Net wor k Wor ki ng Group J. Schoenwael der

Request for Comments: 2593 TU Braunschwei g
Cat egory: Experi nental J. Quittek
NEC Eur ope Ltd.

May 1999

Script MB Extensibility Protocol Version 1.0
Status of this Meno

Thi s neno defines an Experinmental Protocol for the Internet
community. 1t does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenment are requested.
Distribution of this meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (1999). Al Rights Reserved.
Abstract
The I ETF Script MB defines an interface for the del egati on of
management functions based on the Internet nanagenent framework. A
managenment script is a set of instructions that are executed by a
| anguage specific runtine system The Script MB extensibility
protocol (SMX) defined in this neno separates | anguage specific
runti me systens from | anguage i ndependent Script MB inplenentations.

Tabl e of Contents

1. IntroduCtion 2
2. Process Mddel and Communication Mddel 3
3. Security Profiles e 3
4, Start of Runtime Systens and Connection Establishment 4
5. SMX MBS S A0S . .ottt 5
5.1 Common Definitions 5
5.2 Commmands 7
5.3 Replies ... 8
6. Elenments of Procedure 9
6.1 SMX Message Processing on the Runtine Systens 9
6.1.1 Processing the ‘hello” Command 10
6.1.2 Processing the ‘start’ Command 10
6.1.3 Processing the ‘suspend” Conmand 11
6.1.4 Processing the ‘resume’ Command 12
6.1.5 Processing the ‘abort’ Command 12
6.1.6 Processing the ‘status’ Comand 12
6.1.7 Ceneration of Asynchronous Notifications 13

Schoenwael der & Quittek Experi ment al [Page 1]

RFC 2593 SMX Protocol 1.0 May 1999

6.2 SMX Message Processing on the SNMP Agent 13
6.2.1 Creating a Runtine System 13
6.2.2 Cenerating the *hello” Command 13
6.2.3 Cenerating the ‘start’ Command 14
6.2.4 Cenerating the ‘suspend” Conmand 15
6.2.5 CGenerating the ‘resune’ Comand 16
6.2.6 Cenerating the ‘abort’ Command 16
6.2.7 Cenerating the ‘status’ Comand 17
6.2.8 Processing Asynchronous Notifications 18
7. An Exanple SMX Message Flow 19
8. Security Considerations i 19
9. Acknow edgmEeNt S e 20
10. Ref erenCes 20
11. Authors’ AddressSes it e 21
12. Full Copyright Statement i 22
1. Introduction

The Script MB [1] defines a standard interface for the del egation of
managenment functions based on the |Internet nanagenment framework. In
particular, it provides the follow ng capabilities:

1. Transfer of managenent scripts to a distributed manager

2. Iniyiating, suspendi ng, resum ng and term nati ng nmanagenent
scripts.

3. Transfer of argunents for managenent scripts.

4, Monitoring and control of running nanagenent scripts.

5. Transfer of results produced by nanagenment scripts.

A managenent script is a set of instructions executed by a | anguage
specific runtine system The Script M B does not prescribe a specific
| anguage. Instead, it allows to control scripts witten in different

| anguages that are executing concurrently.

The Script MB Extensibility protocol (SMX) defined in this nmenp can
be used to separate | anguage specific runtinme systens fromthe
runti me systemindependent Script MB inplenmentations. The

I i ght wei ght SMX protocol can be used to support different runtinme
systens w thout any changes to the | anguage neutral part of a Script
M B i npl enent ati on.

Exanpl es of |anguages and runtine systens considered during the

design of the SMX protocol are the Java virtual machine [2] and the
Tool Conmmand Language (Tcl) [3]. Oher |anguages with conparable

Schoenwael der & Quittek Experi ment al [Page 2]

RFC 2593 SMX Protocol 1.0 May 1999

2.

3.

features should be easy to integrate as well.
Process Model and Comuni cati on Model

Figure 1 shows the process and comuni cati on nodel underlying the SMX
protocol. The |l anguage and runtine system i ndependent SNMP agent

i mpl enenting the Script MB comunicates with one ore nore runtinme
systens via the SMX protocol. A runtinme systemnmay be able to execute
one or nmultiple scripts sinultaneously (nulti-threading). The SMX
protocol supports nulti-threading, but it does not require nulti-

t hreaded runti nme systens.

The SMX protocol uses a |ocal storage device (usually inplenmented on
top of the local file systen) to transfer scripts fromthe SNV agent
to the runtime systenms. The SNMP agent has read and wite access to
the script storage device while the runtinme systens only need read
access. The SMX protocol passes the location of a script in the |oca
storage device to the runtine engines. It is then the responsibility
of the runtine engines to |load the script fromthe specified

| ocati on.

runtime 1
B TS + SIVX Fomm e e o +

| [<----mmmmeee oo - > O O O|<-+
SNWP | Script MB | Fomem- - +
SSREEEEEEES > | | |

| SNWP Agent | runtinme 2
I I SMX to--o-o-- + |
| ESREREEEEEEEEEE > O |
RS + Fomm e e o +
N N |
| oot | |
| | script |---------- + |
R >| storage |------------------ +

Fomm e e o +

Figure 1: SMX process and comuni cati on nodel

Security Profiles

Security profiles control what a running script is allowed to do. It
is useful to distinguish two different classes of security profiles:

- The operating systemsecurity profile specifies the set of
operating system services that can be used by the operating
system | evel process which executes a script. Under UNI X, this
maps to the effective user and group identity for the running

Schoenwael der & Quittek Experi ment al [Page 3]

RFC 2593 SMX Protocol 1.0 May 1999

process. In addition, many UNI X versions allow to set other
resource limts, such as the nunber of open files or the maxi num
stack sizes. Another mechanismin UNIX is the chroot() system
call which changes the file systemroot for a process. The
chroot () nechani smcan be used to prevent runtinme systens from
accessing any systemfiles. It is suggested to nake use of al
appl i cabl e operating systemsecurity nmechanismin order to
protect the operating systemfrommalicious scripts or runtinme
syst ens.

- Secure runtine systens provide fine grained control over the set
of services that can be used by a running script at a particular
poi nt during script execution. Aruntine security profile
specifying fine grained access control is runtinme system
dependent. For a Java virtual nachine, the runtine security
profile is interpreted by the SecurityManager and C asslLoader
cl asses[4]. For Tcl, the runtine security profile maps to the
interpreter’s security profile [5].

The SMX protocol allows to execute scripts under different operating
system profiles and runtime systemprofiles. Miltiple operating
system security profiles are realized by using multiple runtine
systenms whi ch execute in operating system processes with different
security profiles. Miltiple runtine security profiles are supported
by passing a security profile name to a runtine systemduring script
i nvocati on.

The Script M B does not define how operating systemor runtine system
security profiles are identified. This meno suggests that the
smLaunchOwner is napped to an operating systemsecurity profile and a
runtime system security profile when a script is started.

4. Start of Runtime Systems and Connection Establishnent

The SNWVP agent starts runtinme systens based on the static properties
of the runtine system (nmulti-threaded or single-threaded) and the
operating system security profiles. Starting a new runtine system
requires to create a process environnment which matches the operating
system security profile.

The SNWVP agent initially passes information to the runtinme system by
nmeans of environnment variables. The information is needed to
establish a trusted comuni cati on channel between the SNWP agent and
a runtinme system

The SNWVP agent first creates a listening TCP socket which accepts

connections fromruntine systens. It is the responsibility of the
runti me systemto establish a connection to this TCP socket once it

Schoenwael der & Quittek Experi ment al [Page 4]

RFC 2593 SMX Protocol 1.0 May 1999

has been started. The port nunber of the |istening TCP socket is
passed fromthe SNWP agent to the runtinme systemin the environnment
vari abl e SMX_PORT

The SNWVP agent nust ensure that only authorized runtine systens
establish a connection to the |istening TCP socket. The foll ow ng
rules are used for this purpose:

- The TCP connection nust originate fromthe | ocal host.

- The SNWVP agent queries the runtine systemfor a security cookie
and cl oses the TCP connection if no valid response is received
within a given tinme interval. The security cookie is a random
nunber generated by the SNWP agent and passed to the runtinme
system as part of its environment. The cookie is found in the
envi ronnent variabl e SMX _COXKI E

The security assunption here is that access to the process
environnent is protected by the operating system

Alternate transports (e.g. UN X domai n sockets) are possible but not
defined at this point in tine. The reason to choose TCP as the
transport protocol for SMX was that TCP is supported by all potenti al
runti me systens, while other transports are not universally
avai |l abl e.

5. SMX Messages

The message formats descri bed bel ow are defined using the Augnented
BNF (ABNF) defined in RFC 2234 [6]. The definitions for ‘ALPHA',
‘DA T, "HEXDIG, ‘WP, '‘CRLF, 'CR, ‘LF, ‘HTAB, ‘VCHAR and
‘DQUOTE’ are inported from appendi x A of RFC 2234 and not repeated
here.

5.1. Common Definitions

The following ABNF definitions are used in subsequent sections to
define the SMX protocol nessages.

Zero 930 ; the ASCI| character '0’

Al Num DAT/ ALPHA /| %2D- 2F

; digits, alphas plus "-', ., [’
DQUOTE *(VCHAR / WBP) DQUOTE
1* (HEXDI G HEXDI G

Quot edStri ng

HexStri ng

Schoenwael der & Quittek Experi ment al [Page 5]

RFC 2593 SMX Protocol 1.0 May 1999

Id =1*DIAT ; identifier for an SMX transaction

Scri pt = QuotedString ; script file name

Runl d =1*DAT ; globally unique identifier for a
; running script (note, snRunlndex
; is only unique for a snmLaunchOmner,
; smLaunchNane pair)

Profile = 1*Al Num ; security profile nane

RunSt at e = "1" ; snRunState ‘initializing

RunSt at e = "2" ; snmRunState ‘ executing’

RunSt at e = "3" ; snRunSt ate ‘ suspendi ng’

RunSt at e =/ "4" ; snmRunSt ate ‘ suspended’

RunSt at e =/ "5" ; smRunState ‘resum ng’

RunSt at e =/ "6" ; smRunState ‘aborting’

RunSt at e =/ "7" ; smRunState ‘termn nated

Exi t Code = "1" ; snmRunExi t Code ‘ noError’

Exi t Code = "2" ; snmRunExi t Code ‘ hal ted’

Exi t Code = "3" ; smRunExi t Code ‘i feTi neExceeded’

Exi t Code =/ "4" ; snmRunExi t Code ‘ noResourceslLeft’

Exi t Code =/ "5" ; snmRunExi t Code ‘1 anguageError’

Exi t Code =/ "6" smRunExi t Code ‘runti meError’

Exi t Code = "7" snmRunExi t Code ‘i nval i dAr gunment’

Exi t Code =/ "8" snRunExi t Code ‘securityViolation’
Exi t Code =/ "9" snRunExi t Code ‘ generi cError’

Cooki e = HexString ; authentication cookie

Ver si on = "SWX/ 1. 0" ; current version of the SMX protocol
Ar gunent = HexString / QuotedString ; see smRunAr gunent
Resul t = HexString / QuotedString ; see snRunResul t

Err or Msg = HexString / QuotedString ; see snmRunError

The definition of QuotedString requires further explanation. A quoted
string may contain special character sequences, all starting with the
backsl ash character (%5C). The interpretation of these sequences is
as foll ows:

Schoenwael der & Quittek Experi ment al [Page 6]

RFC 2593 SMX Protocol 1.0 May 1999

A\ backsl ash character (" %&5C)

At tab character (' HTAB')

‘“An’ new i ne character ('LF)

‘“Ar’ carriage-return character (‘CR)

A quot e character (* DQUOTE')
In all other cases not |isted above, the backslash is dropped and the
followi ng character is treated as an ordinary character. *‘Argunent

and ‘Result’ is either a QuotedString or a HexString. The Script MB
defines script arguments and results as arbitrary octet strings. The
SMX protocol supports a binary and a human readabl e representation
since it is likely that printable argunent and result strings will be
used frequently. However, an inplenentation nust be able to handle
both formats in order to be conpliant with the Script MB.

The ‘ Cookie’ is a HexString which does not carry any senmantics other
than bei ng a random sequence of bytes. It is therefore not necessary
to have a human readabl e representation

5.2. Commands

The following ABNF definitions define the set of SMX commands which
can be sent fromthe SNMP agent to a runtinme system

Conmand = "hel |l 0" WEP | d CRLF

Command =/ "start" WSP |d WGP Runld WP Script WSP Profile
WSP Argunment CRLF

Command =/ "suspend" WSP Id WBP Runld CRLF
Command =/ "resume"” WSP |d WBP Runld CRLF
Command =/ "abort" W5P 1 d WP Runld CRLF
Command =/ "status" WSP |d WSP Runld CRLF

The ‘hello’ conmand is always the first command sent over a SMX
connection. It is used to identify and authenticate the runtine
system The ‘start’ conmmand starts the execution of a script. The
‘suspend’, ‘resume’ and ‘abort’ commands can be used to change the
status of a running script. The ‘status’ command is used to retrieve
status information for a running script.

There is no conpile command. It is the responsibility of the SNW
agent to performany conpilation steps as needed before using the SMX
‘start’ conmand. There is no SMX comand to shutdown a runtime
system dosing the connection nust be interpreted as a request to

Schoenwael der & Quittek Experi ment al [Page 7]

RFC 2593 SMX Protocol 1.0 May 1999

termnate all running scripts in that runtine systemand to shutdown
the runtime system

5.3. Replies

Every reply nessage starts with a three digit reply code and ends
with ‘CRLF'. The three digits in a reply code have a special neaning.
The first digit identifies the class of a reply nessage. The

foll owi ng cl asses exi st:

lyz transi ent positive response
2yz per manent positive response
3yz transi ent negative response
4yz per manent negative response
Syz asynchronous notification

The cl asses 1lyz and 3yz are currently not used by SMX version 1.0.
They are defined only for future SMX extensions.

The second digit encodes the specific category. The foll ow ng
categories exist:

x0z syntax errors that don't fit any other category

x1lz replies for commands targeted at the whole runtine system
X2z replies for commands targeted at scripts

X3z replies for commands targeted at running instances of scripts

The third digit gives a finer gradation of nmeaning in each category
specified by the second digit. Belowis the ABNF definition of al
reply nessages and codes:

Reply = "211" WSP |d WBP Versi on WSP Cooki e CRLF
; identification of the
; runtime system

Reply =/ "231" WSP Id WBP RunState CRLF
; status of a running script

Reply =/ "232" WSP Id CRLF ; abort of a running script
Reply =/ "401" WSP Id CRLF ; syntax error in command
Reply =/ "402" WSP Id CRLF ; unknown comand

Reply =/ "421" WSP Id CRLF ; unknown or illegal Script
Reply =/ "431" WSP Id CRLF ; unknown or illegal Runld

Schoenwael der & Quittek Experi ment al [Page 8]

RFC 2593
Reply =/
Reply =/
Reply =/
Reply =/
Reply =/
Reply =/
Reply =/
Reply =/
Reply =/

"432"
n 433”

" 434"

"511"

" 531"

" 532"

" 533"

" 534"

" 535"

WEP

SMX Protocol 1.0 May 1999
Id CRLF ; unknown or illegal Profile
Id CRLF ; illegal Argument
Id CRLF ; unable_to change the status of
; a running script
Zero WBP QuotedString CRLF

; an arbitrary nmessage send from
; the runtime system

Zero WSP Runld WSP RunState CRLF
; asynchronous runni ng script
; status change

Zero WSP Runld WBP RunState WSP Result CRLF
; intermediate script result

Zero WSP Runld WP RunState WBP Result CRLF
; intermediate script result that
; trigger an event report

Zero WEP Runld WP Result CRLF

; nor mal

script term nation

Zero WSP Runld WSP Exit Code WSP Error Msg CRLF
; abnormal script term nation

6. El ements of Procedure

This section describes in detai

t he processing steps perforned by

the SNVP agent and the runtinme systemwth regard to the SWMX

pr ot ocol

6.1. SMX Message Processing on the Runtine Systens

This section describes the processing of SMX command nessages by a
runti me engine and the conditions under which asynchronous
notifications are generated.

When the runtinme systemreceives a nessage, it first tries to
recogni ze a command consi sting of the conmmand string and the

transaction identifier

If the runtinme systemis not able to extract

both the command string and the transaction identifier, then the
nmessage i s discarded. An asynchronous ‘511’ reply nmay be generated in

this case. Gtherw se, the command string is checked to be valid, i.e.
to be one of the strings ‘hello’, ‘start’, ‘suspend , ‘resune’,
“abort’, or ‘status’. If the string is invalid, a ‘402 reply is

Schoenwael der & Quittek

Experi ment al

[Page 9]

RFC 2593 SMX Protocol 1.0 May 1999

sent and processing of the nessage stops. |If a valid command has
been detected, further processing of the nessage depends on the
conmand as descri bed bel ow.

The conmand specific processing describes several possible syntax
errors for which specific reply nessages are generated. If the
runti me engi ne detects any syntax error which is not explicitely
nmenti oned or which cannot be identified uniquely, a generic ‘401
reply is sent indicating that the conmand cannot be executed.

6.1.1. Processing the ‘hello Conmand

When the runtine systemreceives a ‘hello’ command, it processes it
as foll ows:

1. The runtime system obtains the security cookie fromits process
envi ronnent .

2. The runtime system sends a ‘211’ reply containing the security
cooki e.

6.1.2. Processing the ‘start’ Conmand

When the runtine systemreceives a ‘start’ command, it processes it
as follows:

1. The syntax of the argunents of the ‘start’ conmand is checked.
The follow ng four checks must be made:

(a) The syntax of the ‘Runld’ paranmeter is checked and a ‘431
reply is sent if any syntax error is detected.

(b) The syntax of the ‘Script’ paraneter is checked and a
‘421’ reply is sent if any syntax error is detected.

(c) The syntax of the ‘Profile’ paraneter is checked and a
‘432’ reply is sent if any syntax error is detected.

(d) If syntax of the ‘Argument’ paraneter is checked and a
‘433’ reply is sent if any syntax error is detected.

2. The runtime system checks whether the new ‘Runld is already in
use. If yes, a ‘431 reply is sent and processing stops.

3. The runtime system checks whether the ‘Script’ paraneter is the
nane of a file on the |local storage device, that can be read. A
‘421’ reply is sent and processing stops if the file does not
exist or is not readable.

Schoenwael der & Quittek Experi ment al [Page 10]

RFC 2593 SMX Protocol 1.0 May 1999

4, The runtime system checks whether the security profile is known
and sends a ‘432" reply and stops processing if not.

5. The runtinme engine starts the script given by the script nane.
When the script has been started, a ‘231 reply is sent
including the current run state.

Processing of the ‘start’ comand stops, when the script reaches the
state ‘running’ . For each asynchronous state change of the running
script, a ‘531" reply is sent. Processing of the ‘start’ conmmand is
al so stopped if an error occurs before the state ‘running is
reached. In this case, the run is aborted and a ‘535" reply is
gener at ed.

If an ‘abort’ conmand or a ‘suspend’ command for the running script
is received before processing of the ‘start’ conmand is conpl ete,
then the processing of the ‘start’ command may be stopped before the
state ‘running’ is reached. In this case, the resulting status of the
running script is given by the respective reply to the ‘abort’ or
“suspend’ command, and no reply with the transaction identifier of
the ‘start’ conmand i s generated.

6.1.3. Processing the ‘suspend’ Command

When the runtinme systemreceives a ‘suspend’ command, it processes it
as foll ows:

1. If there is a syntax error in the running script identifier or
if there is no running script matching the identifier, a ‘431
reply is sent and processing of the command is stopped.

2. If the running script is already in the state ‘suspended’, a
"231" reply is sent and processing of the conmand is stopped.

3. If the running script is in the state ‘running’, it is suspended
and a ‘231" reply is sent after suspending. |If suspending fails,
a ‘434’ reply is sent and processing of the conmand i s stopped.

4, If the running script has not yet reached the state ‘running
(the ‘start’ conmand still being processed), it may reach the
state ‘suspended’ w thout having been in the state ‘running’
After reaching the state ‘suspended’, a ‘231" reply is sent.

5. If the running script is in any other state, a ‘434’ reply is
sent.

Schoenwael der & Quittek Experi ment al [Page 11]

RFC 2593

6.1.4.

When
as fo

1

6.1.5.

When

SMX Protocol 1.0 May 1999

Processing the ‘resune’ Conmand

the runtine systemreceives a ‘resune’ conmand, it processes it
Il ows:

If there is a syntax error in the running script identifier or
if there is no running script matching the identifier, a ‘431
reply is sent and processing of the command is stopped.

If the running script is already in the state ‘running’, a ‘231
reply is sent and processing of the command is stopped.

If the running script is in the state ‘suspended’, it is resuned
and a ‘231" reply is sent after resuming. If resunming fails, a
‘434’ reply is sent and processing of the conmand is stopped.

If the *start’ command is still being processed for the script,
a ‘231" reply is sent when the state ‘running’ has been reached.

If the running script is in any other state, a ‘434" reply is
sent.

Processing the *abort’ Command

the runtime systemreceives an ‘abort’ command, it processes it

as follows:

1

6.1.6.

When

If there is a syntax error in the running script identifier or
if there is no running script matching the identifier, a ‘431
reply is sent and processing of the command is stopped.

If the running script is already aborted, a ‘232" reply is sent
and processing of the command is stopped.

The running script is aborted and a ‘232" reply is sent after
aborting. If aborting fails, a ‘434" reply is sent and
processing i s stopped.

Processing the ‘status’ Conmand

the runtime systemreceives a ‘status’ command, it processes it

as fol |l ows:

1

If there is a syntax error in the running script identifier or
if there is no running script matching the identifier, a 431
reply is sent and processing of the command is stopped.

The status of the script is obtained and a ‘231’ reply is sent.

Schoenwael der & Quittek Experi ment al [Page 12]

RFC 2593 SMX Protocol 1.0 May 1999

6.1.7. Ceneration of Asynchronous Notifications

The runtime system generates or nay generate the follow ng
notifications:

1. If a change of the status of a running script is observed by the
runtime system a ‘531" reply is sent.

2. A ‘534" reply is sent if a running script term nates normally.

3. A '535 reply is sent if a running script term nates abnornally.

4, If a script generates an internediate result, a ‘532’ reply is
sent.

5. If a script requests the generation of a ‘snftcriptResult’

notification, a ‘533 reply is sent.

6. Besi des the notifications nentioned above, the runtine system
may generate arbitrary ‘511" replies, which are | ogged or
di spl ayed by the SNWP agent.

6.2. SMX Message Processing on the SNWP Agent

This section describes the conditions under which an SNWP agent
i mpl ementing the Script MB generates SMX conmands. It al so describes
how t he SNWVP agent processes replies to SMX conmands

6.2.1. Creating a Runtine System

New runtinme systens are started by the SNVP agent whil e processing
set requests for a ‘snmLaunchStart’ variable. The SNWP agent first
searches for an already running runtime systems which matches the
security profiles associated with the ‘snlaunchStart’ variable. If no
suitable runtine systemis available, a new runtime systemis started
by preparing the environnent for the new runtine systemand starting
the executable for the runtine systemin a new process which conforns
to the operating systemsecurity profile. The SNVP agent prepares to
accept a connection fromthe new runti ne system The ‘snRunState’ of
all scripts that should be executed in this new runtine systemis set
to “initializing

6.2.2. Cenerating the ‘hello Conmand
The ‘hell o’ conmand i s generated once a connection request froma
runti me system has been accepted. The SNWP agent sends the ‘hello’

command as defined in section 5.2. The SNWP agent then expects a
reply fromthe runtine systemwi thin a reasonabl e ti meout interval

Schoenwael der & Quittek Experi ment al [Page 13]

RFC 2593 SMX Protocol 1.0 May 1999

6. 2.

1. If the tinmeout expires before the SNVWP agent received a reply,
then the connection is closed and all data associated with it is
del eted. Any scripts that should be running in this runtinme
system are aborted, the ‘snmRunExitCode’ is set to ‘genericError’
and ‘snRunError’ is nodified to describe the error situation

2. If the received nessage can not be anal yzed because it does not
have the required format, then the connection is closed and al
data associated with it is deleted. Any scripts that should be
running in this runtime system are aborted, the ‘snmRunExit Code
is set to ‘genericError’ and ‘snRunError’ is nodified to
descri be the error situation.

3. If the received nessage is a ‘211" reply, then the ‘Id is
checked whether it matches the ‘1d" used in the ‘hello conmand.
If the ‘1d matches, then the ‘Version is checked. If the
‘“Version’ matches a supported SMX protocol version, then the
‘ Cooki e’ is checked whether it matches the cookie passed to the
runtime system |If any of these tests fails, then the connection
is closed and all data associated with this runtinme systemis
del eted. Any scripts that should be running in this runtinme
system are aborted, the ‘snmRunExitCode’ is set to ‘genericError’
and ‘snRunError’ is nodified to describe the error situation

4, Recei ved nessages are discarded if none of the previous rules
appl i es.
3. GCenerating the ‘start’ Command

The ‘start’ command is generated while processing set-requests for a
“smLaunchStart’ variable. The ‘start’ conmmand assunmes that the SNW
agent already determined a runtine systemsuitable to execute the
script associated with the ‘smlaunchStart’ variable. The SNWP agent
sends the ‘start’ conmand as defined in section 5.2 to the sel ected
runti me system The SNWP agent then expects a reply fromthe runtine
systemw thin a reasonabl e tineout interval

1. If the timeout expires before the SNWP agent received a reply,
then the SNMP agent sends an ‘abort’ conmmand to abort the
running script and sets the ‘snRunState’ of the running script
to ‘termnated’, the ‘snRunExitCode’ to ‘genericError’ and
“smRunError’ is nodified to describe the timeout situation

2. If the received nessage can not be anal yzed because it does not
have the required format, then the nessage is ignored. The SNW
agent continues to wait for a valid reply nmessage until the
ti meout expires.

Schoenwael der & Quittek Experi ment al [Page 14]

RFC 2593

6.2. 4.

The *
the *
val ue
‘susp
5.2.

Wi t hi

1

SMX Protocol 1.0 May 1999

If the received nessage is a ‘4yz’ reply and the ‘1d nmatches
the ‘Id of the ‘start’ comuand, then the SNMP agent assunes
that the script can not be started. The ‘snRunState’ of the
running script is set to ‘termnated’, the ‘snRunExitCode’ to
‘genericError’ and the ‘snRunError’ is nodified to contain a
message describing the error situation.

If the received nessage is a ‘231" reply and the ‘1d nmatches
the ‘1d of the ‘start’ comand, then the ‘snRunState’ variable
of the running script is updated.

Recei ved nessages are discarded if none of the previous rules
appl i es.

Cenerating the ‘suspend’ Comand

suspend’ command is generated while processing set-requests for
smLaunchControl’ and ‘snRunControl’ variabl es which change the
to ‘suspend’. The SNMP agent sets the ‘snRunState’ variable to
endi ng’ and sends the ‘suspend’ conmand as defined in section
The SNWVP agent then expects a reply fromthe runtine system

n a reasonabl e tineout interval

If the tinmeout expires before the SNWP agent received a reply,
then the SNWP agent sends an ‘abort’ command to abort the
runni ng script and sets the ‘snRunState’ of the running script
to ‘termnated’ , the ‘snRunExitCode’ to ‘genericError’ and
“snmRunError’ is nodified to describe the timeout situation

If the received nessage can not be anal yzed because it does not
have the required format, then the nmessage is ignored. The SNW
agent continues to wait for a valid reply nessage until the

ti meout expires.

If the received nessage is a ‘401, *402° or a ‘431 reply and
the ‘Id matches the ‘1d” of the ‘suspend conmand, then the
runtime systens is assuned to not provide the suspend/resune
capability and processing of the ‘suspend’ comand stops.

If the received nessage is a ‘231" reply and the ‘1d rmatches
the ‘1d of the ‘suspend” command, then the 'snmRunState’
vari abl e of the running script is updated.

Recei ved nessages are discarded if none of the previous rules
appl i es.

Schoenwael der & Quittek Experi ment al [Page 15]

RFC 2593 SMX Protocol 1.0 May 1999

6.2.5. Cenerating the ‘resune’ Conmmand

The ‘resune’ command is generated whil e processing set-requests for
the ‘smLaunchControl’ and ‘snmRunControl’ variabl es which change the
value to ‘resune’. The SNMP agent sets the ‘snRunState’ variable to
‘resuning’ and sends the ‘resune’ conmand as defined in section 5. 2.
The SNWVP agent then expects a reply fromthe runtine systemwithin a
reasonabl e timeout interval

1. If the timeout expires before the SNWP agent received a reply,
then the SNWMP agent sends an ‘abort’ command to abort the
running script and sets the ‘snRunState’ of the running script
to ‘terminated’, the ‘snRunExitCode’ to ‘genericError’ and
“smRunError’ is nodified to describe the tineout situation

2. If the received nessage can not be anal yzed because it does not
have the required format, then the nmessage is ignored. The SNW
agent continues to wait for a valid reply nessage until the
ti meout expires.

3. If the received nessage is a ‘401", 402" or a ‘431 reply and
the ‘1d matches the ‘1d” of the ‘resunme’ command, then the
runtime systenms i s assuned to not provide the suspend/resune
capability and processing of the ‘resune’ conmand st ops.

4, If the received nessage is a ‘231" reply and the ‘1d nmatches
the ‘1d of the ‘resune’ conmand, then the ‘snRunState’ variable
of the running script is updated.

5. Recei ved nessages are discarded if none of the previous rules
appl i es.

6.2.6. Cenerating the ‘abort’ Conmand

The ‘abort’ conmand is generated while processing set-requests for
the ‘snlaunchControl’ and ‘snRunControl’ variabl es which change the
value to ‘abort’. In addition, the ‘abort’ command is al so generated
if the ‘snRunLifeTinme’ variable reaches the value 0. The SNWP agent
sends the ‘“abort’ comrand as defined in section 5.2. The SNWP agent
then expects a reply fromthe runtinme systemw thin a reasonable

ti meout interval

1. If the tinmeout expires before the SNVWP agent received a reply,
then the SNWMP agent sets the ‘snRunState’ of the running script
to ‘termnated’ , the ‘snRunExitCode’ to ‘genericError’ and
‘“smRunError’ is nodified to describe the tineout situation

Schoenwael der & Quittek Experi ment al [Page 16]

RFC 2593 SMX Protocol 1.0 May 1999

2. If the received nessage can not be anal yzed because it does not
have the required format, then the nmessage is ignored. The SNW
agent continues to wait for a valid reply nessage until the
ti meout expires.

3. If the received nessage is a ‘4yz’ reply and the ‘1d nmatches
the ‘Id of the ‘abort’ command, then the SNMP agent assunes
that the script can not be aborted. The ‘snRunState’ of the
running script is set to ‘termnated’, the ‘smRunExitCode’ to
‘genericError’ and the ‘snRunResult’ is nodified to describe the
error situation.

4, If the received nessage is a ‘232" reply and the ‘1d nmatches
the ‘1d of the *abort’ conmand, then the ‘snmRunExit Code
variable of the ternminated script is changed to either ‘halted
(when processing a set-request for the ‘snliaunchControl’ and
“snRunControl’ variables) or ‘lifeTi neExceeded’ (if the 'abort’
command was generated because the ‘snRunLifeTine’ variable
reached the value 0). The ‘snRunState’ variable is changed to
the val ue ‘terninated

5. Recei ved nmessages are discarded if none of the previous rules
appl i es.

6.2.7. Cenerating the ‘status’ Conmand

The ‘status’ command is generated either periodically or on demand by
the SN\VP agent in order to retrieve status information from running
scripts. The SNWMP agent sends the ‘status’ command as defined in 5.2
The SNWVP agent then expects a reply fromthe runtine systemwithin a
reasonabl e tinmeout interval

1. If the timeout expires before the SNWP agent received a reply,
then the SNWMP agent sends an ‘abort’ command to abort the
running script and sets the ‘snRunState’ of the running script
to ‘termnated’, the ‘snRunExitCode’ to ‘genericError’ and
“smRunError’ is nodified to describe the tineout situation

2. If the received nessage can not be anal yzed because it does not
have the required format, then the message is ignored. The SNW
agent continues to wait for a valid reply nessage until the
ti meout expires.

3. If the received nessage is a ‘4yz’ reply and the ‘1d nmatches
the ‘1d of the ‘status’ conmand, then the SNWP agent assunes
that the script status can not be read, which is a fatal error
condition. The SNWP agent sends an ‘abort’ command to abort the
running script. The ‘snRunState’ of the running script is set to

Schoenwael der & Quittek Experi ment al [Page 17]

RFC 2593 SMX Protocol 1.0 May 1999

‘termnated’, the ‘snRunExitCode’ to ‘genericError’ and the
‘smRunError’ is nodified to describe the error situation

4. If the received nessage is a ‘231" reply and the *‘1d rmatches
the ‘1d of the ‘status’ command, then the ‘snRunState’ variable
of the running script is updated.

5. Recei ved nessages are discarded if none of the previous rules
appl i es.

6.2.8. Processing Asynchronous Notifications

The runtime system can send asynchronous status change notifications.
These ‘5yz’ replies are processed as descri bed bel ow.

1. If the received nessage is a ‘511" reply, then the nessage is
di spl ayed or | ogged appropriately and processing stops.

2. If the received nessage is a ‘531" reply, then the SNWP agent
checks whether a running script with the given ‘Runld’ exists in
the runtime system Processing of the notification stops if
there is no running script with the ‘Runld’. O herw se, the
‘snRunState’ is updated.

3. If the received nessage is a ‘532" reply, then the SNWP agent
checks whether a running script with the given ‘Runld’ exists in
the runtime system Processing of the notification stops if
there is no running script with the ‘Runld . O herw se,
‘snRunState’ and ‘snmRunResul t’ are updat ed.

4, If the received nessage is a ‘533" reply, then the SNWP agent
checks whether a running script with the given ‘Runld’ exists in
the runtime system Processing of the notification stops if
there is no running script with the ‘Runld . O herw se,
‘snRunState’ and ‘snRunResult’ are updated and the
“sniScriptResult’ notification is generated.

5. If the received nessage is a ‘534" reply, then the SNWP agent
checks whether a running script with the given ‘Runld’ exists in
the runtime system Processing stops if there is no running
script with the *Runld’. O herwi se, ‘snExitCode’ is set to

‘noError’, ‘snmRunState’ is set to ‘termnated” and ‘snRunResult’
i s updat ed.
6. If the received nessage is a ‘535 reply, then the SNWP agent

checks whether a running script with the given ‘Runld’ exists in
the runtime system Processing stops if there is no running
script with the ‘Runld’. O herwise, ‘snRunState’ is set to

Schoenwael der & Quittek Experi ment al [Page 18]

RFC 2593 SMX Protocol 1.0 May 1999

8.

‘“termnated’ and ‘snExitCode’ and ‘snRunError’ are updated.
An Exanpl e SMX Message Fl ow

Bel ow i s an exanpl e SMX nessage exchange. Messages send fromthe SNW
agent are marked with ‘> while replies send fromthe runti nme system
are nmarked with ‘<. Line termnators (‘CRLF) are not shown in order
to nmake the exanpl e nore readable.

hello 1

211 1 SMX/ 1.0 OAFOBAED6F877FBC

start 2 42 "/var/snnp/scripts/foo.jar" untrusted
start 5 44 "/var/snnp/scripts/bar.jar" trusted "ww.ietf.org"
231 2 2

start 12 48 "/var/snnp/scripts/foo.jar" funny
231 5 2

532 0 44 2 "waiting for response”

status 18 42

status 19 44

432 12

231 19 2

231 18 2

hell o 578

211 578 SMX/ 1.0 OAFOBAED6F877FBC

suspend 581 42

231 581 4

534 0 44 "test conpleted"

abort 611 42

232 611

ANV ANNVAVANNNANVVANVAVYVAYV

Security Considerations

The SMX protocol runs on top of a local TCP connection. Protoco
nmessages never |eave the local system It is therefore not possible
to attack the nessage exchanges if the underlying operating system
protects local TCP connections from other users on the sane nachi ne.

The only critical situation is the connection establishment phase.
The rules defined in section 4 ensure that only local connections are
accepted and that a runtine systemhas to identify itself with a
security cookie generated by the SNMP agent and passed to the runtine
system process as part of its environment. This rule ensures that
scripts will only be executed on authorized runtinme systens. This
schene relies on the protection of process environnents by the
operating system Well maintained UNI X operating systens have this

property.

Schoenwael der & Quittek Experi ment al [Page 19]

RFC 2593 SMX Protocol 1.0 May 1999

The SMX protocol allows to execute script under different operating
system and runtime systemsecurity profiles. The nmenb suggests to nmap
the smLaunchOamner value to an operating systemand a runtine system
security profile. The operating systemsecurity profile is enforced
by the operating system by setting up a proper process environnent.
The runtinme security profile is enforced by a secure runtine system
(e.g. the Java virtual nachine or a safe Tcl interpreter) [7].

9. Acknow edgnents

The protocol described in this meno is the result of a joint project
bet ween the Technical University of Braunschwei g and C&C Research
Laboratories of NEC Europe Ltd. in Berlin. W would |like to thank the
followi ng project nmenbers for their contributions to the initial
design and the inplenentation of the protocol described in this neno:

M Bol z (TU Braunschwei g)
C. Kappl er (NEC Europe Ltd.)
A. Kind (NEC Europe Ltd.)
S. Mertens (TU Braunschwei g)
J. Nicklisch (NEC Europe Ltd.)

10. Ref er ences

[1] Levi, D. and J. Schoenwael der, "Definitions of Managed bjects
for the Del egati on of Managenent Scripts", RFC 2592, May 1999.

[2] Lindholm T., and F. Yellin, "The Java Virtual Machine
Speci fication", Addison Wsley, 1997.

[3] J.K Qusterhout, "Tcl and the Tk Tool kit", Addison Wesley, 1994.

[4] Fritzinger, J.S., and M Mieller, "Java Security", Wite Paper
Sun M crosystens, Inc., 1996.

[5] Levy, J.Y., Demmilly, L., Qusterhout, J.K , and B. Wl ch, "The
Saf e-Tcl Security Model", Proc. USEN X Annual Technica
Conf erence, June 1998.

[6] Crocker, D., and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', RFC 2234, Internet Ml Consortium Denon
Internet Ltd., Novenber 1997.

[7] Schoenwael der, J., and J. Qittek, "Secure Managenent by
Del egation within the Internet Managenent", Proc. |FIP/ | EEE
I nternational Synposium on |ntegrated Network Managenent ' 99,
May 1999.

Schoenwael der & Quittek Experi ment al [Page 20]

RFC 2593 SMX Protocol 1.0 May 1999

11. Authors’ Addresses

Juer gen Schoenwael der
TU Braunschwei g
Buel t enweg 74/ 75
38106 Braunschwei g
Cer many

Phone: +49 531 391-3283
EMai | : schoenw@ br. cs. tu-bs. de

Juergen Quittek

NEC Eur ope Ltd.

C&C Research Laboratories
Har denbergpl atz 2

10623 Berlin

Cer many

Phone: +49 30 254230- 19
EMai | : quittek@scrle. nec. de

Schoenwael der & Quittek Experi ment al [Page 21]

RFC 2593 SMX Protocol 1.0 May 1999

12. Full Copyright Statenent
Copyright (C) The Internet Society (1999). Al Ri ghts Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Schoenwael der & Quittek Experi ment al [Page 22]

