
Network Working Group E. Guttman
Request for Comments: 2609 C. Perkins
Updates: 2165 J. Kempf
Category: Standards Track Sun Microsystems
 June 1999

 Service Templates and Service: Schemes

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 The "service:" URL scheme name is used to define URLs (called
 "service: URLs" in this document) that are primarily intended to be
 used by the Service Location Protocol in order to distribute service
 access information. These schemes provide an extensible framework
 for client-based network software to obtain configuration information
 required to make use of network services. When registering a
 service: URL, the URL is accompanied by a set of well-defined
 attributes which define the service. These attributes convey
 configuration information to client software, or service
 characteristics meaningful to end users.

 This document describes a formal procedure for defining and
 standardizing new service types and attributes for use with the
 "service:" scheme. The formal descriptions of service types and
 attributes are templates that are human and machine understandable.
 They SHOULD be used by administrative tools to parse service
 registration information and by client applications to provide
 localized translations of service attribute strings.

Guttman, et al. Standards Track [Page 1]

RFC 2609 Service Templates and URLs June 1999

Table of Contents

 1. Introduction 2
 1.1. Terminology . 3
 1.2. Service Location Protocol 5
 1.2.1. Compatibility with SLPv1 5
 2. Service URL Syntax and Semantics 5
 2.1. Service URL Syntax 5
 2.2. Service URL Semantics 8
 2.3. Use of service: URLs 9
 2.4. Specifying the Service Type-Specific URL Syntax. . . . 10
 2.5. Accommodating Abstract Service Types 10
 2.5.1. Advertising Abstract Service Types 11
 3. Syntax and Semantics of Service Type Specifications 12
 3.1. Syntax of Service Type Templates 12
 3.2. Semantics of Service Type Templates. 15
 3.2.1. Definition of a Service Template 15
 3.2.2. Service Type 16
 3.2.3. Version Number 16
 3.2.4. Description 16
 3.2.5. Syntax of the Service Type-specific URL Part . 17
 3.2.6. Attribute Definition 17
 4. A Process For Standardizing New Service Types 21
 5. IANA Considerations 22
 6. Internationalization Considerations 24
 6.1. Language Identification and Translation. 24
 7. Security Considerations 25
 A. Service Template Examples 26
 A.1. FOO 26
 A.2. Abstract Service Type: Net-Transducer 28
 A.3. Concrete Service Type: Net-Transducer:Thermometer . . 29
 A.4. service: URLs and SLP 30
 B. Acknowledgments 30
 C. References 31
 D. Authors’ Addresses 32
 E. Full Copyright Statement 33

1. Introduction

 This document describes a URL scheme, called service: URL, which
 defines network access information for network services using a
 formal notation. In addition it describes how to define a set of
 attributes to associate with a service: URL. These attributes will
 allow end users and programs to select between network services of
 the same type that have different capabilities. The attributes are
 defined in a template document that is readable by people and
 machines.

Guttman, et al. Standards Track [Page 2]

RFC 2609 Service Templates and URLs June 1999

 A client uses attributes to select a particular service. Service
 selection occurs by obtaining the service: URL that offers the right
 configuration for the client. Service type templates define the
 syntax of service: URLs for a particular service type, as well as the
 attributes which accompany a service: URL in a service registration.

 Templates are used for the following distinct purposes:

 1. Standardization

 The template is reviewed before it is standardized. Once it is
 standardized, all versions of the template are archived by IANA.

 2. Service Registration

 Servers making use of the Service Location Protocol [10] register
 themselves and their attributes. They use the templates to
 generate the service registrations. In registering, the service
 must use the specified values for its attributes.

 3. Client presentation of Service Information

 Client applications may display service information. The
 template provides type information and explanatory text which may
 be helpful in producing user interfaces.

 4. Internationalization

 Entities with access to the template for a given service type in
 two different languages may translate between the two languages.

 A service may register itself in more than one language using
 templates, though it has been configured by an operator who
 registered service attributes in a single language.

 All grammar encoding follows the Augmented BNF (ABNF) [8] for syntax
 specifications.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [6].

Guttman, et al. Standards Track [Page 3]

RFC 2609 Service Templates and URLs June 1999

 The following terminology is used for describing service: URLs.

 service scheme

 A URL scheme whose name starts with the string "service:" and
 is followed by the service type name, constructed according to
 the rules in this document.

 service: URL

 A URL constructed according to the service scheme definition.
 It typically provides at least the following: The name of an
 access protocol, and an address locating this service. The
 service: URL may include url path information specific to the
 type of service, as well as attribute information encoded
 according to the URL grammar. The service: URL is used by the
 Service Location Protocol to register and discover the location
 of services. It may be used by other protocols and in
 documents as well.

 service type

 A name identifying the semantics by which the remainder of the
 service: URL is to be understood. It may denote either a
 particular network protocol, or an abstract service associated
 with a variety of protocols. If the service type denotes a
 particular protocol, then the service type name SHOULD either
 be assigned the name of a particular well known port [2] by
 convention or be the Assigned Numbers name for the service [1].

 abstract service type

 A service type name which is associated with a variety of
 different protocols. An example is given in Section A.
 Section 2 discusses various ways that abstract types can be
 accommodated.

 service registration

 A service: URL and optionally a set of attributes comprise a
 service registration. This registration is made by or on
 behalf of a given service. The URL syntax and attributes must
 conform to the service template for the registered service.

 service template

 A formal description of the service attributes and service
 scheme associated with a particular service type.

Guttman, et al. Standards Track [Page 4]

RFC 2609 Service Templates and URLs June 1999

1.2. Service Location Protocol

 The Service Location Protocol version 2 [10] allows service: URLs to
 be registered and discovered, though service: URLs may be also used
 in other contexts.

 Client applications discover service registrations by issuing queries
 for services of a particular type, specifying the attributes of the
 service: URLs to return. Clients retrieve the attributes of a
 particular service by supplying its service: URL. Attributes for all
 service registrations of a particular type can also be retrieved.

 Services may register themselves, or registrations may be made on
 their behalf. These registrations contain a service: URL, and
 possibly attributes and digital signatures.

1.2.1. Compatibility with SLPv1

 This document adopts the encoding conventions of SLPv2.

 Compatibility with SLPv1 [[15]] is possible, if the following
 conventions are observed:

 1. Abstract service types must not be used. SLPv2 specifies the
 use of Service URLs with abstract service types. SLPv1 does not
 support them. Thus, a service template which is to serve both
 SLPv1 and SLPv2 must not use abstract service types.

 2. The syntax for representing opaque values in this document is
 consistent with SLPv2. The syntax must be converted for use with
 SLPv1. Instead of a sequence of "\FF" then "\" HEXDIG HEXDIG for
 each byte in the opaque value, SLPv1 uses radix-64 notation.

 3. Escape characters are significantly differently in SLPv1 and
 SLPv2. Instead of using escaped byte notation for escaped
 characters, SLPv1 uses the HTML convention ‘&’ ‘#’ 1*DIGIT ‘;’.

2. Service URL Syntax and Semantics

 This section describes the syntax and semantics of service: URLs.

2.1. Service URL Syntax

 The syntax of the service: URL MUST conform to an ’absolute URI’ as
 defined by [5]. The syntax of a service: URL differs enough from a
 ’generic URI’ that it is best to treat it as an opaque URI unless a
 specific parser for the service: URL is available.

Guttman, et al. Standards Track [Page 5]

RFC 2609 Service Templates and URLs June 1999

 All service: URLs have the same syntax up to the ’url-part’ The
 syntax for a service URL depends on the service type following the
 service scheme. All service: URLs have a service access point
 portion, indicating the address of the service to access.

 The syntax for the <sap> field depends upon the service type
 definition. The <sap> field is the service access point, and
 describes how to access the service. In addition, although both
 upper case and lower case characters are recognized in the <service-
 type> field for convenience, the name is case-folded into lower case.
 Service types are therefore not distinguished on the basis of case,
 so, for example, "http" and "HTTP" designate the same service type.
 This is consistent with general URL practice, as outlined in [5].

 The ABNF for a service: URL is:

 service: URL = "service:" service-type ":" sap
 service-type = abstract-type ":" url-scheme / concrete-type
 abstract-type = type-name ["." naming-auth]
 concrete-type = protocol ["." naming-auth]
 type-name = resname
 naming-auth = resname
 url-scheme = resname
 ; A recognized URL scheme name, standardized
 ; either through common practice or through
 ; approval of a standards body.
 resname = ALPHA [1*(ALPHA / DIGIT / "+" / "-")]
 sap = site [url-part]
 site = ipsite / atsite / ipxsite
 ipsite = "//" [[user "@"] hostport]
 hostport = host [":" port]
 host = hostname / hostnumber
 hostname = *(domainlabel ".") toplabel
 alphanum = ALPHA / DIGIT
 domainlabel = alphanum / alphanum *[alphanum / "-"] alphanum
 toplabel = ALPHA / ALPHA *[alphanum / "-"] alphanum
 hostnumber = ipv4-number
 ipv4-number = 1*3DIGIT 3("." 1*3DIGIT)
 port = 1*DIGIT
 ; A port number must be included if the
 ; protocol field does not have an IANA
 ; assigned port number.
 user = *[uchar / ";" / "+" / "&" / "="]
 ipxsite = "/ipx/" ipx-net ":" ipx-node ":" ipx-socket
 ipx-net = 8 HEXDIGIT
 ipx-node = 12 HEXDIGIT
 ipx-socket = 4 HEXDIGIT
 atsite = "/at/" at-object ":" at-type "" at-zone

Guttman, et al. Standards Track [Page 6]

RFC 2609 Service Templates and URLs June 1999

 at-object = 1*31apple-char
 at-type = 1*31apple-char
 at-zone = 1*31apple-char
 apple-char = ALPHA / DIGIT / safe / escaped
 = ; AppleAscii [7] values that are not
 = ; from the restricted range must be escaped.
 = ; NOTE: The escaped values do NOT correspond
 = ; to UTF-8 values here: They are AppleAscii
 = ; bytes.
 url-part = [url-path] [attr-list]
 url-path = 1 * ("/" *xchar)
 ; Each service type must define its
 ; own syntax consistent
 ; with [5].
 attr-list = 1 * (";" attr-asgn)
 attr-asgn = attr-id / attr-id "=" attr-value
 safe = "$" / "-" / "_" / "." / "˜"
 extra = "!" / "*" / "’" / "(" / ")" / "," / "+"
 uchar = unreserved / escaped
 xchar = unreserved / reserved / escaped
 escaped = 1*(‘\’ HEXDIG HEXDIG)
 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"
 unreserved = ALPHA / DIGIT / safe / extra

 IPX addresses [14] are composed of a network, node and socket number.
 The IPX network number is a four-byte number, in network order and
 expressed in hexadecimal, that signifies an IPX subnet. The node
 element represents a network interface card. It is a six-byte
 number, expressed in hexadecimal, that is usually the same as the
 node ID of the interface card. The socket element represents a
 specific service access point, given an IPX network and node. IPX
 sockets are analogous to TCP/IP ports, and are not to be confused
 with Berkeley sockets.

 AppleTalk addresses [9] are composed of an object, type and zone.
 The object is a human readable string. The type is an identifier,
 not intended for human readability. The zone refers to the AppleTalk
 Zone name, which is also human readable. The characters composing
 these names are drawn from the AppleAscii character set [7]. Thus,
 they do not equate to escaped ASCII or UTF-8 characters. The
 characters "=" and "*" are reserved and may not be included in the
 names even in binary form.

 In cases besides the AppleTalk grammar, some characters must be
 escaped before use. To escape any character, precede the two digits
 indicating its ASCII value by ’%’.

Guttman, et al. Standards Track [Page 7]

RFC 2609 Service Templates and URLs June 1999

2.2. Service URL Semantics

 The service scheme-specific information following the "service:" URL
 scheme identifier provides information necessary to access the
 service. As described in the previous subsection, the form of a
 service: URL is as follows:

 service: URL = "service:" service-type ":" site url-path

 where <site> has one of the following forms could refer to an
 <ipsite>, <ipxsite> or <atsite> if the service URL locates to an IP,
 IPX or AppleTalk service access point, respectively.

 As discussed in Section 1, the <service-type> can be either a
 concrete protocol name, or an abstract type name.

 The <ipsite> field is typically either a domain name (DNS) or an IP
 network protocol address for the service, and possibly a port number.
 Note that use of DNS hostnames is preferred for ease of renumbering.
 The <site> field can be null if other information in the service URL
 or service attributes is sufficient to use the service.

 The <sap> field allows more information to be provided (by way of
 <url-path> and <attr-list>) that can uniquely locate the service or
 resource if the <site> is not sufficient for that purpose. For IP
 addresses, the <site> field begins with "//". Other address families
 supported are IPX [14] and AppleTalk [9].

 An <attr-list> field appears at the end of the <url-part> field, but
 is never required to exist in any service location registration.

 The <attr-list> field is composed of a list of semicolon (";")
 separated attribute assignments of the form:

 attr-id "=" attr-value

 or for keyword attributes:

 attr-id

 Attributes are part of service: URLs when the attributes are required
 to access a particular service. For instance, an ACAP [13] service
 might require that the client authenticate with it through Kerberos.
 Including an attribute in the service registration allows the ACAP
 client to make use of the correct SASL [11] authentication mechanism.
 The ACAP server’s registration might look like:

 service:acap://some.where.net;authentication=KERBEROSV4

Guttman, et al. Standards Track [Page 8]

RFC 2609 Service Templates and URLs June 1999

 Note that there can be other attributes of an ACAP server which are
 not appropriate to include in the URL. For instance, the list of
 users who have access to the server is useful for selecting an ACAP
 server, but is not required for a client to use the registered
 service.

 Attributes associated with the service: URL are not typically
 included in the service: URL. They are stored and retrieved using
 other mechanisms. The service: URL is uniquely identified with a
 particular service agent or resource, and is used when registering or
 requesting the attribute information. The Service Location Protocol
 specifies how such information is registered by network services and
 obtained by client software.

2.3. Use of service: URLs

 The service: URL is intended to allow arbitrary client/server and
 peer to peer systems to make use of a standardized dynamic service
 access point discovery mechanism.

 It is intended that service: URLs be selected according to the
 suitability of associated attributes. A client application can
 obtain the URLs of several services of the same type and distinguish
 the most preferable among them by means of their attributes. The
 client uses the service: URL to communicate directly to a service.

 Attributes are specified with a formal service template syntax
 described in Section 3. If a service: URL registration includes
 attributes, the registering agent SHOULD also keep track of the
 attributes which characterize the service.

 Registrations can be checked against the formal attribute
 specification defined in the template by the client or agent
 representing the client. Service registration are typically done
 using the Service Location Protocol [10] (SLP). SLP provides a
 mechanism for service: URLs to be obtained dynamically, according to
 the service’s attributes.

 It is also possible to obtain service: URLs from documents and using
 other protocols. In this case, the URL may not be accompanied by the
 service attributes. The context in which the URL appears should make
 it clear, if possible, when the service is appropriate to use. For
 example, in a mail message, a service might be recommended for use
 when the user is in a branch office. Or, an HTML document might
 include a service: URL as a pointer to a service, describing in text
 what the service does and who is authorized to use it.

Guttman, et al. Standards Track [Page 9]

RFC 2609 Service Templates and URLs June 1999

2.4. Specifying the Service Type-Specific URL Syntax

 When a service type is specified, the specification includes the
 definition of the syntax for all URLs that are registered by services
 of that particular type. For instance, the "lpr" service type may be
 defined with service: URLs in the following form:

 service:printer:lpr://<address of printer>/<queue name>

 The section of the URL after the address of the printer:

 "/" <queue name>

 is specific to the lpr service type and corresponds to the <url-path>
 field of the general service: URL syntax. This part is specified
 when the lpr service type is specified.

2.5. Accommodating Abstract Service Types

 An abstract service type is a service type that can be implemented by
 a variety of different service agents.

 In order to register a service: URL for an abstract service type the
 ’abstract-type’ grammar rule described in section 3.1 is used. This
 will result in a URL which includes enough information to use the
 service, namely, the protocol, address and path information. Unlike
 ’concrete’ service: URLs, however, the service type is not enough to
 determine the service access. Rather, an abstract service type
 denotes a class of service types. The following subsection discusses
 this point in more detail.

 Concrete service templates inherit all attributes defined in the
 abstract service template from which the concrete service template
 was derived. Attribute defined in the abstract service template MUST
 not be defined in the concrete service template as well. This
 simplifies interpretation of templates.

 For example, if an abstract service template for service type ’
 Abstract’ defines an attribute FOO, all concrete service templates
 derived from the abstract service template, such as ’
 Abstract:Concrete’ will implicitly include the definition of
 attribute FOO. This derived template MUST NOT redefine FOO, according
 to the rule above.

 A further example is described in Section A.

Guttman, et al. Standards Track [Page 10]

RFC 2609 Service Templates and URLs June 1999

2.5.1. Advertising Abstract Service Types

 Some services may make use of several protocols that are in common
 use and are distinct services in their own right. In these cases an
 abstract service type is appropriate. What is essential is that all
 the required information for the service is clearly defined.

 For example, suppose a network service is being developed for
 dynamically loading device drivers. The client requires the
 following three pieces of information before it can successfully load
 and instantiate the driver:

 1. The protocol used to load the driver code, for example, "ftp",
 "http" or "tftp"

 2. A pathname identifying where the driver code is located, for
 example "/systemhost/drivers/diskdrivers.drv",

 3. The name of the driver, for example, "scsi".

 The temptation is to form the first two items into a URL and embed
 that into a service: URL. As an example which should be avoided,

 service:ftp:/x3.bean.org/drivers/diskdrivers.drv;driver=scsi

 is a service: URL which seems to indicate where to obtain the driver.

 Rather, an abstract service-type SHOULD be used. The service type is
 not "ftp", as the example indicates. Rather, it is "device-drivers".
 The service: URL that should be used, consistent with the rules in
 section [6], is the following:

 service:device-drivers:ftp://x3.bean.org/drivers/diskdrivers.drv;
 driver=scsi;platform=sys3.2-rs3000

 Other URLs for the same service using other protocols are also
 supported, as in:

 service:device-drivers:tftp://x2.bean.org/vol3/disk/drivers.drv;
 driver=scsi;platform=sys3.2-rs3000

 service:device-drivers:http://www.bean.org/drivers/drivpak.drv;
 driver=scsi;platform=sys3.2-rs3000

 Using SLP, a search for the service type "device-drivers" may return
 all of the three URLs listed above. The client selects the most
 appropriate access protocol for the desired resource.

Guttman, et al. Standards Track [Page 11]

RFC 2609 Service Templates and URLs June 1999

 The fundamental requirement is that the abstract service type MUST be
 well specified. This requirement is imposed so that program code or
 human users have enough information to access the service. In every
 case, a well-specified abstract type will include either an access
 protocol and a network address where the service is available, or an
 embedded URL for a standardized URL scheme that describes how to
 access the service. In the example above, there are three further
 requirements: A URL path is included for access protocols indicating
 the document to download, and two attributes are included to
 characterize the driver.

3. Syntax and Semantics of Service Type Specifications

 Service type specifications are documents in a formal syntax defining
 properties important to service registration. These properties are:

 1. General information on the service type specification itself,

 2. The syntax of the service type-specific part of the service URL,

 3. The definition of attributes associated with a service.

 The service type specification document is the service type template.

 The following subsections describe the syntax and semantics of
 service type templates.

3.1. Syntax of Service Type Templates

 Service template documents are encoded in a simple form. They may be
 translated into any language or character set, but the template used
 for standardization MUST be encoded in the 0x00-0x7F subrange of
 UTF-8 [16] (which corresponds to ASCII character encoding) and be in
 English.

 A template document begins with a block of text assigning values to
 five document identification items. The five identification items
 can appear in any order within the block, but conventionally the
 "template-type" item, which assigns the service type name, occurs at
 the very top of the document in order to provide context for the rest
 of the document. The attribute definition item occurs after the
 document identification items.

 All items end with a blank line. The reserved characters are ";",
 "%", "=", ",", "#", LF, and CR. Reserved characters MUST be escaped.
 The escape sequence is the same as described in [5].

Guttman, et al. Standards Track [Page 12]

RFC 2609 Service Templates and URLs June 1999

 The service template is encoded in a UTF-8 character set, but
 submitted as a part of an work in progress, which is encoded in ASCII
 characters. All characters which are outside of the ASCII range MUST
 be escaped using the ‘\’ HEXDIG HEXDIG syntax. For example, the
 letter e accent aigue would be represented as "\c3\a9".
 Unfortunately, this will detract from the readability of the service
 template in the service template submission. Hopefully some public
 domain tools will emerge for translating escaped UTF-8 characters
 into humanly readable ones.

 Values in value lists are separated by commas. A value list is
 terminated by a newline not preceded by a comma. If the newline is
 preceded by a comma, the value list is interpreted to continue onto
 the next line.

 Attribute identifiers, attribute type names, and flags are all case
 insensitive. For ease of presentation, upper and lower case
 characters can be used to represent these in the template document.
 Newlines are significant in the grammar. They delimit one item from
 another, as well as separating parts of items internally.

 String values are considered to be a sequence of non-whitespace
 tokens potentially with embedded whitespace, separated from each
 other by whitespace. Commas delimit lists of strings. String values
 are trimmed so as to reduce any sequence of white space interior to a
 string to a single white space. Preceding or trailing white space is
 removed. For example:

 " some value , another example "

 is trimmed to

 "some value" and "another example".

 Note that there can be no ambiguity in string tokenization because
 values in value lists are separated by a comma. String tokens are
 not delimited by double quotes (") as is usually the case with
 programming languages.

 Attribute tags and values are useful for directory look-up. In this
 case, decoding of character escapes and trimming white space MUST be
 performed before string matching. In addition, string matching
 SHOULD be case insensitive.

Guttman, et al. Standards Track [Page 13]

RFC 2609 Service Templates and URLs June 1999

 Templates obey the following ABNF [8] grammar:

 template = tem-attrs attr-defs
 tem-attrs = schemetype schemevers schemetext schemeurl
 schemetype = "template-type=" scheme term
 schemevers = "template-version=" version-no term
 schemetext = "template-description=" newline desc term
 schemeurl = "template-url-syntax=" newline url-bnf term
 url-bnf = *[com-chars]
 ; An ABNF describing the <url-path> production
 ; in the service: URL grammar of Section 2.1.
 scheme = service-type ["." naming-auth]
 service-type = scheme-name
 naming-auth = scheme-name
 scheme-name = ALPHA [1*schemechar] ["." 1*schemechar]
 schemechar = ALPHA / DIGIT / "-" / "+" /
 version-no = 1*DIGIT "." 1*DIGIT
 langtag = 1*8ALPHA ["-" 1*8ALPHA]
 ; See [3]
 desc = *[com-chars]
 ; A block of free-form text for reading by
 ; people describing the service in a short,
 ; informative manner.
 term = newline newline
 attr-defs = *(attr-def / keydef)
 attr-def = id "=" attrtail
 keydef = id "=" "keyword" newline [help-text] newline
 attrtail = type flags newline [value-list] [help-text]
 [value-list] newline
 id = 1*attrchar
 type = "string" / "integer" / "boolean" / "opaque"
 flags = ["m"/"M"] ["l"/"L"] ["o"/"O"] ["x"/"X"]
 value-list = value newline / value "," value-list /
 value "," newline value-list
 help-text = 1*("#" help-line)
 ; A block of free-form text for reading by
 ; people describing the attribute and
 ; its values.
 help-line = *[com-chars] newline
 attrchar = schemechar / ":" / "_" / "$" / "˜" / "@" / "." /
 "|" / "<" / ">" / "*" / "&"
 value = string / integer / boolean / opaque
 string = safe-char *[safe-char / white-sp] safe-char
 integer = ["+" | "-"] 1*DIGIT
 boolean = "true" / "false"
 opaque = "\FF" 1*("\" HEXDIG HEXDIG)
 ; Each byte of opaque value is hex encoded.
 ; The format corresponds to [10].

Guttman, et al. Standards Track [Page 14]

RFC 2609 Service Templates and URLs June 1999

 ; Newlines are ignored in decoding opaque
 ; values.
 com-chars = safe-char / white-sp / "," / ";"/ "%"
 safe-char = attrchar / escaped / " " / "!" / ’"’ / "’" /
 "|" / "(" / ")" / "+" / "-" / "." / ":" /
 "=" / "?" / "[" / "]" / "{" / "/" / "{" /
 "$"
 ; All UTF-8 printable characters are
 ; included except ",", "%", ";", and "#".
 escaped = 1*(‘\’ HEXDIG HEXDIG)
 white-sp = SPACE / HT
 newline = CR / (CR LF)

3.2. Semantics of Service Type Templates

 The service type template defines the service attributes and service:
 URL syntax for a particular service type. The attribute definition
 includes the attribute type, default values, allowed values and other
 information.

 Note that the ’template-type’, ’template-version’, ’template-
 description’ and ’template-url-syntax’ have all been defined as
 attributes. These attributes MAY accompany any service registration
 using SLPv2.

3.2.1. Definition of a Service Template

 There are four items included in the service template. The semantics
 of each item is summarized below.

 - template-type

 The scheme name of the service scheme. The scheme name consists
 of the service type name and an optional naming authority name,
 separated from the service type name by a period. See 3.2.2 for
 the conventions governing service type names.

 - template-version

 The version number of the service type specification.

 - template-description

 A description of the service suitable for inclusion in text read
 by people.

Guttman, et al. Standards Track [Page 15]

RFC 2609 Service Templates and URLs June 1999

 - template-url-syntax

 The syntax of the service type-specific URL part of the service:
 URL.

 - attribute definitions

 A collection of zero or more definitions for attributes
 associated with the service in service registrations.

 Each of the following subsections deals with one of these items.

3.2.2. Service Type

 The service scheme consists of the service type name and an optional
 naming authority name separated from the service type name by a
 period. The service scheme is a string that is appended to the ’
 service:’ URL scheme identifier, and is the value of the "template-
 type" item in the template document. If the naming authority name is
 absent it is assumed to be IANA.

3.2.3. Version Number

 The version number of the service type template is the value of the
 "template-version" item. A draft proposal starts at 0.0, and the
 minor number increments once per revision. A standardized template
 starts at 1.0. Additions of optional attributes add one to the minor
 number, and additions of required attributes, changes of definition,
 or removal of attributes add one to the major number. The intent is
 that an old service template still accurately, if incompletely,
 defines the attributes of a service registration if the template only
 differs from the registration in its minor version. See Section 4
 for more detail on how to use the template-version attribute.

3.2.4. Description

 The description is a block of text readable by people in the language
 of the template and is the value of the "template-description" item.
 It should be sufficient to identify the service to human readers and
 provide a short, informative description of what the service does.

 If the service type corresponds to a particular protocol, the
 protocol specification must be cited here. The protocol need not be
 a standardized protocol. The template might refer to a proprietary
 specification, and refer the reader of the template to a contact
 person for further information.

Guttman, et al. Standards Track [Page 16]

RFC 2609 Service Templates and URLs June 1999

3.2.5. Syntax of the Service Type-specific URL Part

 The syntax of the service type-specific part of the service: URL is
 provided in the template document as the value of the "template-url-
 syntax" item. The <url-path> field of the service: URL is designed
 to provide additional information to locate a service when the
 <addr-spec> field is not sufficient. The <url-path> field
 distinguishes URLs of a particular service type from those of another
 service type. For instance, in the case of the lpr service type, the
 <url-path> may be defined so that it must include the queue name, but
 other service types may not require this information.

 The syntax for the <url-path> field MUST accompany the definition of
 a new service type, unless the URL scheme has already been
 standardized and is not a service: URL. The syntax is included in the
 template document as an ABNF [8] following the rules for URL syntax
 described in [5]. There is no requirement for a service scheme to
 support a <url-path>. The <url-path> field can be very simple, or
 even omitted. If the URL scheme has already been standardized, the
 "template-url-syntax" item SHOULD include a reference to the
 appropriate standardization documents. Abstract service types may
 defer this field to the template documents describing their concrete
 instances.

3.2.6. Attribute Definition

 The bulk of the template is typically devoted to defining service
 type-specific attributes. An attribute definition precisely
 specifies the attribute’s type, other restrictions on the attribute
 (whether it is multi-valued, optional, etc), some text readable by
 people describing the attribute, and lists of default and allowed
 values. The only required information is the attribute’s type, the
 rest are optional. Registration, deregistration and the use of
 attributes in queries can be accomplished using the Service Location
 Protocol [10] or other means, and discussion of this is beyond the
 scope of the document.

 Attributes are used to convey information about a given service for
 purposes of differentiating different services of the same type.
 They convey information to be used in the selection of a particular
 service to establish communicate with, either through a program
 offering a human interface or programmatically. Attributes can be
 encoded in different character sets and in different languages. The
 procedure for doing this is described in Section 6.

 An attribute definition begins with the specification of the
 attribute’s identifier and ends with a single empty line. Attributes
 definitions have five components (in order of appearance in a

Guttman, et al. Standards Track [Page 17]

RFC 2609 Service Templates and URLs June 1999

 definition):

 1. An attribute identifier which acts as the name of the attribute,

 2. Attribute descriptors (type and flags),

 3. An optional list of values which are assigned to the attribute by
 default,

 4. An optional block of text readable by people providing a short,
 informative description of the attribute,

 5. An optional list of allowed values which restrict the value or
 values the attribute can take on.

3.2.6.1. The Attribute Identifier

 An attribute definition starts with the specification of the
 attribute’s identifier. The attribute’s identifier functions as the
 name of the attribute. Note that the characters used to compose an
 attribute identifier are restricted to those characters considered
 unrestricted for inclusion in a URL according to [5]. The reason is
 that services can display prominent attributes in their service: URL
 registrations. Each attribute identifier must be unique in the
 template. Since identifiers are case folded, upper case and lower
 case characters are the same.

3.2.6.2. The Attribute Type

 Attributes can have one of five different types: string, integer,
 boolean, opaque, or keyword. The attribute’s type specification is
 separated from the attribute’s identifier by an equal sign ("=") and
 follows the equal sign on the same line. The string, signed integer,
 and boolean types have the standard programming language or database
 semantics. Integers are restricted to those signed values that can
 be represented in 32 bits. The character set used to represent
 strings is not specified at the time the template is defined, but
 rather is determined by the service registration. Booleans have the
 standard syntax. Opaques are byte escaped values that can be used to
 represent any other kind of data. Keywords are attributes that have
 no characteristics other than their existence (and possibly the
 descriptive text in their definition).

 Keyword and boolean attributes impose restrictions on the following
 parts of the attribute definition. Keyword attribute definitions
 MUST have no flag information following the type definition, nor any
 default or allowed values list. Boolean attributes are single value
 only, i.e., multi-valued boolean attributes are not allowed.

Guttman, et al. Standards Track [Page 18]

RFC 2609 Service Templates and URLs June 1999

3.2.6.3. Attribute Flags

 Flags determine other characteristics of an attribute. With the
 exception of keyword attributes, which may not have any flags, flags
 follow the attribute type on the same line as the attribute
 identifier, and are separated from each other by whitespace. Flags
 may appear in any order after the attribute type. Other information
 must not follow the flags, and only one flag identifier of a
 particular flag type is allowed per attribute definition.

 The semantics of the flags are as follows:

 - o or O

 Indicates that the attribute is optional. If this flag is
 missing, the attribute is required in every service registration.

 - m or M

 Indicates that the attribute can take on multiple values. If
 this flag is present, every value in a multi-valued attribute
 has the same type as the type specified in the type part of the
 attribute definition. Boolean attributes must not include this
 flag.

 - l or L

 Indicates that attribute is literal, i.e. is not meant to be
 translated into other languages. If this flag is present, the
 attribute is not considered to be readable by people and should
 not be translated when the template is translated. See Section 6
 for more information about translation.

 - x or X

 Indicates that clients SHOULD include the indicated attribute
 in requests for services. Neglecting to include this attribute
 will not sufficiently differentiate the service. If services are
 obtained without selecting this attribute they will quite likely
 be useless to the client.

 The values for multivalued attributes are an unordered set.
 Deletions of individual values from a multivalued attribute are not
 supported, and deletion of the attribute causes the entire set of
 values to be removed.

Guttman, et al. Standards Track [Page 19]

RFC 2609 Service Templates and URLs June 1999

3.2.6.4. Default Value or List

 If the attribute definition includes a default value or, in the case
 of multivalued attributes, a default values list, it begins on the
 second line of the attribute definition and continues over the
 following lines until a line ends without a comma. As a consequence,
 newlines cannot be embedded in values unless escaped. See Section
 2.1.

 Particular attribute types and definitions restrict the default
 values list. Keyword attributes must not have a list of defaults.
 If an optional attribute’s definition has an allowed values list,
 then a default value or list is not optional but required. The
 motivation for this is that defining an attribute with an allowed
 values list is meant to restrict the values the attribute can take
 on, and requiring a default value or list assures that the default
 value is a member of the given set of allowed values.

 The default value or list indicates what values the attribute is
 given if no values are assigned to the attribute when a service is
 registered. If an optional attribute’s definition includes no
 default value or list, the following defaults are assigned:

 1. String values are assigned the empty string,

 2. Integer values are assigned zero,

 3. Boolean values are assigned false,

 4. Opaque values are assigned a byte array containing no values,

 5. Multi-valued attributes are initialized with a single value.

 For purposes of translating nonliteral attributes, the default values
 list is taken to be an ordered set, and translations MUST maintain
 that order.

3.2.6.5. Descriptive Text

 Immediately after the default values list, if any, a block of
 descriptive text SHOULD be included in the attribute definition.
 This text is meant to be readable by people, and should include a
 short, informative description of the attribute. It may also provide
 additional information, such as a description of the allowed values.
 This text is primarily designed for display by interactive browsing
 tools. The descriptive text is set off from the surrounding
 definition by a crosshatch character ("#") at the beginning of the
 line. The text should not, however, be treated as a comment by

Guttman, et al. Standards Track [Page 20]

RFC 2609 Service Templates and URLs June 1999

 parsing and other tools, since it is an integral part of the
 attribute definition. Within the block of descriptive text, the text
 is transferred verbatim, including indentation and line breaks, so
 any formatting is preserved.

3.2.6.6. Allowed Values List

 Finally, the attribute definition concludes with an optional allowed
 values list. The allowed values list, if any, follows the
 descriptive text, or, if the descriptive text is absent, the initial
 values list. The syntax of the allowed values list is identical to
 that of the initial values list. The allowed values list is also
 terminated by a line that does not end in a comma. If the allowed
 values list is present, assignment to attributes is restricted to
 members of the list.

 As with the default values list, the allowed values list is also
 considered to be an ordered set for purposes of translation.

3.2.6.7. Conclusion of An Attribute Definition

 An attribute definition concludes with a single empty line.

4. A Process For Standardizing New Service Types

 New service types can be suggested simply by providing a service type
 template and a short description about how to use the service. The
 template MUST have its "template-version" template attribute set to
 0.0.

 MAJOR revision numbers come before the ’.’, MINOR revision numbers
 come after the ’.’.

 The minor version number increments once with each change until it
 achieves 1.0. There is no guarantee any version of the service
 template is backward compatible before it reaches 1.0.

 Once a service template has reached 1.0, the definition is "frozen"
 for that version. New templates must be defined, of course, to
 refine that definition, but the following rules must be followed:

 A MINOR revision number signifies the introduction of a compatible
 change. A MAJOR revision number signifies the introduction of an
 incompatible change. This is formalized by the following rules:

 - Any new optional attribute defined for the template increases
 the minor version number by one. All other attributes for the
 version must continue to be supported as before. A client which

Guttman, et al. Standards Track [Page 21]

RFC 2609 Service Templates and URLs June 1999

 supports 1.x can still use later versions of 1.y (where x<y) as
 it ignores attributes it doesn’t know about.

 - Adding a required attribute, removing support for an attribute
 or changing definition of an attribute requires changing the
 major version number of a service template. A client application
 may be unable to make use of this information, or it may need
 to obtain the most recent service template to help the user
 interpret the service information.

 The template is submitted to a special mailing list, see section 5.
 This document must include a ’template begins here’ and ’template
 ends here’ marking, in text, so that it is trivial to cut and paste
 the template from the submission.

 The list will be available at svrloc-list@iana.org. Ideally, experts
 in the implementation and deployment of the particular protocol are
 consulted so as to add or delete attributes or change their
 definition to make the template as useful as possible. The mailing
 list will be maintained even when the SVRLOC WG goes dormant for the
 purpose of discussing service templates.

 All published versions of the template must be available on-line,
 including obsolete ones.

 Once consensus is achieved, the template should be reissued with
 possible corrections, having its Version number set to 1.0.
 Templates with version numbers below 1.0 are not submitted to the
 IANA. From that point onwards, templates are submitted. See Section
 5 for details on how templates are submitted to an IANA registry of
 templates.

5. IANA Considerations

 It is the responsibility of the IESG (e.g., Applications Area
 director) to appoint a Designated Expert (see [12].) Anyone may ask
 for clarification of a service template. This is to solicit input
 from the concerned community. It is up to the appointed reviewer to
 determine whether clarification requests are satisfied. It is the
 reviewer’s responsibility to see that all reasonable clarification
 requests are met before the template is submitted for inclusion in
 the IANA registry.

 When the reviewer has determined that the template submission is
 ready, he or she will submit the template to the IANA for inclusion
 in a registry. Mailing list participants supply input to the process
 but do not make the decision whether to accept a service template.

Guttman, et al. Standards Track [Page 22]

RFC 2609 Service Templates and URLs June 1999

 If a dispute arises over the decisions made by the reviewer, the
 matter may be appealed according to normal IETF procedure as
 described for the Standards Track process.

 The IANA will maintain a mail forwarding alias for the work of this
 list, so that "svrloc-list@iana.org" points to a mail server supplied
 by a volunteer organization.

 The service template submission MUST be of the form:

 Name of submitter:
 Language of service template:
 Security Considerations:
 Template Text:
 ----------------------template begins here-----------------------
 . . .
 -----------------------template ends here------------------------

 The service template file has a naming convention:

 <service-type> "." <version-no> "." <langtag>

 Each of these fields are defined in Section 2. They correspond to
 the values of the template fields "type", "template-version". The
 files for the example templates in this document (see Section A) are
 called:

 "foo.0.0.en",
 "Net-Transducer.0.0.en",
 "Net-Transducer:Thermometer.0.0.de" and
 "Net-Transducer:Thermomoter.0.0.en".

 The reviewer will ensure that the template submission to IANA has the
 correct form and required fields.

 No service type template will be accepted for inclusion in the
 service template registry unless the submission includes a security
 considerations section and contact information for the template
 document author.

 The IANA will maintain a registry containing both the service type
 templates, and the template description document containing the
 service type template, including all previous versions. The IANA
 will receive notice to include a service template in the registry
 by email from the reviewer. This message will include the service
 template itself, which is to be registered.

Guttman, et al. Standards Track [Page 23]

RFC 2609 Service Templates and URLs June 1999

 Neither the reviewer nor the IANA will take any position on claims of
 copyright or trademark issues with regard to templates.

6. Internationalization Considerations

 The service: URL must be encoded using the rules set forth in [5].
 The character set encoding is limited to specific ranges within the
 US-ASCII character set [4].

 The template is encoded in UTF-8 characters.

6.1. Language Identification and Translation

 The language used in attribute strings should be identified supplying
 a Language Tag [3] in the Service Template submission (see Section
 5).

 A program can translate a service registration from one language to
 another provided it has both the template of the language for the
 registration and the template of the desired target language. All
 standardized attributes are in the same order in both templates. All
 non-arbitrary strings, including the descriptive help text, is
 directly translatable from one language to another. Non-literal
 attribute definitions, attribute identifiers, attribute type names,
 attribute flags, and the boolean constants "true" and "false" are
 never translated. Translation of attribute identifiers is prohibited
 because, as with domain names, they can potentially be part of a
 service: URL and therefore their character set is restricted. In
 addition, as with variable identifiers in programming languages, they
 could become embedded into program code.

 All strings used in attribute values are assumed translatable unless
 explicitly defined as being literal, so that best effort translation
 (see below) does not modify strings which are meant to be interpreted
 by a program, not a person.

 An example of a translated service template is included in Section A.

 There are two ways to go about translation: standardization and best
 effort.

 When the service type is standardized, more than one document can be
 submitted for review. One service type description is approved as a
 master, so that when a service type template is updated in one
 language, all the translations (at least eventually) reflect the same
 semantics.

Guttman, et al. Standards Track [Page 24]

RFC 2609 Service Templates and URLs June 1999

 If no document exists describing the standard translation of the
 service type, a ’best effort’ translation for strings should be done.

7. Security Considerations

 Service type templates provide information that is used to interpret
 information obtained by the Service Location Protocol. If these
 templates are modified or false templates are distributed, services
 may not correctly register themselves, or clients might not be able
 to interpret service information.

 The service: URLs themselves specify the service access point and
 protocol for a particular service type. These service: URLs could be
 distributed and indicate the location of a service other than that
 normally want to used. The Service Location Protocol [10]
 distributes service: URLs and has an authentication mechanism that
 allows service: URLs of registered services to be signed and for the
 signatures to be verified by clients.

 Each Service Template will include a security considerations section
 which will describe security issues with using the service scheme for
 the specific Service Type.

Guttman, et al. Standards Track [Page 25]

RFC 2609 Service Templates and URLs June 1999

A. Service Template Examples

 The text in the template example sections is to be taken as being a
 single file. They are completely fictitious (ie. the examples do
 not represent real services).

 The FOO example shows how to use service templates for an application
 that has very few attributes. Clients request the FOO server where
 their user data is located by including their user name as the value
 of the user attribute.

 The Net-Transducer example shows how abstract service types are
 defined and how a corresponding concrete instance is defined. A
 system might support any of several NetTransducer services. Here we
 give only one concrete instance of the abstract type.

 It is not necessary to register concrete templates for an abstract
 service type if the abstract service type template is completely
 clear as to what possible values can be used as a concrete type, and
 what their interpretation is.

A.1. FOO

 The FOO service template submission example follows:

 Name of submitter: "Erik Guttman" <Erik.Guttman@sun.com>
 Language of service template: en
 Security Considerations:
 If the USER and GROUPS attributes are included a
 possibility exists that the list of identities for users or groups
 can be discovered. This information would otherwise be difficult
 to discover.

 Template Text:
 -------------------------template begins here-----------------------
 template-type=FOO

 template-version=0.0

 template-description=
 The FOO service URL provides the location of an FOO service.

 template-url-syntax=
 url-path= ; There is no URL path defined for a FOO URL.

 users= string M L O
 # The list of all users which the FOO server supports.

Guttman, et al. Standards Track [Page 26]

RFC 2609 Service Templates and URLs June 1999

 groups= string M L O
 # The list of all groups which the FOO server supports.
 --------------------------template ends here------------------------

 This template could be internationalized by registering another
 version, say in German:

 Name of submitter: "Erik Guttman" <Erik.Guttman@sun.com>
 Language of service template: de
 Security Considerations:
 Wenn die USER und GROUPS Eigenschaften inbegriffen sind,
 besteht die Moeglichkeit, dass die Liste der Identitaeten
 von Benutzern oder Gruppen endeckt werden kann. Diese
 Information wurde unter anderen Umstaenden schwierig zu
 entdecken sein.

 Template Text:
 -------------------------template begins here-----------------------
 template-type=FOO

 template-version=0.0

 template-description=
 Der FOO Service URL zeigt die Stelle von einem Foo Service an.

 template-url-syntax=
 url-path= ; Es gibt keinen fuer den FOO URL definierten Pfad.

 users= string M L O
 # Die Liste aller Users, die der FOO Server unterstuetzt.

 groups= string M L O
 # Die Liste aller Gruppen, die der FOO Server unterstuetzt.
 --------------------------template ends here------------------------

 Note that the attribute tags are not translated. If translations
 are desired, the suggested convention for doing so is to define a
 separate attribute called localize-<tag> for each attribute tag which
 is to be localized. This will aid in displaying the attribute tags
 in a human interface.

 For example, in this case above, the following two attributes could
 be defined:

 localize-users= string
 Benutzer

 localize-groups= string

Guttman, et al. Standards Track [Page 27]

RFC 2609 Service Templates and URLs June 1999

 Gruppen

 The attributes (in SLPv2 attribute list format) for a service
 registration of a FOO service based on this template, in German,
 could be:

 (users=Hans,Fritz),(groups=Verwaltung,Finanzbuchhaltung),
 (template-type=FOO),(template-version=0.0),(template-description=
 Der FOO Service URL zeigt die Stelle von einem Foo Service an.),
 (template-url-syntax= \OD url-path= ; Es gibt kein fuer den FOO
 URL definiert Pfad. \OD),(localize-users=Benutzer),
 (localize-groups=Gruppen)

 Anyone obtaining these attributes could display "Benutzer=Hans,Fritz"
 in a human interface using the included information. Note that the
 template attributes have been included in this registration. This is
 OPTIONAL, but makes it possible to discover which template was used
 to register the service.

A.2. Abstract Service Type: Net-Transducer

 An example submission of an abstract service type template is:

 Name of submitter: "Erik Guttman" <Erik.Guttman@sun.com>
 Language of service template: en
 Security Considerations:
 See the security considerations of the concrete service types.

 Template Text:
 -------------------------template begins here-----------------------
 template-type=Net-Transducer

 template-version=0.0

 template-description=
 This is an abstract service type. The purpose of the Net-
 Transducer service type is to organize into a single category
 all network enabled Transducers which have certain properties.

 template-url-syntax=
 url-path= ; Depends on the concrete service type.
 ; See these templates.

 sample-units= string L
 # The units of sample that the Transducer provides, for instance
 # C (degrees Celsius), V (Volts), kg (Kilograms), etc.

 sample-resolution= string L

Guttman, et al. Standards Track [Page 28]

RFC 2609 Service Templates and URLs June 1999

 # The resolution of the Transducer. For instance, 10^-3 means
 # that the Transducer has resolution to 0.001 unit.

 sample-rate= integer L
 # The speed at which samples are obtained per second. For
 # instance 1000 means that one sample is obtained every millisecond.

 --------------------------template ends here------------------------

A.3. Concrete Service Type: Net-Transducer:Thermometer

 This is another service template submission example, supplying a
 concrete service type corresponding to the abstract template above.

 Name of submitter: "Erik Guttman" <Erik.Guttman@sun.com>
 Language of service template: en
 Security Considerations:
 There is no authentication of the Transducer output. Thus,
 the Thermometer output could easily be spoofed.

 Template Text:
 -------------------------template begins here-----------------------
 template-type=service:Net-Transducer:Thermometer

 template-version=0.0

 template-description=
 The Thermometer is a Net-Transducer capable of reading temperature.
 The data is read by opening a TCP connection to one of the ports
 in the service URL and reading an ASCII string until an NULL
 character is encountered. The client may continue reading data at
 no faster than the sample-rate, or close the connection.

 template-url-syntax=
 url-path = "ports=" ports-list
 port-list = port / port "," ports
 port = 1*DIGIT
 ; See the Service URL <port> production rule.
 ; These are the ports connections can be made on.

 location-description=string
 # The location where the Thermometer is located.

 operator=string O
 # The operator to contact to have the Thermometer serviced.

 --------------------------template ends here------------------------

Guttman, et al. Standards Track [Page 29]

RFC 2609 Service Templates and URLs June 1999

A.4. service: URLs and SLP

 A user with an FOO enabled calendar application should not be
 bothered with knowing the address of their FOO server. The calendar
 client program can use SLP to obtain the FOO service: URL
 automatically, say ’service:foo://server1.nosuch.org’, by issuing a
 Service Request. In the event that this FOO server failed, the
 Calendar client can issue the same service request again to find the
 backup FOO server, say ’service:foo://server2.nosuch.org’. In both
 cases, the service: URL conforms to the FOO service template as do
 the associated attributes (user and group.)

 A network thermometer based on the above template could be advertised
 with the SLPv2 attribute list:

 URL = service:net-transducer:thermometer://v33.test/ports=3211
 Attributes = (location-description=Missile bay 32),
 (operator=Joe Agent), (sample-units=C),
 (sample-resolution=10^-1),(sample-rate=10),
 (template-type=service:net-transducer:thermometer),
 (template-version=0.0),(template-description=
 The Thermometer is a Net-Transducer capable of reading temperature.
 The data is read by opening a TCP connection to one of the ports
 in the service URL and reading an ASCII string until an NULL
 character is encountered. The client may continue reading data at
 no faster than the sample-rate, or close the connection.),
 (template-url-syntax= \0D "ports=" port-list \OD
 port-list = port / port "," ports \OD
 port = 1*DIGIT \OD
 ; See the Service URL <port> production rule. \OD
 ; These are the ports connections can be made on.\OD)

 This might be very useful for a technician who wanted to find a
 Thermometers in Missile bay 32, for example.

 Note that the template attributes are advertised. The
 template-url-syntax value requires explicit escaped CR characters so
 that the ABNF syntax is correct.

B. Acknowledgments

 Thanks to Michael Day and Leland Wallace for assisting with the IPX
 and AppleTalk address syntax portions. Ryan Moats provided valuable
 feedback throughout the writing of this document.

Guttman, et al. Standards Track [Page 30]

RFC 2609 Service Templates and URLs June 1999

C. References

 [1] Protocol and service names, October 1994.
 ftp://ftp.isi.edu/in-notes/iana/assignments/service-names.

 [2] Port numbers, July 1997.
 ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers.

 [3] Alvestrand, H., "Tags for the Identification of Languages",
 RFC 1766, March 1995.

 [4] ANSI. Coded Character Set -- 7-bit American Standard code for
 Information Interchange. X3.4-1986, 1986.

 [5] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [6] Bradner, S., "Key Words for Use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [7] Apple Computer. Inside Macintosh. Addison-Wesley, 1993.

 [8] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [9] S. Gursharan, R. Andrews, and A. Oppenheimer. Inside AppleTalk.
 Addison-Wesley, 1990.

 [10] Guttman, E., Perkins, C., Veizades, J. and M. Day, "Service
 Location Protocol Version 2", RFC 2608, June 1999.

 [11] Myers, J., "Simple Authentication and Security Layer (SASL)",
 RFC 2222, October 1997.

 [12] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs, BCP 26, RFC 2434,
 October 1998

 [13] Newman C. and J. Myers, "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [14] Inc Novell. IPX RIP and SAP Router Specification. Part Number
 107-000029-001, Version 1.30, May 1996.

 [15] Veizades, J., Guttman, E., Perkins, C. and S. Kaplan, "Service
 Location Protocol", RFC 2165, July 1997.

Guttman, et al. Standards Track [Page 31]

RFC 2609 Service Templates and URLs June 1999

 [16] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 RFC 2279, January 1998.

D. Authors’ Addresses

 Questions about this memo can be directed to:

 Erik Guttman
 Sun Microsystems
 Bahnstr. 2
 74915 Waibstadt
 Germany

 Phone: +49 7263 911484
 Fax: +1 650 786 5992
 EMail: erik.guttman@sun.com

 Charles E. Perkins
 Sun Microsystems
 15 Network Circle
 Menlo Park, CA 94303
 USA

 Phone: +1 650 786 6464
 Fas: +1 650 786 6445
 EMail: cperkins@sun.com

 James Kempf
 Sun Microsystems
 15 Network Circle
 Menlo Park, CA 94303
 USA

 Phone: +1 650 786 5890
 Fax: +1 650 786 6445
 EMail: james.kempf@sun.com

Guttman, et al. Standards Track [Page 32]

RFC 2609 Service Templates and URLs June 1999

E. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Guttman, et al. Standards Track [Page 33]

