7% fal se reading; SJI'S had a 0.0005% f al se readi ng;
ot her encodi ng such as ASCI| or KO -8 have a 0% fal se reading. This
probability is highest for short pathnanmes and decreases as
pat hnane size increases. Inplenenters may want to | ook for signs
t hat pat hnanes whi ch parse as UTF-8 are not valid UTF-8, such as
the existence of multiple local character sets in short pathnanes.
Hopeful ly, as nore inplenmentations conformto UTF-8 transfer
encoding there will be a snmaller need to guess at the encoding.

- Cient devel opers should be aware that it will be possible for
pat hnanes to contain m xed characters (e.qg.
/1 LatinlDirectoryNanme/ HebrewFi | eNane). They shoul d be prepared to
handl e the Bi-directional (BIDI) display of these character sets
(i.e. right to left display for the directory and left to right
display for the filenane). While bi-directional display is outside
the scope of this docunent and nore conplicated than the above
exanpl e, an algorithmfor bi-directional display can be found in
the UNICODE 2.0 [UNI CODE] standard. Al so note that pathnames can
have different byte ordering yet be logically and display-w se
equi val ent due to the insertion of BID control characters at
di fferent points during conposition. Also note that mi xed character
sets may al so present problens with font swapping.

- A server that copies pathnanes transparently froma |oca
filesystemmay continue to do so. It is then up to the local file
creators to use UTF-8 pat hnanes

- Servers can supports charset |abeling of files and/or directories,
such that different pathnanes nay have different charsets. The
server should attenpt to convert all pathnanes to UTF-8, but if it
can’t then it should leave that nane in its raw form

- Sone server’'s OS do not nandate character sets, but all ow

adm nistrators to configure it in the FTP server. These servers
shoul d be configured to use a particular napping table (either

Curtin Proposed Standard [Page 16]

RFC 2640 FTP Internalization July 1999

external or built-in). This will allowthe flexibility of defining
different charsets for different directories.

- If the server’s OS does not nandate the character set and the FTP
server cannot be configured, the server should sinmply use the raw
bytes in the file nane. They might be ASCI| or UTF-8.

- If the server is a mrror, and wants to look just like the site it

is mrroring, it should store the exact file nane bytes that it
received fromthe main server.

Curtin Proposed Standard [Page 17]

RFC 2640 FTP Internalization July 1999

A. 2 Transition Considerations

- Servers which support this specification, when presented a pathname
froman old client (one which does not support this specification),
can nearly always tell whether the pathnanme is in UTF-8 (see B.1)
or in sone other code set. In order to support these older clients,
servers may wish to default to a non UTF-8 code set. However, how a
server supports non UTF-8 is outside the scope of this
speci fication.

- Cients which support this specification will be able to determ ne
if the server can support UTF-8 (i.e. supports this specification)
by the ability of the server to support the FEAT comand and the
UTF8 feature (defined in 3.2). If the newer clients determ ne that
the server does not support UTF-8 it nay wish to default to a
different code set. Client devel opers should take into
consi deration that pathnanes, associated with ol der servers, m ght
be stored in UTF-8. However, how a client supports non UTF-8 is
out side the scope of this specification

- CUients and servers can transition to UTF-8 by either converting
to/fromthe | ocal encoding, or the users can store UTF-8 fil enanes.
The former approach is easier on tightly controlled file systens
(e.g. PCs and MACs). The latter approach is easier on nore free
formfile systens (e.g. Unix).

- For interactive use attention should be focused on user interface
and ease of use. Non-interactive use requires a consistent and
controll ed behavi or.

- There may be many applications which reference files under their
old raw pathnane (e.g. linked URLs). Changing the pathnane to UTF-8
will cause access to the old URL to fail. A solution may be for the
server to act as if there was 2 different pathnanes associated with
the file. This m ght be done internal to the server on controlled
file systens or by using synbolic links on free formsystens. Wile
this approach nay work for single file transfer non-interactive
use, a non-interactive transfer of all of the files in a directory
wi Il produce duplicates. Interactive users may be presented with
lists of files which are double the actual nunber files.

Curtin Proposed Standard [Page 18]

RFC 2640 FTP Internalization July 1999

Annex B - Sanpl e Code and Exanpl es
B.1 Valid UTF-8 check

The following routine checks if a byte sequence is valid UTF-8. This
is done by checking for the proper tagging of the first and foll ow ng
bytes to make sure they conformto the UTF-8 format. It then checks
to assure that the data part of the UTF-8 sequence conforms to the
proper range allowed by the encoding. Note: This routine will not
detect characters that have not been assigned and therefore do not

exi st.

int utf8 valid(const unsigned char *buf, unsigned int |en)

{

const unsi gned char *endbuf = buf + len
unsi gned char byt e2mask=0x00, c;
int trailing = 0; // trailing (continuation) bytes to foll ow

whil e (buf != endbuf)

{
c = *buf ++;
if (trailing)
if ((c&xC0) == 0x80) // Does trailing byte follow UTF-8 fornmat?
{if (byte2mask) /1 Need to check 2nd byte for proper range?
i f (c&byte2nmask) /1l Are appropriate bits set?
byt e2nmask=0x00;
el se
return O;
trailing--; }
el se
return O;
el se
if ((c&x80) == 0x00) continue; /1 valid 1 byte UTF-8
else if ((c&xEQ) == 0xCO) /1 valid 2 byte UTF-8
i f (c&Xx1E) /1 1s UF-8 byte in

/1 proper range?
trailing =1;

el se
return O;
else if ((c&xF0) == OxEO) /1 valid 3 byte UTF-8
{if (!(c&x0F)) /1 I's UTF-8 byte in
/1 proper range?
byt e2nmask=0x20; /1 1f not set mask

/1l to check next byte
trailing = 2;}
else if ((c&xF8) == 0xFO) /1 valid 4 byte UTF-8
{if (!(c&0x07)) /1 I's UTF-8 byte in
/1 proper range?

Curtin Proposed Standard [Page 19]

RFC 2640 FTP Internalization July 1999

byt e2nmask=0x30; /1 1f not set mask
/1l to check next byte
trailing = 3;}

else if ((c&xFC) == 0xF8) /1 valid 5 byte UTF-8
{if (!(c&0x03)) /1 I's UTF-8 byte in
/1 proper range?
byt e2nask=0x38; /1 1f not set mask

/1l to check next byte
trailing = 4;}

else if ((c&xFE) == OxFC) /1 valid 6 byte UTF-8
{if (!(c&0x01)) /1 I's UTF-8 byte in
/1 proper range?
byt e2nmask=0x3C; /1 1f not set mask

/1l to check next byte
trailing = 5;}
else return 0O;
}
return trailing == 0

}

B. 2 Conver si ons

The code exanmples in this section closely reflect the algorithmin
| SO 10646 and nmay not present the nost efficient solution for
converting to / fromUTF-8 encoding. If efficiency is an issue,

i mpl enenters should use the appropriate bitw se operators.

Addi tional code exanpl es and numerous mapping tables can be found at
the Unicode site, HTTP://ww. uni code. org or FTP://uni code. org.

Not e that the conversion exanpl es bel ow assune that the |oca
character set supported in the operating systemis sonething other
than UCS2/ UTF-16. There are some operating systens that already
support UCS2/ UTF-16 (notably Plan 9 and Wndows NT). In this case no
conversion will be necessary fromthe |ocal character set to the UCS

B.2.1 Conversion from Local Character Set to UTF-8

Conversion fromthe local filesystemcharacter set to UTF-8 wll
normal ly involve a two step process. First convert the |oca
character set to the UCS; then convert the UCS to UTF-8.

The first step in the process can be perfornmed by nmaintaining a
mappi ng table that includes the local character set code and the
correspondi ng UCS code. For instance the |SQO | EC 8859-8 [I| SO 8859]
code for the Hebrew letter "VAV' is OxE4. The corresponding 4 byte
| SO | EC 10646 code i s 0x000005D5.

Curtin Proposed Standard [Page 20]

RFC 2640 FTP Internalization July 1999

The next step is to convert the UCS character code to the UTF-8
encodi ng. The follow ng routine can be used to deterni ne and encode
the correct nunber of bytes based on the UCS-4 character code:

unsigned int ucs4_to_utf8 (unsigned |ong *ucs4_buf, unsigned int
ucs4 |l en, unsigned char *utf8 buf)

{
const unsigned | ong *ucs4_endbuf = ucs4_buf + ucs4_len
unsigned int utf8 len = 0; /1 return value for UTF8 size
unsi gned char *t_utf8 buf = utf8 buf; // Tenporary pointer
/1 to |l oad UTF8 val ues

whil e (ucs4_buf !'= ucs4_endbuf)
if (*ucs4_buf <= Ox7F) /1 ASCIl chars no conversion needed

*t utf8 buf++ = (unsigned char) *ucs4_buf;
utf8 | en++;

ucs4_buf ++;
}

el se
if (*ucs4_buf <= OxO7FF) // In the 2 byte utf-8 range

*t _utf8 buf++= (unsigned char) (0xC0 + (*ucs4_buf/0x40));

*t _utf8 buf++= (unsigned char) (0x80 + (*ucs4_buf %9x40));
utf8_ I en+=2;
ucs4_buf ++;

}
el se
if (*ucsd4_buf <= OxFFFF) /* In the 3 byte utf-8 range. The
val ues 0x0000FFFE, O0xO0000FFFF
and 0x0000D800 - 0xO0O0OODFFF do
not occur in UCS-4 */
*t utf8 buf++= (unsigned char) (OxEQ0 +
(*ucs4_buf/0x1000));
*t _utf8 buf++= (unsigned char) (0x80 +
((*ucs4_buf/ 0x40) %9x40)) ;
*t _utf8_ buf++= (unsigned char) (0x80 + (*ucs4_buf %x40));
utf8 | en+=3;
ucs4_buf ++;
}
el se

if (*ucsd4_buf <= Ox1FFFFF) //In the 4 byte utf-8 range

*t _utf8_ buf++= (unsigned char) (OxFO +
(*ucs4_buf/0x040000));

Curtin Proposed Standard [Page 21]

RFC 2640

}

FTP Internalization July 1999

*t _utf8 buf++= (unsigned char) (0x80 +
((*ucs4_buf/0x10000) %9x40)) ;

*t _utf8 buf++= (unsigned char) (0x80 +
((*ucs4_buf/ 0x40) ¥%9x40)) ;

*t _utf8_buf++= (unsigned char) (0x80 + (*ucs4_buf%x40));

utf8 | en+=4;

ucs4_buf ++;

}

el se
if (*ucs4_buf <= OxO3FFFFFF)//In the 5 byte utf-8 range

*t _utf8 buf++= (unsigned char) (OxF8 +
(*ucs4_buf/0x01000000));
*t _utf8 buf++= (unsigned char) (0x80 +
((*ucs4_buf/ 0x040000) ¥©x40)) ;
*t _utf8_ buf++= (unsigned char) (0x80 +
((*ucs4_buf/ 0x1000) %9x40)) ;
*t _utf8 buf++= (unsigned char) (0x80 +
((*ucs4_buf/ 0x40) %9x40)) ;
*t _utf8 buf++= (unsigned char) (0x80 +
(*ucs4_buf %9x40));
utf8 | en+=5;
ucs4_buf ++;
}
el se
if (*ucsd4_buf <= Ox7FFFFFFF)//1n the 6 byte utf-8 range
{
*t _utf8_buf++= (unsigned char)
(OxF8 +(*ucs4_buf/ 0x40000000));
*t _utf8 buf++= (unsigned char) (0x80 +
((*ucs4_buf/0x01000000) %9x40)) ;
*t _utf8 buf++= (unsigned char) (0x80 +
((*ucs4_buf/ 0x040000) ¥©x40)) ;
*t _utf8_ buf++= (unsigned char) (0x80 +
((*ucs4_buf/ 0x1000) %9x40)) ;
*t _utf8 buf++= (unsigned char) (0x80 +
((*ucs4_buf/ 0x40) %9x40)) ;
*t _utf8 buf++= (unsigned char) (0x80 +
(*ucs4_buf %9x40)) ;
utf8 | en+=6;
ucs4_buf ++;

}

return (utf8_Ilen);

}

Curtin

Proposed Standard [Page 22]

RFC 2640 FTP Internalization July 1999

B.2.2 Conversion fromUTF-8 to Local Character Set

When noving from UTF-8 encoding to the | ocal character set the
reverse procedure is used. First the UTF-8 encoding is transforned
into the UCS-4 character set. The UCS-4 is then converted to the

| ocal character set froma nmapping table (i.e. the opposite of the
table used to formthe UCS-4 character code).

To convert fromUTF-8 to UCS-4 the free bits (those that do not
define UTF-8 sequence size or signify continuation bytes) in a UTF-8
sequence are concatenated as a bit string. The bits are then
distributed into a four-byte sequence starting fromthe | east
significant bits. Those bits not assigned a bit in the four-byte
sequence are padded with ZERO bits. The followi ng routine converts
the UTF-8 encoding to UCS-4 character codes:

int utf8 to_ucs4 (unsigned |long *ucs4_buf, unsigned int utf8_ len
unsi gned char *utf8 buf)

{

const unsigned char *utf8_ endbuf = utf8_buf + utf8_Ilen

unsi gned int ucs_| en=0;

while (utf8_buf !'= utf8_endbuf)

{
if ((*utf8_buf & 0x80) == 0x00) /*ASCI|I chars no conversion
needed */
*ucs4_buf++ = (unsigned | ong) *utf8_ buf;
ut f 8_buf ++;
ucs_| en++;
}
el se

if ((*utf8_ buf & OxEOQ)== OxCO) //In the 2 byte utf-8 range

*ucs4_buf++ = (unsigned long) (((*utf8 buf - 0xC0) * 0x40)
+ (*(utf8 buf+l1l) - 0x80));
utf 8 buf += 2;
ucs_| en++;
}
el se
if ((*utf8 buf & OxFO) == OXEO) /*In the 3 byte utf-8
range */
{

*ucs4_buf++ = (unsigned long) (((*utf8 buf - OxEQ) * 0x1000)

+ ((*(utf8_buf+1) - 0x80) * 0x40)
+ (*(utf8 buf+2) - 0x80));

Curtin Proposed Standard [Page 23]

RFC 2640 FTP Internalization July 1999

ut f 8_buf +=3;
ucs_| en++;
}
el se
if ((*utf8_ buf & OxF8) == OxFO) /* In the 4 byte utf-8
range */

*ucs4_buf ++ = (unsigned | ong)
(((*utf8_buf - OxFO) * 0x040000)
+ ((*(utf8_buf+l) - 0x80) * 0x1000)
+ ((*(utf8_buf+2) - 0x80) * 0x40)
+ (*(utf8 buf+3) - 0x80));
ut f 8_buf +=4;
ucs_| en++;
}
el se
if ((*utf8_ buf & OXFC) == OxF8) /* In the 5 byte utf-8
range */

*ucs4_buf ++ = (unsigned | ong)
(((*utf8_buf - OxF8) * 0x01000000)
((*(utf8_buf+1) - 0x80) * 0x040000)

+

+ ((*(utf8_buf+2) - 0x80) * 0x1000)
+ ((*(utf8 buf+3) - 0x80) * 0x40)
+ (*(utf8_ buf+4) - 0x80));
ut f 8_buf +=5;
ucs_| en++;
}
el se
if ((*utf8 buf & OXFE) == OXxFC) /* In the 6 byte utf-8
range */
*ucs4_buf ++ = (unsigned | ong)
(((*utf8_buf - OxFC) * 0x40000000)
+ ((*(utf8_buf+1l) - 0x80) * 0x010000000)
+ ((*(utf8_buf+2) - 0x80) * 0x040000)
+ ((*(utf8 buf+3) - 0x80) * 0x1000)
+ ((*(utf8 buf+4) - 0x80) * 0x40)
+ (*(utf8_buf+5) - 0x80));
ut f 8_buf +=6;
ucs_| en++;
}

return (ucs_|len);

}

Curtin Proposed Standard [Page 24]

RFC 2640 FTP Internalization July 1999

B.2.3 1 SO'| EC 8859-8 Exanple

Thi s exanpl e denonstrates mapping | SO | EC 8859-8 character set to
UTF-8 and back to I SO | EC 8859-8. As noted earlier, the Hebrew letter
"VAV' is convertd fromthe | SO | EC 8859-8 character code OxE4 to the
corresponding 4 byte 1SQ | EC 10646 code of 0x000005D5 by a sinple

| ookup of a conversion/ nmapping file.

The UCS-4 character code is transformed into UTF-8 using the
ucs4_to_utf8 routine described earlier by:

1. Because the UCS-4 character is between 0x80 and OxO7FF it will map
to a 2 byte UTF-8 sequence.
2. The first byte is defined by (0xCO + (0x000005D5 / 0x40)) = 0xDv.

3. The second byte is defined by (0x80 + (0x000005D5 % 0x40)) = 0x95.

The UTF-8 encoding is transferred back to UCS-4 by using the
utf8 to _ucs4 routine described earlier by:

1. Because the first byte of the sequence, when the '& operator wth
a value of OxEO is applied, will produce 0xCO (0xD7 & OxEQO = 0xCO)
the UTF-8 is a 2 byte sequence.

2. The four byte UCS-4 character code is produced by (((0xD7 - 0xC0)
* 0x40) + (0x95 -0x80)) = 0x000005D5.

Finally, the UCS-4 character code is converted to | SO | EC 8859-8
character code (using the mapping table which nmatches |1 SO | EC 8859-8
to UCS-4) to produce the original OxE4 code for the Hebrew letter
"VAV" .

B. 2. 4 Vendor Codepage Exanpl e

Thi s exanpl e denonstrates the mappi ng of a codepage to UTF-8 and back
to a vendor codepage. Mappi ng between vendor codepages can be done in
a very simlar manner as described above. For instance both the PC
and Mac codepages reflect the character set fromthe Thai standard
TI'S 620-2533. The character code on both platforms for the Tha

letter "SO SO' is OxAB. This character can then be nmapped into the
UCS-4 by way of a conversion/mapping file to produce the UCS-4 code
of OxOEOB

The UCS-4 character code is transforned into UTF-8 using the
ucs4 to utf8 routine described earlier by:

1. Because the UCS-4 character is between 0x0800 and OxFFFF it will

map to a 3 byte UTF-8 sequence
2. The first byte is defined by (OxEO + (0xO0000EOB / 0x1000) = OxEO.

Curtin Proposed Standard [Page 25]

RFC 2640 FTP Internalization July 1999

3. The second byte is defined by (0x80 + ((0Ox00000EOB / 0x40) %
0x40))) = 0xBs.
4. The third byte is defined by (0x80 + (0xO0000EOB % 0x40)) = 0x8B

The UTF-8 encoding is transferred back to UCS-4 by using the
utf8 to_ucs4 routine described earlier by:

1. Because the first byte of the sequence, when the '& operator wth
a value of OxFO is applied, will produce OxEQO (OXE0O & OxFO = OxEQ)
the UTF-8 is a 3 byte sequence.

2. The four byte UCS-4 character code is produced by (((OxEO - OxEO)
* 0x1000) + ((0xB8 - 0x80) * 0x40) + (0x8B -0x80) = 0Ox0000EOB

Finally, the UCS-4 character code is converted to either the PC or
MAC codepage character code (using the napping table which matches
codepage to UCS-4) to produce the original OxAB code for the Tha
letter "SO SO'.

B. 3 Pseudo Code for a High-Quality Translating Server
if utf8_valid(fn)

attenpt to convert fn to the local charset, producing |ocalfn
if (conversion fails tenporarily) return error
i f (conversion succeeds)

attenpt to open localfn
if (open fails tenmporarily) return error
i f (open succeeds) return success

}

}
attenpt to open fn

if (open fails tenporarily) return error
i f (open succeeds) return success
return permanent error

Curtin Proposed Standard [Page 26]

RFC 2640 FTP Internalization July 1999

Ful I Copyright Statenent
Copyright (C) The Internet Society (1999). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Curtin Proposed Standard [Page 27]

