
Network Working Group V. Paxson
Request for Comments: 2525 Editor
Category: Informational ACIRI / ICSI
 M. Allman
 NASA Glenn Research Center/Sterling Software
 S. Dawson
 Real-Time Computing Laboratory
 W. Fenner
 Xerox PARC
 J. Griner
 NASA Glenn Research Center
 I. Heavens
 Spider Software Ltd.
 K. Lahey
 NASA Ames Research Center/MRJ
 J. Semke
 Pittsburgh Supercomputing Center
 B. Volz
 Process Software Corporation
 March 1999

 Known TCP Implementation Problems

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Table of Contents

 1. INTRODUCTION..2
 2. KNOWN IMPLEMENTATION PROBLEMS...................................3
 2.1 No initial slow start..3
 2.2 No slow start after retransmission timeout...................6
 2.3 Uninitialized CWND...9
 2.4 Inconsistent retransmission.................................11
 2.5 Failure to retain above-sequence data.......................13
 2.6 Extra additive constant in congestion avoidance.............17
 2.7 Initial RTO too low...23
 2.8 Failure of window deflation after loss recovery.............26
 2.9 Excessively short keepalive connection timeout..............28
 2.10 Failure to back off retransmission timeout..................31

Paxson, et. al. Informational [Page 1]

RFC 2525 TCP Implementation Problems March 1999

 2.11 Insufficient interval between keepalives....................34
 2.12 Window probe deadlock.......................................36
 2.13 Stretch ACK violation.......................................40
 2.14 Retransmission sends multiple packets.......................43
 2.15 Failure to send FIN notification promptly...................45
 2.16 Failure to send a RST after Half Duplex Close...............47
 2.17 Failure to RST on close with data pending...................50
 2.18 Options missing from TCP MSS calculation....................54
 3. SECURITY CONSIDERATIONS..56
 4. ACKNOWLEDGEMENTS...56
 5. REFERENCES...57
 6. AUTHORS’ ADDRESSES...58
 7. FULL COPYRIGHT STATEMENT.......................................60

1. Introduction

 This memo catalogs a number of known TCP implementation problems.
 The goal in doing so is to improve conditions in the existing
 Internet by enhancing the quality of current TCP/IP implementations.
 It is hoped that both performance and correctness issues can be
 resolved by making implementors aware of the problems and their
 solutions. In the long term, it is hoped that this will provide a
 reduction in unnecessary traffic on the network, the rate of
 connection failures due to protocol errors, and load on network
 servers due to time spent processing both unsuccessful connections
 and retransmitted data. This will help to ensure the stability of
 the global Internet.

 Each problem is defined as follows:

 Name of Problem
 The name associated with the problem. In this memo, the name is
 given as a subsection heading.

 Classification
 One or more problem categories for which the problem is
 classified: "congestion control", "performance", "reliability",
 "resource management".

 Description
 A definition of the problem, succinct but including necessary
 background material.

 Significance
 A brief summary of the sorts of environments for which the problem
 is significant.

Paxson, et. al. Informational [Page 2]

RFC 2525 TCP Implementation Problems March 1999

 Implications
 Why the problem is viewed as a problem.

 Relevant RFCs
 The RFCs defining the TCP specification with which the problem
 conflicts. These RFCs often qualify behavior using terms such as
 MUST, SHOULD, MAY, and others written capitalized. See RFC 2119
 for the exact interpretation of these terms.

 Trace file demonstrating the problem
 One or more ASCII trace files demonstrating the problem, if
 applicable.

 Trace file demonstrating correct behavior
 One or more examples of how correct behavior appears in a trace,
 if applicable.

 References
 References that further discuss the problem.

 How to detect
 How to test an implementation to see if it exhibits the problem.
 This discussion may include difficulties and subtleties associated
 with causing the problem to manifest itself, and with interpreting
 traces to detect the presence of the problem (if applicable).

 How to fix
 For known causes of the problem, how to correct the
 implementation.

2. Known implementation problems

2.1.

 Name of Problem
 No initial slow start

 Classification
 Congestion control

 Description
 When a TCP begins transmitting data, it is required by RFC 1122,
 4.2.2.15, to engage in a "slow start" by initializing its
 congestion window, cwnd, to one packet (one segment of the maximum
 size). (Note that an experimental change to TCP, documented in
 [RFC2414], allows an initial value somewhat larger than one
 packet.) It subsequently increases cwnd by one packet for each
 ACK it receives for new data. The minimum of cwnd and the

Paxson, et. al. Informational [Page 3]

RFC 2525 TCP Implementation Problems March 1999

 receiver’s advertised window bounds the highest sequence number
 the TCP can transmit. A TCP that fails to initialize and
 increment cwnd in this fashion exhibits "No initial slow start".

 Significance
 In congested environments, detrimental to the performance of other
 connections, and possibly to the connection itself.

 Implications
 A TCP failing to slow start when beginning a connection results in
 traffic bursts that can stress the network, leading to excessive
 queueing delays and packet loss.

 Implementations exhibiting this problem might do so because they
 suffer from the general problem of not including the required
 congestion window. These implementations will also suffer from
 "No slow start after retransmission timeout".

 There are different shades of "No initial slow start". From the
 perspective of stressing the network, the worst is a connection
 that simply always sends based on the receiver’s advertised
 window, with no notion of a separate congestion window. Another
 form is described in "Uninitialized CWND" below.

 Relevant RFCs
 RFC 1122 requires use of slow start. RFC 2001 gives the specifics
 of slow start.

 Trace file demonstrating it
 Made using tcpdump [Jacobson89] recording at the connection
 responder. No losses reported by the packet filter.

 10:40:42.244503 B > A: S 1168512000:1168512000(0) win 32768
 <mss 1460,nop,wscale 0> (DF) [tos 0x8]
 10:40:42.259908 A > B: S 3688169472:3688169472(0)
 ack 1168512001 win 32768 <mss 1460>
 10:40:42.389992 B > A: . ack 1 win 33580 (DF) [tos 0x8]
 10:40:42.664975 A > B: P 1:513(512) ack 1 win 32768
 10:40:42.700185 A > B: . 513:1973(1460) ack 1 win 32768
 10:40:42.718017 A > B: . 1973:3433(1460) ack 1 win 32768
 10:40:42.762945 A > B: . 3433:4893(1460) ack 1 win 32768
 10:40:42.811273 A > B: . 4893:6353(1460) ack 1 win 32768
 10:40:42.829149 A > B: . 6353:7813(1460) ack 1 win 32768
 10:40:42.853687 B > A: . ack 1973 win 33580 (DF) [tos 0x8]
 10:40:42.864031 B > A: . ack 3433 win 33580 (DF) [tos 0x8]

Paxson, et. al. Informational [Page 4]

RFC 2525 TCP Implementation Problems March 1999

 After the third packet, the connection is established. A, the
 connection responder, begins transmitting to B, the connection
 initiator. Host A quickly sends 6 packets comprising 7812 bytes,
 even though the SYN exchange agreed upon an MSS of 1460 bytes
 (implying an initial congestion window of 1 segment corresponds to
 1460 bytes), and so A should have sent at most 1460 bytes.

 The ACKs sent by B to A in the last two lines indicate that this
 trace is not a measurement error (slow start really occurring but
 the corresponding ACKs having been dropped by the packet filter).

 A second trace confirmed that the problem is repeatable.

 Trace file demonstrating correct behavior
 Made using tcpdump recording at the connection originator. No
 losses reported by the packet filter.

 12:35:31.914050 C > D: S 1448571845:1448571845(0)
 win 4380 <mss 1460>
 12:35:32.068819 D > C: S 1755712000:1755712000(0)
 ack 1448571846 win 4096
 12:35:32.069341 C > D: . ack 1 win 4608
 12:35:32.075213 C > D: P 1:513(512) ack 1 win 4608
 12:35:32.286073 D > C: . ack 513 win 4096
 12:35:32.287032 C > D: . 513:1025(512) ack 1 win 4608
 12:35:32.287506 C > D: . 1025:1537(512) ack 1 win 4608
 12:35:32.432712 D > C: . ack 1537 win 4096
 12:35:32.433690 C > D: . 1537:2049(512) ack 1 win 4608
 12:35:32.434481 C > D: . 2049:2561(512) ack 1 win 4608
 12:35:32.435032 C > D: . 2561:3073(512) ack 1 win 4608
 12:35:32.594526 D > C: . ack 3073 win 4096
 12:35:32.595465 C > D: . 3073:3585(512) ack 1 win 4608
 12:35:32.595947 C > D: . 3585:4097(512) ack 1 win 4608
 12:35:32.596414 C > D: . 4097:4609(512) ack 1 win 4608
 12:35:32.596888 C > D: . 4609:5121(512) ack 1 win 4608
 12:35:32.733453 D > C: . ack 4097 win 4096

 References
 This problem is documented in [Paxson97].

 How to detect
 For implementations always manifesting this problem, it shows up
 immediately in a packet trace or a sequence plot, as illustrated
 above.

Paxson, et. al. Informational [Page 5]

RFC 2525 TCP Implementation Problems March 1999

 How to fix
 If the root problem is that the implementation lacks a notion of a
 congestion window, then unfortunately this requires significant
 work to fix. However, doing so is important, as such
 implementations also exhibit "No slow start after retransmission
 timeout".

2.2.

 Name of Problem
 No slow start after retransmission timeout

 Classification
 Congestion control

 Description
 When a TCP experiences a retransmission timeout, it is required by
 RFC 1122, 4.2.2.15, to engage in "slow start" by initializing its
 congestion window, cwnd, to one packet (one segment of the maximum
 size). It subsequently increases cwnd by one packet for each ACK
 it receives for new data until it reaches the "congestion
 avoidance" threshold, ssthresh, at which point the congestion
 avoidance algorithm for updating the window takes over. A TCP
 that fails to enter slow start upon a timeout exhibits "No slow
 start after retransmission timeout".

 Significance
 In congested environments, severely detrimental to the performance
 of other connections, and also the connection itself.

 Implications
 Entering slow start upon timeout forms one of the cornerstones of
 Internet congestion stability, as outlined in [Jacobson88]. If
 TCPs fail to do so, the network becomes at risk of suffering
 "congestion collapse" [RFC896].

 Relevant RFCs
 RFC 1122 requires use of slow start after loss. RFC 2001 gives
 the specifics of how to implement slow start. RFC 896 describes
 congestion collapse.

 The retransmission timeout discussed here should not be confused
 with the separate "fast recovery" retransmission mechanism
 discussed in RFC 2001.

 Trace file demonstrating it
 Made using tcpdump recording at the sending TCP (A). No losses
 reported by the packet filter.

Paxson, et. al. Informational [Page 6]

RFC 2525 TCP Implementation Problems March 1999

 10:40:59.090612 B > A: . ack 357125 win 33580 (DF) [tos 0x8]
 10:40:59.222025 A > B: . 357125:358585(1460) ack 1 win 32768
 10:40:59.868871 A > B: . 357125:358585(1460) ack 1 win 32768
 10:41:00.016641 B > A: . ack 364425 win 33580 (DF) [tos 0x8]
 10:41:00.036709 A > B: . 364425:365885(1460) ack 1 win 32768
 10:41:00.045231 A > B: . 365885:367345(1460) ack 1 win 32768
 10:41:00.053785 A > B: . 367345:368805(1460) ack 1 win 32768
 10:41:00.062426 A > B: . 368805:370265(1460) ack 1 win 32768
 10:41:00.071074 A > B: . 370265:371725(1460) ack 1 win 32768
 10:41:00.079794 A > B: . 371725:373185(1460) ack 1 win 32768
 10:41:00.089304 A > B: . 373185:374645(1460) ack 1 win 32768
 10:41:00.097738 A > B: . 374645:376105(1460) ack 1 win 32768
 10:41:00.106409 A > B: . 376105:377565(1460) ack 1 win 32768
 10:41:00.115024 A > B: . 377565:379025(1460) ack 1 win 32768
 10:41:00.123576 A > B: . 379025:380485(1460) ack 1 win 32768
 10:41:00.132016 A > B: . 380485:381945(1460) ack 1 win 32768
 10:41:00.141635 A > B: . 381945:383405(1460) ack 1 win 32768
 10:41:00.150094 A > B: . 383405:384865(1460) ack 1 win 32768
 10:41:00.158552 A > B: . 384865:386325(1460) ack 1 win 32768
 10:41:00.167053 A > B: . 386325:387785(1460) ack 1 win 32768
 10:41:00.175518 A > B: . 387785:389245(1460) ack 1 win 32768
 10:41:00.210835 A > B: . 389245:390705(1460) ack 1 win 32768
 10:41:00.226108 A > B: . 390705:392165(1460) ack 1 win 32768
 10:41:00.241524 B > A: . ack 389245 win 8760 (DF) [tos 0x8]

 The first packet indicates the ack point is 357125. 130 msec
 after receiving the ACK, A transmits the packet after the ACK
 point, 357125:358585. 640 msec after this transmission, it
 retransmits 357125:358585, in an apparent retransmission timeout.
 At this point, A’s cwnd should be one MSS, or 1460 bytes, as A
 enters slow start. The trace is consistent with this possibility.

 B replies with an ACK of 364425, indicating that A has filled a
 sequence hole. At this point, A’s cwnd should be 1460*2 = 2920
 bytes, since in slow start receiving an ACK advances cwnd by MSS.
 However, A then launches 19 consecutive packets, which is
 inconsistent with slow start.

 A second trace confirmed that the problem is repeatable.

 Trace file demonstrating correct behavior
 Made using tcpdump recording at the sending TCP (C). No losses
 reported by the packet filter.

 12:35:48.442538 C > D: P 465409:465921(512) ack 1 win 4608
 12:35:48.544483 D > C: . ack 461825 win 4096
 12:35:48.703496 D > C: . ack 461825 win 4096
 12:35:49.044613 C > D: . 461825:462337(512) ack 1 win 4608

Paxson, et. al. Informational [Page 7]

RFC 2525 TCP Implementation Problems March 1999

 12:35:49.192282 D > C: . ack 465921 win 2048
 12:35:49.192538 D > C: . ack 465921 win 4096
 12:35:49.193392 C > D: P 465921:466433(512) ack 1 win 4608
 12:35:49.194726 C > D: P 466433:466945(512) ack 1 win 4608
 12:35:49.350665 D > C: . ack 466945 win 4096
 12:35:49.351694 C > D: . 466945:467457(512) ack 1 win 4608
 12:35:49.352168 C > D: . 467457:467969(512) ack 1 win 4608
 12:35:49.352643 C > D: . 467969:468481(512) ack 1 win 4608
 12:35:49.506000 D > C: . ack 467969 win 3584

 After C transmits the first packet shown to D, it takes no action
 in response to D’s ACKs for 461825, because the first packet
 already reached the advertised window limit of 4096 bytes above
 461825. 600 msec after transmitting the first packet, C
 retransmits 461825:462337, presumably due to a timeout. Its
 congestion window is now MSS (512 bytes).

 D acks 465921, indicating that C’s retransmission filled a
 sequence hole. This ACK advances C’s cwnd from 512 to 1024. Very
 shortly after, D acks 465921 again in order to update the offered
 window from 2048 to 4096. This ACK does not advance cwnd since it
 is not for new data. Very shortly after, C responds to the newly
 enlarged window by transmitting two packets. D acks both,
 advancing cwnd from 1024 to 1536. C in turn transmits three
 packets.

 References
 This problem is documented in [Paxson97].

 How to detect
 Packet loss is common enough in the Internet that generally it is
 not difficult to find an Internet path that will force
 retransmission due to packet loss.

 If the effective window prior to loss is large enough, however,
 then the TCP may retransmit using the "fast recovery" mechanism
 described in RFC 2001. In a packet trace, the signature of fast
 recovery is that the packet retransmission occurs in response to
 the receipt of three duplicate ACKs, and subsequent duplicate ACKs
 may lead to the transmission of new data, above both the ack point
 and the highest sequence transmitted so far. An absence of three
 duplicate ACKs prior to retransmission suffices to distinguish
 between timeout and fast recovery retransmissions. In the face of
 only observing fast recovery retransmissions, generally it is not
 difficult to repeat the data transfer until observing a timeout
 retransmission.

Paxson, et. al. Informational [Page 8]

RFC 2525 TCP Implementation Problems March 1999

 Once armed with a trace exhibiting a timeout retransmission,
 determining whether the TCP follows slow start is done by
 computing the correct progression of cwnd and comparing it to the
 amount of data transmitted by the TCP subsequent to the timeout
 retransmission.

 How to fix
 If the root problem is that the implementation lacks a notion of a
 congestion window, then unfortunately this requires significant
 work to fix. However, doing so is critical, for reasons outlined
 above.

2.3.

 Name of Problem
 Uninitialized CWND

 Classification
 Congestion control

 Description
 As described above for "No initial slow start", when a TCP
 connection begins cwnd is initialized to one segment (or perhaps a
 few segments, if experimenting with [RFC2414]). One particular
 form of "No initial slow start", worth separate mention as the bug
 is fairly widely deployed, is "Uninitialized CWND". That is,
 while the TCP implements the proper slow start mechanism, it fails
 to initialize cwnd properly, so slow start in fact fails to occur.

 One way the bug can occur is if, during the connection
 establishment handshake, the SYN ACK packet arrives without an MSS
 option. The faulty implementation uses receipt of the MSS option
 to initialize cwnd to one segment; if the option fails to arrive,
 then cwnd is instead initialized to a very large value.

 Significance
 In congested environments, detrimental to the performance of other
 connections, and likely to the connection itself. The burst can
 be so large (see below) that it has deleterious effects even in
 uncongested environments.

 Implications
 A TCP exhibiting this behavior is stressing the network with a
 large burst of packets, which can cause loss in the network.

 Relevant RFCs
 RFC 1122 requires use of slow start. RFC 2001 gives the specifics
 of slow start.

Paxson, et. al. Informational [Page 9]

RFC 2525 TCP Implementation Problems March 1999

 Trace file demonstrating it
 This trace was made using tcpdump running on host A. Host A is
 the sender and host B is the receiver. The advertised window and
 timestamp options have been omitted for clarity, except for the
 first segment sent by host A. Note that A sends an MSS option in
 its initial SYN but B does not include one in its reply.

 16:56:02.226937 A > B: S 237585307:237585307(0) win 8192
 <mss 536,nop,wscale 0,nop,nop,timestamp[|tcp]>
 16:56:02.557135 B > A: S 1617216000:1617216000(0)
 ack 237585308 win 16384
 16:56:02.557788 A > B: . ack 1 win 8192
 16:56:02.566014 A > B: . 1:537(536) ack 1
 16:56:02.566557 A > B: . 537:1073(536) ack 1
 16:56:02.567120 A > B: . 1073:1609(536) ack 1
 16:56:02.567662 A > B: P 1609:2049(440) ack 1
 16:56:02.568349 A > B: . 2049:2585(536) ack 1
 16:56:02.568909 A > B: . 2585:3121(536) ack 1

 [54 additional burst segments deleted for brevity]

 16:56:02.936638 A > B: . 32065:32601(536) ack 1
 16:56:03.018685 B > A: . ack 1

 After the three-way handshake, host A bursts 61 segments into the
 network, before duplicate ACKs on the first segment cause a
 retransmission to occur. Since host A did not wait for the ACK on
 the first segment before sending additional segments, it is
 exhibiting "Uninitialized CWND"

 Trace file demonstrating correct behavior

 See the example for "No initial slow start".

 References
 This problem is documented in [Paxson97].

 How to detect
 This problem can be detected by examining a packet trace recorded
 at either the sender or the receiver. However, the bug can be
 difficult to induce because it requires finding a remote TCP peer
 that does not send an MSS option in its SYN ACK.

 How to fix
 This problem can be fixed by ensuring that cwnd is initialized
 upon receipt of a SYN ACK, even if the SYN ACK does not contain an
 MSS option.

Paxson, et. al. Informational [Page 10]

RFC 2525 TCP Implementation Problems March 1999

2.4.

 Name of Problem
 Inconsistent retransmission

 Classification
 Reliability

 Description
 If, for a given sequence number, a sending TCP retransmits
 different data than previously sent for that sequence number, then
 a strong possibility arises that the receiving TCP will
 reconstruct a different byte stream than that sent by the sending
 application, depending on which instance of the sequence number it
 accepts.

 Such a sending TCP exhibits "Inconsistent retransmission".

 Significance
 Critical for all environments.

 Implications
 Reliable delivery of data is a fundamental property of TCP.

 Relevant RFCs
 RFC 793, section 1.5, discusses the central role of reliability in
 TCP operation.

 Trace file demonstrating it
 Made using tcpdump recording at the receiving TCP (B). No losses
 reported by the packet filter.

 12:35:53.145503 A > B: FP 90048435:90048461(26)
 ack 393464682 win 4096
 4500 0042 9644 0000
 3006 e4c2 86b1 0401 83f3 010a b2a4 0015
 055e 07b3 1773 cb6a 5019 1000 68a9 0000
 data starts here>504f 5254 2031 3334 2c31 3737*2c34 2c31
 2c31 3738 2c31 3635 0d0a
 12:35:53.146479 B > A: R 393464682:393464682(0) win 8192
 12:35:53.851714 A > B: FP 90048429:90048463(34)
 ack 393464682 win 4096
 4500 004a 965b 0000
 3006 e4a3 86b1 0401 83f3 010a b2a4 0015
 055e 07ad 1773 cb6a 5019 1000 8bd3 0000
 data starts here>5041 5356 0d0a 504f 5254 2031 3334 2c31
 3737*2c31 3035 2c31 3431 2c34 2c31 3539
 0d0a

Paxson, et. al. Informational [Page 11]

RFC 2525 TCP Implementation Problems March 1999

 The sequence numbers shown in this trace are absolute and not
 adjusted to reflect the ISN. The 4-digit hex values show a dump
 of the packet’s IP and TCP headers, as well as payload. A first
 sends to B data for 90048435:90048461. The corresponding data
 begins with hex words 504f, 5254, etc.

 B responds with a RST. Since the recording location was local to
 B, it is unknown whether A received the RST.

 A then sends 90048429:90048463, which includes six sequence
 positions below the earlier transmission, all 26 positions of the
 earlier transmission, and two additional sequence positions.

 The retransmission disagrees starting just after sequence
 90048447, annotated above with a leading ’*’. These two bytes
 were originally transmitted as hex 2c34 but retransmitted as hex
 2c31. Subsequent positions disagree as well.

 This behavior has been observed in other traces involving
 different hosts. It is unknown how to repeat it.

 In this instance, no corruption would occur, since B has already
 indicated it will not accept further packets from A.

 A second example illustrates a slightly different instance of the
 problem. The tracing again was made with tcpdump at the receiving
 TCP (D).

 22:23:58.645829 C > D: P 185:212(27) ack 565 win 4096
 4500 0043 90a3 0000
 3306 0734 cbf1 9eef 83f3 010a 0525 0015
 a3a2 faba 578c 70a4 5018 1000 9a53 0000
 data starts here>504f 5254 2032 3033 2c32 3431 2c31 3538
 2c32 3339 2c35 2c34 330d 0a
 22:23:58.646805 D > C: . ack 184 win 8192
 4500 0028 beeb 0000
 3e06 ce06 83f3 010a cbf1 9eef 0015 0525
 578c 70a4 a3a2 fab9 5010 2000 342f 0000
 22:31:36.532244 C > D: FP 186:213(27) ack 565 win 4096
 4500 0043 9435 0000
 3306 03a2 cbf1 9eef 83f3 010a 0525 0015
 a3a2 fabb 578c 70a4 5019 1000 9a51 0000
 data starts here>504f 5254 2032 3033 2c32 3431 2c31 3538
 2c32 3339 2c35 2c34 330d 0a

Paxson, et. al. Informational [Page 12]

RFC 2525 TCP Implementation Problems March 1999

 In this trace, sequence numbers are relative. C sends 185:212,
 but D only sends an ACK for 184 (so sequence number 184 is
 missing). C then sends 186:213. The packet payload is identical
 to the previous payload, but the base sequence number is one
 higher, resulting in an inconsistent retransmission.

 Neither trace exhibits checksum errors.

 Trace file demonstrating correct behavior
 (Omitted, as presumably correct behavior is obvious.)

 References
 None known.

 How to detect
 This problem unfortunately can be very difficult to detect, since
 available experience indicates it is quite rare that it is
 manifested. No "trigger" has been identified that can be used to
 reproduce the problem.

 How to fix
 In the absence of a known "trigger", we cannot always assess how
 to fix the problem.

 In one implementation (not the one illustrated above), the problem
 manifested itself when (1) the sender received a zero window and
 stalled; (2) eventually an ACK arrived that offered a window
 larger than that in effect at the time of the stall; (3) the
 sender transmitted out of the buffer of data it held at the time
 of the stall, but (4) failed to limit this transfer to the buffer
 length, instead using the newly advertised (and larger) offered
 window. Consequently, in addition to the valid buffer contents,
 it sent whatever garbage values followed the end of the buffer.
 If it then retransmitted the corresponding sequence numbers, at
 that point it sent the correct data, resulting in an inconsistent
 retransmission. Note that this instance of the problem reflects a
 more general problem, that of initially transmitting incorrect
 data.

2.5.

 Name of Problem
 Failure to retain above-sequence data

 Classification
 Congestion control, performance

Paxson, et. al. Informational [Page 13]

RFC 2525 TCP Implementation Problems March 1999

 Description
 When a TCP receives an "above sequence" segment, meaning one with
 a sequence number exceeding RCV.NXT but below RCV.NXT+RCV.WND, it
 SHOULD queue the segment for later delivery (RFC 1122, 4.2.2.20).
 (See RFC 793 for the definition of RCV.NXT and RCV.WND.) A TCP
 that fails to do so is said to exhibit "Failure to retain above-
 sequence data".

 It may sometimes be appropriate for a TCP to discard above-
 sequence data to reclaim memory. If they do so only rarely, then
 we would not consider them to exhibit this problem. Instead, the
 particular concern is with TCPs that always discard above-sequence
 data.

 Significance
 In environments prone to packet loss, detrimental to the
 performance of both other connections and the connection itself.

 Implications
 In times of congestion, a failure to retain above-sequence data
 will lead to numerous otherwise-unnecessary retransmissions,
 aggravating the congestion and potentially reducing performance by
 a large factor.

 Relevant RFCs
 RFC 1122 revises RFC 793 by upgrading the latter’s MAY to a SHOULD
 on this issue.

 Trace file demonstrating it
 Made using tcpdump recording at the receiving TCP. No losses
 reported by the packet filter.

 B is the TCP sender, A the receiver. A exhibits failure to retain
 above sequence-data:

 10:38:10.164860 B > A: . 221078:221614(536) ack 1 win 33232 [tos 0x8]
 10:38:10.170809 B > A: . 221614:222150(536) ack 1 win 33232 [tos 0x8]
 10:38:10.177183 B > A: . 222150:222686(536) ack 1 win 33232 [tos 0x8]
 10:38:10.225039 A > B: . ack 222686 win 25800

 Here B has sent up to (relative) sequence 222686 in-sequence, and
 A accordingly acknowledges.

 10:38:10.268131 B > A: . 223222:223758(536) ack 1 win 33232 [tos 0x8]
 10:38:10.337995 B > A: . 223758:224294(536) ack 1 win 33232 [tos 0x8]
 10:38:10.344065 B > A: . 224294:224830(536) ack 1 win 33232 [tos 0x8]
 10:38:10.350169 B > A: . 224830:225366(536) ack 1 win 33232 [tos 0x8]
 10:38:10.356362 B > A: . 225366:225902(536) ack 1 win 33232 [tos 0x8]

Paxson, et. al. Informational [Page 14]

RFC 2525 TCP Implementation Problems March 1999

 10:38:10.362445 B > A: . 225902:226438(536) ack 1 win 33232 [tos 0x8]
 10:38:10.368579 B > A: . 226438:226974(536) ack 1 win 33232 [tos 0x8]
 10:38:10.374732 B > A: . 226974:227510(536) ack 1 win 33232 [tos 0x8]
 10:38:10.380825 B > A: . 227510:228046(536) ack 1 win 33232 [tos 0x8]
 10:38:10.387027 B > A: . 228046:228582(536) ack 1 win 33232 [tos 0x8]
 10:38:10.393053 B > A: . 228582:229118(536) ack 1 win 33232 [tos 0x8]
 10:38:10.399193 B > A: . 229118:229654(536) ack 1 win 33232 [tos 0x8]
 10:38:10.405356 B > A: . 229654:230190(536) ack 1 win 33232 [tos 0x8]

 A now receives 13 additional packets from B. These are above-
 sequence because 222686:223222 was dropped. The packets do
 however fit within the offered window of 25800. A does not
 generate any duplicate ACKs for them.

 The trace contributor (V. Paxson) verified that these 13 packets
 had valid IP and TCP checksums.

 10:38:11.917728 B > A: . 222686:223222(536) ack 1 win 33232 [tos 0x8]
 10:38:11.930925 A > B: . ack 223222 win 32232

 B times out for 222686:223222 and retransmits it. Upon receiving
 it, A only acknowledges 223222. Had it retained the valid above-
 sequence packets, it would instead have ack’d 230190.

 10:38:12.048438 B > A: . 223222:223758(536) ack 1 win 33232 [tos 0x8]
 10:38:12.054397 B > A: . 223758:224294(536) ack 1 win 33232 [tos 0x8]
 10:38:12.068029 A > B: . ack 224294 win 31696

 B retransmits two more packets, and A only acknowledges them.
 This pattern continues as B retransmits the entire set of
 previously-received packets.

 A second trace confirmed that the problem is repeatable.

 Trace file demonstrating correct behavior
 Made using tcpdump recording at the receiving TCP (C). No losses
 reported by the packet filter.

 09:11:25.790417 D > C: . 33793:34305(512) ack 1 win 61440
 09:11:25.791393 D > C: . 34305:34817(512) ack 1 win 61440
 09:11:25.792369 D > C: . 34817:35329(512) ack 1 win 61440
 09:11:25.792369 D > C: . 35329:35841(512) ack 1 win 61440
 09:11:25.793345 D > C: . 36353:36865(512) ack 1 win 61440
 09:11:25.794321 C > D: . ack 35841 win 59904

 A sequence hole occurs because 35841:36353 has been dropped.

Paxson, et. al. Informational [Page 15]

RFC 2525 TCP Implementation Problems March 1999

 09:11:25.794321 D > C: . 36865:37377(512) ack 1 win 61440
 09:11:25.794321 C > D: . ack 35841 win 59904
 09:11:25.795297 D > C: . 37377:37889(512) ack 1 win 61440
 09:11:25.795297 C > D: . ack 35841 win 59904
 09:11:25.796273 C > D: . ack 35841 win 61440
 09:11:25.798225 D > C: . 37889:38401(512) ack 1 win 61440
 09:11:25.799201 C > D: . ack 35841 win 61440
 09:11:25.807009 D > C: . 38401:38913(512) ack 1 win 61440
 09:11:25.807009 C > D: . ack 35841 win 61440
 (many additional lines omitted)
 09:11:25.884113 D > C: . 52737:53249(512) ack 1 win 61440
 09:11:25.884113 C > D: . ack 35841 win 61440

 Each additional, above-sequence packet C receives from D elicits a
 duplicate ACK for 35841.

 09:11:25.887041 D > C: . 35841:36353(512) ack 1 win 61440
 09:11:25.887041 C > D: . ack 53249 win 44032

 D retransmits 35841:36353 and C acknowledges receipt of data all
 the way up to 53249.

 References
 This problem is documented in [Paxson97].

 How to detect
 Packet loss is common enough in the Internet that generally it is
 not difficult to find an Internet path that will result in some
 above-sequence packets arriving. A TCP that exhibits "Failure to
 retain ..." may not generate duplicate ACKs for these packets.
 However, some TCPs that do retain above-sequence data also do not
 generate duplicate ACKs, so failure to do so does not definitively
 identify the problem. Instead, the key observation is whether
 upon retransmission of the dropped packet, data that was
 previously above-sequence is acknowledged.

 Two considerations in detecting this problem using a packet trace
 are that it is easiest to do so with a trace made at the TCP
 receiver, in order to unambiguously determine which packets
 arrived successfully, and that such packets may still be correctly
 discarded if they arrive with checksum errors. The latter can be
 tested by capturing the entire packet contents and performing the
 IP and TCP checksum algorithms to verify their integrity; or by
 confirming that the packets arrive with the same checksum and
 contents as that with which they were sent, with a presumption
 that the sending TCP correctly calculates checksums for the
 packets it transmits.

Paxson, et. al. Informational [Page 16]

RFC 2525 TCP Implementation Problems March 1999

 It is considerably easier to verify that an implementation does
 NOT exhibit this problem. This can be done by recording a trace
 at the data sender, and observing that sometimes after a
 retransmission the receiver acknowledges a higher sequence number
 than just that which was retransmitted.

 How to fix
 If the root problem is that the implementation lacks buffer, then
 then unfortunately this requires significant work to fix.
 However, doing so is important, for reasons outlined above.

2.6.

 Name of Problem
 Extra additive constant in congestion avoidance

 Classification
 Congestion control / performance

 Description
 RFC 1122 section 4.2.2.15 states that TCP MUST implement
 Jacobson’s "congestion avoidance" algorithm [Jacobson88], which
 calls for increasing the congestion window, cwnd, by:

 MSS * MSS / cwnd

 for each ACK received for new data [RFC2001]. This has the effect
 of increasing cwnd by approximately one segment in each round trip
 time.

 Some TCP implementations add an additional fraction of a segment
 (typically MSS/8) to cwnd for each ACK received for new data
 [Stevens94, Wright95]:

 (MSS * MSS / cwnd) + MSS/8

 These implementations exhibit "Extra additive constant in
 congestion avoidance".

 Significance
 May be detrimental to performance even in completely uncongested
 environments (see Implications).

 In congested environments, may also be detrimental to the
 performance of other connections.

Paxson, et. al. Informational [Page 17]

RFC 2525 TCP Implementation Problems March 1999

 Implications
 The extra additive term allows a TCP to more aggressively open its
 congestion window (quadratic rather than linear increase). For
 congested networks, this can increase the loss rate experienced by
 all connections sharing a bottleneck with the aggressive TCP.

 However, even for completely uncongested networks, the extra
 additive term can lead to diminished performance, as follows. In
 congestion avoidance, a TCP sender probes the network path to
 determine its available capacity, which often equates to the
 number of buffers available at a bottleneck link. With linear
 congestion avoidance, the TCP only probes for sufficient capacity
 (buffer) to hold one extra packet per RTT.

 Thus, when it exceeds the available capacity, generally only one
 packet will be lost (since on the previous RTT it already found
 that the path could sustain a window with one less packet in
 flight). If the congestion window is sufficiently large, then the
 TCP will recover from this single loss using fast retransmission
 and avoid an expensive (in terms of performance) retransmission
 timeout.

 However, when the additional additive term is used, then cwnd can
 increase by more than one packet per RTT, in which case the TCP
 probes more aggressively. If in the previous RTT it had reached
 the available capacity of the path, then the excess due to the
 extra increase will again be lost, but now this will result in
 multiple losses from the flight instead of a single loss. TCPs
 that do not utilize SACK [RFC2018] generally will not recover from
 multiple losses without incurring a retransmission timeout
 [Fall96,Hoe96], significantly diminishing performance.

 Relevant RFCs
 RFC 1122 requires use of the "congestion avoidance" algorithm.
 RFC 2001 outlines the fast retransmit/fast recovery algorithms.
 RFC 2018 discusses the SACK option.

 Trace file demonstrating it
 Recorded using tcpdump running on the same FDDI LAN as host A.
 Host A is the sender and host B is the receiver. The connection
 establishment specified an MSS of 4,312 bytes and a window scale
 factor of 4. We omit the establishment and the first 2.5 MB of
 data transfer, as the problem is best demonstrated when the window
 has grown to a large value. At the beginning of the trace
 excerpt, the congestion window is 31 packets. The connection is
 never receiver-window limited, so we omit window advertisements
 from the trace for clarity.

Paxson, et. al. Informational [Page 18]

RFC 2525 TCP Implementation Problems March 1999

 11:42:07.697951 B > A: . ack 2383006
 11:42:07.699388 A > B: . 2508054:2512366(4312)
 11:42:07.699962 A > B: . 2512366:2516678(4312)
 11:42:07.700012 B > A: . ack 2391630
 11:42:07.701081 A > B: . 2516678:2520990(4312)
 11:42:07.701656 A > B: . 2520990:2525302(4312)
 11:42:07.701739 B > A: . ack 2400254
 11:42:07.702685 A > B: . 2525302:2529614(4312)
 11:42:07.703257 A > B: . 2529614:2533926(4312)
 11:42:07.703295 B > A: . ack 2408878
 11:42:07.704414 A > B: . 2533926:2538238(4312)
 11:42:07.704989 A > B: . 2538238:2542550(4312)
 11:42:07.705040 B > A: . ack 2417502
 11:42:07.705935 A > B: . 2542550:2546862(4312)
 11:42:07.706506 A > B: . 2546862:2551174(4312)
 11:42:07.706544 B > A: . ack 2426126
 11:42:07.707480 A > B: . 2551174:2555486(4312)
 11:42:07.708051 A > B: . 2555486:2559798(4312)
 11:42:07.708088 B > A: . ack 2434750
 11:42:07.709030 A > B: . 2559798:2564110(4312)
 11:42:07.709604 A > B: . 2564110:2568422(4312)
 11:42:07.710175 A > B: . 2568422:2572734(4312) *

 11:42:07.710215 B > A: . ack 2443374
 11:42:07.710799 A > B: . 2572734:2577046(4312)
 11:42:07.711368 A > B: . 2577046:2581358(4312)
 11:42:07.711405 B > A: . ack 2451998
 11:42:07.712323 A > B: . 2581358:2585670(4312)
 11:42:07.712898 A > B: . 2585670:2589982(4312)
 11:42:07.712938 B > A: . ack 2460622
 11:42:07.713926 A > B: . 2589982:2594294(4312)
 11:42:07.714501 A > B: . 2594294:2598606(4312)
 11:42:07.714547 B > A: . ack 2469246
 11:42:07.715747 A > B: . 2598606:2602918(4312)
 11:42:07.716287 A > B: . 2602918:2607230(4312)
 11:42:07.716328 B > A: . ack 2477870
 11:42:07.717146 A > B: . 2607230:2611542(4312)
 11:42:07.717717 A > B: . 2611542:2615854(4312)
 11:42:07.717762 B > A: . ack 2486494
 11:42:07.718754 A > B: . 2615854:2620166(4312)
 11:42:07.719331 A > B: . 2620166:2624478(4312)
 11:42:07.719906 A > B: . 2624478:2628790(4312) **

 11:42:07.719958 B > A: . ack 2495118
 11:42:07.720500 A > B: . 2628790:2633102(4312)
 11:42:07.721080 A > B: . 2633102:2637414(4312)
 11:42:07.721739 B > A: . ack 2503742
 11:42:07.722348 A > B: . 2637414:2641726(4312)

Paxson, et. al. Informational [Page 19]

RFC 2525 TCP Implementation Problems March 1999

 11:42:07.722918 A > B: . 2641726:2646038(4312)
 11:42:07.769248 B > A: . ack 2512366

 The receiver’s acknowledgment policy is one ACK per two packets
 received. Thus, for each ACK arriving at host A, two new packets
 are sent, except when cwnd increases due to congestion avoidance,
 in which case three new packets are sent.

 With an ack-every-two-packets policy, cwnd should only increase
 one MSS per 2 RTT. However, at the point marked "*" the window
 increases after 7 ACKs have arrived, and then again at "**" after
 6 more ACKs.

 While we do not have space to show the effect, this trace suffered
 from repeated timeout retransmissions due to multiple packet
 losses during a single RTT.

 Trace file demonstrating correct behavior
 Made using the same host and tracing setup as above, except now
 A’s TCP has been modified to remove the MSS/8 additive constant.
 Tcpdump reported 77 packet drops; the excerpt below is fully
 self-consistent so it is unlikely that any of these occurred
 during the excerpt.

 We again begin when cwnd is 31 packets (this occurs significantly
 later in the trace, because the congestion avoidance is now less
 aggressive with opening the window).

 14:22:21.236757 B > A: . ack 5194679
 14:22:21.238192 A > B: . 5319727:5324039(4312)
 14:22:21.238770 A > B: . 5324039:5328351(4312)
 14:22:21.238821 B > A: . ack 5203303
 14:22:21.240158 A > B: . 5328351:5332663(4312)
 14:22:21.240738 A > B: . 5332663:5336975(4312)
 14:22:21.270422 B > A: . ack 5211927
 14:22:21.271883 A > B: . 5336975:5341287(4312)
 14:22:21.272458 A > B: . 5341287:5345599(4312)
 14:22:21.279099 B > A: . ack 5220551
 14:22:21.280539 A > B: . 5345599:5349911(4312)
 14:22:21.281118 A > B: . 5349911:5354223(4312)
 14:22:21.281183 B > A: . ack 5229175
 14:22:21.282348 A > B: . 5354223:5358535(4312)
 14:22:21.283029 A > B: . 5358535:5362847(4312)
 14:22:21.283089 B > A: . ack 5237799
 14:22:21.284213 A > B: . 5362847:5367159(4312)
 14:22:21.284779 A > B: . 5367159:5371471(4312)
 14:22:21.285976 B > A: . ack 5246423
 14:22:21.287465 A > B: . 5371471:5375783(4312)

Paxson, et. al. Informational [Page 20]

RFC 2525 TCP Implementation Problems March 1999

 14:22:21.288036 A > B: . 5375783:5380095(4312)
 14:22:21.288073 B > A: . ack 5255047
 14:22:21.289155 A > B: . 5380095:5384407(4312)
 14:22:21.289725 A > B: . 5384407:5388719(4312)
 14:22:21.289762 B > A: . ack 5263671
 14:22:21.291090 A > B: . 5388719:5393031(4312)
 14:22:21.291662 A > B: . 5393031:5397343(4312)
 14:22:21.291701 B > A: . ack 5272295
 14:22:21.292870 A > B: . 5397343:5401655(4312)
 14:22:21.293441 A > B: . 5401655:5405967(4312)
 14:22:21.293481 B > A: . ack 5280919
 14:22:21.294476 A > B: . 5405967:5410279(4312)
 14:22:21.295053 A > B: . 5410279:5414591(4312)
 14:22:21.295106 B > A: . ack 5289543
 14:22:21.296306 A > B: . 5414591:5418903(4312)
 14:22:21.296878 A > B: . 5418903:5423215(4312)
 14:22:21.296917 B > A: . ack 5298167
 14:22:21.297716 A > B: . 5423215:5427527(4312)
 14:22:21.298285 A > B: . 5427527:5431839(4312)
 14:22:21.298324 B > A: . ack 5306791
 14:22:21.299413 A > B: . 5431839:5436151(4312)
 14:22:21.299986 A > B: . 5436151:5440463(4312)
 14:22:21.303696 B > A: . ack 5315415
 14:22:21.305177 A > B: . 5440463:5444775(4312)
 14:22:21.305755 A > B: . 5444775:5449087(4312)
 14:22:21.308032 B > A: . ack 5324039
 14:22:21.309525 A > B: . 5449087:5453399(4312)
 14:22:21.310101 A > B: . 5453399:5457711(4312)
 14:22:21.310144 B > A: . ack 5332663 ***

 14:22:21.311615 A > B: . 5457711:5462023(4312)
 14:22:21.312198 A > B: . 5462023:5466335(4312)
 14:22:21.341876 B > A: . ack 5341287
 14:22:21.343451 A > B: . 5466335:5470647(4312)
 14:22:21.343985 A > B: . 5470647:5474959(4312)
 14:22:21.350304 B > A: . ack 5349911
 14:22:21.351852 A > B: . 5474959:5479271(4312)
 14:22:21.352430 A > B: . 5479271:5483583(4312)
 14:22:21.352484 B > A: . ack 5358535
 14:22:21.353574 A > B: . 5483583:5487895(4312)
 14:22:21.354149 A > B: . 5487895:5492207(4312)
 14:22:21.354205 B > A: . ack 5367159
 14:22:21.355467 A > B: . 5492207:5496519(4312)
 14:22:21.356039 A > B: . 5496519:5500831(4312)
 14:22:21.357361 B > A: . ack 5375783
 14:22:21.358855 A > B: . 5500831:5505143(4312)
 14:22:21.359424 A > B: . 5505143:5509455(4312)
 14:22:21.359465 B > A: . ack 5384407

Paxson, et. al. Informational [Page 21]

RFC 2525 TCP Implementation Problems March 1999

 14:22:21.360605 A > B: . 5509455:5513767(4312)
 14:22:21.361181 A > B: . 5513767:5518079(4312)
 14:22:21.361225 B > A: . ack 5393031
 14:22:21.362485 A > B: . 5518079:5522391(4312)
 14:22:21.363057 A > B: . 5522391:5526703(4312)
 14:22:21.363096 B > A: . ack 5401655
 14:22:21.364236 A > B: . 5526703:5531015(4312)
 14:22:21.364810 A > B: . 5531015:5535327(4312)
 14:22:21.364867 B > A: . ack 5410279
 14:22:21.365819 A > B: . 5535327:5539639(4312)
 14:22:21.366386 A > B: . 5539639:5543951(4312)
 14:22:21.366427 B > A: . ack 5418903
 14:22:21.367586 A > B: . 5543951:5548263(4312)
 14:22:21.368158 A > B: . 5548263:5552575(4312)
 14:22:21.368199 B > A: . ack 5427527
 14:22:21.369189 A > B: . 5552575:5556887(4312)
 14:22:21.369758 A > B: . 5556887:5561199(4312)
 14:22:21.369803 B > A: . ack 5436151
 14:22:21.370814 A > B: . 5561199:5565511(4312)
 14:22:21.371398 A > B: . 5565511:5569823(4312)
 14:22:21.375159 B > A: . ack 5444775
 14:22:21.376658 A > B: . 5569823:5574135(4312)
 14:22:21.377235 A > B: . 5574135:5578447(4312)
 14:22:21.379303 B > A: . ack 5453399
 14:22:21.380802 A > B: . 5578447:5582759(4312)
 14:22:21.381377 A > B: . 5582759:5587071(4312)
 14:22:21.381947 A > B: . 5587071:5591383(4312) ****

 "***" marks the end of the first round trip. Note that cwnd did
 not increase (as evidenced by each ACK eliciting two new data
 packets). Only at "****", which comes near the end of the second
 round trip, does cwnd increase by one packet.

 This trace did not suffer any timeout retransmissions. It
 transferred the same amount of data as the first trace in about
 half as much time. This difference is repeatable between hosts A
 and B.

 References
 [Stevens94] and [Wright95] discuss this problem. The problem of
 Reno TCP failing to recover from multiple losses except via a
 retransmission timeout is discussed in [Fall96,Hoe96].

Paxson, et. al. Informational [Page 22]

RFC 2525 TCP Implementation Problems March 1999

 How to detect
 If source code is available, that is generally the easiest way to
 detect this problem. Search for each modification to the cwnd
 variable; (at least) one of these will be for congestion
 avoidance, and inspection of the related code should immediately
 identify the problem if present.

 The problem can also be detected by closely examining packet
 traces taken near the sender. During congestion avoidance, cwnd
 will increase by an additional segment upon the receipt of
 (typically) eight acknowledgements without a loss. This increase
 is in addition to the one segment increase per round trip time (or
 two round trip times if the receiver is using delayed ACKs).

 Furthermore, graphs of the sequence number vs. time, taken from
 packet traces, are normally linear during congestion avoidance.
 When viewing packet traces of transfers from senders exhibiting
 this problem, the graphs appear quadratic instead of linear.

 Finally, the traces will show that, with sufficiently large
 windows, nearly every loss event results in a timeout.

 How to fix
 This problem may be corrected by removing the "+ MSS/8" term from
 the congestion avoidance code that increases cwnd each time an ACK
 of new data is received.

2.7.

 Name of Problem
 Initial RTO too low

 Classification
 Performance

 Description
 When a TCP first begins transmitting data, it lacks the RTT
 measurements necessary to have computed an adaptive retransmission
 timeout (RTO). RFC 1122, 4.2.3.1, states that a TCP SHOULD
 initialize RTO to 3 seconds. A TCP that uses a lower value
 exhibits "Initial RTO too low".

 Significance
 In environments with large RTTs (where "large" means any value
 larger than the initial RTO), TCPs will experience very poor
 performance.

Paxson, et. al. Informational [Page 23]

RFC 2525 TCP Implementation Problems March 1999

 Implications
 Whenever RTO < RTT, very poor performance can result as packets
 are unnecessarily retransmitted (because RTO will expire before an
 ACK for the packet can arrive) and the connection enters slow
 start and congestion avoidance. Generally, the algorithms for
 computing RTO avoid this problem by adding a positive term to the
 estimated RTT. However, when a connection first begins it must
 use some estimate for RTO, and if it picks a value less than RTT,
 the above problems will arise.

 Furthermore, when the initial RTO < RTT, it can take a long time
 for the TCP to correct the problem by adapting the RTT estimate,
 because the use of Karn’s algorithm (mandated by RFC 1122,
 4.2.3.1) will discard many of the candidate RTT measurements made
 after the first timeout, since they will be measurements of
 retransmitted segments.

 Relevant RFCs
 RFC 1122 states that TCPs SHOULD initialize RTO to 3 seconds and
 MUST implement Karn’s algorithm.

 Trace file demonstrating it
 The following trace file was taken using tcpdump at host A, the
 data sender. The advertised window and SYN options have been
 omitted for clarity.

 07:52:39.870301 A > B: S 2786333696:2786333696(0)
 07:52:40.548170 B > A: S 130240000:130240000(0) ack 2786333697
 07:52:40.561287 A > B: P 1:513(512) ack 1
 07:52:40.753466 A > B: . 1:513(512) ack 1
 07:52:41.133687 A > B: . 1:513(512) ack 1
 07:52:41.458529 B > A: . ack 513
 07:52:41.458686 A > B: . 513:1025(512) ack 1
 07:52:41.458797 A > B: P 1025:1537(512) ack 1
 07:52:41.541633 B > A: . ack 513
 07:52:41.703732 A > B: . 513:1025(512) ack 1
 07:52:42.044875 B > A: . ack 513
 07:52:42.173728 A > B: . 513:1025(512) ack 1
 07:52:42.330861 B > A: . ack 1537
 07:52:42.331129 A > B: . 1537:2049(512) ack 1
 07:52:42.331262 A > B: P 2049:2561(512) ack 1
 07:52:42.623673 A > B: . 1537:2049(512) ack 1
 07:52:42.683203 B > A: . ack 1537
 07:52:43.044029 B > A: . ack 1537
 07:52:43.193812 A > B: . 1537:2049(512) ack 1

Paxson, et. al. Informational [Page 24]

RFC 2525 TCP Implementation Problems March 1999

 Note from the SYN/SYN-ACK exchange, the RTT is over 600 msec.
 However, from the elapsed time between the third and fourth lines
 (the first packet being sent and then retransmitted), it is
 apparent the RTO was initialized to under 200 msec. The next line
 shows that this value has doubled to 400 msec (correct exponential
 backoff of RTO), but that still does not suffice to avoid an
 unnecessary retransmission.

 Finally, an ACK from B arrives for the first segment. Later two
 more duplicate ACKs for 513 arrive, indicating that both the
 original and the two retransmissions arrived at B. (Indeed, a
 concurrent trace at B showed that no packets were lost during the
 entire connection). This ACK opens the congestion window to two
 packets, which are sent back-to-back, but at 07:52:41.703732 RTO
 again expires after a little over 200 msec, leading to an
 unnecessary retransmission, and the pattern repeats. By the end
 of the trace excerpt above, 1536 bytes have been successfully
 transmitted from A to B, over an interval of more than 2 seconds,
 reflecting terrible performance.

 Trace file demonstrating correct behavior
 The following trace file was taken using tcpdump at host C, the
 data sender. The advertised window and SYN options have been
 omitted for clarity.

 17:30:32.090299 C > D: S 2031744000:2031744000(0)
 17:30:32.900325 D > C: S 262737964:262737964(0) ack 2031744001
 17:30:32.900326 C > D: . ack 1
 17:30:32.910326 C > D: . 1:513(512) ack 1
 17:30:34.150355 D > C: . ack 513
 17:30:34.150356 C > D: . 513:1025(512) ack 1
 17:30:34.150357 C > D: . 1025:1537(512) ack 1
 17:30:35.170384 D > C: . ack 1025
 17:30:35.170385 C > D: . 1537:2049(512) ack 1
 17:30:35.170386 C > D: . 2049:2561(512) ack 1
 17:30:35.320385 D > C: . ack 1537
 17:30:35.320386 C > D: . 2561:3073(512) ack 1
 17:30:35.320387 C > D: . 3073:3585(512) ack 1
 17:30:35.730384 D > C: . ack 2049

 The initial SYN/SYN-ACK exchange shows that RTT is more than 800
 msec, and for some subsequent packets it rises above 1 second, but
 C’s retransmit timer does not ever expire.

 References
 This problem is documented in [Paxson97].

Paxson, et. al. Informational [Page 25]

RFC 2525 TCP Implementation Problems March 1999

 How to detect
 This problem is readily detected by inspecting a packet trace of
 the startup of a TCP connection made over a long-delay path. It
 can be diagnosed from either a sender-side or receiver-side trace.
 Long-delay paths can often be found by locating remote sites on
 other continents.

 How to fix
 As this problem arises from a faulty initialization, one hopes
 fixing it requires a one-line change to the TCP source code.

2.8.

 Name of Problem
 Failure of window deflation after loss recovery

 Classification
 Congestion control / performance

 Description
 The fast recovery algorithm allows TCP senders to continue to
 transmit new segments during loss recovery. First, fast
 retransmission is initiated after a TCP sender receives three
 duplicate ACKs. At this point, a retransmission is sent and cwnd
 is halved. The fast recovery algorithm then allows additional
 segments to be sent when sufficient additional duplicate ACKs
 arrive. Some implementations of fast recovery compute when to
 send additional segments by artificially incrementing cwnd, first
 by three segments to account for the three duplicate ACKs that
 triggered fast retransmission, and subsequently by 1 MSS for each
 new duplicate ACK that arrives. When cwnd allows, the sender
 transmits new data segments.

 When an ACK arrives that covers new data, cwnd is to be reduced by
 the amount by which it was artificially increased. However, some
 TCP implementations fail to "deflate" the window, causing an
 inappropriate amount of data to be sent into the network after
 recovery. One cause of this problem is the "header prediction"
 code, which is used to handle incoming segments that require
 little work. In some implementations of TCP, the header
 prediction code does not check to make sure cwnd has not been
 artificially inflated, and therefore does not reduce the
 artificially increased cwnd when appropriate.

 Significance
 TCP senders that exhibit this problem will transmit a burst of
 data immediately after recovery, which can degrade performance, as
 well as network stability. Effectively, the sender does not

Paxson, et. al. Informational [Page 26]

RFC 2525 TCP Implementation Problems March 1999

 reduce the size of cwnd as much as it should (to half its value
 when loss was detected), if at all. This can harm the performance
 of the TCP connection itself, as well as competing TCP flows.

 Implications
 A TCP sender exhibiting this problem does not reduce cwnd
 appropriately in times of congestion, and therefore may contribute
 to congestive collapse.

 Relevant RFCs
 RFC 2001 outlines the fast retransmit/fast recovery algorithms.
 [Brakmo95] outlines this implementation problem and offers a fix.

 Trace file demonstrating it
 The following trace file was taken using tcpdump at host A, the
 data sender. The advertised window (which never changed) has been
 omitted for clarity, except for the first packet sent by each
 host.

 08:22:56.825635 A.7505 > B.7505: . 29697:30209(512) ack 1 win 4608
 08:22:57.038794 B.7505 > A.7505: . ack 27649 win 4096
 08:22:57.039279 A.7505 > B.7505: . 30209:30721(512) ack 1
 08:22:57.321876 B.7505 > A.7505: . ack 28161
 08:22:57.322356 A.7505 > B.7505: . 30721:31233(512) ack 1
 08:22:57.347128 B.7505 > A.7505: . ack 28673
 08:22:57.347572 A.7505 > B.7505: . 31233:31745(512) ack 1
 08:22:57.347782 A.7505 > B.7505: . 31745:32257(512) ack 1
 08:22:57.936393 B.7505 > A.7505: . ack 29185
 08:22:57.936864 A.7505 > B.7505: . 32257:32769(512) ack 1
 08:22:57.950802 B.7505 > A.7505: . ack 29697 win 4096
 08:22:57.951246 A.7505 > B.7505: . 32769:33281(512) ack 1
 08:22:58.169422 B.7505 > A.7505: . ack 29697
 08:22:58.638222 B.7505 > A.7505: . ack 29697
 08:22:58.643312 B.7505 > A.7505: . ack 29697
 08:22:58.643669 A.7505 > B.7505: . 29697:30209(512) ack 1
 08:22:58.936436 B.7505 > A.7505: . ack 29697
 08:22:59.002614 B.7505 > A.7505: . ack 29697
 08:22:59.003026 A.7505 > B.7505: . 33281:33793(512) ack 1
 08:22:59.682902 B.7505 > A.7505: . ack 33281
 08:22:59.683391 A.7505 > B.7505: P 33793:34305(512) ack 1
 08:22:59.683748 A.7505 > B.7505: P 34305:34817(512) ack 1 ***
 08:22:59.684043 A.7505 > B.7505: P 34817:35329(512) ack 1
 08:22:59.684266 A.7505 > B.7505: P 35329:35841(512) ack 1
 08:22:59.684567 A.7505 > B.7505: P 35841:36353(512) ack 1
 08:22:59.684810 A.7505 > B.7505: P 36353:36865(512) ack 1
 08:22:59.685094 A.7505 > B.7505: P 36865:37377(512) ack 1

Paxson, et. al. Informational [Page 27]

RFC 2525 TCP Implementation Problems March 1999

 The first 12 lines of the trace show incoming ACKs clocking out a
 window of data segments. At this point in the transfer, cwnd is 7
 segments. The next 4 lines of the trace show 3 duplicate ACKs
 arriving from the receiver, followed by a retransmission from the
 sender. At this point, cwnd is halved (to 3 segments) and
 artificially incremented by the three duplicate ACKs that have
 arrived, making cwnd 6 segments. The next two lines show 2 more
 duplicate ACKs arriving, each of which increases cwnd by 1
 segment. So, after these two duplicate ACKs arrive the cwnd is 8
 segments and the sender has permission to send 1 new segment
 (since there are 7 segments outstanding). The next line in the
 trace shows this new segment being transmitted. The next packet
 shown in the trace is an ACK from host B that covers the first 7
 outstanding segments (all but the new segment sent during
 recovery). This should cause cwnd to be reduced to 3 segments and
 2 segments to be transmitted (since there is already 1 outstanding
 segment in the network). However, as shown by the last 7 lines of
 the trace, cwnd is not reduced, causing a line-rate burst of 7 new
 segments.

 Trace file demonstrating correct behavior
 The trace would appear identical to the one above, only it would
 stop after the line marked "***", because at this point host A
 would correctly reduce cwnd after recovery, allowing only 2
 segments to be transmitted, rather than producing a burst of 7
 segments.

 References
 This problem is documented and the performance implications
 analyzed in [Brakmo95].

 How to detect
 Failure of window deflation after loss recovery can be found by
 examining sender-side packet traces recorded during periods of
 moderate loss (so cwnd can grow large enough to allow for fast
 recovery when loss occurs).

 How to fix
 When this bug is caused by incorrect header prediction, the fix is
 to add a predicate to the header prediction test that checks to
 see whether cwnd is inflated; if so, the header prediction test
 fails and the usual ACK processing occurs, which (in this case)
 takes care to deflate the window. See [Brakmo95] for details.

2.9.

 Name of Problem
 Excessively short keepalive connection timeout

Paxson, et. al. Informational [Page 28]

RFC 2525 TCP Implementation Problems March 1999

 Classification
 Reliability

 Description
 Keep-alive is a mechanism for checking whether an idle connection
 is still alive. According to RFC 1122, keepalive should only be
 invoked in server applications that might otherwise hang
 indefinitely and consume resources unnecessarily if a client
 crashes or aborts a connection during a network failure.

 RFC 1122 also specifies that if a keep-alive mechanism is
 implemented it MUST NOT interpret failure to respond to any
 specific probe as a dead connection. The RFC does not specify a
 particular mechanism for timing out a connection when no response
 is received for keepalive probes. However, if the mechanism does
 not allow ample time for recovery from network congestion or
 delay, connections may be timed out unnecessarily.

 Significance
 In congested networks, can lead to unwarranted termination of
 connections.

 Implications
 It is possible for the network connection between two peer
 machines to become congested or to exhibit packet loss at the time
 that a keep-alive probe is sent on a connection. If the keep-
 alive mechanism does not allow sufficient time before dropping
 connections in the face of unacknowledged probes, connections may
 be dropped even when both peers of a connection are still alive.

 Relevant RFCs
 RFC 1122 specifies that the keep-alive mechanism may be provided.
 It does not specify a mechanism for determining dead connections
 when keepalive probes are not acknowledged.

 Trace file demonstrating it
 Made using the Orchestra tool at the peer of the machine using
 keep-alive. After connection establishment, incoming keep-alives
 were dropped by Orchestra to simulate a dead connection.

 22:11:12.040000 A > B: 22666019:0 win 8192 datasz 4 SYN
 22:11:12.060000 B > A: 2496001:22666020 win 4096 datasz 4 SYN ACK
 22:11:12.130000 A > B: 22666020:2496002 win 8760 datasz 0 ACK
 (more than two hours elapse)
 00:23:00.680000 A > B: 22666019:2496002 win 8760 datasz 1 ACK
 00:23:01.770000 A > B: 22666019:2496002 win 8760 datasz 1 ACK
 00:23:02.870000 A > B: 22666019:2496002 win 8760 datasz 1 ACK
 00:23.03.970000 A > B: 22666019:2496002 win 8760 datasz 1 ACK

Paxson, et. al. Informational [Page 29]

RFC 2525 TCP Implementation Problems March 1999

 00:23.05.070000 A > B: 22666019:2496002 win 8760 datasz 1 ACK

 The initial three packets are the SYN exchange for connection
 setup. About two hours later, the keepalive timer fires because
 the connection has been idle. Keepalive probes are transmitted a
 total of 5 times, with a 1 second spacing between probes, after
 which the connection is dropped. This is problematic because a 5
 second network outage at the time of the first probe results in
 the connection being killed.

 Trace file demonstrating correct behavior
 Made using the Orchestra tool at the peer of the machine using
 keep-alive. After connection establishment, incoming keep-alives
 were dropped by Orchestra to simulate a dead connection.

 16:01:52.130000 A > B: 1804412929:0 win 4096 datasz 4 SYN
 16:01:52.360000 B > A: 16512001:1804412930 win 4096 datasz 4 SYN ACK
 16:01:52.410000 A > B: 1804412930:16512002 win 4096 datasz 0 ACK
 (two hours elapse)
 18:01:57.170000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
 18:03:12.220000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
 18:04:27.270000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
 18:05:42.320000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
 18:06:57.370000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
 18:08:12.420000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
 18:09:27.480000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
 18:10:43.290000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
 18:11:57.580000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
 18:13:12.630000 A > B: 1804412929:16512002 win 4096 datasz 0 RST ACK

 In this trace, when the keep-alive timer expires, 9 keepalive
 probes are sent at 75 second intervals. 75 seconds after the last
 probe is sent, a final RST segment is sent indicating that the
 connection has been closed. This implementation waits about 11
 minutes before timing out the connection, while the first
 implementation shown allows only 5 seconds.

 References
 This problem is documented in [Dawson97].

 How to detect
 For implementations manifesting this problem, it shows up on a
 packet trace after the keepalive timer fires if the peer machine
 receiving the keepalive does not respond. Usually the keepalive
 timer will fire at least two hours after keepalive is turned on,
 but it may be sooner if the timer value has been configured lower,
 or if the keepalive mechanism violates the specification (see
 Insufficient interval between keepalives problem). In this

Paxson, et. al. Informational [Page 30]

RFC 2525 TCP Implementation Problems March 1999

 example, suppressing the response of the peer to keepalive probes
 was accomplished using the Orchestra toolkit, which can be
 configured to drop packets. It could also have been done by
 creating a connection, turning on keepalive, and disconnecting the
 network connection at the receiver machine.

 How to fix
 This problem can be fixed by using a different method for timing
 out keepalives that allows a longer period of time to elapse
 before dropping the connection. For example, the algorithm for
 timing out on dropped data could be used. Another possibility is
 an algorithm such as the one shown in the trace above, which sends
 9 probes at 75 second intervals and then waits an additional 75
 seconds for a response before closing the connection.

2.10.

 Name of Problem
 Failure to back off retransmission timeout

 Classification
 Congestion control / reliability

 Description
 The retransmission timeout is used to determine when a packet has
 been dropped in the network. When this timeout has expired
 without the arrival of an ACK, the segment is retransmitted. Each
 time a segment is retransmitted, the timeout is adjusted according
 to an exponential backoff algorithm, doubling each time. If a TCP
 fails to receive an ACK after numerous attempts at retransmitting
 the same segment, it terminates the connection. A TCP that fails
 to double its retransmission timeout upon repeated timeouts is
 said to exhibit "Failure to back off retransmission timeout".

 Significance
 Backing off the retransmission timer is a cornerstone of network
 stability in the presence of congestion. Consequently, this bug
 can have severe adverse affects in congested networks. It also
 affects TCP reliability in congested networks, as discussed in the
 next section.

 Implications
 It is possible for the network connection between two TCP peers to
 become congested or to exhibit packet loss at the time that a
 retransmission is sent on a connection. If the retransmission
 mechanism does not allow sufficient time before dropping

Paxson, et. al. Informational [Page 31]

RFC 2525 TCP Implementation Problems March 1999

 connections in the face of unacknowledged segments, connections
 may be dropped even when, by waiting longer, the connection could
 have continued.

 Relevant RFCs
 RFC 1122 specifies mandatory exponential backoff of the
 retransmission timeout, and the termination of connections after
 some period of time (at least 100 seconds).

 Trace file demonstrating it
 Made using tcpdump on an intermediate host:

 16:51:12.671727 A > B: S 510878852:510878852(0) win 16384
 16:51:12.672479 B > A: S 2392143687:2392143687(0)
 ack 510878853 win 16384
 16:51:12.672581 A > B: . ack 1 win 16384
 16:51:15.244171 A > B: P 1:3(2) ack 1 win 16384
 16:51:15.244933 B > A: . ack 3 win 17518 (DF)

 <receiving host disconnected>

 16:51:19.381176 A > B: P 3:5(2) ack 1 win 16384
 16:51:20.162016 A > B: P 3:5(2) ack 1 win 16384
 16:51:21.161936 A > B: P 3:5(2) ack 1 win 16384
 16:51:22.161914 A > B: P 3:5(2) ack 1 win 16384
 16:51:23.161914 A > B: P 3:5(2) ack 1 win 16384
 16:51:24.161879 A > B: P 3:5(2) ack 1 win 16384
 16:51:25.161857 A > B: P 3:5(2) ack 1 win 16384
 16:51:26.161836 A > B: P 3:5(2) ack 1 win 16384
 16:51:27.161814 A > B: P 3:5(2) ack 1 win 16384
 16:51:28.161791 A > B: P 3:5(2) ack 1 win 16384
 16:51:29.161769 A > B: P 3:5(2) ack 1 win 16384
 16:51:30.161750 A > B: P 3:5(2) ack 1 win 16384
 16:51:31.161727 A > B: P 3:5(2) ack 1 win 16384

 16:51:32.161701 A > B: R 5:5(0) ack 1 win 16384

 The initial three packets are the SYN exchange for connection
 setup, then a single data packet, to verify that data can be
 transferred. Then the connection to the destination host was
 disconnected, and more data sent. Retransmissions occur every
 second for 12 seconds, and then the connection is terminated with
 a RST. This is problematic because a 12 second pause in
 connectivity could result in the termination of a connection.

 Trace file demonstrating correct behavior
 Again, a tcpdump taken from a third host:

Paxson, et. al. Informational [Page 32]

RFC 2525 TCP Implementation Problems March 1999

 16:59:05.398301 A > B: S 2503324757:2503324757(0) win 16384
 16:59:05.399673 B > A: S 2492674648:2492674648(0)
 ack 2503324758 win 16384
 16:59:05.399866 A > B: . ack 1 win 17520
 16:59:06.538107 A > B: P 1:3(2) ack 1 win 17520
 16:59:06.540977 B > A: . ack 3 win 17518 (DF)

 <receiving host disconnected>

 16:59:13.121542 A > B: P 3:5(2) ack 1 win 17520
 16:59:14.010928 A > B: P 3:5(2) ack 1 win 17520
 16:59:16.010979 A > B: P 3:5(2) ack 1 win 17520
 16:59:20.011229 A > B: P 3:5(2) ack 1 win 17520
 16:59:28.011896 A > B: P 3:5(2) ack 1 win 17520
 16:59:44.013200 A > B: P 3:5(2) ack 1 win 17520
 17:00:16.015766 A > B: P 3:5(2) ack 1 win 17520
 17:01:20.021308 A > B: P 3:5(2) ack 1 win 17520
 17:02:24.027752 A > B: P 3:5(2) ack 1 win 17520
 17:03:28.034569 A > B: P 3:5(2) ack 1 win 17520
 17:04:32.041567 A > B: P 3:5(2) ack 1 win 17520
 17:05:36.048264 A > B: P 3:5(2) ack 1 win 17520
 17:06:40.054900 A > B: P 3:5(2) ack 1 win 17520

 17:07:44.061306 A > B: R 5:5(0) ack 1 win 17520

 In this trace, when the retransmission timer expires, 12
 retransmissions are sent at exponentially-increasing intervals,
 until the interval value reaches 64 seconds, at which time the
 interval stops growing. 64 seconds after the last retransmission,
 a final RST segment is sent indicating that the connection has
 been closed. This implementation waits about 9 minutes before
 timing out the connection, while the first implementation shown
 allows only 12 seconds.

 References
 None known.

 How to detect
 A simple transfer can be easily interrupted by disconnecting the
 receiving host from the network. tcpdump or another appropriate
 tool should show the retransmissions being sent. Several trials
 in a low-rtt environment may be required to demonstrate the bug.

 How to fix
 For one of the implementations studied, this problem seemed to be
 the result of an error introduced with the addition of the
 Brakmo-Peterson RTO algorithm [Brakmo95], which can return a value
 of zero where the older Jacobson algorithm always returns a

Paxson, et. al. Informational [Page 33]

RFC 2525 TCP Implementation Problems March 1999

 positive value. Brakmo and Peterson specified an additional step
 of min(rtt + 2, RTO) to avoid problems with this. Unfortunately,
 in the implementation this step was omitted when calculating the
 exponential backoff for the RTO. This results in an RTO of 0
 seconds being multiplied by the backoff, yielding again zero, and
 then being subjected to a later MAX operation that increases it to
 1 second, regardless of the backoff factor.

 A similar TCP persist failure has the same cause.

2.11.

 Name of Problem
 Insufficient interval between keepalives

 Classification
 Reliability

 Description
 Keep-alive is a mechanism for checking whether an idle connection
 is still alive. According to RFC 1122, keep-alive may be included
 in an implementation. If it is included, the interval between
 keep-alive packets MUST be configurable, and MUST default to no
 less than two hours.

 Significance
 In congested networks, can lead to unwarranted termination of
 connections.

 Implications
 According to RFC 1122, keep-alive is not required of
 implementations because it could: (1) cause perfectly good
 connections to break during transient Internet failures; (2)
 consume unnecessary bandwidth ("if no one is using the connection,
 who cares if it is still good?"); and (3) cost money for an
 Internet path that charges for packets. Regarding this last
 point, we note that in addition the presence of dial-on-demand
 links in the route can greatly magnify the cost penalty of excess
 keepalives, potentially forcing a full-time connection on a link
 that would otherwise only be connected a few minutes a day.

 If keepalive is provided the RFC states that the required inter-
 keepalive distance MUST default to no less than two hours. If it
 does not, the probability of connections breaking increases, the
 bandwidth used due to keepalives increases, and cost increases
 over paths which charge per packet.

Paxson, et. al. Informational [Page 34]

RFC 2525 TCP Implementation Problems March 1999

 Relevant RFCs
 RFC 1122 specifies that the keep-alive mechanism may be provided.
 It also specifies the two hour minimum for the default interval
 between keepalive probes.

 Trace file demonstrating it
 Made using the Orchestra tool at the peer of the machine using
 keep-alive. Machine A was configured to use default settings for
 the keepalive timer.

 11:36:32.910000 A > B: 3288354305:0 win 28672 datasz 4 SYN
 11:36:32.930000 B > A: 896001:3288354306 win 4096 datasz 4 SYN ACK
 11:36:32.950000 A > B: 3288354306:896002 win 28672 datasz 0 ACK

 11:50:01.190000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
 11:50:01.210000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

 12:03:29.410000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
 12:03:29.430000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

 12:16:57.630000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
 12:16:57.650000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

 12:30:25.850000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
 12:30:25.870000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

 12:43:54.070000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
 12:43:54.090000 B > A: 896002:3288354306 win 4096 datasz 0 ACK

 The initial three packets are the SYN exchange for connection
 setup. About 13 minutes later, the keepalive timer fires because
 the connection is idle. The keepalive is acknowledged, and the
 timer fires again in about 13 more minutes. This behavior
 continues indefinitely until the connection is closed, and is a
 violation of the specification.

 Trace file demonstrating correct behavior
 Made using the Orchestra tool at the peer of the machine using
 keep-alive. Machine A was configured to use default settings for
 the keepalive timer.

 17:37:20.500000 A > B: 34155521:0 win 4096 datasz 4 SYN
 17:37:20.520000 B > A: 6272001:34155522 win 4096 datasz 4 SYN ACK
 17:37:20.540000 A > B: 34155522:6272002 win 4096 datasz 0 ACK

 19:37:25.430000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
 19:37:25.450000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

Paxson, et. al. Informational [Page 35]

RFC 2525 TCP Implementation Problems March 1999

 21:37:30.560000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
 21:37:30.570000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

 23:37:35.580000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
 23:37:35.600000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

 01:37:40.620000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
 01:37:40.640000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

 03:37:45.590000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
 03:37:45.610000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

 The initial three packets are the SYN exchange for connection
 setup. Just over two hours later, the keepalive timer fires
 because the connection is idle. The keepalive is acknowledged,
 and the timer fires again just over two hours later. This
 behavior continues indefinitely until the connection is closed.

 References
 This problem is documented in [Dawson97].

 How to detect
 For implementations manifesting this problem, it shows up on a
 packet trace. If the connection is left idle, the keepalive
 probes will arrive closer together than the two hour minimum.

2.12.

 Name of Problem
 Window probe deadlock

 Classification
 Reliability

 Description
 When an application reads a single byte from a full window, the
 window should not be updated, in order to avoid Silly Window
 Syndrome (SWS; see [RFC813]). If the remote peer uses a single
 byte of data to probe the window, that byte can be accepted into
 the buffer. In some implementations, at this point a negative
 argument to a signed comparison causes all further new data to be
 considered outside the window; consequently, it is discarded
 (after sending an ACK to resynchronize). These discards include
 the ACKs for the data packets sent by the local TCP, so the TCP
 will consider the data unacknowledged.

Paxson, et. al. Informational [Page 36]

RFC 2525 TCP Implementation Problems March 1999

 Consequently, the application may be unable to complete sending
 new data to the remote peer, because it has exhausted the transmit
 buffer available to its local TCP, and buffer space is never being
 freed because incoming ACKs that would do so are being discarded.
 If the application does not read any more data, which may happen
 due to its failure to complete such sends, then deadlock results.

 Significance
 It’s relatively rare for applications to use TCP in a manner that
 can exercise this problem. Most applications only transmit bulk
 data if they know the other end is prepared to receive the data.
 However, if a client fails to consume data, putting the server in
 persist mode, and then consumes a small amount of data, it can
 mistakenly compute a negative window. At this point the client
 will discard all further packets from the server, including ACKs
 of the client’s own data, since they are not inside the
 (impossibly-sized) window. If subsequently the client consumes
 enough data to then send a window update to the server, the
 situation will be rectified. That is, this situation can only
 happen if the client consumes 1 < N < MSS bytes, so as not to
 cause a window update, and then starts its own transmission
 towards the server of more than a window’s worth of data.

 Implications
 TCP connections will hang and eventually time out.

 Relevant RFCs
 RFC 793 describes zero window probing. RFC 813 describes Silly
 Window Syndrome.

 Trace file demonstrating it
 Trace made from a version of tcpdump modified to print out the
 sequence number attached to an ACK even if it’s dataless. An
 unmodified tcpdump would not print seq:seq(0); however, for this
 bug, the sequence number in the ACK is important for unambiguously
 determining how the TCP is behaving.

 [Normal connection startup and data transmission from B to A.
 Options, including MSS of 16344 in both directions, omitted
 for clarity.]
 16:07:32.327616 A > B: S 65360807:65360807(0) win 8192
 16:07:32.327304 B > A: S 65488807:65488807(0) ack 65360808 win 57344
 16:07:32.327425 A > B: . 1:1(0) ack 1 win 57344
 16:07:32.345732 B > A: P 1:2049(2048) ack 1 win 57344
 16:07:32.347013 B > A: P 2049:16385(14336) ack 1 win 57344
 16:07:32.347550 B > A: P 16385:30721(14336) ack 1 win 57344
 16:07:32.348683 B > A: P 30721:45057(14336) ack 1 win 57344
 16:07:32.467286 A > B: . 1:1(0) ack 45057 win 12288

Paxson, et. al. Informational [Page 37]

RFC 2525 TCP Implementation Problems March 1999

 16:07:32.467854 B > A: P 45057:57345(12288) ack 1 win 57344

 [B fills up A’s offered window]
 16:07:32.667276 A > B: . 1:1(0) ack 57345 win 0

 [B probes A’s window with a single byte]
 16:07:37.467438 B > A: . 57345:57346(1) ack 1 win 57344

 [A resynchronizes without accepting the byte]
 16:07:37.467678 A > B: . 1:1(0) ack 57345 win 0

 [B probes A’s window again]
 16:07:45.467438 B > A: . 57345:57346(1) ack 1 win 57344

 [A resynchronizes and accepts the byte (per the ack field)]
 16:07:45.667250 A > B: . 1:1(0) ack 57346 win 0

 [The application on A has started generating data. The first
 packet A sends is small due to a memory allocation bug.]
 16:07:51.358459 A > B: P 1:2049(2048) ack 57346 win 0

 [B acks A’s first packet]
 16:07:51.467239 B > A: . 57346:57346(0) ack 2049 win 57344

 [This looks as though A accepted B’s ACK and is sending
 another packet in response to it. In fact, A is trying
 to resynchronize with B, and happens to have data to send
 and can send it because the first small packet didn’t use
 up cwnd.]
 16:07:51.467698 A > B: . 2049:14337(12288) ack 57346 win 0

 [B acks all of the data that A has sent]
 16:07:51.667283 B > A: . 57346:57346(0) ack 14337 win 57344

 [A tries to resynchronize. Notice that by the packets
 seen on the network, A and B *are* in fact synchronized;
 A only thinks that they aren’t.]
 16:07:51.667477 A > B: . 14337:14337(0) ack 57346 win 0

 [A’s retransmit timer fires, and B acks all of the data.
 A once again tries to resynchronize.]
 16:07:52.467682 A > B: . 1:14337(14336) ack 57346 win 0
 16:07:52.468166 B > A: . 57346:57346(0) ack 14337 win 57344
 16:07:52.468248 A > B: . 14337:14337(0) ack 57346 win 0

 [A’s retransmit timer fires again, and B acks all of the data.
 A once again tries to resynchronize.]
 16:07:55.467684 A > B: . 1:14337(14336) ack 57346 win 0

Paxson, et. al. Informational [Page 38]

RFC 2525 TCP Implementation Problems March 1999

 16:07:55.468172 B > A: . 57346:57346(0) ack 14337 win 57344
 16:07:55.468254 A > B: . 14337:14337(0) ack 57346 win 0

 Trace file demonstrating correct behavior
 Made between the same two hosts after applying the bug fix
 mentioned below (and using the same modified tcpdump).

 [Connection starts up with data transmission from B to A.
 Note that due to a separate bug (the fact that A and B
 are communicating over a loopback driver), B erroneously
 skips slow start.]
 17:38:09.510854 A > B: S 3110066585:3110066585(0) win 16384
 17:38:09.510926 B > A: S 3110174850:3110174850(0)
 ack 3110066586 win 57344
 17:38:09.510953 A > B: . 1:1(0) ack 1 win 57344
 17:38:09.512956 B > A: P 1:2049(2048) ack 1 win 57344
 17:38:09.513222 B > A: P 2049:16385(14336) ack 1 win 57344
 17:38:09.513428 B > A: P 16385:30721(14336) ack 1 win 57344
 17:38:09.513638 B > A: P 30721:45057(14336) ack 1 win 57344
 17:38:09.519531 A > B: . 1:1(0) ack 45057 win 12288
 17:38:09.519638 B > A: P 45057:57345(12288) ack 1 win 57344

 [B fills up A’s offered window]
 17:38:09.719526 A > B: . 1:1(0) ack 57345 win 0

 [B probes A’s window with a single byte. A resynchronizes
 without accepting the byte]
 17:38:14.499661 B > A: . 57345:57346(1) ack 1 win 57344
 17:38:14.499724 A > B: . 1:1(0) ack 57345 win 0

 [B probes A’s window again. A resynchronizes and accepts
 the byte, as indicated by the ack field]
 17:38:19.499764 B > A: . 57345:57346(1) ack 1 win 57344
 17:38:19.519731 A > B: . 1:1(0) ack 57346 win 0

 [B probes A’s window with a single byte. A resynchronizes
 without accepting the byte]
 17:38:24.499865 B > A: . 57346:57347(1) ack 1 win 57344
 17:38:24.499934 A > B: . 1:1(0) ack 57346 win 0

 [The application on A has started generating data.
 B acks A’s data and A accepts the ACKs and the
 data transfer continues]
 17:38:28.530265 A > B: P 1:2049(2048) ack 57346 win 0
 17:38:28.719914 B > A: . 57346:57346(0) ack 2049 win 57344

 17:38:28.720023 A > B: . 2049:16385(14336) ack 57346 win 0
 17:38:28.720089 A > B: . 16385:30721(14336) ack 57346 win 0

Paxson, et. al. Informational [Page 39]

RFC 2525 TCP Implementation Problems March 1999

 17:38:28.720370 B > A: . 57346:57346(0) ack 30721 win 57344

 17:38:28.720462 A > B: . 30721:45057(14336) ack 57346 win 0
 17:38:28.720526 A > B: P 45057:59393(14336) ack 57346 win 0
 17:38:28.720824 A > B: P 59393:73729(14336) ack 57346 win 0
 17:38:28.721124 B > A: . 57346:57346(0) ack 73729 win 47104

 17:38:28.721198 A > B: P 73729:88065(14336) ack 57346 win 0
 17:38:28.721379 A > B: P 88065:102401(14336) ack 57346 win 0

 17:38:28.721557 A > B: P 102401:116737(14336) ack 57346 win 0
 17:38:28.721863 B > A: . 57346:57346(0) ack 116737 win 36864

 References
 None known.

 How to detect
 Initiate a connection from a client to a server. Have the server
 continuously send data until its buffers have been full for long
 enough to exhaust the window. Next, have the client read 1 byte
 and then delay for long enough that the server TCP sends a window
 probe. Now have the client start sending data. At this point, if
 it ignores the server’s ACKs, then the client’s TCP suffers from
 the problem.

 How to fix
 In one implementation known to exhibit the problem (derived from
 4.3-Reno), the problem was introduced when the macro MAX() was
 replaced by the function call max() for computing the amount of
 space in the receive window:

 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));

 When data has been received into a window beyond what has been
 advertised to the other side, rcv_nxt > rcv_adv, making this
 negative. It’s clear from the (int) cast that this is intended,
 but the unsigned max() function sign-extends so the negative
 number is "larger". The fix is to change max() to imax():

 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));

 4.3-Tahoe and before did not have this bug, since it used the
 macro MAX() for this calculation.

2.13.

 Name of Problem
 Stretch ACK violation

Paxson, et. al. Informational [Page 40]

RFC 2525 TCP Implementation Problems March 1999

 Classification
 Congestion Control/Performance

 Description
 To improve efficiency (both computer and network) a data receiver
 may refrain from sending an ACK for each incoming segment,
 according to [RFC1122]. However, an ACK should not be delayed an
 inordinate amount of time. Specifically, ACKs SHOULD be sent for
 every second full-sized segment that arrives. If a second full-
 sized segment does not arrive within a given timeout (of no more
 than 0.5 seconds), an ACK should be transmitted, according to
 [RFC1122]. A TCP receiver which does not generate an ACK for
 every second full-sized segment exhibits a "Stretch ACK
 Violation".

 Significance
 TCP receivers exhibiting this behavior will cause TCP senders to
 generate burstier traffic, which can degrade performance in
 congested environments. In addition, generating fewer ACKs
 increases the amount of time needed by the slow start algorithm to
 open the congestion window to an appropriate point, which
 diminishes performance in environments with large bandwidth-delay
 products. Finally, generating fewer ACKs may cause needless
 retransmission timeouts in lossy environments, as it increases the
 possibility that an entire window of ACKs is lost, forcing a
 retransmission timeout.

 Implications
 When not in loss recovery, every ACK received by a TCP sender
 triggers the transmission of new data segments. The burst size is
 determined by the number of previously unacknowledged segments
 each ACK covers. Therefore, a TCP receiver ack’ing more than 2
 segments at a time causes the sending TCP to generate a larger
 burst of traffic upon receipt of the ACK. This large burst of
 traffic can overwhelm an intervening gateway, leading to higher
 drop rates for both the connection and other connections passing
 through the congested gateway.

 In addition, the TCP slow start algorithm increases the congestion
 window by 1 segment for each ACK received. Therefore, increasing
 the ACK interval (thus decreasing the rate at which ACKs are
 transmitted) increases the amount of time it takes slow start to
 increase the congestion window to an appropriate operating point,
 and the connection consequently suffers from reduced performance.
 This is especially true for connections using large windows.

 Relevant RFCs
 RFC 1122 outlines delayed ACKs as a recommended mechanism.

Paxson, et. al. Informational [Page 41]

RFC 2525 TCP Implementation Problems March 1999

 Trace file demonstrating it
 Trace file taken using tcpdump at host B, the data receiver (and
 ACK originator). The advertised window (which never changed) and
 timestamp options have been omitted for clarity, except for the
 first packet sent by A:

 12:09:24.820187 A.1174 > B.3999: . 2049:3497(1448) ack 1
 win 33580 <nop,nop,timestamp 2249877 2249914> [tos 0x8]
 12:09:24.824147 A.1174 > B.3999: . 3497:4945(1448) ack 1
 12:09:24.832034 A.1174 > B.3999: . 4945:6393(1448) ack 1
 12:09:24.832222 B.3999 > A.1174: . ack 6393
 12:09:24.934837 A.1174 > B.3999: . 6393:7841(1448) ack 1
 12:09:24.942721 A.1174 > B.3999: . 7841:9289(1448) ack 1
 12:09:24.950605 A.1174 > B.3999: . 9289:10737(1448) ack 1
 12:09:24.950797 B.3999 > A.1174: . ack 10737
 12:09:24.958488 A.1174 > B.3999: . 10737:12185(1448) ack 1
 12:09:25.052330 A.1174 > B.3999: . 12185:13633(1448) ack 1
 12:09:25.060216 A.1174 > B.3999: . 13633:15081(1448) ack 1
 12:09:25.060405 B.3999 > A.1174: . ack 15081

 This portion of the trace clearly shows that the receiver (host B)
 sends an ACK for every third full sized packet received. Further
 investigation of this implementation found that the cause of the
 increased ACK interval was the TCP options being used. The
 implementation sent an ACK after it was holding 2*MSS worth of
 unacknowledged data. In the above case, the MSS is 1460 bytes so
 the receiver transmits an ACK after it is holding at least 2920
 bytes of unacknowledged data. However, the length of the TCP
 options being used [RFC1323] took 12 bytes away from the data
 portion of each packet. This produced packets containing 1448
 bytes of data. But the additional bytes used by the options in
 the header were not taken into account when determining when to
 trigger an ACK. Therefore, it took 3 data segments before the
 data receiver was holding enough unacknowledged data (>= 2*MSS, or
 2920 bytes in the above example) to transmit an ACK.

 Trace file demonstrating correct behavior
 Trace file taken using tcpdump at host B, the data receiver (and
 ACK originator), again with window and timestamp information
 omitted except for the first packet:

 12:06:53.627320 A.1172 > B.3999: . 1449:2897(1448) ack 1
 win 33580 <nop,nop,timestamp 2249575 2249612> [tos 0x8]
 12:06:53.634773 A.1172 > B.3999: . 2897:4345(1448) ack 1
 12:06:53.634961 B.3999 > A.1172: . ack 4345
 12:06:53.737326 A.1172 > B.3999: . 4345:5793(1448) ack 1
 12:06:53.744401 A.1172 > B.3999: . 5793:7241(1448) ack 1
 12:06:53.744592 B.3999 > A.1172: . ack 7241

Paxson, et. al. Informational [Page 42]

RFC 2525 TCP Implementation Problems March 1999

 12:06:53.752287 A.1172 > B.3999: . 7241:8689(1448) ack 1
 12:06:53.847332 A.1172 > B.3999: . 8689:10137(1448) ack 1
 12:06:53.847525 B.3999 > A.1172: . ack 10137

 This trace shows the TCP receiver (host B) ack’ing every second
 full-sized packet, according to [RFC1122]. This is the same
 implementation shown above, with slight modifications that allow
 the receiver to take the length of the options into account when
 deciding when to transmit an ACK.

 References
 This problem is documented in [Allman97] and [Paxson97].

 How to detect
 Stretch ACK violations show up immediately in receiver-side packet
 traces of bulk transfers, as shown above. However, packet traces
 made on the sender side of the TCP connection may lead to
 ambiguities when diagnosing this problem due to the possibility of
 lost ACKs.

2.14.

 Name of Problem
 Retransmission sends multiple packets

 Classification
 Congestion control

 Description
 When a TCP retransmits a segment due to a timeout expiration or
 beginning a fast retransmission sequence, it should only transmit
 a single segment. A TCP that transmits more than one segment
 exhibits "Retransmission Sends Multiple Packets".

 Instances of this problem have been known to occur due to
 miscomputations involving the use of TCP options. TCP options
 increase the TCP header beyond its usual size of 20 bytes. The
 total size of header must be taken into account when
 retransmitting a packet. If a TCP sender does not account for the
 length of the TCP options when determining how much data to
 retransmit, it will send too much data to fit into a single
 packet. In this case, the correct retransmission will be followed
 by a short segment (tinygram) containing data that may not need to
 be retransmitted.

 A specific case is a TCP using the RFC 1323 timestamp option,
 which adds 12 bytes to the standard 20-byte TCP header. On
 retransmission of a packet, the 12 byte option is incorrectly

Paxson, et. al. Informational [Page 43]

RFC 2525 TCP Implementation Problems March 1999

 interpreted as part of the data portion of the segment. A
 standard TCP header and a new 12-byte option is added to the data,
 which yields a transmission of 12 bytes more data than contained
 in the original segment. This overflow causes a smaller packet,
 with 12 data bytes, to be transmitted.

 Significance
 This problem is somewhat serious for congested environments
 because the TCP implementation injects more packets into the
 network than is appropriate. However, since a tinygram is only
 sent in response to a fast retransmit or a timeout, it does not
 effect the sustained sending rate.

 Implications
 A TCP exhibiting this behavior is stressing the network with more
 traffic than appropriate, and stressing routers by increasing the
 number of packets they must process. The redundant tinygram will
 also elicit a duplicate ACK from the receiver, resulting in yet
 another unnecessary transmission.

 Relevant RFCs
 RFC 1122 requires use of slow start after loss; RFC 2001
 explicates slow start; RFC 1323 describes the timestamp option
 that has been observed to lead to some implementations exhibiting
 this problem.

 Trace file demonstrating it
 Made using tcpdump recording at a machine on the same subnet as
 Host A. Host A is the sender and Host B is the receiver. The
 advertised window and timestamp options have been omitted for
 clarity, except for the first segment sent by host A. In
 addition, portions of the trace file not pertaining to the packet
 in question have been removed (missing packets are denoted by
 "[...]" in the trace).

 11:55:22.701668 A > B: . 7361:7821(460) ack 1
 win 49324 <nop,nop,timestamp 3485348 3485113>
 11:55:22.702109 A > B: . 7821:8281(460) ack 1
 [...]

 11:55:23.112405 B > A: . ack 7821
 11:55:23.113069 A > B: . 12421:12881(460) ack 1
 11:55:23.113511 A > B: . 12881:13341(460) ack 1
 11:55:23.333077 B > A: . ack 7821
 11:55:23.336860 B > A: . ack 7821
 11:55:23.340638 B > A: . ack 7821
 11:55:23.341290 A > B: . 7821:8281(460) ack 1
 11:55:23.341317 A > B: . 8281:8293(12) ack 1

Paxson, et. al. Informational [Page 44]

RFC 2525 TCP Implementation Problems March 1999

 11:55:23.498242 B > A: . ack 7821
 11:55:23.506850 B > A: . ack 7821
 11:55:23.510630 B > A: . ack 7821

 [...]

 11:55:23.746649 B > A: . ack 10581

 The second line of the above trace shows the original transmission
 of a segment which is later dropped. After 3 duplicate ACKs, line
 9 of the trace shows the dropped packet (7821:8281), with a 460-
 byte payload, being retransmitted. Immediately following this
 retransmission, a packet with a 12-byte payload is unnecessarily
 sent.

 Trace file demonstrating correct behavior
 The trace file would be identical to the one above, with a single
 line:

 11:55:23.341317 A > B: . 8281:8293(12) ack 1

 omitted.

 References
 [Brakmo95]

 How to detect
 This problem can be detected by examining a packet trace of the
 TCP connections of a machine using TCP options, during which a
 packet is retransmitted.

2.15.

 Name of Problem
 Failure to send FIN notification promptly

 Classification
 Performance

 Description
 When an application closes a connection, the corresponding TCP
 should send the FIN notification promptly to its peer (unless
 prevented by the congestion window). If a TCP implementation
 delays in sending the FIN notification, for example due to waiting
 until unacknowledged data has been acknowledged, then it is said
 to exhibit "Failure to send FIN notification promptly".

Paxson, et. al. Informational [Page 45]

RFC 2525 TCP Implementation Problems March 1999

 Also, while not strictly required, FIN segments should include the
 PSH flag to ensure expedited delivery of any pending data at the
 receiver.

 Significance
 The greatest impact occurs for short-lived connections, since for
 these the additional time required to close the connection
 introduces the greatest relative delay.

 The additional time can be significant in the common case of the
 sender waiting for an ACK that is delayed by the receiver.

 Implications
 Can diminish total throughput as seen at the application layer,
 because connection termination takes longer to complete.

 Relevant RFCs
 RFC 793 indicates that a receiver should treat an incoming FIN
 flag as implying the push function.

 Trace file demonstrating it
 Made using tcpdump (no losses reported by the packet filter).

 10:04:38.68 A > B: S 1031850376:1031850376(0) win 4096
 <mss 1460,wscale 0,eol> (DF)
 10:04:38.71 B > A: S 596916473:596916473(0) ack 1031850377
 win 8760 <mss 1460> (DF)
 10:04:38.73 A > B: . ack 1 win 4096 (DF)
 10:04:41.98 A > B: P 1:4(3) ack 1 win 4096 (DF)
 10:04:42.15 B > A: . ack 4 win 8757 (DF)
 10:04:42.23 A > B: P 4:7(3) ack 1 win 4096 (DF)
 10:04:42.25 B > A: P 1:11(10) ack 7 win 8754 (DF)
 10:04:42.32 A > B: . ack 11 win 4096 (DF)
 10:04:42.33 B > A: P 11:51(40) ack 7 win 8754 (DF)
 10:04:42.51 A > B: . ack 51 win 4096 (DF)
 10:04:42.53 B > A: F 51:51(0) ack 7 win 8754 (DF)
 10:04:42.56 A > B: FP 7:7(0) ack 52 win 4096 (DF)
 10:04:42.58 B > A: . ack 8 win 8754 (DF)

 Machine B in the trace above does not send out a FIN notification
 promptly if there is any data outstanding. It instead waits for
 all unacknowledged data to be acknowledged before sending the FIN
 segment. The connection was closed at 10:04.42.33 after
 requesting 40 bytes to be sent. However, the FIN notification
 isn’t sent until 10:04.42.51, after the (delayed) acknowledgement
 of the 40 bytes of data.

Paxson, et. al. Informational [Page 46]

RFC 2525 TCP Implementation Problems March 1999

 Trace file demonstrating correct behavior
 Made using tcpdump (no losses reported by the packet filter).

 10:27:53.85 C > D: S 419744533:419744533(0) win 4096
 <mss 1460,wscale 0,eol> (DF)
 10:27:53.92 D > C: S 10082297:10082297(0) ack 419744534
 win 8760 <mss 1460> (DF)
 10:27:53.95 C > D: . ack 1 win 4096 (DF)
 10:27:54.42 C > D: P 1:4(3) ack 1 win 4096 (DF)
 10:27:54.62 D > C: . ack 4 win 8757 (DF)
 10:27:54.76 C > D: P 4:7(3) ack 1 win 4096 (DF)
 10:27:54.89 D > C: P 1:11(10) ack 7 win 8754 (DF)
 10:27:54.90 D > C: FP 11:51(40) ack7 win 8754 (DF)
 10:27:54.92 C > D: . ack 52 win 4096 (DF)
 10:27:55.01 C > D: FP 7:7(0) ack 52 win 4096 (DF)
 10:27:55.09 D > C: . ack 8 win 8754 (DF)

 Here, Machine D sends a FIN with 40 bytes of data even before the
 original 10 octets have been acknowledged. This is correct
 behavior as it provides for the highest performance.

 References
 This problem is documented in [Dawson97].

 How to detect
 For implementations manifesting this problem, it shows up on a
 packet trace.

2.16.

 Name of Problem
 Failure to send a RST after Half Duplex Close

 Classification
 Resource management

 Description
 RFC 1122 4.2.2.13 states that a TCP SHOULD send a RST if data is
 received after "half duplex close", i.e. if it cannot be delivered
 to the application. A TCP that fails to do so is said to exhibit
 "Failure to send a RST after Half Duplex Close".

 Significance
 Potentially serious for TCP endpoints that manage large numbers of
 connections, due to exhaustion of memory and/or process slots
 available for managing connection state.

Paxson, et. al. Informational [Page 47]

RFC 2525 TCP Implementation Problems March 1999

 Implications
 Failure to send the RST can lead to permanently hung TCP
 connections. This problem has been demonstrated when HTTP clients
 abort connections, common when users move on to a new page before
 the current page has finished downloading. The HTTP client closes
 by transmitting a FIN while the server is transmitting images,
 text, etc. The server TCP receives the FIN, but its application
 does not close the connection until all data has been queued for
 transmission. Since the server will not transmit a FIN until all
 the preceding data has been transmitted, deadlock results if the
 client TCP does not consume the pending data or tear down the
 connection: the window decreases to zero, since the client cannot
 pass the data to the application, and the server sends probe
 segments. The client acknowledges the probe segments with a zero
 window. As mandated in RFC1122 4.2.2.17, the probe segments are
 transmitted forever. Server connection state remains in
 CLOSE_WAIT, and eventually server processes are exhausted.

 Note that there are two bugs. First, probe segments should be
 ignored if the window can never subsequently increase. Second, a
 RST should be sent when data is received after half duplex close.
 Fixing the first bug, but not the second, results in the probe
 segments eventually timing out the connection, but the server
 remains in CLOSE_WAIT for a significant and unnecessary period.

 Relevant RFCs
 RFC 1122 sections 4.2.2.13 and 4.2.2.17.

 Trace file demonstrating it
 Made using an unknown network analyzer. No drop information
 available.

 client.1391 > server.8080: S 0:1(0) ack: 0 win: 2000 <mss: 5b4>
 server.8080 > client.1391: SA 8c01:8c02(0) ack: 1 win: 8000 <mss:100>
 client.1391 > server.8080: PA
 client.1391 > server.8080: PA 1:1c2(1c1) ack: 8c02 win: 2000
 server.8080 > client.1391: [DF] PA 8c02:8cde(dc) ack: 1c2 win: 8000
 server.8080 > client.1391: [DF] A 8cde:9292(5b4) ack: 1c2 win: 8000
 server.8080 > client.1391: [DF] A 9292:9846(5b4) ack: 1c2 win: 8000
 server.8080 > client.1391: [DF] A 9846:9dfa(5b4) ack: 1c2 win: 8000
 client.1391 > server.8080: PA
 server.8080 > client.1391: [DF] A 9dfa:a3ae(5b4) ack: 1c2 win: 8000
 server.8080 > client.1391: [DF] A a3ae:a962(5b4) ack: 1c2 win: 8000
 server.8080 > client.1391: [DF] A a962:af16(5b4) ack: 1c2 win: 8000
 server.8080 > client.1391: [DF] A af16:b4ca(5b4) ack: 1c2 win: 8000
 client.1391 > server.8080: PA
 server.8080 > client.1391: [DF] A b4ca:ba7e(5b4) ack: 1c2 win: 8000
 server.8080 > client.1391: [DF] A b4ca:ba7e(5b4) ack: 1c2 win: 8000

Paxson, et. al. Informational [Page 48]

RFC 2525 TCP Implementation Problems March 1999

 client.1391 > server.8080: PA
 server.8080 > client.1391: [DF] A ba7e:bdfa(37c) ack: 1c2 win: 8000
 client.1391 > server.8080: PA
 server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c2 win: 8000
 client.1391 > server.8080: PA

 [HTTP client aborts and enters FIN_WAIT_1]

 client.1391 > server.8080: FPA

 [server ACKs the FIN and enters CLOSE_WAIT]

 server.8080 > client.1391: [DF] A

 [client enters FIN_WAIT_2]

 server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000

 [server continues to try to send its data]

 client.1391 > server.8080: PA < window = 0 >
 server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000
 client.1391 > server.8080: PA < window = 0 >
 server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000
 client.1391 > server.8080: PA < window = 0 >
 server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000
 client.1391 > server.8080: PA < window = 0 >
 server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000
 client.1391 > server.8080: PA < window = 0 >

 [... repeat ad exhaustium ...]

 Trace file demonstrating correct behavior
 Made using an unknown network analyzer. No drop information
 available.

 client > server D=80 S=59500 Syn Seq=337 Len=0 Win=8760
 server > client D=59500 S=80 Syn Ack=338 Seq=80153 Len=0 Win=8760
 client > server D=80 S=59500 Ack=80154 Seq=338 Len=0 Win=8760

 [... normal data omitted ...]

 client > server D=80 S=59500 Ack=14559 Seq=596 Len=0 Win=8760
 server > client D=59500 S=80 Ack=596 Seq=114559 Len=1460 Win=8760

 [client closes connection]

 client > server D=80 S=59500 Fin Seq=596 Len=0 Win=8760

Paxson, et. al. Informational [Page 49]

RFC 2525 TCP Implementation Problems March 1999

 server > client D=59500 S=80 Ack=597 Seq=116019 Len=1460 Win=8760

 [client sends RST (RFC1122 4.2.2.13)]

 client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0
 server > client D=59500 S=80 Ack=597 Seq=117479 Len=1460 Win=8760
 client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0
 server > client D=59500 S=80 Ack=597 Seq=118939 Len=1460 Win=8760
 client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0
 server > client D=59500 S=80 Ack=597 Seq=120399 Len=892 Win=8760
 client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0
 server > client D=59500 S=80 Ack=597 Seq=121291 Len=1460 Win=8760
 client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0

 "client" sends a number of RSTs, one in response to each incoming
 packet from "server". One might wonder why "server" keeps sending
 data packets after it has received a RST from "client"; the
 explanation is that "server" had already transmitted all five of
 the data packets before receiving the first RST from "client", so
 it is too late to avoid transmitting them.

 How to detect
 The problem can be detected by inspecting packet traces of a
 large, interrupted bulk transfer.

2.17.

 Name of Problem
 Failure to RST on close with data pending

 Classification
 Resource management

 Description
 When an application closes a connection in such a way that it can
 no longer read any received data, the TCP SHOULD, per section
 4.2.2.13 of RFC 1122, send a RST if there is any unread received
 data, or if any new data is received. A TCP that fails to do so
 exhibits "Failure to RST on close with data pending".

 Note that, for some TCPs, this situation can be caused by an
 application "crashing" while a peer is sending data.

 We have observed a number of TCPs that exhibit this problem. The
 problem is less serious if any subsequent data sent to the now-
 closed connection endpoint elicits a RST (see illustration below).

Paxson, et. al. Informational [Page 50]

RFC 2525 TCP Implementation Problems March 1999

 Significance
 This problem is most significant for endpoints that engage in
 large numbers of connections, as their ability to do so will be
 curtailed as they leak away resources.

 Implications
 Failure to reset the connection can lead to permanently hung
 connections, in which the remote endpoint takes no further action
 to tear down the connection because it is waiting on the local TCP
 to first take some action. This is particularly the case if the
 local TCP also allows the advertised window to go to zero, and
 fails to tear down the connection when the remote TCP engages in
 "persist" probes (see example below).

 Relevant RFCs
 RFC 1122 section 4.2.2.13. Also, 4.2.2.17 for the zero-window
 probing discussion below.

 Trace file demonstrating it
 Made using tcpdump. No drop information available.

 13:11:46.04 A > B: S 458659166:458659166(0) win 4096
 <mss 1460,wscale 0,eol> (DF)
 13:11:46.04 B > A: S 792320000:792320000(0) ack 458659167
 win 4096
 13:11:46.04 A > B: . ack 1 win 4096 (DF)
 13:11.55.80 A > B: . 1:513(512) ack 1 win 4096 (DF)
 13:11.55.80 A > B: . 513:1025(512) ack 1 win 4096 (DF)
 13:11:55.83 B > A: . ack 1025 win 3072
 13:11.55.84 A > B: . 1025:1537(512) ack 1 win 4096 (DF)
 13:11.55.84 A > B: . 1537:2049(512) ack 1 win 4096 (DF)
 13:11.55.85 A > B: . 2049:2561(512) ack 1 win 4096 (DF)
 13:11:56.03 B > A: . ack 2561 win 1536
 13:11.56.05 A > B: . 2561:3073(512) ack 1 win 4096 (DF)
 13:11.56.06 A > B: . 3073:3585(512) ack 1 win 4096 (DF)
 13:11.56.06 A > B: . 3585:4097(512) ack 1 win 4096 (DF)
 13:11:56.23 B > A: . ack 4097 win 0
 13:11:58.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
 13:11:58.16 B > A: . ack 4097 win 0
 13:12:00.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
 13:12:00.16 B > A: . ack 4097 win 0
 13:12:02.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
 13:12:02.16 B > A: . ack 4097 win 0
 13:12:05.37 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
 13:12:05.37 B > A: . ack 4097 win 0
 13:12:06.36 B > A: F 1:1(0) ack 4097 win 0
 13:12:06.37 A > B: . ack 2 win 4096 (DF)
 13:12:11.78 A > B: . 4096:4097(1) ack 2 win 4096 (DF)

Paxson, et. al. Informational [Page 51]

RFC 2525 TCP Implementation Problems March 1999

 13:12:11.78 B > A: . ack 4097 win 0
 13:12:24.59 A > B: . 4096:4097(1) ack 2 win 4096 (DF)
 13:12:24.60 B > A: . ack 4097 win 0
 13:12:50.22 A > B: . 4096:4097(1) ack 2 win 4096 (DF)
 13:12:50.22 B > A: . ack 4097 win 0

 Machine B in the trace above does not drop received data when the
 socket is "closed" by the application (in this case, the
 application process was terminated). This occurred at
 approximately 13:12:06.36 and resulted in the FIN being sent in
 response to the close. However, because there is no longer an
 application to deliver the data to, the TCP should have instead
 sent a RST.

 Note: Machine A’s zero-window probing is also broken. It is
 resending old data, rather than new data. Section 3.7 in RFC 793
 and Section 4.2.2.17 in RFC 1122 discuss zero-window probing.

 Trace file demonstrating better behavior
 Made using tcpdump. No drop information available.

 Better, but still not fully correct, behavior, per the discussion
 below. We show this behavior because it has been observed for a
 number of different TCP implementations.

 13:48:29.24 C > D: S 73445554:73445554(0) win 4096
 <mss 1460,wscale 0,eol> (DF)
 13:48:29.24 D > C: S 36050296:36050296(0) ack 73445555
 win 4096 <mss 1460,wscale 0,eol> (DF)
 13:48:29.25 C > D: . ack 1 win 4096 (DF)
 13:48:30.78 C > D: . 1:1461(1460) ack 1 win 4096 (DF)
 13:48:30.79 C > D: . 1461:2921(1460) ack 1 win 4096 (DF)
 13:48:30.80 D > C: . ack 2921 win 1176 (DF)
 13:48:32.75 C > D: . 2921:4097(1176) ack 1 win 4096 (DF)
 13:48:32.82 D > C: . ack 4097 win 0 (DF)
 13:48:34.76 C > D: . 4096:4097(1) ack 1 win 4096 (DF)
 13:48:34.84 D > C: . ack 4097 win 0 (DF)
 13:48:36.34 D > C: FP 1:1(0) ack 4097 win 4096 (DF)
 13:48:36.34 C > D: . 4097:5557(1460) ack 2 win 4096 (DF)
 13:48:36.34 D > C: R 36050298:36050298(0) win 24576
 13:48:36.34 C > D: . 5557:7017(1460) ack 2 win 4096 (DF)
 13:48:36.34 D > C: R 36050298:36050298(0) win 24576

 In this trace, the application process is terminated on Machine D
 at approximately 13:48:36.34. Its TCP sends the FIN with the
 window opened again (since it discarded the previously received
 data). Machine C promptly sends more data, causing Machine D to

Paxson, et. al. Informational [Page 52]

RFC 2525 TCP Implementation Problems March 1999

 reset the connection since it cannot deliver the data to the
 application. Ideally, Machine D SHOULD send a RST instead of
 dropping the data and re-opening the receive window.

 Note: Machine C’s zero-window probing is broken, the same as in
 the example above.

 Trace file demonstrating correct behavior
 Made using tcpdump. No losses reported by the packet filter.

 14:12:02.19 E > F: S 1143360000:1143360000(0) win 4096
 14:12:02.19 F > E: S 1002988443:1002988443(0) ack 1143360001
 win 4096 <mss 1460> (DF)
 14:12:02.19 E > F: . ack 1 win 4096
 14:12:10.43 E > F: . 1:513(512) ack 1 win 4096
 14:12:10.61 F > E: . ack 513 win 3584 (DF)
 14:12:10.61 E > F: . 513:1025(512) ack 1 win 4096
 14:12:10.61 E > F: . 1025:1537(512) ack 1 win 4096
 14:12:10.81 F > E: . ack 1537 win 2560 (DF)
 14:12:10.81 E > F: . 1537:2049(512) ack 1 win 4096
 14:12:10.81 E > F: . 2049:2561(512) ack 1 win 4096
 14:12:10.81 E > F: . 2561:3073(512) ack 1 win 4096
 14:12:11.01 F > E: . ack 3073 win 1024 (DF)
 14:12:11.01 E > F: . 3073:3585(512) ack 1 win 4096
 14:12:11.01 E > F: . 3585:4097(512) ack 1 win 4096
 14:12:11.21 F > E: . ack 4097 win 0 (DF)
 14:12:15.88 E > F: . 4097:4098(1) ack 1 win 4096
 14:12:16.06 F > E: . ack 4097 win 0 (DF)
 14:12:20.88 E > F: . 4097:4098(1) ack 1 win 4096
 14:12:20.91 F > E: . ack 4097 win 0 (DF)
 14:12:21.94 F > E: R 1002988444:1002988444(0) win 4096

 When the application terminates at 14:12:21.94, F immediately
 sends a RST.

 Note: Machine E’s zero-window probing is (finally) correct.

 How to detect
 The problem can often be detected by inspecting packet traces of a
 transfer in which the receiving application terminates abnormally.
 When doing so, there can be an ambiguity (if only looking at the
 trace) as to whether the receiving TCP did indeed have unread data
 that it could now no longer deliver. To provoke this to happen,
 it may help to suspend the receiving application so that it fails
 to consume any data, eventually exhausting the advertised window.
 At this point, since the advertised window is zero, we know that

Paxson, et. al. Informational [Page 53]

RFC 2525 TCP Implementation Problems March 1999

 the receiving TCP has undelivered data buffered up. Terminating
 the application process then should suffice to test the
 correctness of the TCP’s behavior.

2.18.

 Name of Problem
 Options missing from TCP MSS calculation

 Classification
 Reliability / performance

 Description
 When a TCP determines how much data to send per packet, it
 calculates a segment size based on the MTU of the path. It must
 then subtract from that MTU the size of the IP and TCP headers in
 the packet. If IP options and TCP options are not taken into
 account correctly in this calculation, the resulting segment size
 may be too large. TCPs that do so are said to exhibit "Options
 missing from TCP MSS calculation".

 Significance
 In some implementations, this causes the transmission of strangely
 fragmented packets. In some implementations with Path MTU (PMTU)
 discovery [RFC1191], this problem can actually result in a total
 failure to transmit any data at all, regardless of the environment
 (see below).

 Arguably, especially since the wide deployment of firewalls, IP
 options appear only rarely in normal operations.

 Implications
 In implementations using PMTU discovery, this problem can result
 in packets that are too large for the output interface, and that
 have the DF (don’t fragment) bit set in the IP header. Thus, the
 IP layer on the local machine is not allowed to fragment the
 packet to send it out the interface. It instead informs the TCP
 layer of the correct MTU size of the interface; the TCP layer
 again miscomputes the MSS by failing to take into account the size
 of IP options; and the problem repeats, with no data flowing.

 Relevant RFCs
 RFC 1122 describes the calculation of the effective send MSS. RFC
 1191 describes Path MTU discovery.

Paxson, et. al. Informational [Page 54]

RFC 2525 TCP Implementation Problems March 1999

 Trace file demonstrating it
 Trace file taking using tcpdump on host C. The first trace
 demonstrates the fragmentation that occurs without path MTU
 discovery:

 13:55:25.488728 A.65528 > C.discard:
 P 567833:569273(1440) ack 1 win 17520
 <nop,nop,timestamp 3839 1026342>
 (frag 20828:1472@0+)
 (ttl 62, optlen=8 LSRR{B#} NOP)

 13:55:25.488943 A > C:
 (frag 20828:8@1472)
 (ttl 62, optlen=8 LSRR{B#} NOP)

 13:55:25.489052 C.discard > A.65528:
 . ack 566385 win 60816
 <nop,nop,timestamp 1026345 3839> (DF)
 (ttl 60, id 41266)

 Host A repeatedly sends 1440-octet data segments, but these hare
 fragmented into two packets, one with 1432 octets of data, and
 another with 8 octets of data.

 The second trace demonstrates the failure to send any data
 segments, sometimes seen with hosts doing path MTU discovery:

 13:55:44.332219 A.65527 > C.discard:
 S 1018235390:1018235390(0) win 16384
 <mss 1460,nop,wscale 0,nop,nop,timestamp 3876 0> (DF)
 (ttl 62, id 20912, optlen=8 LSRR{B#} NOP)

 13:55:44.333015 C.discard > A.65527:
 S 1271629000:1271629000(0) ack 1018235391 win 60816
 <mss 1460,nop,wscale 0,nop,nop,timestamp 1026383 3876> (DF)
 (ttl 60, id 41427)

 13:55:44.333206 C.discard > A.65527:
 S 1271629000:1271629000(0) ack 1018235391 win 60816
 <mss 1460,nop,wscale 0,nop,nop,timestamp 1026383 3876> (DF)
 (ttl 60, id 41427)

 This is all of the activity seen on this connection. Eventually
 host C will time out attempting to establish the connection.

 How to detect
 The "netcat" utility [Hobbit96] is useful for generating source
 routed packets:

Paxson, et. al. Informational [Page 55]

RFC 2525 TCP Implementation Problems March 1999

 1% nc C discard
 (interactive typing)
 ^C
 2% nc C discard < /dev/zero
 ^C
 3% nc -g B C discard
 (interactive typing)
 ^C
 4% nc -g B C discard < /dev/zero
 ^C

 Lines 1 through 3 should generate appropriate packets, which can
 be verified using tcpdump. If the problem is present, line 4
 should generate one of the two kinds of packet traces shown.

 How to fix
 The implementation should ensure that the effective send MSS
 calculation includes a term for the IP and TCP options, as
 mandated by RFC 1122.

3. Security Considerations

 This memo does not discuss any specific security-related TCP
 implementation problems, as the working group decided to pursue
 documenting those in a separate document. Some of the implementation
 problems discussed here, however, can be used for denial-of-service
 attacks. Those classified as congestion control present
 opportunities to subvert TCPs used for legitimate data transfer into
 excessively loading network elements. Those classified as
 "performance", "reliability" and "resource management" may be
 exploitable for launching surreptitious denial-of-service attacks
 against the user of the TCP. Both of these types of attacks can be
 extremely difficult to detect because in most respects they look
 identical to legitimate network traffic.

4. Acknowledgements

 Thanks to numerous correspondents on the tcp-impl mailing list for
 their input: Steve Alexander, Larry Backman, Jerry Chu, Alan Cox,
 Kevin Fall, Richard Fox, Jim Gettys, Rick Jones, Allison Mankin, Neal
 McBurnett, Perry Metzger, der Mouse, Thomas Narten, Andras Olah,
 Steve Parker, Francesco Potorti‘, Luigi Rizzo, Allyn Romanow, Al
 Smith, Jerry Toporek, Joe Touch, and Curtis Villamizar.

 Thanks also to Josh Cohen for the traces documenting the "Failure to
 send a RST after Half Duplex Close" problem; and to John Polstra, who
 analyzed the "Window probe deadlock" problem.

Paxson, et. al. Informational [Page 56]

RFC 2525 TCP Implementation Problems March 1999

5. References

 [Allman97] M. Allman, "Fixing Two BSD TCP Bugs," Technical Report
 CR-204151, NASA Lewis Research Center, Oct. 1997.
 http://roland.grc.nasa.gov/˜mallman/papers/bug.ps

 [RFC2414] Allman, M., Floyd, S. and C. Partridge, "Increasing
 TCP’s Initial Window", RFC 2414, September 1998.

 [RFC1122] Braden, R., Editor, "Requirements for Internet Hosts --
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [Brakmo95] L. Brakmo and L. Peterson, "Performance Problems in
 BSD4.4 TCP," ACM Computer Communication Review,
 25(5):69-86, 1995.

 [RFC813] Clark, D., "Window and Acknowledgement Strategy in TCP,"
 RFC 813, July 1982.

 [Dawson97] S. Dawson, F. Jahanian, and T. Mitton, "Experiments on
 Six Commercial TCP Implementations Using a Software
 Fault Injection Tool," to appear in Software Practice &
 Experience, 1997. A technical report version of this
 paper can be obtained at
 ftp://rtcl.eecs.umich.edu/outgoing/sdawson/CSE-TR-298-
 96.ps.gz.

 [Fall96] K. Fall and S. Floyd, "Simulation-based Comparisons of
 Tahoe, Reno, and SACK TCP," ACM Computer Communication
 Review, 26(3):5-21, 1996.

 [Hobbit96] Hobbit, Avian Research, netcat, available via anonymous
 ftp to ftp.avian.org, 1996.

 [Hoe96] J. Hoe, "Improving the Start-up Behavior of a Congestion
 Control Scheme for TCP," Proc. SIGCOMM ’96.

 [Jacobson88] V. Jacobson, "Congestion Avoidance and Control," Proc.
 SIGCOMM ’88. ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

 [Jacobson89] V. Jacobson, C. Leres, and S. McCanne, tcpdump,
 available via anonymous ftp to ftp.ee.lbl.gov, Jun.
 1989.

Paxson, et. al. Informational [Page 57]

RFC 2525 TCP Implementation Problems March 1999

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
 Selective Acknowledgement Options", RFC 2018, October
 1996.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC
 1191, November 1990.

 [RFC896] Nagle, J., "Congestion Control in IP/TCP Internetworks",
 RFC 896, January 1984.

 [Paxson97] V. Paxson, "Automated Packet Trace Analysis of TCP
 Implementations," Proc. SIGCOMM ’97, available from
 ftp://ftp.ee.lbl.gov/papers/vp-tcpanaly-sigcomm97.ps.Z.

 [RFC793] Postel, J., Editor, "Transmission Control Protocol," STD
 7, RFC 793, September 1981.

 [RFC2001] Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
 Retransmit, and Fast Recovery Algorithms", RFC 2001,
 January 1997.

 [Stevens94] W. Stevens, "TCP/IP Illustrated, Volume 1", Addison-
 Wesley Publishing Company, Reading, Massachusetts, 1994.

 [Wright95] G. Wright and W. Stevens, "TCP/IP Illustrated, Volume
 2", Addison-Wesley Publishing Company, Reading
 Massachusetts, 1995.

6. Authors’ Addresses

 Vern Paxson
 ACIRI / ICSI
 1947 Center Street
 Suite 600
 Berkeley, CA 94704-1198

 Phone: +1 510/642-4274 x302
 EMail: vern@aciri.org

Paxson, et. al. Informational [Page 58]

RFC 2525 TCP Implementation Problems March 1999

 Mark Allman <mallman@grc.nasa.gov>
 NASA Glenn Research Center/Sterling Software
 Lewis Field
 21000 Brookpark Road
 MS 54-2
 Cleveland, OH 44135
 USA

 Phone: +1 216/433-6586
 Email: mallman@grc.nasa.gov

 Scott Dawson
 Real-Time Computing Laboratory
 EECS Building
 University of Michigan
 Ann Arbor, MI 48109-2122
 USA

 Phone: +1 313/763-5363
 EMail: sdawson@eecs.umich.edu

 William C. Fenner
 Xerox PARC
 3333 Coyote Hill Road
 Palo Alto, CA 94304
 USA

 Phone: +1 650/812-4816
 EMail: fenner@parc.xerox.com

 Jim Griner <jgriner@grc.nasa.gov>
 NASA Glenn Research Center
 Lewis Field
 21000 Brookpark Road
 MS 54-2
 Cleveland, OH 44135
 USA

 Phone: +1 216/433-5787
 EMail: jgriner@grc.nasa.gov

Paxson, et. al. Informational [Page 59]

RFC 2525 TCP Implementation Problems March 1999

 Ian Heavens
 Spider Software Ltd.
 8 John’s Place, Leith
 Edinburgh EH6 7EL
 UK

 Phone: +44 131/475-7015
 EMail: ian@spider.com

 Kevin Lahey
 NASA Ames Research Center/MRJ
 MS 258-6
 Moffett Field, CA 94035
 USA

 Phone: +1 650/604-4334
 EMail: kml@nas.nasa.gov

 Jeff Semke
 Pittsburgh Supercomputing Center
 4400 Fifth Ave
 Pittsburgh, PA 15213
 USA

 Phone: +1 412/268-4960
 EMail: semke@psc.edu

 Bernie Volz
 Process Software Corporation
 959 Concord Street
 Framingham, MA 01701
 USA

 Phone: +1 508/879-6994
 EMail: volz@process.com

Paxson, et. al. Informational [Page 60]

RFC 2525 TCP Implementation Problems March 1999

7. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Paxson, et. al. Informational [Page 61]

