
Network Working Group                                          V. Paxson
Request for Comments: 2525                                        Editor
Category: Informational                                     ACIRI / ICSI
                                                               M. Allman
                            NASA Glenn Research Center/Sterling Software
                                                               S. Dawson
                                          Real-Time Computing Laboratory
                                                               W. Fenner
                                                              Xerox PARC
                                                               J. Griner
                                              NASA Glenn Research Center
                                                              I. Heavens
                                                    Spider Software Ltd.
                                                                K. Lahey
                                           NASA Ames Research Center/MRJ
                                                                J. Semke
                                        Pittsburgh Supercomputing Center
                                                                 B. Volz
                                            Process Software Corporation
                                                              March 1999

                   Known TCP Implementation Problems

Status of this Memo
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1. Introduction

   This memo catalogs a number of known TCP implementation problems.
   The goal in doing so is to improve conditions in the existing
   Internet by enhancing the quality of current TCP/IP implementations.
   It is hoped that both performance and correctness issues can be
   resolved by making implementors aware of the problems and their
   solutions.  In the long term, it is hoped that this will provide a
   reduction in unnecessary traffic on the network, the rate of
   connection failures due to protocol errors, and load on network
   servers due to time spent processing both unsuccessful connections
   and retransmitted data.  This will help to ensure the stability of
   the global Internet.

   Each problem is defined as follows:

   Name of Problem
      The name associated with the problem.  In this memo, the name is
      given as a subsection heading.

   Classification
      One or more problem categories for which the problem is
      classified:  "congestion control", "performance", "reliability",
      "resource management".

   Description
      A definition of the problem, succinct but including necessary
      background material.

   Significance
      A brief summary of the sorts of environments for which the problem
      is significant.
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   Implications
      Why the problem is viewed as a problem.

   Relevant RFCs
      The RFCs defining the TCP specification with which the problem
      conflicts.  These RFCs often qualify behavior using terms such as
      MUST, SHOULD, MAY, and others written capitalized.  See RFC 2119
      for the exact interpretation of these terms.

   Trace file demonstrating the problem
      One or more ASCII trace files demonstrating the problem, if
      applicable.

   Trace file demonstrating correct behavior
      One or more examples of how correct behavior appears in a trace,
      if applicable.

   References
      References that further discuss the problem.

   How to detect
      How to test an implementation to see if it exhibits the problem.
      This discussion may include difficulties and subtleties associated
      with causing the problem to manifest itself, and with interpreting
      traces to detect the presence of the problem (if applicable).

   How to fix
      For known causes of the problem, how to correct the
      implementation.

2. Known implementation problems

2.1.

   Name of Problem
      No initial slow start

   Classification
      Congestion control

   Description
      When a TCP begins transmitting data, it is required by RFC 1122,
      4.2.2.15, to engage in a "slow start" by initializing its
      congestion window, cwnd, to one packet (one segment of the maximum
      size).  (Note that an experimental change to TCP, documented in
      [RFC2414], allows an initial value somewhat larger than one
      packet.)  It subsequently increases cwnd by one packet for each
      ACK it receives for new data.  The minimum of cwnd and the
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      receiver’s advertised window bounds the highest sequence number
      the TCP can transmit.  A TCP that fails to initialize and
      increment cwnd in this fashion exhibits "No initial slow start".

   Significance
      In congested environments, detrimental to the performance of other
      connections, and possibly to the connection itself.

   Implications
      A TCP failing to slow start when beginning a connection results in
      traffic bursts that can stress the network, leading to excessive
      queueing delays and packet loss.

      Implementations exhibiting this problem might do so because they
      suffer from the general problem of not including the required
      congestion window.  These implementations will also suffer from
      "No slow start after retransmission timeout".

      There are different shades of "No initial slow start".  From the
      perspective of stressing the network, the worst is a connection
      that simply always sends based on the receiver’s advertised
      window, with no notion of a separate congestion window.  Another
      form is described in "Uninitialized CWND" below.

   Relevant RFCs
      RFC 1122 requires use of slow start.  RFC 2001 gives the specifics
      of slow start.

   Trace file demonstrating it
      Made using tcpdump [Jacobson89] recording at the connection
      responder.  No losses reported by the packet filter.

   10:40:42.244503 B > A: S 1168512000:1168512000(0) win 32768
                           <mss 1460,nop,wscale 0> (DF) [tos 0x8]
   10:40:42.259908 A > B: S 3688169472:3688169472(0)
                           ack 1168512001 win 32768 <mss 1460>
   10:40:42.389992 B > A: . ack 1 win 33580 (DF) [tos 0x8]
   10:40:42.664975 A > B: P 1:513(512) ack 1 win 32768
   10:40:42.700185 A > B: . 513:1973(1460) ack 1 win 32768
   10:40:42.718017 A > B: . 1973:3433(1460) ack 1 win 32768
   10:40:42.762945 A > B: . 3433:4893(1460) ack 1 win 32768
   10:40:42.811273 A > B: . 4893:6353(1460) ack 1 win 32768
   10:40:42.829149 A > B: . 6353:7813(1460) ack 1 win 32768
   10:40:42.853687 B > A: . ack 1973 win 33580 (DF) [tos 0x8]
   10:40:42.864031 B > A: . ack 3433 win 33580 (DF) [tos 0x8]
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      After the third packet, the connection is established.  A, the
      connection responder, begins transmitting to B, the connection
      initiator.  Host A quickly sends 6 packets comprising 7812 bytes,
      even though the SYN exchange agreed upon an MSS of 1460 bytes
      (implying an initial congestion window of 1 segment corresponds to
      1460 bytes), and so A should have sent at most 1460 bytes.

      The ACKs sent by B to A in the last two lines indicate that this
      trace is not a measurement error (slow start really occurring but
      the corresponding ACKs having been dropped by the packet filter).

      A second trace confirmed that the problem is repeatable.

   Trace file demonstrating correct behavior
      Made using tcpdump recording at the connection originator.  No
      losses reported by the packet filter.

   12:35:31.914050 C > D: S 1448571845:1448571845(0)
                            win 4380 <mss 1460>
   12:35:32.068819 D > C: S 1755712000:1755712000(0)
                            ack 1448571846 win 4096
   12:35:32.069341 C > D: . ack 1 win 4608
   12:35:32.075213 C > D: P 1:513(512) ack 1 win 4608
   12:35:32.286073 D > C: . ack 513 win 4096
   12:35:32.287032 C > D: . 513:1025(512) ack 1 win 4608
   12:35:32.287506 C > D: . 1025:1537(512) ack 1 win 4608
   12:35:32.432712 D > C: . ack 1537 win 4096
   12:35:32.433690 C > D: . 1537:2049(512) ack 1 win 4608
   12:35:32.434481 C > D: . 2049:2561(512) ack 1 win 4608
   12:35:32.435032 C > D: . 2561:3073(512) ack 1 win 4608
   12:35:32.594526 D > C: . ack 3073 win 4096
   12:35:32.595465 C > D: . 3073:3585(512) ack 1 win 4608
   12:35:32.595947 C > D: . 3585:4097(512) ack 1 win 4608
   12:35:32.596414 C > D: . 4097:4609(512) ack 1 win 4608
   12:35:32.596888 C > D: . 4609:5121(512) ack 1 win 4608
   12:35:32.733453 D > C: . ack 4097 win 4096

   References
      This problem is documented in [Paxson97].

   How to detect
      For implementations always manifesting this problem, it shows up
      immediately in a packet trace or a sequence plot, as illustrated
      above.
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   How to fix
      If the root problem is that the implementation lacks a notion of a
      congestion window, then unfortunately this requires significant
      work to fix.  However, doing so is important, as such
      implementations also exhibit "No slow start after retransmission
      timeout".

2.2.

   Name of Problem
      No slow start after retransmission timeout

   Classification
      Congestion control

   Description
      When a TCP experiences a retransmission timeout, it is required by
      RFC 1122, 4.2.2.15, to engage in "slow start" by initializing its
      congestion window, cwnd, to one packet (one segment of the maximum
      size).  It subsequently increases cwnd by one packet for each ACK
      it receives for new data until it reaches the "congestion
      avoidance" threshold, ssthresh, at which point the congestion
      avoidance algorithm for updating the window takes over.  A TCP
      that fails to enter slow start upon a timeout exhibits "No slow
      start after retransmission timeout".

   Significance
      In congested environments, severely detrimental to the performance
      of other connections, and also the connection itself.

   Implications
      Entering slow start upon timeout forms one of the cornerstones of
      Internet congestion stability, as outlined in [Jacobson88].  If
      TCPs fail to do so, the network becomes at risk of suffering
      "congestion collapse" [RFC896].

   Relevant RFCs
      RFC 1122 requires use of slow start after loss.  RFC 2001 gives
      the specifics of how to implement slow start.  RFC 896 describes
      congestion collapse.

      The retransmission timeout discussed here should not be confused
      with the separate "fast recovery" retransmission mechanism
      discussed in RFC 2001.

   Trace file demonstrating it
      Made using tcpdump recording at the sending TCP (A).  No losses
      reported by the packet filter.

Paxson, et. al.              Informational                      [Page 6]



RFC 2525              TCP Implementation Problems             March 1999

   10:40:59.090612 B > A: . ack 357125 win 33580 (DF) [tos 0x8]
   10:40:59.222025 A > B: . 357125:358585(1460) ack 1 win 32768
   10:40:59.868871 A > B: . 357125:358585(1460) ack 1 win 32768
   10:41:00.016641 B > A: . ack 364425 win 33580 (DF) [tos 0x8]
   10:41:00.036709 A > B: . 364425:365885(1460) ack 1 win 32768
   10:41:00.045231 A > B: . 365885:367345(1460) ack 1 win 32768
   10:41:00.053785 A > B: . 367345:368805(1460) ack 1 win 32768
   10:41:00.062426 A > B: . 368805:370265(1460) ack 1 win 32768
   10:41:00.071074 A > B: . 370265:371725(1460) ack 1 win 32768
   10:41:00.079794 A > B: . 371725:373185(1460) ack 1 win 32768
   10:41:00.089304 A > B: . 373185:374645(1460) ack 1 win 32768
   10:41:00.097738 A > B: . 374645:376105(1460) ack 1 win 32768
   10:41:00.106409 A > B: . 376105:377565(1460) ack 1 win 32768
   10:41:00.115024 A > B: . 377565:379025(1460) ack 1 win 32768
   10:41:00.123576 A > B: . 379025:380485(1460) ack 1 win 32768
   10:41:00.132016 A > B: . 380485:381945(1460) ack 1 win 32768
   10:41:00.141635 A > B: . 381945:383405(1460) ack 1 win 32768
   10:41:00.150094 A > B: . 383405:384865(1460) ack 1 win 32768
   10:41:00.158552 A > B: . 384865:386325(1460) ack 1 win 32768
   10:41:00.167053 A > B: . 386325:387785(1460) ack 1 win 32768
   10:41:00.175518 A > B: . 387785:389245(1460) ack 1 win 32768
   10:41:00.210835 A > B: . 389245:390705(1460) ack 1 win 32768
   10:41:00.226108 A > B: . 390705:392165(1460) ack 1 win 32768
   10:41:00.241524 B > A: . ack 389245 win 8760 (DF) [tos 0x8]

      The first packet indicates the ack point is 357125.  130 msec
      after receiving the ACK, A transmits the packet after the ACK
      point, 357125:358585.  640 msec after this transmission, it
      retransmits 357125:358585, in an apparent retransmission timeout.
      At this point, A’s cwnd should be one MSS, or 1460 bytes, as A
      enters slow start.  The trace is consistent with this possibility.

      B replies with an ACK of 364425, indicating that A has filled a
      sequence hole.  At this point, A’s cwnd should be 1460*2 = 2920
      bytes, since in slow start receiving an ACK advances cwnd by MSS.
      However, A then launches 19 consecutive packets, which is
      inconsistent with slow start.

      A second trace confirmed that the problem is repeatable.

   Trace file demonstrating correct behavior
      Made using tcpdump recording at the sending TCP (C).  No losses
      reported by the packet filter.

   12:35:48.442538 C > D: P 465409:465921(512) ack 1 win 4608
   12:35:48.544483 D > C: . ack 461825 win 4096
   12:35:48.703496 D > C: . ack 461825 win 4096
   12:35:49.044613 C > D: . 461825:462337(512) ack 1 win 4608
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   12:35:49.192282 D > C: . ack 465921 win 2048
   12:35:49.192538 D > C: . ack 465921 win 4096
   12:35:49.193392 C > D: P 465921:466433(512) ack 1 win 4608
   12:35:49.194726 C > D: P 466433:466945(512) ack 1 win 4608
   12:35:49.350665 D > C: . ack 466945 win 4096
   12:35:49.351694 C > D: . 466945:467457(512) ack 1 win 4608
   12:35:49.352168 C > D: . 467457:467969(512) ack 1 win 4608
   12:35:49.352643 C > D: . 467969:468481(512) ack 1 win 4608
   12:35:49.506000 D > C: . ack 467969 win 3584

      After C transmits the first packet shown to D, it takes no action
      in response to D’s ACKs for 461825, because the first packet
      already reached the advertised window limit of 4096 bytes above
      461825.  600 msec after transmitting the first packet, C
      retransmits 461825:462337, presumably due to a timeout.  Its
      congestion window is now MSS (512 bytes).

      D acks 465921, indicating that C’s retransmission filled a
      sequence hole.  This ACK advances C’s cwnd from 512 to 1024.  Very
      shortly after, D acks 465921 again in order to update the offered
      window from 2048 to 4096.  This ACK does not advance cwnd since it
      is not for new data.  Very shortly after, C responds to the newly
      enlarged window by transmitting two packets.  D acks both,
      advancing cwnd from 1024 to 1536.  C in turn transmits three
      packets.

   References
      This problem is documented in [Paxson97].

   How to detect
      Packet loss is common enough in the Internet that generally it is
      not difficult to find an Internet path that will force
      retransmission due to packet loss.

      If the effective window prior to loss is large enough, however,
      then the TCP may retransmit using the "fast recovery" mechanism
      described in RFC 2001.  In a packet trace, the signature of fast
      recovery is that the packet retransmission occurs in response to
      the receipt of three duplicate ACKs, and subsequent duplicate ACKs
      may lead to the transmission of new data, above both the ack point
      and the highest sequence transmitted so far.  An absence of three
      duplicate ACKs prior to retransmission suffices to distinguish
      between timeout and fast recovery retransmissions.  In the face of
      only observing fast recovery retransmissions, generally it is not
      difficult to repeat the data transfer until observing a timeout
      retransmission.
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      Once armed with a trace exhibiting a timeout retransmission,
      determining whether the TCP follows slow start is done by
      computing the correct progression of cwnd and comparing it to the
      amount of data transmitted by the TCP subsequent to the timeout
      retransmission.

   How to fix
      If the root problem is that the implementation lacks a notion of a
      congestion window, then unfortunately this requires significant
      work to fix.  However, doing so is critical, for reasons outlined
      above.

2.3.

   Name of Problem
      Uninitialized CWND

   Classification
      Congestion control

   Description
      As described above for "No initial slow start", when a TCP
      connection begins cwnd is initialized to one segment (or perhaps a
      few segments, if experimenting with [RFC2414]).  One particular
      form of "No initial slow start", worth separate mention as the bug
      is fairly widely deployed, is "Uninitialized CWND".  That is,
      while the TCP implements the proper slow start mechanism, it fails
      to initialize cwnd properly, so slow start in fact fails to occur.

      One way the bug can occur is if, during the connection
      establishment handshake, the SYN ACK packet arrives without an MSS
      option.  The faulty implementation uses receipt of the MSS option
      to initialize cwnd to one segment; if the option fails to arrive,
      then cwnd is instead initialized to a very large value.

   Significance
      In congested environments, detrimental to the performance of other
      connections, and likely to the connection itself.  The burst can
      be so large (see below) that it has deleterious effects even in
      uncongested environments.

   Implications
      A TCP exhibiting this behavior is stressing the network with a
      large burst of packets, which can cause loss in the network.

   Relevant RFCs
      RFC 1122 requires use of slow start.  RFC 2001 gives the specifics
      of slow start.
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   Trace file demonstrating it
      This trace was made using tcpdump running on host A.  Host A is
      the sender and host B is the receiver.  The advertised window and
      timestamp options have been omitted for clarity, except for the
      first segment sent by host A.  Note that A sends an MSS option in
      its initial SYN but B does not include one in its reply.

   16:56:02.226937 A > B: S 237585307:237585307(0) win 8192
         <mss 536,nop,wscale 0,nop,nop,timestamp[|tcp]>
   16:56:02.557135 B > A: S 1617216000:1617216000(0)
         ack 237585308 win 16384
   16:56:02.557788 A > B: . ack 1 win 8192
   16:56:02.566014 A > B: . 1:537(536) ack 1
   16:56:02.566557 A > B: . 537:1073(536) ack 1
   16:56:02.567120 A > B: . 1073:1609(536) ack 1
   16:56:02.567662 A > B: P 1609:2049(440) ack 1
   16:56:02.568349 A > B: . 2049:2585(536) ack 1
   16:56:02.568909 A > B: . 2585:3121(536) ack 1

      [54 additional burst segments deleted for brevity]

   16:56:02.936638 A > B: . 32065:32601(536) ack 1
   16:56:03.018685 B > A: . ack 1

      After the three-way handshake, host A bursts 61 segments into the
      network, before duplicate ACKs on the first segment cause a
      retransmission to occur.  Since host A did not wait for the ACK on
      the first segment before sending additional segments, it is
      exhibiting "Uninitialized CWND"

   Trace file demonstrating correct behavior

      See the example for "No initial slow start".

   References
      This problem is documented in [Paxson97].

   How to detect
      This problem can be detected by examining a packet trace recorded
      at either the sender or the receiver.  However, the bug can be
      difficult to induce because it requires finding a remote TCP peer
      that does not send an MSS option in its SYN ACK.

   How to fix
      This problem can be fixed by ensuring that cwnd is initialized
      upon receipt of a SYN ACK, even if the SYN ACK does not contain an
      MSS option.
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2.4.

   Name of Problem
      Inconsistent retransmission

   Classification
      Reliability

   Description
      If, for a given sequence number, a sending TCP retransmits
      different data than previously sent for that sequence number, then
      a strong possibility arises that the receiving TCP will
      reconstruct a different byte stream than that sent by the sending
      application, depending on which instance of the sequence number it
      accepts.

      Such a sending TCP exhibits "Inconsistent retransmission".

   Significance
      Critical for all environments.

   Implications
      Reliable delivery of data is a fundamental property of TCP.

   Relevant RFCs
      RFC 793, section 1.5, discusses the central role of reliability in
      TCP operation.

   Trace file demonstrating it
      Made using tcpdump recording at the receiving TCP (B).  No losses
      reported by the packet filter.

   12:35:53.145503 A > B: FP 90048435:90048461(26)
                             ack 393464682 win 4096
                                        4500 0042 9644 0000
                    3006 e4c2 86b1 0401 83f3 010a b2a4 0015
                    055e 07b3 1773 cb6a 5019 1000 68a9 0000
   data starts here>504f 5254 2031 3334 2c31 3737*2c34 2c31
                    2c31 3738 2c31 3635 0d0a
   12:35:53.146479 B > A: R 393464682:393464682(0) win 8192
   12:35:53.851714 A > B: FP 90048429:90048463(34)
                          ack 393464682 win 4096
                                        4500 004a 965b 0000
                    3006 e4a3 86b1 0401 83f3 010a b2a4 0015
                    055e 07ad 1773 cb6a 5019 1000 8bd3 0000
   data starts here>5041 5356 0d0a 504f 5254 2031 3334 2c31
                    3737*2c31 3035 2c31 3431 2c34 2c31 3539
                    0d0a
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      The sequence numbers shown in this trace are absolute and not
      adjusted to reflect the ISN.  The 4-digit hex values show a dump
      of the packet’s IP and TCP headers, as well as payload.  A first
      sends to B data for 90048435:90048461.  The corresponding data
      begins with hex words 504f, 5254, etc.

      B responds with a RST.  Since the recording location was local to
      B, it is unknown whether A received the RST.

      A then sends 90048429:90048463, which includes six sequence
      positions below the earlier transmission, all 26 positions of the
      earlier transmission, and two additional sequence positions.

      The retransmission disagrees starting just after sequence
      90048447, annotated above with a leading ’*’.  These two bytes
      were originally transmitted as hex 2c34 but retransmitted as hex
      2c31.  Subsequent positions disagree as well.

      This behavior has been observed in other traces involving
      different hosts.  It is unknown how to repeat it.

      In this instance, no corruption would occur, since B has already
      indicated it will not accept further packets from A.

      A second example illustrates a slightly different instance of the
      problem.  The tracing again was made with tcpdump at the receiving
      TCP (D).

   22:23:58.645829 C > D: P 185:212(27) ack 565 win 4096
                                        4500 0043 90a3 0000
                    3306 0734 cbf1 9eef 83f3 010a 0525 0015
                    a3a2 faba 578c 70a4 5018 1000 9a53 0000
   data starts here>504f 5254 2032 3033 2c32 3431 2c31 3538
                    2c32 3339 2c35 2c34 330d 0a
   22:23:58.646805 D > C: . ack 184 win 8192
                                        4500 0028 beeb 0000
                    3e06 ce06 83f3 010a cbf1 9eef 0015 0525
                    578c 70a4 a3a2 fab9 5010 2000 342f 0000
   22:31:36.532244 C > D: FP 186:213(27) ack 565 win 4096
                                        4500 0043 9435 0000
                    3306 03a2 cbf1 9eef 83f3 010a 0525 0015
                    a3a2 fabb 578c 70a4 5019 1000 9a51 0000
   data starts here>504f 5254 2032 3033 2c32 3431 2c31 3538
                    2c32 3339 2c35 2c34 330d 0a
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      In this trace, sequence numbers are relative.  C sends 185:212,
      but D only sends an ACK for 184 (so sequence number 184 is
      missing).  C then sends 186:213.  The packet payload is identical
      to the previous payload, but the base sequence number is one
      higher, resulting in an inconsistent retransmission.

      Neither trace exhibits checksum errors.

   Trace file demonstrating correct behavior
      (Omitted, as presumably correct behavior is obvious.)

   References
      None known.

   How to detect
      This problem unfortunately can be very difficult to detect, since
      available experience indicates it is quite rare that it is
      manifested.  No "trigger" has been identified that can be used to
      reproduce the problem.

   How to fix
      In the absence of a known "trigger", we cannot always assess how
      to fix the problem.

      In one implementation (not the one illustrated above), the problem
      manifested itself when (1) the sender received a zero window and
      stalled; (2) eventually an ACK arrived that offered a window
      larger than that in effect at the time of the stall; (3) the
      sender transmitted out of the buffer of data it held at the time
      of the stall, but (4) failed to limit this transfer to the buffer
      length, instead using the newly advertised (and larger) offered
      window.  Consequently, in addition to the valid buffer contents,
      it sent whatever garbage values followed the end of the buffer.
      If it then retransmitted the corresponding sequence numbers, at
      that point it sent the correct data, resulting in an inconsistent
      retransmission.  Note that this instance of the problem reflects a
      more general problem, that of initially transmitting incorrect
      data.

2.5.

   Name of Problem
      Failure to retain above-sequence data

   Classification
      Congestion control, performance
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   Description
      When a TCP receives an "above sequence" segment, meaning one with
      a sequence number exceeding RCV.NXT but below RCV.NXT+RCV.WND, it
      SHOULD queue the segment for later delivery (RFC 1122, 4.2.2.20).
      (See RFC 793 for the definition of RCV.NXT and RCV.WND.)  A TCP
      that fails to do so is said to exhibit "Failure to retain above-
      sequence data".

      It may sometimes be appropriate for a TCP to discard above-
      sequence data to reclaim memory.  If they do so only rarely, then
      we would not consider them to exhibit this problem.  Instead, the
      particular concern is with TCPs that always discard above-sequence
      data.

   Significance
      In environments prone to packet loss, detrimental to the
      performance of both other connections and the connection itself.

   Implications
      In times of congestion, a failure to retain above-sequence data
      will lead to numerous otherwise-unnecessary retransmissions,
      aggravating the congestion and potentially reducing performance by
      a large factor.

   Relevant RFCs
      RFC 1122 revises RFC 793 by upgrading the latter’s MAY to a SHOULD
      on this issue.

   Trace file demonstrating it
      Made using tcpdump recording at the receiving TCP.  No losses
      reported by the packet filter.

      B is the TCP sender, A the receiver.  A exhibits failure to retain
      above sequence-data:

   10:38:10.164860 B > A: . 221078:221614(536) ack 1 win 33232 [tos 0x8]
   10:38:10.170809 B > A: . 221614:222150(536) ack 1 win 33232 [tos 0x8]
   10:38:10.177183 B > A: . 222150:222686(536) ack 1 win 33232 [tos 0x8]
   10:38:10.225039 A > B: . ack 222686 win 25800

      Here B has sent up to (relative) sequence 222686 in-sequence, and
      A accordingly acknowledges.

   10:38:10.268131 B > A: . 223222:223758(536) ack 1 win 33232 [tos 0x8]
   10:38:10.337995 B > A: . 223758:224294(536) ack 1 win 33232 [tos 0x8]
   10:38:10.344065 B > A: . 224294:224830(536) ack 1 win 33232 [tos 0x8]
   10:38:10.350169 B > A: . 224830:225366(536) ack 1 win 33232 [tos 0x8]
   10:38:10.356362 B > A: . 225366:225902(536) ack 1 win 33232 [tos 0x8]
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   10:38:10.362445 B > A: . 225902:226438(536) ack 1 win 33232 [tos 0x8]
   10:38:10.368579 B > A: . 226438:226974(536) ack 1 win 33232 [tos 0x8]
   10:38:10.374732 B > A: . 226974:227510(536) ack 1 win 33232 [tos 0x8]
   10:38:10.380825 B > A: . 227510:228046(536) ack 1 win 33232 [tos 0x8]
   10:38:10.387027 B > A: . 228046:228582(536) ack 1 win 33232 [tos 0x8]
   10:38:10.393053 B > A: . 228582:229118(536) ack 1 win 33232 [tos 0x8]
   10:38:10.399193 B > A: . 229118:229654(536) ack 1 win 33232 [tos 0x8]
   10:38:10.405356 B > A: . 229654:230190(536) ack 1 win 33232 [tos 0x8]

      A now receives 13 additional packets from B.  These are above-
      sequence because 222686:223222 was dropped.  The packets do
      however fit within the offered window of 25800.  A does not
      generate any duplicate ACKs for them.

      The trace contributor (V. Paxson) verified that these 13 packets
      had valid IP and TCP checksums.

   10:38:11.917728 B > A: . 222686:223222(536) ack 1 win 33232 [tos 0x8]
   10:38:11.930925 A > B: . ack 223222 win 32232

      B times out for 222686:223222 and retransmits it.  Upon receiving
      it, A only acknowledges 223222.  Had it retained the valid above-
      sequence packets, it would instead have ack’d 230190.

   10:38:12.048438 B > A: . 223222:223758(536) ack 1 win 33232 [tos 0x8]
   10:38:12.054397 B > A: . 223758:224294(536) ack 1 win 33232 [tos 0x8]
   10:38:12.068029 A > B: . ack 224294 win 31696

      B retransmits two more packets, and A only acknowledges them.
      This pattern continues as B retransmits the entire set of
      previously-received packets.

      A second trace confirmed that the problem is repeatable.

   Trace file demonstrating correct behavior
      Made using tcpdump recording at the receiving TCP (C).  No losses
      reported by the packet filter.

   09:11:25.790417 D > C: . 33793:34305(512) ack 1 win 61440
   09:11:25.791393 D > C: . 34305:34817(512) ack 1 win 61440
   09:11:25.792369 D > C: . 34817:35329(512) ack 1 win 61440
   09:11:25.792369 D > C: . 35329:35841(512) ack 1 win 61440
   09:11:25.793345 D > C: . 36353:36865(512) ack 1 win 61440
   09:11:25.794321 C > D: . ack 35841 win 59904

      A sequence hole occurs because 35841:36353 has been dropped.
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   09:11:25.794321 D > C: . 36865:37377(512) ack 1 win 61440
   09:11:25.794321 C > D: . ack 35841 win 59904
   09:11:25.795297 D > C: . 37377:37889(512) ack 1 win 61440
   09:11:25.795297 C > D: . ack 35841 win 59904
   09:11:25.796273 C > D: . ack 35841 win 61440
   09:11:25.798225 D > C: . 37889:38401(512) ack 1 win 61440
   09:11:25.799201 C > D: . ack 35841 win 61440
   09:11:25.807009 D > C: . 38401:38913(512) ack 1 win 61440
   09:11:25.807009 C > D: . ack 35841 win 61440
   (many additional lines omitted)
   09:11:25.884113 D > C: . 52737:53249(512) ack 1 win 61440
   09:11:25.884113 C > D: . ack 35841 win 61440

      Each additional, above-sequence packet C receives from D elicits a
      duplicate ACK for 35841.

      09:11:25.887041 D > C: . 35841:36353(512) ack 1 win 61440
      09:11:25.887041 C > D: . ack 53249 win 44032

      D retransmits 35841:36353 and C acknowledges receipt of data all
      the way up to 53249.

   References
      This problem is documented in [Paxson97].

   How to detect
      Packet loss is common enough in the Internet that generally it is
      not difficult to find an Internet path that will result in some
      above-sequence packets arriving.  A TCP that exhibits "Failure to
      retain ..." may not generate duplicate ACKs for these packets.
      However, some TCPs that do retain above-sequence data also do not
      generate duplicate ACKs, so failure to do so does not definitively
      identify the problem.  Instead, the key observation is whether
      upon retransmission of the dropped packet, data that was
      previously above-sequence is acknowledged.

      Two considerations in detecting this problem using a packet trace
      are that it is easiest to do so with a trace made at the TCP
      receiver, in order to unambiguously determine which packets
      arrived successfully, and that such packets may still be correctly
      discarded if they arrive with checksum errors.  The latter can be
      tested by capturing the entire packet contents and performing the
      IP and TCP checksum algorithms to verify their integrity; or by
      confirming that the packets arrive with the same checksum and
      contents as that with which they were sent, with a presumption
      that the sending TCP correctly calculates checksums for the
      packets it transmits.
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      It is considerably easier to verify that an implementation does
      NOT exhibit this problem.  This can be done by recording a trace
      at the data sender, and observing that sometimes after a
      retransmission the receiver acknowledges a higher sequence number
      than just that which was retransmitted.

   How to fix
      If the root problem is that the implementation lacks buffer, then
      then unfortunately this requires significant work to fix.
      However, doing so is important, for reasons outlined above.

2.6.

   Name of Problem
      Extra additive constant in congestion avoidance

   Classification
      Congestion control / performance

   Description
      RFC 1122 section 4.2.2.15 states that TCP MUST implement
      Jacobson’s "congestion avoidance" algorithm [Jacobson88], which
      calls for increasing the congestion window, cwnd, by:

           MSS * MSS / cwnd

      for each ACK received for new data [RFC2001].  This has the effect
      of increasing cwnd by approximately one segment in each round trip
      time.

      Some TCP implementations add an additional fraction of a segment
      (typically MSS/8) to cwnd for each ACK received for new data
      [Stevens94, Wright95]:

           (MSS * MSS / cwnd) + MSS/8

      These implementations exhibit "Extra additive constant in
      congestion avoidance".

   Significance
      May be detrimental to performance even in completely uncongested
      environments (see Implications).

      In congested environments, may also be detrimental to the
      performance of other connections.
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   Implications
      The extra additive term allows a TCP to more aggressively open its
      congestion window (quadratic rather than linear increase).  For
      congested networks, this can increase the loss rate experienced by
      all connections sharing a bottleneck with the aggressive TCP.

      However, even for completely uncongested networks, the extra
      additive term can lead to diminished performance, as follows.  In
      congestion avoidance, a TCP sender probes the network path to
      determine its available capacity, which often equates to the
      number of buffers available at a bottleneck link.  With linear
      congestion avoidance, the TCP only probes for sufficient capacity
      (buffer) to hold one extra packet per RTT.

      Thus, when it exceeds the available capacity, generally only one
      packet will be lost (since on the previous RTT it already found
      that the path could sustain a window with one less packet in
      flight).  If the congestion window is sufficiently large, then the
      TCP will recover from this single loss using fast retransmission
      and avoid an expensive (in terms of performance) retransmission
      timeout.

      However, when the additional additive term is used, then cwnd can
      increase by more than one packet per RTT, in which case the TCP
      probes more aggressively.  If in the previous RTT it had reached
      the available capacity of the path, then the excess due to the
      extra increase will again be lost, but now this will result in
      multiple losses from the flight instead of a single loss.  TCPs
      that do not utilize SACK [RFC2018] generally will not recover from
      multiple losses without incurring a retransmission timeout
      [Fall96,Hoe96], significantly diminishing performance.

   Relevant RFCs
      RFC 1122 requires use of the "congestion avoidance" algorithm.
      RFC 2001 outlines the fast retransmit/fast recovery algorithms.
      RFC 2018 discusses the SACK option.

   Trace file demonstrating it
      Recorded using tcpdump running on the same FDDI LAN as host A.
      Host A is the sender and host B is the receiver.  The connection
      establishment specified an MSS of 4,312 bytes and a window scale
      factor of 4.  We omit the establishment and the first 2.5 MB of
      data transfer, as the problem is best demonstrated when the window
      has grown to a large value.  At the beginning of the trace
      excerpt, the congestion window is 31 packets.  The connection is
      never receiver-window limited, so we omit window advertisements
      from the trace for clarity.
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   11:42:07.697951 B > A: . ack 2383006
   11:42:07.699388 A > B: . 2508054:2512366(4312)
   11:42:07.699962 A > B: . 2512366:2516678(4312)
   11:42:07.700012 B > A: . ack 2391630
   11:42:07.701081 A > B: . 2516678:2520990(4312)
   11:42:07.701656 A > B: . 2520990:2525302(4312)
   11:42:07.701739 B > A: . ack 2400254
   11:42:07.702685 A > B: . 2525302:2529614(4312)
   11:42:07.703257 A > B: . 2529614:2533926(4312)
   11:42:07.703295 B > A: . ack 2408878
   11:42:07.704414 A > B: . 2533926:2538238(4312)
   11:42:07.704989 A > B: . 2538238:2542550(4312)
   11:42:07.705040 B > A: . ack 2417502
   11:42:07.705935 A > B: . 2542550:2546862(4312)
   11:42:07.706506 A > B: . 2546862:2551174(4312)
   11:42:07.706544 B > A: . ack 2426126
   11:42:07.707480 A > B: . 2551174:2555486(4312)
   11:42:07.708051 A > B: . 2555486:2559798(4312)
   11:42:07.708088 B > A: . ack 2434750
   11:42:07.709030 A > B: . 2559798:2564110(4312)
   11:42:07.709604 A > B: . 2564110:2568422(4312)
   11:42:07.710175 A > B: . 2568422:2572734(4312) *

   11:42:07.710215 B > A: . ack 2443374
   11:42:07.710799 A > B: . 2572734:2577046(4312)
   11:42:07.711368 A > B: . 2577046:2581358(4312)
   11:42:07.711405 B > A: . ack 2451998
   11:42:07.712323 A > B: . 2581358:2585670(4312)
   11:42:07.712898 A > B: . 2585670:2589982(4312)
   11:42:07.712938 B > A: . ack 2460622
   11:42:07.713926 A > B: . 2589982:2594294(4312)
   11:42:07.714501 A > B: . 2594294:2598606(4312)
   11:42:07.714547 B > A: . ack 2469246
   11:42:07.715747 A > B: . 2598606:2602918(4312)
   11:42:07.716287 A > B: . 2602918:2607230(4312)
   11:42:07.716328 B > A: . ack 2477870
   11:42:07.717146 A > B: . 2607230:2611542(4312)
   11:42:07.717717 A > B: . 2611542:2615854(4312)
   11:42:07.717762 B > A: . ack 2486494
   11:42:07.718754 A > B: . 2615854:2620166(4312)
   11:42:07.719331 A > B: . 2620166:2624478(4312)
   11:42:07.719906 A > B: . 2624478:2628790(4312) **

   11:42:07.719958 B > A: . ack 2495118
   11:42:07.720500 A > B: . 2628790:2633102(4312)
   11:42:07.721080 A > B: . 2633102:2637414(4312)
   11:42:07.721739 B > A: . ack 2503742
   11:42:07.722348 A > B: . 2637414:2641726(4312)
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   11:42:07.722918 A > B: . 2641726:2646038(4312)
   11:42:07.769248 B > A: . ack 2512366

      The receiver’s acknowledgment policy is one ACK per two packets
      received.  Thus, for each ACK arriving at host A, two new packets
      are sent, except when cwnd increases due to congestion avoidance,
      in which case three new packets are sent.

      With an ack-every-two-packets policy, cwnd should only increase
      one MSS per 2 RTT.  However, at the point marked "*" the window
      increases after 7 ACKs have arrived, and then again at "**" after
      6 more ACKs.

      While we do not have space to show the effect, this trace suffered
      from repeated timeout retransmissions due to multiple packet
      losses during a single RTT.

   Trace file demonstrating correct behavior
      Made using the same host and tracing setup as above, except now
      A’s TCP has been modified to remove the MSS/8 additive constant.
      Tcpdump reported 77 packet drops; the excerpt below is fully
      self-consistent so it is unlikely that any of these occurred
      during the excerpt.

      We again begin when cwnd is 31 packets (this occurs significantly
      later in the trace, because the congestion avoidance is now less
      aggressive with opening the window).

   14:22:21.236757 B > A: . ack 5194679
   14:22:21.238192 A > B: . 5319727:5324039(4312)
   14:22:21.238770 A > B: . 5324039:5328351(4312)
   14:22:21.238821 B > A: . ack 5203303
   14:22:21.240158 A > B: . 5328351:5332663(4312)
   14:22:21.240738 A > B: . 5332663:5336975(4312)
   14:22:21.270422 B > A: . ack 5211927
   14:22:21.271883 A > B: . 5336975:5341287(4312)
   14:22:21.272458 A > B: . 5341287:5345599(4312)
   14:22:21.279099 B > A: . ack 5220551
   14:22:21.280539 A > B: . 5345599:5349911(4312)
   14:22:21.281118 A > B: . 5349911:5354223(4312)
   14:22:21.281183 B > A: . ack 5229175
   14:22:21.282348 A > B: . 5354223:5358535(4312)
   14:22:21.283029 A > B: . 5358535:5362847(4312)
   14:22:21.283089 B > A: . ack 5237799
   14:22:21.284213 A > B: . 5362847:5367159(4312)
   14:22:21.284779 A > B: . 5367159:5371471(4312)
   14:22:21.285976 B > A: . ack 5246423
   14:22:21.287465 A > B: . 5371471:5375783(4312)
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   14:22:21.288036 A > B: . 5375783:5380095(4312)
   14:22:21.288073 B > A: . ack 5255047
   14:22:21.289155 A > B: . 5380095:5384407(4312)
   14:22:21.289725 A > B: . 5384407:5388719(4312)
   14:22:21.289762 B > A: . ack 5263671
   14:22:21.291090 A > B: . 5388719:5393031(4312)
   14:22:21.291662 A > B: . 5393031:5397343(4312)
   14:22:21.291701 B > A: . ack 5272295
   14:22:21.292870 A > B: . 5397343:5401655(4312)
   14:22:21.293441 A > B: . 5401655:5405967(4312)
   14:22:21.293481 B > A: . ack 5280919
   14:22:21.294476 A > B: . 5405967:5410279(4312)
   14:22:21.295053 A > B: . 5410279:5414591(4312)
   14:22:21.295106 B > A: . ack 5289543
   14:22:21.296306 A > B: . 5414591:5418903(4312)
   14:22:21.296878 A > B: . 5418903:5423215(4312)
   14:22:21.296917 B > A: . ack 5298167
   14:22:21.297716 A > B: . 5423215:5427527(4312)
   14:22:21.298285 A > B: . 5427527:5431839(4312)
   14:22:21.298324 B > A: . ack 5306791
   14:22:21.299413 A > B: . 5431839:5436151(4312)
   14:22:21.299986 A > B: . 5436151:5440463(4312)
   14:22:21.303696 B > A: . ack 5315415
   14:22:21.305177 A > B: . 5440463:5444775(4312)
   14:22:21.305755 A > B: . 5444775:5449087(4312)
   14:22:21.308032 B > A: . ack 5324039
   14:22:21.309525 A > B: . 5449087:5453399(4312)
   14:22:21.310101 A > B: . 5453399:5457711(4312)
   14:22:21.310144 B > A: . ack 5332663           ***

   14:22:21.311615 A > B: . 5457711:5462023(4312)
   14:22:21.312198 A > B: . 5462023:5466335(4312)
   14:22:21.341876 B > A: . ack 5341287
   14:22:21.343451 A > B: . 5466335:5470647(4312)
   14:22:21.343985 A > B: . 5470647:5474959(4312)
   14:22:21.350304 B > A: . ack 5349911
   14:22:21.351852 A > B: . 5474959:5479271(4312)
   14:22:21.352430 A > B: . 5479271:5483583(4312)
   14:22:21.352484 B > A: . ack 5358535
   14:22:21.353574 A > B: . 5483583:5487895(4312)
   14:22:21.354149 A > B: . 5487895:5492207(4312)
   14:22:21.354205 B > A: . ack 5367159
   14:22:21.355467 A > B: . 5492207:5496519(4312)
   14:22:21.356039 A > B: . 5496519:5500831(4312)
   14:22:21.357361 B > A: . ack 5375783
   14:22:21.358855 A > B: . 5500831:5505143(4312)
   14:22:21.359424 A > B: . 5505143:5509455(4312)
   14:22:21.359465 B > A: . ack 5384407
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   14:22:21.360605 A > B: . 5509455:5513767(4312)
   14:22:21.361181 A > B: . 5513767:5518079(4312)
   14:22:21.361225 B > A: . ack 5393031
   14:22:21.362485 A > B: . 5518079:5522391(4312)
   14:22:21.363057 A > B: . 5522391:5526703(4312)
   14:22:21.363096 B > A: . ack 5401655
   14:22:21.364236 A > B: . 5526703:5531015(4312)
   14:22:21.364810 A > B: . 5531015:5535327(4312)
   14:22:21.364867 B > A: . ack 5410279
   14:22:21.365819 A > B: . 5535327:5539639(4312)
   14:22:21.366386 A > B: . 5539639:5543951(4312)
   14:22:21.366427 B > A: . ack 5418903
   14:22:21.367586 A > B: . 5543951:5548263(4312)
   14:22:21.368158 A > B: . 5548263:5552575(4312)
   14:22:21.368199 B > A: . ack 5427527
   14:22:21.369189 A > B: . 5552575:5556887(4312)
   14:22:21.369758 A > B: . 5556887:5561199(4312)
   14:22:21.369803 B > A: . ack 5436151
   14:22:21.370814 A > B: . 5561199:5565511(4312)
   14:22:21.371398 A > B: . 5565511:5569823(4312)
   14:22:21.375159 B > A: . ack 5444775
   14:22:21.376658 A > B: . 5569823:5574135(4312)
   14:22:21.377235 A > B: . 5574135:5578447(4312)
   14:22:21.379303 B > A: . ack 5453399
   14:22:21.380802 A > B: . 5578447:5582759(4312)
   14:22:21.381377 A > B: . 5582759:5587071(4312)
   14:22:21.381947 A > B: . 5587071:5591383(4312) ****

      "***" marks the end of the first round trip.  Note that cwnd did
      not increase (as evidenced by each ACK eliciting two new data
      packets).  Only at "****", which comes near the end of the second
      round trip, does cwnd increase by one packet.

      This trace did not suffer any timeout retransmissions.  It
      transferred the same amount of data as the first trace in about
      half as much time.  This difference is repeatable between hosts A
      and B.

   References
      [Stevens94] and [Wright95] discuss this problem.  The problem of
      Reno TCP failing to recover from multiple losses except via a
      retransmission timeout is discussed in [Fall96,Hoe96].
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   How to detect
      If source code is available, that is generally the easiest way to
      detect this problem.  Search for each modification to the cwnd
      variable; (at least) one of these will be for congestion
      avoidance, and inspection of the related code should immediately
      identify the problem if present.

      The problem can also be detected by closely examining packet
      traces taken near the sender.  During congestion avoidance, cwnd
      will increase by an additional segment upon the receipt of
      (typically) eight acknowledgements without a loss.  This increase
      is in addition to the one segment increase per round trip time (or
      two round trip times if the receiver is using delayed ACKs).

      Furthermore, graphs of the sequence number vs. time, taken from
      packet traces, are normally linear during congestion avoidance.
      When viewing packet traces of transfers from senders exhibiting
      this problem, the graphs appear quadratic instead of linear.

      Finally, the traces will show that, with sufficiently large
      windows, nearly every loss event results in a timeout.

   How to fix
      This problem may be corrected by removing the "+ MSS/8" term from
      the congestion avoidance code that increases cwnd each time an ACK
      of new data is received.

2.7.

   Name of Problem
      Initial RTO too low

   Classification
      Performance

   Description
      When a TCP first begins transmitting data, it lacks the RTT
      measurements necessary to have computed an adaptive retransmission
      timeout (RTO).  RFC 1122, 4.2.3.1, states that a TCP SHOULD
      initialize RTO to 3 seconds.  A TCP that uses a lower value
      exhibits "Initial RTO too low".

   Significance
      In environments with large RTTs (where "large" means any value
      larger than the initial RTO), TCPs will experience very poor
      performance.
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   Implications
      Whenever RTO < RTT, very poor performance can result as packets
      are unnecessarily retransmitted (because RTO will expire before an
      ACK for the packet can arrive) and the connection enters slow
      start and congestion avoidance.  Generally, the algorithms for
      computing RTO avoid this problem by adding a positive term to the
      estimated RTT.  However, when a connection first begins it must
      use some estimate for RTO, and if it picks a value less than RTT,
      the above problems will arise.

      Furthermore, when the initial RTO < RTT, it can take a long time
      for the TCP to correct the problem by adapting the RTT estimate,
      because the use of Karn’s algorithm (mandated by RFC 1122,
      4.2.3.1) will discard many of the candidate RTT measurements made
      after the first timeout, since they will be measurements of
      retransmitted segments.

   Relevant RFCs
      RFC 1122 states that TCPs SHOULD initialize RTO to 3 seconds and
      MUST implement Karn’s algorithm.

   Trace file demonstrating it
      The following trace file was taken using tcpdump at host A, the
      data sender.  The advertised window and SYN options have been
      omitted for clarity.

   07:52:39.870301 A > B: S 2786333696:2786333696(0)
   07:52:40.548170 B > A: S 130240000:130240000(0) ack 2786333697
   07:52:40.561287 A > B: P 1:513(512) ack 1
   07:52:40.753466 A > B: . 1:513(512) ack 1
   07:52:41.133687 A > B: . 1:513(512) ack 1
   07:52:41.458529 B > A: . ack 513
   07:52:41.458686 A > B: . 513:1025(512) ack 1
   07:52:41.458797 A > B: P 1025:1537(512) ack 1
   07:52:41.541633 B > A: . ack 513
   07:52:41.703732 A > B: . 513:1025(512) ack 1
   07:52:42.044875 B > A: . ack 513
   07:52:42.173728 A > B: . 513:1025(512) ack 1
   07:52:42.330861 B > A: . ack 1537
   07:52:42.331129 A > B: . 1537:2049(512) ack 1
   07:52:42.331262 A > B: P 2049:2561(512) ack 1
   07:52:42.623673 A > B: . 1537:2049(512) ack 1
   07:52:42.683203 B > A: . ack 1537
   07:52:43.044029 B > A: . ack 1537
   07:52:43.193812 A > B: . 1537:2049(512) ack 1
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      Note from the SYN/SYN-ACK exchange, the RTT is over 600 msec.
      However, from the elapsed time between the third and fourth lines
      (the first packet being sent and then retransmitted), it is
      apparent the RTO was initialized to under 200 msec.  The next line
      shows that this value has doubled to 400 msec (correct exponential
      backoff of RTO), but that still does not suffice to avoid an
      unnecessary retransmission.

      Finally, an ACK from B arrives for the first segment.  Later two
      more duplicate ACKs for 513 arrive, indicating that both the
      original and the two retransmissions arrived at B.  (Indeed, a
      concurrent trace at B showed that no packets were lost during the
      entire connection).  This ACK opens the congestion window to two
      packets, which are sent back-to-back, but at 07:52:41.703732 RTO
      again expires after a little over 200 msec, leading to an
      unnecessary retransmission, and the pattern repeats.  By the end
      of the trace excerpt above, 1536 bytes have been successfully
      transmitted from A to B, over an interval of more than 2 seconds,
      reflecting terrible performance.

   Trace file demonstrating correct behavior
      The following trace file was taken using tcpdump at host C, the
      data sender.  The advertised window and SYN options have been
      omitted for clarity.

   17:30:32.090299 C > D: S 2031744000:2031744000(0)
   17:30:32.900325 D > C: S 262737964:262737964(0) ack 2031744001
   17:30:32.900326 C > D: . ack 1
   17:30:32.910326 C > D: . 1:513(512) ack 1
   17:30:34.150355 D > C: . ack 513
   17:30:34.150356 C > D: . 513:1025(512) ack 1
   17:30:34.150357 C > D: . 1025:1537(512) ack 1
   17:30:35.170384 D > C: . ack 1025
   17:30:35.170385 C > D: . 1537:2049(512) ack 1
   17:30:35.170386 C > D: . 2049:2561(512) ack 1
   17:30:35.320385 D > C: . ack 1537
   17:30:35.320386 C > D: . 2561:3073(512) ack 1
   17:30:35.320387 C > D: . 3073:3585(512) ack 1
   17:30:35.730384 D > C: . ack 2049

      The initial SYN/SYN-ACK exchange shows that RTT is more than 800
      msec, and for some subsequent packets it rises above 1 second, but
      C’s retransmit timer does not ever expire.

   References
      This problem is documented in [Paxson97].
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   How to detect
      This problem is readily detected by inspecting a packet trace of
      the startup of a TCP connection made over a long-delay path.  It
      can be diagnosed from either a sender-side or receiver-side trace.
      Long-delay paths can often be found by locating remote sites on
      other continents.

   How to fix
      As this problem arises from a faulty initialization, one hopes
      fixing it requires a one-line change to the TCP source code.

2.8.

   Name of Problem
      Failure of window deflation after loss recovery

   Classification
      Congestion control / performance

   Description
      The fast recovery algorithm allows TCP senders to continue to
      transmit new segments during loss recovery.  First, fast
      retransmission is initiated after a TCP sender receives three
      duplicate ACKs.  At this point, a retransmission is sent and cwnd
      is halved.  The fast recovery algorithm then allows additional
      segments to be sent when sufficient additional duplicate ACKs
      arrive.  Some implementations of fast recovery compute when to
      send additional segments by artificially incrementing cwnd, first
      by three segments to account for the three duplicate ACKs that
      triggered fast retransmission, and subsequently by 1 MSS for each
      new duplicate ACK that arrives.  When cwnd allows, the sender
      transmits new data segments.

      When an ACK arrives that covers new data, cwnd is to be reduced by
      the amount by which it was artificially increased.  However, some
      TCP implementations fail to "deflate" the window, causing an
      inappropriate amount of data to be sent into the network after
      recovery.  One cause of this problem is the "header prediction"
      code, which is used to handle incoming segments that require
      little work.  In some implementations of TCP, the header
      prediction code does not check to make sure cwnd has not been
      artificially inflated, and therefore does not reduce the
      artificially increased cwnd when appropriate.

   Significance
      TCP senders that exhibit this problem will transmit a burst of
      data immediately after recovery, which can degrade performance, as
      well as network stability.  Effectively, the sender does not
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      reduce the size of cwnd as much as it should (to half its value
      when loss was detected), if at all.  This can harm the performance
      of the TCP connection itself, as well as competing TCP flows.

   Implications
      A TCP sender exhibiting this problem does not reduce cwnd
      appropriately in times of congestion, and therefore may contribute
      to congestive collapse.

   Relevant RFCs
      RFC 2001 outlines the fast retransmit/fast recovery algorithms.
      [Brakmo95] outlines this implementation problem and offers a fix.

   Trace file demonstrating it
      The following trace file was taken using tcpdump at host A, the
      data sender.  The advertised window (which never changed) has been
      omitted for clarity, except for the first packet sent by each
      host.

   08:22:56.825635 A.7505 > B.7505: . 29697:30209(512) ack 1 win 4608
   08:22:57.038794 B.7505 > A.7505: . ack 27649 win 4096
   08:22:57.039279 A.7505 > B.7505: . 30209:30721(512) ack 1
   08:22:57.321876 B.7505 > A.7505: . ack 28161
   08:22:57.322356 A.7505 > B.7505: . 30721:31233(512) ack 1
   08:22:57.347128 B.7505 > A.7505: . ack 28673
   08:22:57.347572 A.7505 > B.7505: . 31233:31745(512) ack 1
   08:22:57.347782 A.7505 > B.7505: . 31745:32257(512) ack 1
   08:22:57.936393 B.7505 > A.7505: . ack 29185
   08:22:57.936864 A.7505 > B.7505: . 32257:32769(512) ack 1
   08:22:57.950802 B.7505 > A.7505: . ack 29697 win 4096
   08:22:57.951246 A.7505 > B.7505: . 32769:33281(512) ack 1
   08:22:58.169422 B.7505 > A.7505: . ack 29697
   08:22:58.638222 B.7505 > A.7505: . ack 29697
   08:22:58.643312 B.7505 > A.7505: . ack 29697
   08:22:58.643669 A.7505 > B.7505: . 29697:30209(512) ack 1
   08:22:58.936436 B.7505 > A.7505: . ack 29697
   08:22:59.002614 B.7505 > A.7505: . ack 29697
   08:22:59.003026 A.7505 > B.7505: . 33281:33793(512) ack 1
   08:22:59.682902 B.7505 > A.7505: . ack 33281
   08:22:59.683391 A.7505 > B.7505: P 33793:34305(512) ack 1
   08:22:59.683748 A.7505 > B.7505: P 34305:34817(512) ack 1 ***
   08:22:59.684043 A.7505 > B.7505: P 34817:35329(512) ack 1
   08:22:59.684266 A.7505 > B.7505: P 35329:35841(512) ack 1
   08:22:59.684567 A.7505 > B.7505: P 35841:36353(512) ack 1
   08:22:59.684810 A.7505 > B.7505: P 36353:36865(512) ack 1
   08:22:59.685094 A.7505 > B.7505: P 36865:37377(512) ack 1
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      The first 12 lines of the trace show incoming ACKs clocking out a
      window of data segments.  At this point in the transfer, cwnd is 7
      segments.  The next 4 lines of the trace show 3 duplicate ACKs
      arriving from the receiver, followed by a retransmission from the
      sender.  At this point, cwnd is halved (to 3 segments) and
      artificially incremented by the three duplicate ACKs that have
      arrived, making cwnd 6 segments.  The next two lines show 2 more
      duplicate ACKs arriving, each of which increases cwnd by 1
      segment.  So, after these two duplicate ACKs arrive the cwnd is 8
      segments and the sender has permission to send 1 new segment
      (since there are 7 segments outstanding).  The next line in the
      trace shows this new segment being transmitted.  The next packet
      shown in the trace is an ACK from host B that covers the first 7
      outstanding segments (all but the new segment sent during
      recovery).  This should cause cwnd to be reduced to 3 segments and
      2 segments to be transmitted (since there is already 1 outstanding
      segment in the network).  However, as shown by the last 7 lines of
      the trace, cwnd is not reduced, causing a line-rate burst of 7 new
      segments.

   Trace file demonstrating correct behavior
      The trace would appear identical to the one above, only it would
      stop after the line marked "***", because at this point host A
      would correctly reduce cwnd after recovery, allowing only 2
      segments to be transmitted, rather than producing a burst of 7
      segments.

   References
      This problem is documented and the performance implications
      analyzed in [Brakmo95].

   How to detect
      Failure of window deflation after loss recovery can be found by
      examining sender-side packet traces recorded during periods of
      moderate loss (so cwnd can grow large enough to allow for fast
      recovery when loss occurs).

   How to fix
      When this bug is caused by incorrect header prediction, the fix is
      to add a predicate to the header prediction test that checks to
      see whether cwnd is inflated; if so, the header prediction test
      fails and the usual ACK processing occurs, which (in this case)
      takes care to deflate the window.  See [Brakmo95] for details.

2.9.

   Name of Problem
      Excessively short keepalive connection timeout
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   Classification
      Reliability

   Description
      Keep-alive is a mechanism for checking whether an idle connection
      is still alive.  According to RFC 1122, keepalive should only be
      invoked in server applications that might otherwise hang
      indefinitely and consume resources unnecessarily if a client
      crashes or aborts a connection during a network failure.

      RFC 1122 also specifies that if a keep-alive mechanism is
      implemented it MUST NOT interpret failure to respond to any
      specific probe as a dead connection.  The RFC does not specify a
      particular mechanism for timing out a connection when no response
      is received for keepalive probes.  However, if the mechanism does
      not allow ample time for recovery from network congestion or
      delay, connections may be timed out unnecessarily.

   Significance
      In congested networks, can lead to unwarranted termination of
      connections.

   Implications
      It is possible for the network connection between two peer
      machines to become congested or to exhibit packet loss at the time
      that a keep-alive probe is sent on a connection.  If the keep-
      alive mechanism does not allow sufficient time before dropping
      connections in the face of unacknowledged probes, connections may
      be dropped even when both peers of a connection are still alive.

   Relevant RFCs
      RFC 1122 specifies that the keep-alive mechanism may be provided.
      It does not specify a mechanism for determining dead connections
      when keepalive probes are not acknowledged.

   Trace file demonstrating it
      Made using the Orchestra tool at the peer of the machine using
      keep-alive.  After connection establishment, incoming keep-alives
      were dropped by Orchestra to simulate a dead connection.

   22:11:12.040000 A > B: 22666019:0 win 8192 datasz 4 SYN
   22:11:12.060000 B > A: 2496001:22666020 win 4096 datasz 4 SYN ACK
   22:11:12.130000 A > B: 22666020:2496002 win 8760 datasz 0 ACK
   (more than two hours elapse)
   00:23:00.680000 A > B: 22666019:2496002 win 8760 datasz 1 ACK
   00:23:01.770000 A > B: 22666019:2496002 win 8760 datasz 1 ACK
   00:23:02.870000 A > B: 22666019:2496002 win 8760 datasz 1 ACK
   00:23.03.970000 A > B: 22666019:2496002 win 8760 datasz 1 ACK
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   00:23.05.070000 A > B: 22666019:2496002 win 8760 datasz 1 ACK

      The initial three packets are the SYN exchange for connection
      setup.  About two hours later, the keepalive timer fires because
      the connection has been idle.  Keepalive probes are transmitted a
      total of 5 times, with a 1 second spacing between probes, after
      which the connection is dropped.  This is problematic because a 5
      second network outage at the time of the first probe results in
      the connection being killed.

   Trace file demonstrating correct behavior
      Made using the Orchestra tool at the peer of the machine using
      keep-alive.  After connection establishment, incoming keep-alives
      were dropped by Orchestra to simulate a dead connection.

   16:01:52.130000 A > B: 1804412929:0 win 4096 datasz 4 SYN
   16:01:52.360000 B > A: 16512001:1804412930 win 4096 datasz 4 SYN ACK
   16:01:52.410000 A > B: 1804412930:16512002 win 4096 datasz 0 ACK
   (two hours elapse)
   18:01:57.170000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
   18:03:12.220000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
   18:04:27.270000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
   18:05:42.320000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
   18:06:57.370000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
   18:08:12.420000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
   18:09:27.480000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
   18:10:43.290000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
   18:11:57.580000 A > B: 1804412929:16512002 win 4096 datasz 0 ACK
   18:13:12.630000 A > B: 1804412929:16512002 win 4096 datasz 0 RST ACK

      In this trace, when the keep-alive timer expires, 9 keepalive
      probes are sent at 75 second intervals.  75 seconds after the last
      probe is sent, a final RST segment is sent indicating that the
      connection has been closed.  This implementation waits about 11
      minutes before timing out the connection, while the first
      implementation shown allows only 5 seconds.

   References
      This problem is documented in [Dawson97].

   How to detect
      For implementations manifesting this problem, it shows up on a
      packet trace after the keepalive timer fires if the peer machine
      receiving the keepalive does not respond.  Usually the keepalive
      timer will fire at least two hours after keepalive is turned on,
      but it may be sooner if the timer value has been configured lower,
      or if the keepalive mechanism violates the specification (see
      Insufficient interval between keepalives problem).  In this
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      example, suppressing the response of the peer to keepalive probes
      was accomplished using the Orchestra toolkit, which can be
      configured to drop packets.  It could also have been done by
      creating a connection, turning on keepalive, and disconnecting the
      network connection at the receiver machine.

   How to fix
      This problem can be fixed by using a different method for timing
      out keepalives that allows a longer period of time to elapse
      before dropping the connection.  For example, the algorithm for
      timing out on dropped data could be used.  Another possibility is
      an algorithm such as the one shown in the trace above, which sends
      9 probes at 75 second intervals and then waits an additional 75
      seconds for a response before closing the connection.

2.10.

   Name of Problem
      Failure to back off retransmission timeout

   Classification
      Congestion control / reliability

   Description
      The retransmission timeout is used to determine when a packet has
      been dropped in the network.  When this timeout has expired
      without the arrival of an ACK, the segment is retransmitted. Each
      time a segment is retransmitted, the timeout is adjusted according
      to an exponential backoff algorithm, doubling each time.  If a TCP
      fails to receive an ACK after numerous attempts at retransmitting
      the same segment, it terminates the connection.  A TCP that fails
      to double its retransmission timeout upon repeated timeouts is
      said to exhibit "Failure to back off retransmission timeout".

   Significance
      Backing off the retransmission timer is a cornerstone of network
      stability in the presence of congestion.  Consequently, this bug
      can have severe adverse affects in congested networks.  It also
      affects TCP reliability in congested networks, as discussed in the
      next section.

   Implications
      It is possible for the network connection between two TCP peers to
      become congested or to exhibit packet loss at the time that a
      retransmission is sent on a connection.  If the retransmission
      mechanism does not allow sufficient time before dropping
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      connections in the face of unacknowledged segments, connections
      may be dropped even when, by waiting longer, the connection could
      have continued.

   Relevant RFCs
      RFC 1122 specifies mandatory exponential backoff of the
      retransmission timeout, and the termination of connections after
      some period of time (at least 100 seconds).

   Trace file demonstrating it
      Made using tcpdump on an intermediate host:

   16:51:12.671727 A > B: S 510878852:510878852(0) win 16384
   16:51:12.672479 B > A: S 2392143687:2392143687(0)
                            ack 510878853 win 16384
   16:51:12.672581 A > B: . ack 1 win 16384
   16:51:15.244171 A > B: P 1:3(2) ack 1 win 16384
   16:51:15.244933 B > A: . ack 3 win 17518  (DF)

   <receiving host disconnected>

   16:51:19.381176 A > B: P 3:5(2) ack 1 win 16384
   16:51:20.162016 A > B: P 3:5(2) ack 1 win 16384
   16:51:21.161936 A > B: P 3:5(2) ack 1 win 16384
   16:51:22.161914 A > B: P 3:5(2) ack 1 win 16384
   16:51:23.161914 A > B: P 3:5(2) ack 1 win 16384
   16:51:24.161879 A > B: P 3:5(2) ack 1 win 16384
   16:51:25.161857 A > B: P 3:5(2) ack 1 win 16384
   16:51:26.161836 A > B: P 3:5(2) ack 1 win 16384
   16:51:27.161814 A > B: P 3:5(2) ack 1 win 16384
   16:51:28.161791 A > B: P 3:5(2) ack 1 win 16384
   16:51:29.161769 A > B: P 3:5(2) ack 1 win 16384
   16:51:30.161750 A > B: P 3:5(2) ack 1 win 16384
   16:51:31.161727 A > B: P 3:5(2) ack 1 win 16384

   16:51:32.161701 A > B: R 5:5(0) ack 1 win 16384

      The initial three packets are the SYN exchange for connection
      setup, then a single data packet, to verify that data can be
      transferred.  Then the connection to the destination host was
      disconnected, and more data sent.  Retransmissions occur every
      second for 12 seconds, and then the connection is terminated with
      a RST.  This is problematic because a 12 second pause in
      connectivity could result in the termination of a connection.

   Trace file demonstrating correct behavior
      Again, a tcpdump taken from a third host:
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   16:59:05.398301 A > B: S 2503324757:2503324757(0) win 16384
   16:59:05.399673 B > A: S 2492674648:2492674648(0)
                           ack 2503324758 win 16384
   16:59:05.399866 A > B: . ack 1 win 17520
   16:59:06.538107 A > B: P 1:3(2) ack 1 win 17520
   16:59:06.540977 B > A: . ack 3 win 17518  (DF)

   <receiving host disconnected>

   16:59:13.121542 A > B: P 3:5(2) ack 1 win 17520
   16:59:14.010928 A > B: P 3:5(2) ack 1 win 17520
   16:59:16.010979 A > B: P 3:5(2) ack 1 win 17520
   16:59:20.011229 A > B: P 3:5(2) ack 1 win 17520
   16:59:28.011896 A > B: P 3:5(2) ack 1 win 17520
   16:59:44.013200 A > B: P 3:5(2) ack 1 win 17520
   17:00:16.015766 A > B: P 3:5(2) ack 1 win 17520
   17:01:20.021308 A > B: P 3:5(2) ack 1 win 17520
   17:02:24.027752 A > B: P 3:5(2) ack 1 win 17520
   17:03:28.034569 A > B: P 3:5(2) ack 1 win 17520
   17:04:32.041567 A > B: P 3:5(2) ack 1 win 17520
   17:05:36.048264 A > B: P 3:5(2) ack 1 win 17520
   17:06:40.054900 A > B: P 3:5(2) ack 1 win 17520

   17:07:44.061306 A > B: R 5:5(0) ack 1 win 17520

      In this trace, when the retransmission timer expires, 12
      retransmissions are sent at exponentially-increasing intervals,
      until the interval value reaches 64 seconds, at which time the
      interval stops growing.  64 seconds after the last retransmission,
      a final RST segment is sent indicating that the connection has
      been closed.  This implementation waits about 9 minutes before
      timing out the connection, while the first implementation shown
      allows only 12 seconds.

   References
      None known.

   How to detect
      A simple transfer can be easily interrupted by disconnecting the
      receiving host from the network.  tcpdump or another appropriate
      tool should show the retransmissions being sent.  Several trials
      in a low-rtt environment may be required to demonstrate the bug.

   How to fix
      For one of the implementations studied, this problem seemed to be
      the result of an error introduced with the addition of the
      Brakmo-Peterson RTO algorithm [Brakmo95], which can return a value
      of zero where the older Jacobson algorithm always returns a

Paxson, et. al.              Informational                     [Page 33]



RFC 2525              TCP Implementation Problems             March 1999

      positive value.  Brakmo and Peterson specified an additional step
      of min(rtt + 2, RTO) to avoid problems with this.  Unfortunately,
      in the implementation this step was omitted when calculating the
      exponential backoff for the RTO.  This results in an RTO of 0
      seconds being multiplied by the backoff, yielding again zero, and
      then being subjected to a later MAX operation that increases it to
      1 second, regardless of the backoff factor.

      A similar TCP persist failure has the same cause.

2.11.

   Name of Problem
      Insufficient interval between keepalives

   Classification
      Reliability

   Description
      Keep-alive is a mechanism for checking whether an idle connection
      is still alive.  According to RFC 1122, keep-alive may be included
      in an implementation.  If it is included, the interval between
      keep-alive packets MUST be configurable, and MUST default to no
      less than two hours.

   Significance
      In congested networks, can lead to unwarranted termination of
      connections.

   Implications
      According to RFC 1122, keep-alive is not required of
      implementations because it could: (1) cause perfectly good
      connections to break during transient Internet failures; (2)
      consume unnecessary bandwidth ("if no one is using the connection,
      who cares if it is still good?"); and (3) cost money for an
      Internet path that charges for packets.  Regarding this last
      point, we note that in addition the presence of dial-on-demand
      links in the route can greatly magnify the cost penalty of excess
      keepalives, potentially forcing a full-time connection on a link
      that would otherwise only be connected a few minutes a day.

      If keepalive is provided the RFC states that the required inter-
      keepalive distance MUST default to no less than two hours.  If it
      does not, the probability of connections breaking increases, the
      bandwidth used due to keepalives increases, and cost increases
      over paths which charge per packet.
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   Relevant RFCs
      RFC 1122 specifies that the keep-alive mechanism may be provided.
      It also specifies the two hour minimum for the default interval
      between keepalive probes.

   Trace file demonstrating it
      Made using the Orchestra tool at the peer of the machine using
      keep-alive.  Machine A was configured to use default settings for
      the keepalive timer.

   11:36:32.910000 A > B: 3288354305:0      win 28672 datasz 4 SYN
   11:36:32.930000 B > A: 896001:3288354306 win 4096  datasz 4 SYN ACK
   11:36:32.950000 A > B: 3288354306:896002 win 28672 datasz 0 ACK

   11:50:01.190000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
   11:50:01.210000 B > A: 896002:3288354306 win 4096  datasz 0 ACK

   12:03:29.410000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
   12:03:29.430000 B > A: 896002:3288354306 win 4096  datasz 0 ACK

   12:16:57.630000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
   12:16:57.650000 B > A: 896002:3288354306 win 4096  datasz 0 ACK

   12:30:25.850000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
   12:30:25.870000 B > A: 896002:3288354306 win 4096  datasz 0 ACK

   12:43:54.070000 A > B: 3288354305:896002 win 28672 datasz 0 ACK
   12:43:54.090000 B > A: 896002:3288354306 win 4096  datasz 0 ACK

      The initial three packets are the SYN exchange for connection
      setup.  About 13 minutes later, the keepalive timer fires because
      the connection is idle.  The keepalive is acknowledged, and the
      timer fires again in about 13 more minutes.  This behavior
      continues indefinitely until the connection is closed, and is a
      violation of the specification.

   Trace file demonstrating correct behavior
      Made using the Orchestra tool at the peer of the machine using
      keep-alive.  Machine A was configured to use default settings for
      the keepalive timer.

   17:37:20.500000 A > B: 34155521:0       win 4096 datasz 4 SYN
   17:37:20.520000 B > A: 6272001:34155522 win 4096 datasz 4 SYN ACK
   17:37:20.540000 A > B: 34155522:6272002 win 4096 datasz 0 ACK

   19:37:25.430000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
   19:37:25.450000 B > A: 6272002:34155522 win 4096 datasz 0 ACK
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   21:37:30.560000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
   21:37:30.570000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

   23:37:35.580000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
   23:37:35.600000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

   01:37:40.620000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
   01:37:40.640000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

   03:37:45.590000 A > B: 34155521:6272002 win 4096 datasz 0 ACK
   03:37:45.610000 B > A: 6272002:34155522 win 4096 datasz 0 ACK

      The initial three packets are the SYN exchange for connection
      setup.  Just over two hours later, the keepalive timer fires
      because the connection is idle.  The keepalive is acknowledged,
      and the timer fires again just over two hours later.  This
      behavior continues indefinitely until the connection is closed.

   References
      This problem is documented in [Dawson97].

   How to detect
      For implementations manifesting this problem, it shows up on a
      packet trace.  If the connection is left idle, the keepalive
      probes will arrive closer together than the two hour minimum.

2.12.

   Name of Problem
      Window probe deadlock

   Classification
      Reliability

   Description
      When an application reads a single byte from a full window, the
      window should not be updated, in order to avoid Silly Window
      Syndrome (SWS; see [RFC813]).  If the remote peer uses a single
      byte of data to probe the window, that byte can be accepted into
      the buffer.  In some implementations, at this point a negative
      argument to a signed comparison causes all further new data to be
      considered outside the window; consequently, it is discarded
      (after sending an ACK to resynchronize).  These discards include
      the ACKs for the data packets sent by the local TCP, so the TCP
      will consider the data unacknowledged.
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      Consequently, the application may be unable to complete sending
      new data to the remote peer, because it has exhausted the transmit
      buffer available to its local TCP, and buffer space is never being
      freed because incoming ACKs that would do so are being discarded.
      If the application does not read any more data, which may happen
      due to its failure to complete such sends, then deadlock results.

   Significance
      It’s relatively rare for applications to use TCP in a manner that
      can exercise this problem.  Most applications only transmit bulk
      data if they know the other end is prepared to receive the data.
      However, if a client fails to consume data, putting the server in
      persist mode, and then consumes a small amount of data, it can
      mistakenly compute a negative window.  At this point the client
      will discard all further packets from the server, including ACKs
      of the client’s own data, since they are not inside the
      (impossibly-sized) window.  If subsequently the client consumes
      enough data to then send a window update to the server, the
      situation will be rectified.  That is, this situation can only
      happen if the client consumes 1 < N < MSS bytes, so as not to
      cause a window update, and then starts its own transmission
      towards the server of more than a window’s worth of data.

   Implications
      TCP connections will hang and eventually time out.

   Relevant RFCs
      RFC 793 describes zero window probing.  RFC 813 describes Silly
      Window Syndrome.

   Trace file demonstrating it
      Trace made from a version of tcpdump modified to print out the
      sequence number attached to an ACK even if it’s dataless.  An
      unmodified tcpdump would not print seq:seq(0); however, for this
      bug, the sequence number in the ACK is important for unambiguously
      determining how the TCP is behaving.

   [ Normal connection startup and data transmission from B to A.
     Options, including MSS of 16344 in both directions, omitted
     for clarity. ]
   16:07:32.327616 A > B: S 65360807:65360807(0) win 8192
   16:07:32.327304 B > A: S 65488807:65488807(0) ack 65360808 win 57344
   16:07:32.327425 A > B: . 1:1(0) ack 1 win 57344
   16:07:32.345732 B > A: P 1:2049(2048) ack 1 win 57344
   16:07:32.347013 B > A: P 2049:16385(14336) ack 1 win 57344
   16:07:32.347550 B > A: P 16385:30721(14336) ack 1 win 57344
   16:07:32.348683 B > A: P 30721:45057(14336) ack 1 win 57344
   16:07:32.467286 A > B: . 1:1(0) ack 45057 win 12288
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   16:07:32.467854 B > A: P 45057:57345(12288) ack 1 win 57344

   [ B fills up A’s offered window ]
   16:07:32.667276 A > B: . 1:1(0) ack 57345 win 0

   [ B probes A’s window with a single byte ]
   16:07:37.467438 B > A: . 57345:57346(1) ack 1 win 57344

   [ A resynchronizes without accepting the byte ]
   16:07:37.467678 A > B: . 1:1(0) ack 57345 win 0

   [ B probes A’s window again ]
   16:07:45.467438 B > A: . 57345:57346(1) ack 1 win 57344

   [ A resynchronizes and accepts the byte (per the ack field) ]
   16:07:45.667250 A > B: . 1:1(0) ack 57346 win 0

   [ The application on A has started generating data.  The first
     packet A sends is small due to a memory allocation bug. ]
   16:07:51.358459 A > B: P 1:2049(2048) ack 57346 win 0

   [ B acks A’s first packet ]
   16:07:51.467239 B > A: . 57346:57346(0) ack 2049 win 57344

   [ This looks as though A accepted B’s ACK and is sending
     another packet in response to it.  In fact, A is trying
     to resynchronize with B, and happens to have data to send
     and can send it because the first small packet didn’t use
     up cwnd. ]
   16:07:51.467698 A > B: . 2049:14337(12288) ack 57346 win 0

   [ B acks all of the data that A has sent ]
   16:07:51.667283 B > A: . 57346:57346(0) ack 14337 win 57344

   [ A tries to resynchronize.  Notice that by the packets
     seen on the network, A and B *are* in fact synchronized;
     A only thinks that they aren’t. ]
   16:07:51.667477 A > B: . 14337:14337(0) ack 57346 win 0

   [ A’s retransmit timer fires, and B acks all of the data.
     A once again tries to resynchronize. ]
   16:07:52.467682 A > B: . 1:14337(14336) ack 57346 win 0
   16:07:52.468166 B > A: . 57346:57346(0) ack 14337 win 57344
   16:07:52.468248 A > B: . 14337:14337(0) ack 57346 win 0

   [ A’s retransmit timer fires again, and B acks all of the data.
     A once again tries to resynchronize. ]
   16:07:55.467684 A > B: . 1:14337(14336) ack 57346 win 0
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   16:07:55.468172 B > A: . 57346:57346(0) ack 14337 win 57344
   16:07:55.468254 A > B: . 14337:14337(0) ack 57346 win 0

   Trace file demonstrating correct behavior
      Made between the same two hosts after applying the bug fix
      mentioned below (and using the same modified tcpdump).

   [ Connection starts up with data transmission from B to A.
     Note that due to a separate bug (the fact that A and B
     are communicating over a loopback driver), B erroneously
     skips slow start. ]
   17:38:09.510854 A > B: S 3110066585:3110066585(0) win 16384
   17:38:09.510926 B > A: S 3110174850:3110174850(0)
                            ack 3110066586 win 57344
   17:38:09.510953 A > B: . 1:1(0) ack 1 win 57344
   17:38:09.512956 B > A: P 1:2049(2048) ack 1 win 57344
   17:38:09.513222 B > A: P 2049:16385(14336) ack 1 win 57344
   17:38:09.513428 B > A: P 16385:30721(14336) ack 1 win 57344
   17:38:09.513638 B > A: P 30721:45057(14336) ack 1 win 57344
   17:38:09.519531 A > B: . 1:1(0) ack 45057 win 12288
   17:38:09.519638 B > A: P 45057:57345(12288) ack 1 win 57344

   [ B fills up A’s offered window ]
   17:38:09.719526 A > B: . 1:1(0) ack 57345 win 0

   [ B probes A’s window with a single byte.  A resynchronizes
     without accepting the byte ]
   17:38:14.499661 B > A: . 57345:57346(1) ack 1 win 57344
   17:38:14.499724 A > B: . 1:1(0) ack 57345 win 0

   [ B probes A’s window again.  A resynchronizes and accepts
     the byte, as indicated by the ack field ]
   17:38:19.499764 B > A: . 57345:57346(1) ack 1 win 57344
   17:38:19.519731 A > B: . 1:1(0) ack 57346 win 0

   [ B probes A’s window with a single byte.  A resynchronizes
     without accepting the byte ]
   17:38:24.499865 B > A: . 57346:57347(1) ack 1 win 57344
   17:38:24.499934 A > B: . 1:1(0) ack 57346 win 0

   [ The application on A has started generating data.
     B acks A’s data and A accepts the ACKs and the
     data transfer continues ]
   17:38:28.530265 A > B: P 1:2049(2048) ack 57346 win 0
   17:38:28.719914 B > A: . 57346:57346(0) ack 2049 win 57344

   17:38:28.720023 A > B: . 2049:16385(14336) ack 57346 win 0
   17:38:28.720089 A > B: . 16385:30721(14336) ack 57346 win 0
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   17:38:28.720370 B > A: . 57346:57346(0) ack 30721 win 57344

   17:38:28.720462 A > B: . 30721:45057(14336) ack 57346 win 0
   17:38:28.720526 A > B: P 45057:59393(14336) ack 57346 win 0
   17:38:28.720824 A > B: P 59393:73729(14336) ack 57346 win 0
   17:38:28.721124 B > A: . 57346:57346(0) ack 73729 win 47104

   17:38:28.721198 A > B: P 73729:88065(14336) ack 57346 win 0
   17:38:28.721379 A > B: P 88065:102401(14336) ack 57346 win 0

   17:38:28.721557 A > B: P 102401:116737(14336) ack 57346 win 0
   17:38:28.721863 B > A: . 57346:57346(0) ack 116737 win 36864

   References
      None known.

   How to detect
      Initiate a connection from a client to a server.  Have the server
      continuously send data until its buffers have been full for long
      enough to exhaust the window.  Next, have the client read 1 byte
      and then delay for long enough that the server TCP sends a window
      probe.  Now have the client start sending data.  At this point, if
      it ignores the server’s ACKs, then the client’s TCP suffers from
      the problem.

   How to fix
      In one implementation known to exhibit the problem (derived from
      4.3-Reno), the problem was introduced when the macro MAX() was
      replaced by the function call max() for computing the amount of
      space in the receive window:

          tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));

      When data has been received into a window beyond what has been
      advertised to the other side, rcv_nxt > rcv_adv, making this
      negative.  It’s clear from the (int) cast that this is intended,
      but the unsigned max() function sign-extends so the negative
      number is "larger".  The fix is to change max() to imax():

          tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));

      4.3-Tahoe and before did not have this bug, since it used the
      macro MAX() for this calculation.

2.13.

   Name of Problem
      Stretch ACK violation
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   Classification
      Congestion Control/Performance

   Description
      To improve efficiency (both computer and network) a data receiver
      may refrain from sending an ACK for each incoming segment,
      according to [RFC1122].  However, an ACK should not be delayed an
      inordinate amount of time.  Specifically, ACKs SHOULD be sent for
      every second full-sized segment that arrives.  If a second full-
      sized segment does not arrive within a given timeout (of no more
      than 0.5 seconds), an ACK should be transmitted, according to
      [RFC1122].  A TCP receiver which does not generate an ACK for
      every second full-sized segment exhibits a "Stretch ACK
      Violation".

   Significance
      TCP receivers exhibiting this behavior will cause TCP senders to
      generate burstier traffic, which can degrade performance in
      congested environments.  In addition, generating fewer ACKs
      increases the amount of time needed by the slow start algorithm to
      open the congestion window to an appropriate point, which
      diminishes performance in environments with large bandwidth-delay
      products.  Finally, generating fewer ACKs may cause needless
      retransmission timeouts in lossy environments, as it increases the
      possibility that an entire window of ACKs is lost, forcing a
      retransmission timeout.

   Implications
      When not in loss recovery, every ACK received by a TCP sender
      triggers the transmission of new data segments.  The burst size is
      determined by the number of previously unacknowledged segments
      each ACK covers.  Therefore, a TCP receiver ack’ing more than 2
      segments at a time causes the sending TCP to generate a larger
      burst of traffic upon receipt of the ACK.  This large burst of
      traffic can overwhelm an intervening gateway, leading to higher
      drop rates for both the connection and other connections passing
      through the congested gateway.

      In addition, the TCP slow start algorithm increases the congestion
      window by 1 segment for each ACK received.  Therefore, increasing
      the ACK interval (thus decreasing the rate at which ACKs are
      transmitted) increases the amount of time it takes slow start to
      increase the congestion window to an appropriate operating point,
      and the connection consequently suffers from reduced performance.
      This is especially true for connections using large windows.

   Relevant RFCs
      RFC 1122 outlines delayed ACKs as a recommended mechanism.
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   Trace file demonstrating it
      Trace file taken using tcpdump at host B, the data receiver (and
      ACK originator).  The advertised window (which never changed) and
      timestamp options have been omitted for clarity, except for the
      first packet sent by A:

   12:09:24.820187 A.1174 > B.3999: . 2049:3497(1448) ack 1
       win 33580 <nop,nop,timestamp 2249877 2249914> [tos 0x8]
   12:09:24.824147 A.1174 > B.3999: . 3497:4945(1448) ack 1
   12:09:24.832034 A.1174 > B.3999: . 4945:6393(1448) ack 1
   12:09:24.832222 B.3999 > A.1174: . ack 6393
   12:09:24.934837 A.1174 > B.3999: . 6393:7841(1448) ack 1
   12:09:24.942721 A.1174 > B.3999: . 7841:9289(1448) ack 1
   12:09:24.950605 A.1174 > B.3999: . 9289:10737(1448) ack 1
   12:09:24.950797 B.3999 > A.1174: . ack 10737
   12:09:24.958488 A.1174 > B.3999: . 10737:12185(1448) ack 1
   12:09:25.052330 A.1174 > B.3999: . 12185:13633(1448) ack 1
   12:09:25.060216 A.1174 > B.3999: . 13633:15081(1448) ack 1
   12:09:25.060405 B.3999 > A.1174: . ack 15081

      This portion of the trace clearly shows that the receiver (host B)
      sends an ACK for every third full sized packet received.  Further
      investigation of this implementation found that the cause of the
      increased ACK interval was the TCP options being used.  The
      implementation sent an ACK after it was holding 2*MSS worth of
      unacknowledged data.  In the above case, the MSS is 1460 bytes so
      the receiver transmits an ACK after it is holding at least 2920
      bytes of unacknowledged data.  However, the length of the TCP
      options being used [RFC1323] took 12 bytes away from the data
      portion of each packet.  This produced packets containing 1448
      bytes of data.  But the additional bytes used by the options in
      the header were not taken into account when determining when to
      trigger an ACK.  Therefore, it took 3 data segments before the
      data receiver was holding enough unacknowledged data (>= 2*MSS, or
      2920 bytes in the above example) to transmit an ACK.

   Trace file demonstrating correct behavior
      Trace file taken using tcpdump at host B, the data receiver (and
      ACK originator), again with window and timestamp information
      omitted except for the first packet:

   12:06:53.627320 A.1172 > B.3999: . 1449:2897(1448) ack 1
       win 33580 <nop,nop,timestamp 2249575 2249612> [tos 0x8]
   12:06:53.634773 A.1172 > B.3999: . 2897:4345(1448) ack 1
   12:06:53.634961 B.3999 > A.1172: . ack 4345
   12:06:53.737326 A.1172 > B.3999: . 4345:5793(1448) ack 1
   12:06:53.744401 A.1172 > B.3999: . 5793:7241(1448) ack 1
   12:06:53.744592 B.3999 > A.1172: . ack 7241
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   12:06:53.752287 A.1172 > B.3999: . 7241:8689(1448) ack 1
   12:06:53.847332 A.1172 > B.3999: . 8689:10137(1448) ack 1
   12:06:53.847525 B.3999 > A.1172: . ack 10137

      This trace shows the TCP receiver (host B) ack’ing every second
      full-sized packet, according to [RFC1122].  This is the same
      implementation shown above, with slight modifications that allow
      the receiver to take the length of the options into account when
      deciding when to transmit an ACK.

   References
      This problem is documented in [Allman97] and [Paxson97].

   How to detect
      Stretch ACK violations show up immediately in receiver-side packet
      traces of bulk transfers, as shown above.  However, packet traces
      made on the sender side of the TCP connection may lead to
      ambiguities when diagnosing this problem due to the possibility of
      lost ACKs.

2.14.

   Name of Problem
      Retransmission sends multiple packets

   Classification
      Congestion control

   Description
      When a TCP retransmits a segment due to a timeout expiration or
      beginning a fast retransmission sequence, it should only transmit
      a single segment.  A TCP that transmits more than one segment
      exhibits "Retransmission Sends Multiple Packets".

      Instances of this problem have been known to occur due to
      miscomputations involving the use of TCP options.  TCP options
      increase the TCP header beyond its usual size of 20 bytes.  The
      total size of header must be taken into account when
      retransmitting a packet.  If a TCP sender does not account for the
      length of the TCP options when determining how much data to
      retransmit, it will send too much data to fit into a single
      packet.  In this case, the correct retransmission will be followed
      by a short segment (tinygram) containing data that may not need to
      be retransmitted.

      A specific case is a TCP using the RFC 1323 timestamp option,
      which adds 12 bytes to the standard 20-byte TCP header.  On
      retransmission of a packet, the 12 byte option is incorrectly
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      interpreted as part of the data portion of the segment.  A
      standard TCP header and a new 12-byte option is added to the data,
      which yields a transmission of 12 bytes more data than contained
      in the original segment.  This overflow causes a smaller packet,
      with 12 data bytes, to be transmitted.

   Significance
      This problem is somewhat serious for congested environments
      because the TCP implementation injects more packets into the
      network than is appropriate.  However, since a tinygram is only
      sent in response to a fast retransmit or a timeout, it does not
      effect the sustained sending rate.

   Implications
      A TCP exhibiting this behavior is stressing the network with more
      traffic than appropriate, and stressing routers by increasing the
      number of packets they must process.  The redundant tinygram will
      also elicit a duplicate ACK from the receiver, resulting in yet
      another unnecessary transmission.

   Relevant RFCs
      RFC 1122 requires use of slow start after loss; RFC 2001
      explicates slow start; RFC 1323 describes the timestamp option
      that has been observed to lead to some implementations exhibiting
      this problem.

   Trace file demonstrating it
      Made using tcpdump recording at a machine on the same subnet as
      Host A.  Host A is the sender and Host B is the receiver.  The
      advertised window and timestamp options have been omitted for
      clarity, except for the first segment sent by host A.  In
      addition, portions of the trace file not pertaining to the packet
      in question have been removed (missing packets are denoted by
      "[...]" in the trace).

   11:55:22.701668 A > B: . 7361:7821(460) ack 1
       win 49324 <nop,nop,timestamp 3485348 3485113>
   11:55:22.702109 A > B: . 7821:8281(460) ack 1
   [...]

   11:55:23.112405 B > A: . ack 7821
   11:55:23.113069 A > B: . 12421:12881(460) ack 1
   11:55:23.113511 A > B: . 12881:13341(460) ack 1
   11:55:23.333077 B > A: . ack 7821
   11:55:23.336860 B > A: . ack 7821
   11:55:23.340638 B > A: . ack 7821
   11:55:23.341290 A > B: . 7821:8281(460) ack 1
   11:55:23.341317 A > B: . 8281:8293(12) ack 1
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   11:55:23.498242 B > A: . ack 7821
   11:55:23.506850 B > A: . ack 7821
   11:55:23.510630 B > A: . ack 7821

   [...]

   11:55:23.746649 B > A: . ack 10581

      The second line of the above trace shows the original transmission
      of a segment which is later dropped.  After 3 duplicate ACKs, line
      9 of the trace shows the dropped packet (7821:8281), with a 460-
      byte payload, being retransmitted.  Immediately following this
      retransmission, a packet with a 12-byte payload is unnecessarily
      sent.

   Trace file demonstrating correct behavior
      The trace file would be identical to the one above, with a single
      line:

      11:55:23.341317 A > B: . 8281:8293(12) ack 1

      omitted.

   References
      [Brakmo95]

   How to detect
      This problem can be detected by examining a packet trace of the
      TCP connections of a machine using TCP options, during which a
      packet is retransmitted.

2.15.

   Name of Problem
      Failure to send FIN notification promptly

   Classification
      Performance

   Description
      When an application closes a connection, the corresponding TCP
      should send the FIN notification promptly to its peer (unless
      prevented by the congestion window).  If a TCP implementation
      delays in sending the FIN notification, for example due to waiting
      until unacknowledged data has been acknowledged, then it is said
      to exhibit "Failure to send FIN notification promptly".
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      Also, while not strictly required, FIN segments should include the
      PSH flag to ensure expedited delivery of any pending data at the
      receiver.

   Significance
      The greatest impact occurs for short-lived connections, since for
      these the additional time required to close the connection
      introduces the greatest relative delay.

      The additional time can be significant in the common case of the
      sender waiting for an ACK that is delayed by the receiver.

   Implications
      Can diminish total throughput as seen at the application layer,
      because connection termination takes longer to complete.

   Relevant RFCs
      RFC 793 indicates that a receiver should treat an incoming FIN
      flag as implying the push function.

   Trace file demonstrating it
      Made using tcpdump (no losses reported by the packet filter).

   10:04:38.68 A > B: S 1031850376:1031850376(0) win 4096
                   <mss 1460,wscale 0,eol> (DF)
   10:04:38.71 B > A: S 596916473:596916473(0) ack 1031850377
                   win 8760 <mss 1460> (DF)
   10:04:38.73 A > B: . ack 1 win 4096 (DF)
   10:04:41.98 A > B: P 1:4(3) ack 1 win 4096 (DF)
   10:04:42.15 B > A: . ack 4 win 8757 (DF)
   10:04:42.23 A > B: P 4:7(3) ack 1 win 4096 (DF)
   10:04:42.25 B > A: P 1:11(10) ack 7 win 8754 (DF)
   10:04:42.32 A > B: . ack 11 win 4096 (DF)
   10:04:42.33 B > A: P 11:51(40) ack 7 win 8754 (DF)
   10:04:42.51 A > B: . ack 51 win 4096 (DF)
   10:04:42.53 B > A: F 51:51(0) ack 7 win 8754 (DF)
   10:04:42.56 A > B: FP 7:7(0) ack 52 win 4096 (DF)
   10:04:42.58 B > A: . ack 8 win 8754 (DF)

      Machine B in the trace above does not send out a FIN notification
      promptly if there is any data outstanding.  It instead waits for
      all unacknowledged data to be acknowledged before sending the FIN
      segment.  The connection was closed at 10:04.42.33 after
      requesting 40 bytes to be sent.  However, the FIN notification
      isn’t sent until 10:04.42.51, after the (delayed) acknowledgement
      of the 40 bytes of data.
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   Trace file demonstrating correct behavior
      Made using tcpdump (no losses reported by the packet filter).

   10:27:53.85 C > D: S 419744533:419744533(0) win 4096
                   <mss 1460,wscale 0,eol> (DF)
   10:27:53.92 D > C: S 10082297:10082297(0) ack 419744534
                   win 8760 <mss 1460> (DF)
   10:27:53.95 C > D: . ack 1 win 4096 (DF)
   10:27:54.42 C > D: P 1:4(3) ack 1 win 4096 (DF)
   10:27:54.62 D > C: . ack 4 win 8757 (DF)
   10:27:54.76 C > D: P 4:7(3) ack 1 win 4096 (DF)
   10:27:54.89 D > C: P 1:11(10) ack 7 win 8754 (DF)
   10:27:54.90 D > C: FP 11:51(40) ack7 win 8754 (DF)
   10:27:54.92 C > D: . ack 52 win 4096 (DF)
   10:27:55.01 C > D: FP 7:7(0) ack 52 win 4096 (DF)
   10:27:55.09 D > C: . ack 8 win 8754 (DF)

      Here, Machine D sends a FIN with 40 bytes of data even before the
      original 10 octets have been acknowledged. This is correct
      behavior as it provides for the highest performance.

   References
      This problem is documented in [Dawson97].

   How to detect
      For implementations manifesting this problem, it shows up on a
      packet trace.

2.16.

   Name of Problem
      Failure to send a RST after Half Duplex Close

   Classification
      Resource management

   Description
      RFC 1122 4.2.2.13 states that a TCP SHOULD send a RST if data is
      received after "half duplex close", i.e. if it cannot be delivered
      to the application.  A TCP that fails to do so is said to exhibit
      "Failure to send a RST after Half Duplex Close".

   Significance
      Potentially serious for TCP endpoints that manage large numbers of
      connections, due to exhaustion of memory and/or process slots
      available for managing connection state.
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   Implications
      Failure to send the RST can lead to permanently hung TCP
      connections.  This problem has been demonstrated when HTTP clients
      abort connections, common when users move on to a new page before
      the current page has finished downloading.  The HTTP client closes
      by transmitting a FIN while the server is transmitting images,
      text, etc.  The server TCP receives the FIN,  but its application
      does not close the connection until all data has been queued for
      transmission.  Since the server will not transmit a FIN until all
      the preceding data has been transmitted, deadlock results if the
      client TCP does not consume the pending data or tear down the
      connection: the window decreases to zero, since the client cannot
      pass the data to the application, and the server sends probe
      segments.  The client acknowledges the probe segments with a zero
      window. As mandated in RFC1122 4.2.2.17, the probe segments are
      transmitted forever.  Server connection state remains in
      CLOSE_WAIT, and eventually server processes are exhausted.

      Note that there are two bugs.  First, probe segments should be
      ignored if the window can never subsequently increase.  Second, a
      RST should be sent when data is received after half duplex close.
      Fixing the first bug, but not the second, results in the probe
      segments eventually timing out the connection, but the server
      remains in CLOSE_WAIT for a significant and unnecessary period.

   Relevant RFCs
      RFC 1122 sections 4.2.2.13 and 4.2.2.17.

   Trace file demonstrating it
      Made using an unknown network analyzer.  No drop information
      available.

   client.1391 > server.8080: S 0:1(0) ack: 0 win: 2000 <mss: 5b4>
   server.8080 > client.1391: SA 8c01:8c02(0) ack: 1 win: 8000 <mss:100>
   client.1391 > server.8080: PA
   client.1391 > server.8080: PA 1:1c2(1c1) ack: 8c02 win: 2000
   server.8080 > client.1391: [DF] PA 8c02:8cde(dc) ack: 1c2 win: 8000
   server.8080 > client.1391: [DF] A 8cde:9292(5b4) ack: 1c2 win: 8000
   server.8080 > client.1391: [DF] A 9292:9846(5b4) ack: 1c2 win: 8000
   server.8080 > client.1391: [DF] A 9846:9dfa(5b4) ack: 1c2 win: 8000
   client.1391 > server.8080: PA
   server.8080 > client.1391: [DF] A 9dfa:a3ae(5b4) ack: 1c2 win: 8000
   server.8080 > client.1391: [DF] A a3ae:a962(5b4) ack: 1c2 win: 8000
   server.8080 > client.1391: [DF] A a962:af16(5b4) ack: 1c2 win: 8000
   server.8080 > client.1391: [DF] A af16:b4ca(5b4) ack: 1c2 win: 8000
   client.1391 > server.8080: PA
   server.8080 > client.1391: [DF] A b4ca:ba7e(5b4) ack: 1c2 win: 8000
   server.8080 > client.1391: [DF] A b4ca:ba7e(5b4) ack: 1c2 win: 8000
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   client.1391 > server.8080: PA
   server.8080 > client.1391: [DF] A ba7e:bdfa(37c) ack: 1c2 win: 8000
   client.1391 > server.8080: PA
   server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c2 win: 8000
   client.1391 > server.8080: PA

   [ HTTP client aborts and enters FIN_WAIT_1 ]

   client.1391 > server.8080: FPA

   [ server ACKs the FIN and enters CLOSE_WAIT ]

   server.8080 > client.1391: [DF] A

   [ client enters FIN_WAIT_2 ]

   server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000

   [ server continues to try to send its data ]

   client.1391 > server.8080: PA < window = 0 >
   server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000
   client.1391 > server.8080: PA < window = 0 >
   server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000
   client.1391 > server.8080: PA < window = 0 >
   server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000
   client.1391 > server.8080: PA < window = 0 >
   server.8080 > client.1391: [DF] A bdfa:bdfb(1) ack: 1c3 win: 8000
   client.1391 > server.8080: PA < window = 0 >

   [ ... repeat ad exhaustium ... ]

   Trace file demonstrating correct behavior
      Made using an unknown network analyzer.  No drop information
      available.

   client > server D=80 S=59500 Syn Seq=337 Len=0 Win=8760
   server > client D=59500 S=80 Syn Ack=338 Seq=80153 Len=0 Win=8760
   client > server D=80 S=59500 Ack=80154 Seq=338 Len=0 Win=8760

   [ ... normal data omitted ... ]

   client > server D=80 S=59500 Ack=14559 Seq=596 Len=0 Win=8760
   server > client D=59500 S=80 Ack=596 Seq=114559 Len=1460 Win=8760

   [ client closes connection ]

   client > server D=80 S=59500 Fin Seq=596 Len=0 Win=8760
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   server > client D=59500 S=80 Ack=597 Seq=116019 Len=1460 Win=8760

   [ client sends RST (RFC1122 4.2.2.13) ]

   client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0
   server > client D=59500 S=80 Ack=597 Seq=117479 Len=1460 Win=8760
   client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0
   server > client D=59500 S=80 Ack=597 Seq=118939 Len=1460 Win=8760
   client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0
   server > client D=59500 S=80 Ack=597 Seq=120399 Len=892 Win=8760
   client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0
   server > client D=59500 S=80 Ack=597 Seq=121291 Len=1460 Win=8760
   client > server D=80 S=59500 Rst Seq=597 Len=0 Win=0

      "client" sends a number of RSTs, one in response to each incoming
      packet from "server".  One might wonder why "server" keeps sending
      data packets after it has received a RST from "client"; the
      explanation is that "server" had already transmitted all five of
      the data packets before receiving the first RST from "client", so
      it is too late to avoid transmitting them.

   How to detect
      The problem can be detected by inspecting packet traces of a
      large, interrupted bulk transfer.

2.17.

   Name of Problem
      Failure to RST on close with data pending

   Classification
      Resource management

   Description
      When an application closes a connection in such a way that it can
      no longer read any received data, the TCP SHOULD, per section
      4.2.2.13 of RFC 1122, send a RST if there is any unread received
      data, or if any new data is received. A TCP that fails to do so
      exhibits "Failure to RST on close with data pending".

      Note that, for some TCPs, this situation can be caused by an
      application "crashing" while a peer is sending data.

      We have observed a number of TCPs that exhibit this problem.  The
      problem is less serious if any subsequent data sent to the now-
      closed connection endpoint elicits a RST (see illustration below).
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   Significance
      This problem is most significant for endpoints that engage in
      large numbers of connections, as their ability to do so will be
      curtailed as they leak away resources.

   Implications
      Failure to reset the connection can lead to permanently hung
      connections, in which the remote endpoint takes no further action
      to tear down the connection because it is waiting on the local TCP
      to first take some action.  This is particularly the case if the
      local TCP also allows the advertised window to go to zero, and
      fails to tear down the connection when the remote TCP engages in
      "persist" probes (see example below).

   Relevant RFCs
      RFC 1122 section 4.2.2.13.  Also, 4.2.2.17 for the zero-window
      probing discussion below.

   Trace file demonstrating it
      Made using tcpdump.  No drop information available.

   13:11:46.04 A > B: S 458659166:458659166(0) win 4096
                       <mss 1460,wscale 0,eol> (DF)
   13:11:46.04 B > A: S 792320000:792320000(0) ack 458659167
                       win 4096
   13:11:46.04 A > B: . ack 1 win 4096 (DF)
   13:11.55.80 A > B: . 1:513(512) ack 1 win 4096 (DF)
   13:11.55.80 A > B: . 513:1025(512) ack 1 win 4096 (DF)
   13:11:55.83 B > A: . ack 1025 win 3072
   13:11.55.84 A > B: . 1025:1537(512) ack 1 win 4096 (DF)
   13:11.55.84 A > B: . 1537:2049(512) ack 1 win 4096 (DF)
   13:11.55.85 A > B: . 2049:2561(512) ack 1 win 4096 (DF)
   13:11:56.03 B > A: . ack 2561 win 1536
   13:11.56.05 A > B: . 2561:3073(512) ack 1 win 4096 (DF)
   13:11.56.06 A > B: . 3073:3585(512) ack 1 win 4096 (DF)
   13:11.56.06 A > B: . 3585:4097(512) ack 1 win 4096 (DF)
   13:11:56.23 B > A: . ack 4097 win 0
   13:11:58.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
   13:11:58.16 B > A: . ack 4097 win 0
   13:12:00.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
   13:12:00.16 B > A: . ack 4097 win 0
   13:12:02.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
   13:12:02.16 B > A: . ack 4097 win 0
   13:12:05.37 A > B: . 4096:4097(1) ack 1 win 4096 (DF)
   13:12:05.37 B > A: . ack 4097 win 0
   13:12:06.36 B > A: F 1:1(0) ack 4097 win 0
   13:12:06.37 A > B: . ack 2 win 4096 (DF)
   13:12:11.78 A > B: . 4096:4097(1) ack 2 win 4096 (DF)
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   13:12:11.78 B > A: . ack 4097 win 0
   13:12:24.59 A > B: . 4096:4097(1) ack 2 win 4096 (DF)
   13:12:24.60 B > A: . ack 4097 win 0
   13:12:50.22 A > B: . 4096:4097(1) ack 2 win 4096 (DF)
   13:12:50.22 B > A: . ack 4097 win 0

      Machine B in the trace above does not drop received data when the
      socket is "closed" by the application (in this case, the
      application process was terminated). This occurred at
      approximately 13:12:06.36 and resulted in the FIN being sent in
      response to the close. However, because there is no longer an
      application to deliver the data to, the TCP should have instead
      sent a RST.

      Note: Machine A’s zero-window probing is also broken.  It is
      resending old data, rather than new data. Section 3.7 in RFC 793
      and Section 4.2.2.17 in RFC 1122 discuss zero-window probing.

   Trace file demonstrating better behavior
      Made using tcpdump.  No drop information available.

      Better, but still not fully correct, behavior, per the discussion
      below.  We show this behavior because it has been observed for a
      number of different TCP implementations.

   13:48:29.24 C > D: S 73445554:73445554(0) win 4096
                       <mss 1460,wscale 0,eol> (DF)
   13:48:29.24 D > C: S 36050296:36050296(0) ack 73445555
                       win 4096 <mss 1460,wscale 0,eol> (DF)
   13:48:29.25 C > D: . ack 1 win 4096 (DF)
   13:48:30.78 C > D: . 1:1461(1460) ack 1 win 4096 (DF)
   13:48:30.79 C > D: . 1461:2921(1460) ack 1 win 4096 (DF)
   13:48:30.80 D > C: . ack 2921 win 1176 (DF)
   13:48:32.75 C > D: . 2921:4097(1176) ack 1 win 4096 (DF)
   13:48:32.82 D > C: . ack 4097 win 0 (DF)
   13:48:34.76 C > D: . 4096:4097(1) ack 1 win 4096 (DF)
   13:48:34.84 D > C: . ack 4097 win 0 (DF)
   13:48:36.34 D > C: FP 1:1(0) ack 4097 win 4096 (DF)
   13:48:36.34 C > D: . 4097:5557(1460) ack 2 win 4096 (DF)
   13:48:36.34 D > C: R 36050298:36050298(0) win 24576
   13:48:36.34 C > D: . 5557:7017(1460) ack 2 win 4096 (DF)
   13:48:36.34 D > C: R 36050298:36050298(0) win 24576

      In this trace, the application process is terminated on Machine D
      at approximately 13:48:36.34.  Its TCP sends the FIN with the
      window opened again (since it discarded the previously received
      data).  Machine C promptly sends more data, causing Machine D to
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      reset the connection since it cannot deliver the data to the
      application. Ideally, Machine D SHOULD send a RST instead of
      dropping the data and re-opening the receive window.

      Note: Machine C’s zero-window probing is broken, the same as in
      the example above.

   Trace file demonstrating correct behavior
      Made using tcpdump.  No losses reported by the packet filter.

   14:12:02.19 E > F: S 1143360000:1143360000(0) win 4096
   14:12:02.19 F > E: S 1002988443:1002988443(0) ack 1143360001
                       win 4096 <mss 1460> (DF)
   14:12:02.19 E > F: . ack 1 win 4096
   14:12:10.43 E > F: . 1:513(512) ack 1 win 4096
   14:12:10.61 F > E: . ack 513 win 3584 (DF)
   14:12:10.61 E > F: . 513:1025(512) ack 1 win 4096
   14:12:10.61 E > F: . 1025:1537(512) ack 1 win 4096
   14:12:10.81 F > E: . ack 1537 win 2560 (DF)
   14:12:10.81 E > F: . 1537:2049(512) ack 1 win 4096
   14:12:10.81 E > F: . 2049:2561(512) ack 1 win 4096
   14:12:10.81 E > F: . 2561:3073(512) ack 1 win 4096
   14:12:11.01 F > E: . ack 3073 win 1024 (DF)
   14:12:11.01 E > F: . 3073:3585(512) ack 1 win 4096
   14:12:11.01 E > F: . 3585:4097(512) ack 1 win 4096
   14:12:11.21 F > E: . ack 4097 win 0 (DF)
   14:12:15.88 E > F: . 4097:4098(1) ack 1 win 4096
   14:12:16.06 F > E: . ack 4097 win 0 (DF)
   14:12:20.88 E > F: . 4097:4098(1) ack 1 win 4096
   14:12:20.91 F > E: . ack 4097 win 0 (DF)
   14:12:21.94 F > E: R 1002988444:1002988444(0) win 4096

      When the application terminates at 14:12:21.94, F immediately
      sends a RST.

      Note: Machine E’s zero-window probing is (finally) correct.

   How to detect
      The problem can often be detected by inspecting packet traces of a
      transfer in which the receiving application terminates abnormally.
      When doing so, there can be an ambiguity (if only looking at the
      trace) as to whether the receiving TCP did indeed have unread data
      that it could now no longer deliver.  To provoke this to happen,
      it may help to suspend the receiving application so that it fails
      to consume any data, eventually exhausting the advertised window.
      At this point, since the advertised window is zero, we know that
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      the receiving TCP has undelivered data buffered up.  Terminating
      the application process then should suffice to test the
      correctness of the TCP’s behavior.

2.18.

   Name of Problem
      Options missing from TCP MSS calculation

   Classification
      Reliability / performance

   Description
      When a TCP determines how much data to send per packet, it
      calculates a segment size based on the MTU of the path.  It must
      then subtract from that MTU the size of the IP and TCP headers in
      the packet.  If IP options and TCP options are not taken into
      account correctly in this calculation, the resulting segment size
      may be too large.  TCPs that do so are said to exhibit "Options
      missing from TCP MSS calculation".

   Significance
      In some implementations, this causes the transmission of strangely
      fragmented packets.  In some implementations with Path MTU (PMTU)
      discovery [RFC1191], this problem can actually result in a total
      failure to transmit any data at all, regardless of the environment
      (see below).

      Arguably, especially since the wide deployment of firewalls, IP
      options appear only rarely in normal operations.

   Implications
      In implementations using PMTU discovery, this problem can result
      in packets that are too large for the output interface, and that
      have the DF (don’t fragment) bit set in the IP header.  Thus, the
      IP layer on the local machine is not allowed to fragment the
      packet to send it out the interface.  It instead informs the TCP
      layer of the correct MTU size of the interface; the TCP layer
      again miscomputes the MSS by failing to take into account the size
      of IP options; and the problem repeats, with no data flowing.

   Relevant RFCs
      RFC 1122 describes the calculation of the effective send MSS.  RFC
      1191 describes Path MTU discovery.
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   Trace file demonstrating it
      Trace file taking using tcpdump on host C.  The first trace
      demonstrates the fragmentation that occurs without path MTU
      discovery:

   13:55:25.488728 A.65528 > C.discard:
           P 567833:569273(1440) ack 1 win 17520
           <nop,nop,timestamp 3839 1026342>
           (frag 20828:1472@0+)
           (ttl 62, optlen=8 LSRR{B#} NOP)

   13:55:25.488943 A > C:
           (frag 20828:8@1472)
           (ttl 62, optlen=8 LSRR{B#} NOP)

   13:55:25.489052 C.discard > A.65528:
           . ack 566385 win 60816
           <nop,nop,timestamp 1026345 3839> (DF)
           (ttl 60, id 41266)

      Host A repeatedly sends 1440-octet data segments, but these hare
      fragmented into two packets, one with 1432 octets of data, and
      another with 8 octets of data.

      The second trace demonstrates the failure to send any data
      segments, sometimes seen with hosts doing path MTU discovery:

   13:55:44.332219 A.65527 > C.discard:
           S 1018235390:1018235390(0) win 16384
           <mss 1460,nop,wscale 0,nop,nop,timestamp 3876 0> (DF)
           (ttl 62, id 20912, optlen=8 LSRR{B#} NOP)

   13:55:44.333015 C.discard > A.65527:
           S 1271629000:1271629000(0) ack 1018235391 win 60816
           <mss 1460,nop,wscale 0,nop,nop,timestamp 1026383 3876> (DF)
           (ttl 60, id 41427)

   13:55:44.333206 C.discard > A.65527:
           S 1271629000:1271629000(0) ack 1018235391 win 60816
           <mss 1460,nop,wscale 0,nop,nop,timestamp 1026383 3876> (DF)
           (ttl 60, id 41427)

      This is all of the activity seen on this connection.  Eventually
      host C will time out attempting to establish the connection.

   How to detect
      The "netcat" utility [Hobbit96] is useful for generating source
      routed packets:
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      1% nc C discard
      (interactive typing)
      ^C
      2% nc C discard < /dev/zero
      ^C
      3% nc -g B C discard
      (interactive typing)
      ^C
      4% nc -g B C discard < /dev/zero
      ^C

      Lines 1 through 3 should generate appropriate packets, which can
      be verified using tcpdump.  If the problem is present, line 4
      should generate one of the two kinds of packet traces shown.

   How to fix
      The implementation should ensure that the effective send MSS
      calculation includes a term for the IP and TCP options, as
      mandated by RFC 1122.

3. Security Considerations

   This memo does not discuss any specific security-related TCP
   implementation problems, as the working group decided to pursue
   documenting those in a separate document.  Some of the implementation
   problems discussed here, however, can be used for denial-of-service
   attacks.  Those classified as congestion control present
   opportunities to subvert TCPs used for legitimate data transfer into
   excessively loading network elements.  Those classified as
   "performance", "reliability" and "resource management" may be
   exploitable for launching surreptitious denial-of-service attacks
   against the user of the TCP.  Both of these types of attacks can be
   extremely difficult to detect because in most respects they look
   identical to legitimate network traffic.
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   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.
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   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Paxson, et. al.              Informational                     [Page 61]


