
Network Working Group M. Pullen
Request for Comments: 2490 George Mason University
Category: Informational R. Malghan
 Hitachi Data Systems
 L. Lavu
 Bay Networks
 G. Duan
 Oracle
 J. Ma
 NewBridge
 H. Nah
 George Mason University
 January 1999

 A Simulation Model for IP Multicast with RSVP

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This document describes a detailed model of IPv4 multicast with RSVP
 that has been developed using the OPNET simulation package [4], with
 protocol procedures defined in the C language. The model was
 developed to allow investigation of performance constraints on
 routing but should have wide applicability in the Internet
 multicast/resource reservation community. We are making this model
 publicly available with the intention that it can be used to provide
 expanded studies of resource-reserved multicasting.

Table of Contents

 1. Background 2
 2. The OPNET Simulation Environment 3
 3. IP Multicast Model 3
 3.1 Address Format 3
 3.2 Network Layer 4
 3.3 Node layer 5
 4. RSVP Model 13
 4.1 RSVP Application 13

Pullen, et. al. Informational [Page 1]

RFC 2490 IP Multicast with RSVP January 1999

 4.2 RSVP on Routers 14
 4.3 RSVP on Hosts 17
 5. Multicast Routing Model Interface 19
 5.1 Creation of multicast routing processor node 19
 5.2 Interfacing processor nodes 19
 5.3 Interrupt Generation 21
 5.4 Modifications of modules in the process model 22
 6. OSPF and MOSPF Models 23
 6.1 Init 23
 6.2 Idle 23
 6.3 BCOspfLsa 23
 6.4 BCMospfLsa 23
 6.5 Arr 23
 6.6 Hello_pks 24
 6.7 Mospfspfcalc 24
 6.8 Ospfspfcalc 25
 6.9 UpstrNode 25
 6.10 DABRA 25
 7. DVMRP Model 26
 7.1 Init 26
 7.2 Idle 26
 7.3 Probe_Send State 26
 7.4 Report_Send 26
 7.5 Prune _Send 26
 7.6 Graft_send 27
 7.7 Arr_Pkt 27
 7.8 Route_Calc 28
 7.9 Timer 28
 8. Simulation performance 28
 9. Future Work 29
 10. Security Considerations 29
 11. References 29
 Authors’ Addresses 30
 Full Copyright Statement 31

1. Background

 The successful deployment of IP multicasting [1] and its availability
 in the Mbone has led to continuing increase in real-time multimedia
 Internet applications. Because the Internet has traditionally
 supported only a best-effort quality of service, there is
 considerable interest to create mechanisms that will allow adequate
 resources to be reserved in networks using the Internet protocol
 suite, such that the quality of real-time traffic such as video,
 voice, and distributed simulation can be sustained at specified
 levels. The RSVP protocol [2] has been developed for this purpose
 and is the subject of ongoing implementation efforts. Although the
 developers of RSVP have used simulation in their design process, no

Pullen, et. al. Informational [Page 2]

RFC 2490 IP Multicast with RSVP January 1999

 simulation of IPmc with RSVP has been generally available for
 analysis of the performance and prediction of the behavior of these
 protocols. The simulation model described here was developed to fill
 this gap, and is explicitly intended to be made available to the IETF
 community.

2. The OPNET Simulation Environment

 The Optimized Network Engineering Tools (OPNET) is a commercial
 simulation product of the MIL3 company of Arlington, VA. It employs
 a Discrete Event Simulation approach that allows large numbers of
 closely-spaced events in a sizable network to be represented
 accurately and efficiently. OPNET uses a modeling approach where
 networks are built of components interconnected by perfect links that
 can be degraded at will. Each component’s behavior is modeled as a
 state-transition diagram. The process that takes place in each state
 is described by a program in the C language. We believe this makes
 the OPNET-based models relatively easy to port to other modeling
 environments. This family of models is compatible with OPNET 3.5.
 The following sections describe the state-transition models and
 process code for the IPmc and RSVP models we have created using
 OPNET. Please note that an OPNET layer is not necessarily equivalent
 to a layer in a network stack, but shares with a stack layer the
 property that it is a highly modular software element with well
 defined interfaces.

3. IP Multicast Model

 The following processing takes place in the indicated modules. Each
 subsection below describes in detail a layer in the host and the
 router that can be simulated with the help of the corresponding OPNET
 network layer or node layer or the process layer, starting from
 physical layer.

3.1 Address format

 The OPNET IP model has only one type of addressing denoted by "X.Y"
 where X is 24 bits long and Y is 8 bits long, corresponding to an
 IPv4 Class C network. The X indicates the destination or the source
 network number and Y indicates the destination or the source node
 number. In our model X = 500 is reserved for multicast traffic. For
 multicast traffic the value of Y indicates the group to which the
 packet belongs.

Pullen, et. al. Informational [Page 3]

RFC 2490 IP Multicast with RSVP January 1999

3.2 Network Layer

 Figure 1 describes an example network topology built using the OPNET
 network editor. This network consists of two backbone routers BBR1,
 BBR2, three area border routers ABR1, ABR2, ABR3 and six subnets F1,
 through F6. As OPNET has no full duplex link model, each connecting
 link is modeled as two simplex links enabling bidirectional traffic.

 [Figure 1: Network Layer of Debug Model]

3.2.1 Attributes

 The attributes of the elements of the network layer are:

 a. Area Border Routers and Backbone Routers

 1. IP address of each active interface of each router
 (network_id.node_id)
 2. Service rate of the IP layer (packets/sec)
 3. Transmission speeds of each active interface (bits/sec)

 b. Subnets

 1. IP address of each active interface of the router in the subnet
 2. IP address of the hosts in each of the subnet.
 3. Service rate of the IP layer in the subnet router and the hosts.

 c. Simplex links

 1. Propagation delay in the links
 2. The process model to be used for simulating the simplex links
 (this means whether animation is included or not).

3.2.2 LAN Subnets

 Figure 2 shows the FDDI ring as used in a subnet. The subnet will
 have one router and one or more hosts. The router in the subnet is
 included to route the traffic between the FDDI ring or Ethernet in
 the corresponding subnet and the external network. The subnet router
 is connected on one end to Ethernet or FDDI ring and normally also is
 connected to an area border router on another interface (the area
 border routers may be connected to more than one backbone router). In
 the Ethernet all the hosts are connected to the bus, while in FDDI
 the hosts are interconnected in a ring as illustrated in Figure 2.

 [Figure 2: FDDI Ring Subnet Layer]

Pullen, et. al. Informational [Page 4]

RFC 2490 IP Multicast with RSVP January 1999

 FDDI provides general purpose networking at 100 Mb/sec transmission
 rates for large numbers of communicating stations configured in a
 ring topology. Use of ring bandwidth is controlled through a timed
 token rotation protocol, wherein stations must receive a token and
 meet with a set of timing and priority criteria before transmitting
 frames. In order to accommodate network applications in which
 response times are critical, FDDI provides for deterministic
 availability of ring bandwidth by defining a synchronous transmission
 service. Asynchronous frame transmission requests dynamically share
 the remaining ring bandwidth.

 Ethernet is a bus-based local area network (LAN) technology. The
 operation of the LAN is managed by a media access protocol (MAC)
 following the IEEE 802.3 standard, providing Carrier Sense Multiple
 Access with Collision Detection (CSMA/CD) for the LAN channel.

3.3 Node layer

 This section discusses the internal structure of hosts and routers
 with the help of node level illustrations built using the Node editor
 of OPNET.

3.3.1 Basic OPNET elements

 The basic elements of a node level illustration are

 a. Processor nodes: Processor nodes are used for processing incoming
 packets and generating packets with a specified packet format.

 b. Queue node: Queue nodes are a superset of processor nodes. In
 addition to the capabilities of processor nodes, queue nodes also
 have capability to store packets in one or more queues.

 c. Transmitter and Receiver nodes: Transmitters simulate the link
 behavior effect of packet transmission and Receivers simulate the
 receiving effects of packet reception. The transmission rate is an
 attribute of the transmitter and receiving rate is an attribute of
 the receiver. These values together decide the transmission delay of
 a packet.

 d. Packet streams: Packet streams are used to interconnect the above
 described nodes.

 e. Statistic streams: Statistic streams are used to convey
 information between the different nodes: Processor, Queue,
 Transmitters and Receivers nodes respectively.

Pullen, et. al. Informational [Page 5]

RFC 2490 IP Multicast with RSVP January 1999

3.3.2 Host description

 The host model built using OPNET has a layered structure. Different
 from the OPNET layers (Network, Node and Process layer) that describe
 the network at different levels, protocol stack elements are
 implemented at OPNET nodes. Figure 3 shows the node level structure
 of a FDDI host.

 [Figure 3: Node Level of Host]

 a. MAC queue node: The MAC interfaces on one side to the physical
 layer through the transmitter (phy_tx) and receiver (phy_rx) and also
 provides services to the IP layer. Use of ring bandwidth is
 controlled through a timed token rotation protocol, wherein hosts
 must receive a token and meet with a set of timing and priority
 criteria before transmitting frames. When a frame arrives at the MAC
 node, the node performs one of the following actions:

 1. If the owner of the frame is this MAC, the MAC layer destroys
 the frame since the frame has finished circulating through the
 FDDI ring.
 2. if the frame is destined for this host, the MAC layer makes a
 copy of the frame, decapsulates the frame and sends the
 descapsulated frame (packet) to the IP layer. The original
 frame is transmitted to the next host in the FDDI ring
 3. if the owner of the frame is any other host and the frame is not
 destined for this host, the frame is forwarded to the adjacent
 host.

 b. ADDR_TRANS processor node: The next layer above the MAC layer is
 the addr_trans processor node. This layer provides service to the IP
 layer by carrying out the function of translating the IP address to
 physical interface address. This layer accepts packets from the IP
 layer with the next node information, maps the next node information
 to a physical address and forwards the packet for transmission. This
 service is required only in one direction from the IP layer to the
 MAC layer. Since queuing is not done at this level, a processor node
 is used to accomplish the address translation function, from IP to
 MAC address (ARP).

 c. IP queue node: Network routing/forwarding in the hierarchy is
 implemented here. IP layer provides service for the layers above
 which are the different higher level protocols by utilizing the
 services provided by the MAC layer. For packets arriving from the
 MAC layer, the IP layer decapsulates the packet and forwards the
 information to an upper layer protocol based upon the value of the
 protocol ID in the IP header. For packets arriving from upper layer
 protocols, the IP layer obtains the destination address, calculates

Pullen, et. al. Informational [Page 6]

RFC 2490 IP Multicast with RSVP January 1999

 the next node address from the routing table, encapsulates it with a
 IP header and forwards the packet to the addr_trans node with the
 next node information.

 The IP node is a queue node. It is in this layer that packets incur
 delay which simulates the processing capability of a host and
 queueing for use of the outgoing link. A packet arrival to the IP
 layer will be queued and experience delay when it finds another
 packet already being transmitted, plus possibly other packets queued
 for transmission. The packets arriving at the IP layer are queued
 and operate with a first-in first-out (FIFO) discipline. The queue
 size, service rate of the IP layer are both promoted attributes,
 specified at the simulation run level by the environment file.

 d. IGMP processor node: The models described above are standard
 components available in OPNET libraries. We have added to these the
 host multicast protocol model IGMP_host, the router multicast model
 IGMP_gwy, and the unicast best-effort protocol model UBE.

 The IGMP_host node (Figure 4) is a process node. Packets are not
 queued in this layer. IGMP_host provides unique group management
 services for the multicast applications utilizing the services
 provided by the IP layer. IGMP_host maintains a single table which
 consists of group membership information of the application above the
 IGMP layer. The function performed by the IGMP_host layer depends
 upon the type of the packet received and the source of the packet.

 [Figure 4: IGMP process on hosts]

 The IGMP_host layer expects certain type of packets from the
 application layer and from the network:

 1. Accept join group requests from the application layer (which can
 be one or more applications): IGMP_host maintains a table which
 consists of the membership information for each group. When a
 application sends a join request, it requests to join a specific
 group N. The membership information is updated. This new group
 membership information has to be conveyed to the nearest router
 and to the MAC layer. If the IGMP_host is already a member ofthis
 group (i.e. if another application above the IGMP_host is a member
 of the group N), the IGMP_host does not have to send a message to
 the router or indicate to the MAC layer. If the IGMP_host is not
 a member currently, the IGMP_host generates a join request for
 the group N (this is called a "response" in RFC 1112) and forwards
 it to the IP layer to be sent to the nearest router. In addition
 the IGMP_host also conveys this membership information to the MAC
 layer interfacing to the physical layer through the OPNET
 "statistic wire" connected from the IGMP_host to the MAC layer, so

Pullen, et. al. Informational [Page 7]

RFC 2490 IP Multicast with RSVP January 1999

 that the MAC layer knows the membership information immediately
 and begins to accept the frames destined for the group N. (An
 OPNET statistic wire is a virtual path to send information between
 OPNET models.)
 2. Accept queries arriving from the nearest router and send responses
 based on the membership information in the multicast table at the
 IGMP_host layer: A query is a message from a router inquiring
 each host on the router’s interface about group membership
 information. When the IGMP_host receives a query, it looks up the
 multicast group membership table, to determine if any of the
 host’s applications are registered for any group. If any
 registration exists, the IGMP_host schedules an event to generate
 a response after a random amount of time corresponding to each
 active group. The Ethernet example in Figure 5 and the
 description in the following section describes the scenario.

 | | | |
 | | | |
 +---+ +---+ +---+ +---+
 | H1| | H2| | H3| | R |
 +---+ +---+ +---+ +---+

 Figure 5: An Ethernet example of IGMP response schedule

 The router R interfaces with the subnet on one interface I1 and to
 reach the hosts. To illustrate this let us assume that hosts H1
 and H3 are members of group N1 and H2 is a member of group N2.
 When the router sends a query, all the hosts receive the query at
 the same time t0. IGMP_host in H1 schedules an event to generate
 a response at a randomly generated time t1 (t1 >= t0) which will
 indicate the host H1 is a member of group N1. Similarly H2 will
 schedule an event to generate a response at t2 (t2 >= t0)to
 indicate membership in group N2 and H3 at t3 (t3 >= t0) to
 indicate membership in group N3. When the responses are
 generated, the responses are sent with destination address set to
 the multicast group address. Thus all member hosts of a group
 will receive the responses sent by the other hosts in the subnet
 who are members of the same group.

 In the above example if t1 < t3, IGMP_host in H1 will generate a
 response to update the membership in group N1 before H3 does and
 H3 will also receive this response in addition to the router. When
 IGMP_host in H3 receives the response sent by H1, IGMP_host in H3
 cancels the event scheduled at time t3, since a response for that
 group has been sent to the router. To make this work, the events

Pullen, et. al. Informational [Page 8]

RFC 2490 IP Multicast with RSVP January 1999

 to generate response to queries are scheduled randomly, and the
 interval for scheduling the above described event is forced to be
 less than the interval at which router sends the queries.
 3. Accept responses sent by the other hosts in the subnet if any
 application layer is a member of the group to which the packet is
 destined.
 4. Accept terminate group requests from the Application layer. These
 requests are generated by application layer when a application
 decides to leave a group. The IGMP_host updates the group
 information table and subsequently will not send any response
 corresponding to this group (unless another application is a
 member of this group). When a router does not receive any
 response for a group in certain amount of time on a specific
 interface, membership of that interface is canceled in that group.

 e. Unicast best-effort (UBE) processor node: This node is used to
 generate a best effort traffic in the Internet based on the User
 Datagram Protocol (UDP). The objective of this node is to model the
 background traffic in a network. This traffic does not use the
 services provided by RSVP. UBE node aims to create the behaviors
 observed in a network which has one type of application using the
 services provided by RSVP to achieve specific levels of QoS and the
 best effort traffic which uses the services provided by only the
 underlying IP.

 The UBE node generates traffic to a randomly generated IP address so
 as to model competing traffic in the network from applications such
 as FTP. The packets generated are sent to the IP layer which routes
 the packet based upon the information in the routing table. The
 attributes of the UBE node are:

 1. Session InterArrival Time (IAT): is the variable used to schedule
 an event to begin a session. The UBE node generates an
 exponentially distributed random variable with mean Session IAT
 and begins to generate data traffic at that time.
 2. Data IAT: When the UBE generates data traffic, the interarrival
 times between data packets is Data IAT. A decrease in the value of
 Data IAT increases the severity of congestion in the network.
 3. Session-min and Session-max: When the UBE node starts generating
 data traffic it remains in that session for a random period which
 is uniformly distributed between Session-min and Session-max.

 f. Multicast Application processor node: The application layer
 consists of one or more application nodes which are process nodes.
 These nodes use the services provided by lower layer protocols IGMP,
 RSVP and IP. The Application layer models the requests and traffic
 generated by Application layer programs. Attributes of the
 application layer are:

Pullen, et. al. Informational [Page 9]

RFC 2490 IP Multicast with RSVP January 1999

 1. Session IAT: is the variable used to schedule an event to begin a
 session. The Application node generates an exponentially
 distributed random variable with mean Session IAT and begins to
 generate information for a specific group at that time and also
 accept packets belonging to that group.
 2. Data IAT: When Application node generates data traffic, the inter
 arrival time between the packets uses Data IAT variable as the
 argument. The distribution can be any of the available
 distribution functions in OPNET.
 3. Session-min and Session-max: When an application joins a session
 the duration for which the application stays in that session is
 bounded by Session-min and Session-max. A uniformly distributed
 random variable between Session-min and Session-max is generated
 for this purpose. At any given time each node will have zero or
 one flow(s) of data.
 4. NGRPS: This variable is used by the application generating
 multicast traffic to bound the value of the group to which an
 application requests the IGMP to join. The group is selected at
 random from the range [0,NGRPS-1].

 [Figure 6: Node Level of Gateway]

3.3.3 Router description

 There are two types of routers in the model, a router serving a
 subnet and a backbone router. A subnet router has all the
 functions of a backbone router and in addition also has a
 interface to the underlying subnet which can be either a FDDI
 network or a Ethernet subnet. In the following section the subnet
 router will be discussed in detail.

 Figure 6 shows the node level model of a subnet router.

 a. The queueing technique implemented in the router is a
 combination of input and output queueing. The nodes rx1 to rx10
 are the receivers connected to incoming links. The router in
 Figure 6 has a physical interface to the FDDI ring or Ethernet,
 which consists of the queue node MAC, transmitter phy_tx, and the
 receiver phy_rx. The backbone routers will not have a MAC layer.
 The services provided and the functions of the MAC layer are the
 same as the MAC layer in the host discussed above.

 There is one major difference between the MAC node in a subnet
 router and that in a host. The MAC node in a subnet router
 accepts all arriving multicast packets unlike the MAC in a host
 which accepts only the multicast packets for groups of which the

Pullen, et. al. Informational [Page 10]

RFC 2490 IP Multicast with RSVP January 1999

 host is a member. For this reason the statistic wire from the IGMP
 to MAC layer does not exist in a router (also because a subnet
 router does not have an application layer).

 b. Addr_trans: The link layer in the router hierarchy is the
 addr_trans processor node which provides the service of
 translating the IP address to a physical address. The addr_trans
 node was described above under the host model.

 c. IP layer: The router IP layer which provides services to the
 upper layer transport protocols and also performs routing based
 upon the information in the routing table. The IP layer maintains
 two routing tables and one group membership table.

 The tables used by the router model are:

 1. Unicast routing table: This table is an single array of one
 dimension, which is used to route packets generated by the UDP
 process node in the hosts. If no route is known to a particular
 IP address, the corresponding entry is set to a default route.
 2. Multicast routing table: This table is a N by I array where N is
 the maximum number of multicast groups in the model and I is the
 number of interfaces in the router. This table is used to route
 multicast packets. The routing table in a router is set by an
 upper layer routing protocol (see section 4 below). When the IP
 layer receives a multicast packet with a session_id corresponding
 to a session which is utilizing the MOSFP, it looks up the
 multicast routing table to obtain the next hop.
 3. Group membership table: This table is used to maintain group
 membership information of all the interfaces of the router. This
 table which is also an N by I array is set by the IGMP layer
 protocol. The routing protocols use this information in the group
 membership table to calculate and set the routes in the Multicast
 routing table.

 Sub-queues: The IP node has three subqueues, which implement queuing
 based upon the priority of arriving packets from the neighboring
 routers or the underlying subnet. The queue with index 0 has the
 highest priority. When a packet arrives at the IP node, the packets
 are inserted into the appropriate sub-queue based on the priority of
 their traffic category: control traffic, resource- reserved traffic,
 or best effort traffic. A non-preemptive priority is used in
 servicing the packets. After the servicing, packets are sent to the
 one of the output queues or the MAC. The packets progress through
 these queues until the transmitter becomes available.

Pullen, et. al. Informational [Page 11]

RFC 2490 IP Multicast with RSVP January 1999

 Attributes of the IP node are:

 1. Unique IP address for each interface (a set of transmitter and
 receiver constitute an interface).
 2. Service rate: the rate with which packets are serviced at the
 router.
 3. Queue size: size of each of the sub queues used to store incoming
 packets based on the priority can be specified individually

 d. Output queues: The output queues perform the function of queueing
 the packets received by the IP layer when the transmitter is busy. A
 significant amount of queuing takes place in the output queues only
 if the throughput of the IP node approaches the transmission capacity
 of the links. The only attribute of the queue node is:

 Queue size: size of the queue in each queue node. If the queue is
 full when a packet is received, that packet is dropped.

 e. IGMP Node: Also modeled in the router is the IGMP for implementing
 multicasting, the routing protocol, and RSVP for providing specific
 QoS setup.

 The IGMP node implements the IGMP protocol as defined in RFC 1112.
 The IGMP node at a router (Figure 7) is different from the one at a
 host. The functions of the IGMP node at a router are:

 1. IGMP node at a router sends queries at regular intervals on all
 its interfaces.
 2. When IGMP receives a response to the queries sent, IGMP updates
 the multicast Group membership table in the IP node and triggers
 on MOSPF LSA update.
 3. Every time the IGMP sends a query, it also updates the multicast
 group membership table in the IP node if no response has been
 received on for the group on any interface, indicating that a
 interface is no longer a member of that group. This update is
 done only on entries which indicate an active membership for a
 group on a interface where the router has not received a response
 for the last query sent.
 4. The routing protocol (see ection 4 below) uses the information in
 the group membership table to calculate the routes and update the
 multicast routing table.
 5. When the IGMP receives a query (an IGMP at router can receive a
 query from a directly connected neighboring router), the IGMP node
 creates a response for each of the groups it is a member of on all
 the interfaces except the one through which the query was
 received.
 6. The IGMP node on a backbone router is disabled, because IGMP is
 only used when a router has hosts on its subnet.

Pullen, et. al. Informational [Page 12]

RFC 2490 IP Multicast with RSVP January 1999

 [Figure 7: IGMP process on routers]

4. RSVP model

 The current version of the RSVP model supports only fixed-filter
 reservation style. The following processing takes place in the
 indicated modules. The model is current with [2].

4.1 RSVP APPLICATION

4.1.1 Init

 Initializes all variables and loads the distribution functions for
 Multicast Group IDs, Data, termination of the session. Transit to
 Idle state after completing all the initializations.

4.1.2 Idle

 This state has transitions to two states, Join and Data_Send. It
 transit to Join state at the time that the application is scheduled
 to join a session or terminate the current session, transit to
 Data_Send state when the application is going to send data.

4.1.3 Join

 The Application will send a session call to local RSVP daemon. In
 response it receives the session Id from the Local daemon. This makes
 a sender or receiver call. The multicast group id is selected
 randomly from a uniform distribution. While doing a sender call the
 application will write all its sender information in a global session
 directory.

 If the application is acting as a receiver it will check for the
 sender information in the session directory for the multicast group
 that it wants to join to and make a receive call to the local RSVP
 daemon. Along with the session and receive calls, it makes an IGMP
 join call.

 If the application chooses to terminate the session to which it was
 registered, it will send a release call to the local RSVP daemon and
 a terminate call to IGMP daemon. After completing these functions it
 will return to the idle state.

 [Figure 8: RSVP process on routers]

Pullen, et. al. Informational [Page 13]

RFC 2490 IP Multicast with RSVP January 1999

4.1.4 Data_Send

 Creates a data packet and sends it to a multicast destination that it
 selects. It update a counter to keep track of how many packets that
 it has sent. This state on default returns to Idle state.

4.2 RSVP on Routers

 Figure 8 shows the process model of RSVP on routers.

4.2.1 Init

 This state calls a function called RouterInitialize which will
 initialize all the router variables. This state will go to Idle state
 after completing these functions.

4.2.2 Idle

 Idle state transit to Arr state upon receiving a packet.

4.2.3 Arr

 This state checks for the type of the packet arrived and calls the
 appropriate function depending on the type of message received.

 a. PathMsgPro: This function was invoked by the Arr state when a path
 message is received. Before it was called, OSPF routing had been
 recomputed to get the latest routing table for forwarding the Path
 Message.

 1. It first checks for a Path state block which has a matching
 destination address and if the sender port or sender address or
 destination port does not match the values of the Session object
 of the Path state block, it sends an path error message and
 returns. (At present the application does not send any error
 messages, we print this error message on the console.)
 2. If a PSB is found whose Session Object and Sender Template Object
 matches with that of the path message received, the current PSB
 becomes the forwarding PSB.
 3. Search for the PSB whose session and sender template matches the
 corresponding objects in the path message and whose incoming
 interface matches the IncInterface. If such a PSB is found and the
 if the Previous Hop Address, Next Hop Address, and SenderTspec
 Object doesn’t match that of path message then the values of path
 message is copied into the path state block and Path Refresh
 Needed flag is turned on. If the Previous Hop Address, Next Hop

Pullen, et. al. Informational [Page 14]

RFC 2490 IP Multicast with RSVP January 1999

 Address of PSB differs from the path message then the Resv Refresh
 Needed flag is also turned on, and the Current PSB is made equal
 to this PSB.
 4. If a matching PSB is not found then a new PSB is created and and
 Path Refresh Needed Flag is turned on, and the Current PSB is made
 equal to this PSB.
 5. If Path Refresh Needed Flag is on, Current PSB is copied into
 forwarding PSB and Path Refresh Sequence is executed. To execute
 this function called PathRefresh is used. Path Refresh is sent to
 every interface that is in the outgoing interfaces list of
 forwarding path state block.
 6. Search for a Reservation State Block whose filter spec object
 matches with the Sender Template Object of the forwarding PSB and
 whose Outgoing Interface matches one of the entry in the
 forwarding PSB’s outgoing interface list. If found then a Resv
 Refresh message to the Previous Hop Address in the forwarding PSB
 and execute the Update Traffic Control sequence.

 b. PathRefresh: This function is called from PathMsgPro. It creates
 the Path message sends the message through the outgoing interface
 that is specified by the PathMsgPro.

 c. ResvMsgPro: This function was invoked by the Arr state when a Resv
 message is received.

 1. Determine the outgoing interface and check for the PSB whose
 Source Address and Session Objects match the ones in the Resv
 message.
 2. If such a PSB is not found then send a ResvErr message saying that
 No Path Information is available. (We have not implemented this
 message, we only print an error message on the console.)
 3. Check for incompatible styles and process the flow descriptor list
 to make reservations, checking the PSB list for the sender
 information. If no sender information is available through the PSB
 list then send an Error message saying that No Sender information.
 For all the matching PSBs found, if the Refresh PHOP list doesn’t
 have the Previous Hop Address of the PSB then add the Previous Hop
 Address to the Refresh PHOP list.
 4. Check for matching Reservation State Block (RSB) whose Session and
 Filter Spec Object matches that of Resv message. If no such RSB is
 found then create a new RSB from the Resv Message and set the
 NeworMod flag On. Call this RSB as activeRSB. Turn on the Resv
 Refresh Needed Flag.
 5. If a matching RSB is found, call this as activeRSB and if the
 FlowSpec and Scope objects of this RSB differ from that of Resv
 Message copy the Resv message Flowspec and Scope objects to the
 ActiveRSB and set the NeworMod flag On.

Pullen, et. al. Informational [Page 15]

RFC 2490 IP Multicast with RSVP January 1999

 6. Call the Update Traffic Control Sequence. This is done by calling
 the function UpdateTrafficControl
 7. If Resv Refresh Needed Flag is On then send a ResvRefresh message
 for each Previous Hop in the Refresh PHOP List. This is done by
 calling the ResvRefresh function for every Previous Hop in the
 Refresh PHOP List.

 d. ResvRefresh: this function is called by both PathMsgPro and
 ResvMsgPro with RSB and Previous Hop as input. The function
 constructs the Resv Message from the RSB and sends the message to the
 Previous Hop.

 e. PathTearPro: This function is invoked by the Arr state when a
 PathTear message is received.

 1. Search for PSB whose Session Object and Sender Template Object
 matches that of the arrived PathTear message.
 2. If such a PSB is not found do nothing and return.
 3. If a matching PSB is found, a PathTear message is sent to all the
 outgoing interfaces that are listed in the Outgoing Interface list
 of the PSB.
 4. Search for all the RSB whose Filter Spec Object matches the Sender
 Template Object of the PSB and if the Outgoing Interface of this
 RSB is listed in the PSB’s Outgoing interface list delete the RSB.
 5. Delete the PSB and return.

 f. ResvTearPro: This function is invoked by the Arr state when a
 ResvTear message is received.
 1. Determine the Outgoing Interface.
 2. Process the flow descriptor list of the arrived ResvTear message.
 3. Check for the RSB whose Session Object, Filter Spec Object matches
 that of ResvTear message and if there is no such RSB return.
 4. If such an RSB is found and Resv Refresh Needed Flag is on send
 ResvTear message to all the Previous Hops that are in Refresh PHOP
 List.
 5. Finally delete the RSB.

 g. ResvConfPro: This function is invoked by the Arr state when a
 ResvConf message is received. The Resv Confirm is forwarded to the IP
 address that was in the Resv Confirm Object of the received ResvConf
 message.

 h. UpdateTrafficControl: This function is called by PathMsgPro and
 ResvMsgPro and input to this function is RSB.

 1. The RSB list is searched for a matching RSB that matches the
 Session Object, and Filter Spec Object with the input RSB.
 2. Effective Kernel TC_Flowspec are computed for all these RSB’s.

Pullen, et. al. Informational [Page 16]

RFC 2490 IP Multicast with RSVP January 1999

 3. If the Filter Spec Object of the RSB doesn’t match the one of the
 Filter Spec Object in the TC Filter Spec List then add the Filter
 Spec Object to the TC Filter Spec List.
 4. If the FlowSpec Object of the input RSB is greater than the
 TC_Flowspec then turn on the Is_Biggest flag.
 5. Search for the matching Traffic Control State Block(TCSB) whose
 Session Object, Outgoing Interface, and Filter Spec Object matches
 with those of the Input RSB.
 6. If such a TCSB is not found create a new TCSB.
 7. If matching TCSB is found modify the reservations.
 8. If Is_Biggest flag is on turn on the Resv Refresh Needed Flag
 flag, else send a ResvConf Message to the IP address in the
 ResvConfirm Object of the input RSB.

4.2.4 pathmsg: The functions to be done by this state are done through
 the function call PathMsgPro described above.

4.2.5 resvmsg: The functions that would be done by this state are done
 through the function call ResvMsgPro described above.

4.2.6 ptearmsg: The functions that would be done by this state are done
 through the function call PathTearPro described above.

4.2.7 rtearmsg: The functions that would be done by this state are done
 through the function call ResvTearPro described above.

4.2.8 rconfmsg: The functions that would be done by this state are done
 through the function call ResvConfPro described above.

4.3 RSVP on Hosts

 Figure 9 shows the process of RSVP on hosts.

4.3.1 Init

 Initializes all the variables. Default transition to idle state.

 [Figure 9: RSVP process on hosts]

4.3.2 idle

 This state transit to the Arr state on packet arrival.

4.3.3 Arr

 This state calls the appropriate functions depending on the type of
 message received. Default transition to idle state.

Pullen, et. al. Informational [Page 17]

RFC 2490 IP Multicast with RSVP January 1999

 a. MakeSessionCall: This function is called from the Arr state
 whenever a Session call is received from the local application.

 1. Search for the Session Information.
 2. If one is found return the corresponding Session Id.
 3. If the session information is not found assign a new session Id to
 the session to the corresponding session.
 4. Make an UpCall to the local application with this Session Id.

 b. MakeSenderCall: This function is called from the Arr state
 whenever a Sender call is received from the local application.

 1. Get the information corresponding to the Session Id and create a
 Path message corresponding to this session.
 2. A copy of the packet is buffered and used by the host to send the
 PATH message periodically.
 3. This packet is sent to the IP layer.

 c. MakeReserveCall: This function is called from the Arr state
 whenever a Reserve call is received from the local application. This
 function will create and send a Resv message. Also, the packet is
 buffered for later use.

 d. MakeReleaseCall: This function is called from the Arr state
 whenever a Release call is received from the local application. This
 function will generate a PathTear message if the local application is
 sender or generates a ResvTear message if the local application is
 receiver.

4.3.4 Session This state’s function is performed by
 the MakeSessionCall function.

4.3.5 Sender

 This state’s function is han by the MakeSenderCall function.

4.3.6 Reserve
 This state’s function
 is performed by the MakeReserveCall function.

4.3.7 Release

 This state’s function is performed by the MakeReleaseCall function.

Pullen, et. al. Informational [Page 18]

RFC 2490 IP Multicast with RSVP January 1999

5. Multicast Routing Model Interface

 Because this set of models was intended particularly to enable
 evaluation by simulation of various multicast routing protocols, we
 give particular attention in this section to the steps necessary to
 interface a routing protocol model to the other models. We have
 available implementations of DVMRP and OSPF, which we will describe
 below. Instructions for invoking these models are contained in a
 separate User’s Guide for the models.

5.1 Creation of multicast routing processor node

 Interfacing a multicast routing protocol using the OPNET Simulation
 package requires the creation of a new routing processor node in the
 node editor and linking it via packet streams. Packet streams are
 unidirectional links used to interconnect processor nodes, queue
 nodes, transmitters and receiver nodes. A duplex connection between
 two nodes is represented by using two unidirectional links to connect
 the two nodes to and from each other.

 A multicast routing processor node is created in the node editor and
 links are created to and from the processors(duplex connection) that
 interact with this module, the IGMP processor node and the IP
 processor node. Within the node editor, a new processor node can be
 created by selecting the button for processor creation (plain gray
 node on the node editor control panel) and by clicking on the desired
 location in the node editor to place the node. Upon creation of the
 processor node, the name of the processor can be specified by right
 clicking on the mouse button and entering the name value on the
 attribute box presented. Links to and from this node are generated
 by selecting the packet stream button (represented by two gray nodes
 connected with a solid green arrow on the node editor control panel),
 left clicking on the mouse button to specify the source of the link
 and right clicking on the mouse button to mark the destination of the
 link.

5.2 Interfacing processor nodes

 The multicast routing processor node is linked to the IP processor
 node and the IGMP processor node each with a duplex connection. A
 duplex connection between two nodes is represented by two uni-
 directional links interconnecting them providing a bidirectional flow
 of information or interrupts, as shown in Figure 6. The IP processor
 node (in the subnet router) interfaces with the multicast routing
 processor node, the unicast routing processor node, the Resource
 Reservation processor node(RSVP), the ARP processor node(only on

Pullen, et. al. Informational [Page 19]

RFC 2490 IP Multicast with RSVP January 1999

 subnet routers and hosts), the IGMP processor node, and finally the
 MAC processor node (only on subnet routers and hosts) each with a
 duplex connection with exceptions for ARP and MAC nodes.

5.2.1 Interfacing ARP and MAC processor nodes

 The service of the ARP node is required only in the direction from
 the IP layer to the MAC layer(requiring only a unidirectional link
 from IP processor node to ARP processor node). The MAC processor
 node on the subnet router receives multicast packets destined for all
 multicast groups in the subnet, in contrast to the MAC node on subnet
 hosts which only receives multicast packets destined specifically for
 its multicast group. The MAC node connects to the IP processor node
 with a single uni-directional link from it to the IP node.

5.2.2 Interfacing IGMP, IP, and multicast routing processor nodes

 The IGMP processor node interacts with the multicast routing
 processor node, unicast routing processor node, and the IP processor
 node. Because the IGMP node is linked to the IP node, it is thus able
 to update the group membership table(in this model, the group
 membership table is represented by the local interface(interface 0)
 of the multicast routing table data structure) within the IP node.
 This update triggers a signal to the multicast routing processor node
 from the IGMP node causing it to reassess the multicast routing table
 within the IP node. If the change in the group membership table
 warrants a modification of the multicast routing table, the multicast
 routing processor node interacts with the IP node to modify the
 current multicast routing table according to the new group membership
 information updated by IGMP.

5.2.2.1 Modification of group membership table

 The change in the group membership occurs with the decision at a host
 to leave or join a particular multicast group. The IGMP process on
 the gateway periodically sends out queries to the IGMP processes on
 hosts within the subnet in an attempt to determine which hosts
 currently are receiving packets from particular groups. Not
 receiving a response for a pending IGMP host query specific to a
 group indicates to the gateway IGMP that no host belonging to the
 particular group exists in the subnet. This occurs when the last
 remaining member of a multicast group in the subnet leaves. In this
 case the IGMP processor node updates the group membership able and
 triggers a modification of the multicast routing table by alerting
 the multicast routing processor node. A prune message specific to
 the group is initiated and propagated upward establishing a prune
 state for the interface leading to the present subnet, effectively
 removing this subnet from the group-specific multicast spanning tree

Pullen, et. al. Informational [Page 20]

RFC 2490 IP Multicast with RSVP January 1999

 and potentially leading to additional pruning of spanning tree edges
 as the prune message travels higher up the tree. Joining a multicast
 group is also managed by the IGMP process which updates the group
 membership table leading to a possible modification of the multicast
 routing table.

5.2.2.2 Dependency on unicast routing protocol

 The multicast routing protocol is dependent on a unicast routing
 protocol (RIP or OSPF) to handle multicast routing. The next hop
 interface to the source of the packet received, or the upstream
 interface, is determined using the unicast routing protocol to trace
 the reverse path back to the source of the packet. If the packet
 received arrived on this upstream interface, then the packet can be
 propagated downstream through its downstream interfaces (excluding
 the interface in which the packet was received). Otherwise, the
 packet is deemed to be a duplicate and dropped, halting the
 propagation of the packet downstream. This repeated reverse path
 checking and broadcasting eventually generates the spanning tree for
 multicast routing of packets. To determine the reverse path forward
 interface of a received multicast packet propagated up from the IP
 layer, the multicast routing processor node retrieves a copy of the
 unicast routing table from the IP processor node and uses it to
 recalculate the multicast routing table in the IP processor node.

5.3 Interrupt Generation

 Using the OPNET tools, interrupts to the multicast routing processor
 node are generated in several ways. One is the arrival of a
 multicast packet along a packet stream (at the multicast routing
 processor node) when the packet is received by the MAC node and
 propagated up the IP node where upon discarding the IP header
 determination is made as to which upper layer protocol to send the
 packet. A second type of interrupt generation occurs by remote
 interrupts from the IGMP process alerting the multicast routing
 process of an update in the group membership table. A third occurs
 when the specific source/group (S,G) entry for a multicast packet
 received at the IP node does not exist in the current multicast
 routing table and a new entry needs to be created. The IP node
 generates an interrupt to the multicast routing processor node
 informing it to create a new source/group entry on the multicast
 routing table.

5.3.1 Types of interrupts

 The process interrupts generated within the OPNET model can be
 handled by specifying the types of interrupts and the conditions for
 the interrupts using the interrupt code, integer number representing

Pullen, et. al. Informational [Page 21]

RFC 2490 IP Multicast with RSVP January 1999

 the condition for a specific interrupt. The conditions for
 interrupts are specified on the interrupt stream linking the
 interrupt generating state and the state resulting from the
 interrupt. For self-interrupts (interrupts occurring among states
 within the same process), interrupts of type OPC_INTRPT_SELF are
 used. For remote interrupts (interprocess interrupts), the
 conditions for specific interrupts are specified from the idle state
 to the state resulting from the interrupt within the remote process.

 The remote interrupts are of type, OPC_INTRPT_REMOTE. A third type
 of interrupt is the OPC_INTRPT_STRM, which is triggered when packets
 arrive via a packet stream, indicating its arrival. The condition of
 this interrupt is also specified from the idle state to the resultant
 state by the interrupt condition stream defined by a unique interrupt
 code. For all of these interrupts, the interrupt code is provided
 within the header block (written in C language) of the interrupted
 process. When the condition for the interrupt becomes true, a
 transition is made to the resultant state specified by the interrupt
 stream.

5.3.2 Conditions for interrupts

 Several interrupt connections exist to interface the IGMP processor
 node, IP processor node , and the multicast routing processor node
 with each other in the present OPNET Simulation Model. Also, the IP
 processor node interfaces with the unicast routing protocol which
 interfaces with the IGMP processor node. An OPC_INTRPT_STRM
 interrupt is generated when a multicast packet arrives via a packet
 stream from the IP processor node to the multicast routing processor
 node. A remote interrupt of type, OPC_INTRPT_REMOTE, is generated
 from the IGMP process to the IP process when a member of a group
 relinquishes membership from a particular group or a new member is
 added to a group. This new membership is updated in the group
 membership table located in the IP node by the IGMP process which
 also generates a remote interrupt to the multicast routing protocol
 process, causing a recalculation of the multicast routing table in
 the IP module.

5.4 Modifications of modules in the process model

 Modifications of routing protocol modules (in fact all of the modules
 in the process model) are made transparently throughout the network
 using the OPNET Simulation tools. An addition or modification of a
 routing module in any subnet will reflect on all the subnets.

Pullen, et. al. Informational [Page 22]

RFC 2490 IP Multicast with RSVP January 1999

6. OSPF and MOSPF Models

 OSPF and MOSPF models [5] are implemented in the OSPF model
 containing fourteen states. They only exist on routers. Figure 10
 shows the process model. The following processing takes place in the
 indicated modules.

6.1 init

 This state initializes all the router variables. Default transition
 to idle state.

6.2 idle

 This state has several transitions. If a packet arrives it transits
 to arr state. Depending on interrupts received it will transit to
 BCOspfLsa, BCMospfLsa, hello_pks state. In future versions, links
 coming up or down will also cause a transition.

6.3 BCOspfLsa

 Transition to this state from idle state is executed whenever the
 condition send_ospf_lsa is true, which happens when the network is
 being initialized, and when ospf_lsa_refresh_timout occurs. This
 state will create Router, Network, Summary Link State Advertisements
 and pack all of them into an Link State Update packet. The Link State
 Update Packet is sent to the IP layer with a destination address of
 AllSPFRouters.

 [Figure 10: OSPF and MOSPF process model on routers]

6.4 BCMospfLsa

 Transition to this state from idle state is executed whenever the
 condition send_mospf_lsa is true. This state will create Group
 Membership Link State Advertisement and pack them into Mospf Link
 State Update Packet. This Mospf Link State Update Packet is sent to
 IP layer with a destination address of AllSPFRouters.

6.5 arr

 The arr state checks the type of packet that is received upon a
 packet arrival. It calls the following functions depending on the
 protocol Id of the packet received.

 a. OspfPkPro: Depending on the type of OSPF/MOSPF packet received the
 function calls the following functions.

Pullen, et. al. Informational [Page 23]

RFC 2490 IP Multicast with RSVP January 1999

 1. HelloPk_pro: This function is called whenever a hello packet is
 received. This function updates the router’s neighbor information,
 which is later used while sending the different LSAs.
 2. OspfLsUpdatePk_pro: This function is called when an OSPF LSA
 update packet is received (router LSA, network LSA, or summary
 LSA). If the Router is an Area Border Router or if the LSA belongs
 to the Area whose Area Id is the Routers Area Id, then it is
 searched to determine whether this LSA already exists in the Link
 State database. If it exists and if the existing LSA’s LS Sequence
 Number is less than the received LSA’s LS Sequence Number the
 existing LSA was replaced with the received one. The function
 processes the Network LSA only if it is a designated router or
 Area Border Router. It processes the Summary LSA only if the
 router is a Area Border Router. The function also turns on the
 trigger ospfspfcalc which is the condition for the transition from
 arr state to ospfspfcalc.
 3. MospfLsUpdatePk_pro: This function is called when a MOSPF LSA
 update packet is received. It updates the group membership link
 state database of the router.

6.6 hello_pks

 Hello packets are created and sent with destination address of
 AllSPFRouters. Default transition to idle state.

6.7 mospfspfcalc

 The following functions are used to calculate the shortest path tree
 and routing table. This state transit to upstr_node upon detupstrnode
 condition.

 a. CandListInit: Depending upon the SourceNet of the datagram, the
 candidate lists are initialized.

 b. MospfCandAddPro: The vertex link is examined and if the other end
 of the link is not a stub network and is not already in the candidate
 list it is added to the candidate list after calculating the cost to
 that vertex. If this other end of the link is already on the shortest
 path tree and the calculated cost is less than the one that shows in
 the shortest path tree entry update the shortest path tree to show
 the calculated cost.

 c. MospfSPFTreeCalc: The vertex that is closest to the root that is
 in the candidate list is added to the shortest path tree and its link
 is considered for possible inclusions in the candidate list.

 d. MCRoutetableCalc: Multicast routing table is calculated using the
 information of the MOSPF shortest Path tree.

Pullen, et. al. Informational [Page 24]

RFC 2490 IP Multicast with RSVP January 1999

6.8 ospfspfcalc

 The following functions are used in this state to calculate the
 shortest path tree and using this information the routing table.
 Transition to ospfspfcalc state on ospfcalc condition. This is set to
 one after processing all functions in the state.

 a. OspfCandidateAddPro: This function initializes the candidate list
 by examining the link state advertisement of the Router. For each
 link in this advertisement, if the other end of the link is a router
 or transit network and if it is not already in the shortest-path tree
 then calculate the distance between these vertices. If the other end
 of this link is not already on the candidate list or if the distance
 calculated is less than the value that appears for this other end add
 the other end of the link to candidate list.

 b. OspfSPTreeBuild: This function pulls each vertex from the
 candidate list that is closest to the root and adds it to the
 shortest path tree. In doing so it deletes the vertex from the
 candidate list. This function continues to do this until the
 candidate list is empty.

 c. OspfStubLinkPro: In this procedure the stub networks are added to
 shortest path tree.

 d. OspfSummaryLinkPro: If the router is an Area Border Router the
 summary links that it has received is examined. The route to the Area
 border router advertising this summary LSA is examined in the routing
 table. If one is found a routing table update is done by adding the
 route to the network specified in the summary LSA and the cost to
 this route is sum of the cost to area border router advertising this
 and the cost to reach this network from that area border router.

 e. RoutingTableCalc: This function updates the routing table by
 examining the shortest path tree data structure.

6.9 upstr_node

 This state does not do anything in the present model. It transitions
 to DABRA state.

6.10 DABRA

 If the router is an Area Border Router and the area is the source
 area then a DABRA message is constructed and send to all the
 downstream areas. Default transition to idle state.

Pullen, et. al. Informational [Page 25]

RFC 2490 IP Multicast with RSVP January 1999

7. DVMRP Model

 The DVMRP model is implemented based on reference [6], DVMRP version
 3. There are nine states. The DVMRP process only exists on Routers.
 Figure 11 shows the states of the DVMRP process.

7.1 Init

 Initialize all variables, routing table and forwarding table and load
 the simulation parameters. It will transit to the Idle state after
 completing all the initializations.

7.2 Idle

 The simulation waits for the next scheduled event or remotely invoked
 event in the Idle State and transit to the state accordingly. In the
 DVMRP model, Idle State has transitions to Probe_Send, Report_Send,
 Prune_Send, Graft_Send, Arr_Pkt, Route_Calc and Timer states.

 [Figure 11. DVMRP process on routers]

7.3 Probe_Send State

 A DVMRP router sends Probe messages periodically to inform other
 DVMRP routers that it is operational. A DVMRP router lists all its
 known neighbors’ addresses in the Probe message and sends it to All-
 DVMRP-Routers address. The routers will not process any message that
 comes from an unknown neighbor.

7.4 Report_Send

 To avoid sending Report at the same time for all DVMRP routers, the
 interval between two Report messages is uniformly distributed with
 average 60 seconds. The router lists source router’s address,
 upstream router’s address and metric of all sources into the Report
 message and sends it to All-DVMRP-Routers address.

7.5 Prune_Send

 The transition to this state is triggered by the local IGMP process.
 When a host on the subnetwork drops from a group, the IGMP process
 asks DVMRP to see if the branch should be pruned.

 The router obtains the group number from IGMP and checks the IP
 Multicast membership table to find out if there is any group member
 that is still in the group. If the router determines that the last
 host has resigned, it goes through the entire forwarding table to
 locate all sources for that group. The router sends Prune message,

Pullen, et. al. Informational [Page 26]

RFC 2490 IP Multicast with RSVP January 1999

 containing source address, group address and prune lifetime,
 separately for each (source, group) pair and records the row as
 pruned in the forwarding table.

7.6 Graft_Send

 The transition to this state is triggered by the local IGMP process.
 Once a multicast delivery has been pruned, Graft messages are
 necessary when a host in the local subnetwork joins into the group. A
 Graft message sent to the upstream router should be acknowledged hop
 by hop to the root of the tree guaranteeing end-to-end delivery.

 The router obtains the group number from IGMP and go through the
 forwarding table to locate all traffic sources for that group. A
 Graft message will be sent to the upstream router with the source
 address and group address for each (source, group) pair. The router
 also setups a timer for each Graft message waiting for an
 acknowledgement.

7.7 Arr_Pkt

 All DVMRP control messages will be sent up to DVMRP layer by IP. The
 function performed by the DVMRP layer depends upon the type of the
 message received.

 a. Probe message: The router checks the neighbors’ list in Probe
 message, update its their status to indicate the availability of its
 neighbors.

 b. Report message: Based on exchanging report messages, the routers
 can build the Multicast delivery tree rooted at each source. A
 function called ReportPkPro will be called to handle all possible
 situations when receiving a report message. If the message is a
 poison reverse report and not coming from one of the dependent
 downstreams, the incoming interface should be added to the router’s
 downstream list. If the message is not a poison reverse report but it
 came from one of the downstreams, this interface should be deleted
 from the downstreams list. And then, the router compared the metric
 got from the message with the metric of the current upstream, if the
 new metric is less than the older one, the router’s upstream
 interface should be updated.

 c. Prune message: The router extracts the source address, group
 address and prune lifetime, marks the incoming interface as pruned in
 the dependent downstream list of the (source, group) pair. If all
 downstream interfaces have been pruned, the router will send a prune
 message to its upstream.

Pullen, et. al. Informational [Page 27]

RFC 2490 IP Multicast with RSVP January 1999

 d. Graft message: The router extracts the source and group address,
 active the incoming interface in the dependent downstream list of the
 (source, group) pair. If the (source, group) pair has been pruned,
 the router will reconnect the branch by sending a graft message to
 its upstream interface.

 e. Graft Acknowledge message: The router extracts the source and
 group address, clear the graft message timer of the (source, group)
 pair in the forwarding table.

7.8 Route_Calc

 The transition to this state is triggered by the local IP process.
 Once the IP receives a packet, it will fire a remote interrupt to the
 DVMRP and ask the DVMRP to prepare the outgoing interfaces for the
 packet. The DVMRP process obtains the packet’s source address and
 group address from the IP and checks the (source, group) pairs in the
 forwarding table to decide the branches that have the group members
 on the Multicast delivery tree. The Group Membership Table on IP will
 be updated based on this knowledge.

7.9 Timer

 This state is activated once every second. It checks the forwarding
 table, if the Graft message acknowledgment timer is expired, The
 router will retransmit the Graft message to the upstream. If the
 prune state lifetime timer is expired, the router will graft this
 interface so that the downstream router can receive the packets to
 the group again. The router also checks if the (source, group) pair
 is pruned by the upstream router, if so, it will send a graft message
 to the upstream interface.

8. Simulation performance

 Our simulations of three network models with MOSPF routing have
 showed good Scalability of the protocol. The running platform we used
 is a SGI Octane Station with 512 MB main memory and MIPS R10000 CPU,
 Rev 2.7. Here we list the real running time of each model along with
 its major elements and the packet inter-arrival times for the streams
 generated in the hosts.

Pullen, et. al. Informational [Page 28]

RFC 2490 IP Multicast with RSVP January 1999

Simulated Debug Model Intermediate Model Large Model
 time 11 Routers 42 routers 86 routers
 12 Hosts 48 hosts 96 hosts

 Reserve Data Reserve Data Reserve Data
 0.01s 0.02s 0.02s
 Best-effort Data Best-effort Data Best-effort Data
 0.01s 0.025s 0.025s

 100 s 3 hours 14 hours 30 hours
 200 s 7 hours 30 hours - - -

9. Future work

 We hope to receive assistance from the IPmc/RSVP development
 community within the IETF in validating and refining this model. We
 believe it will be a useful tool for predicting the behavior of
 RSVP-capable systems.

10. Security Considerations

 This RFC raises no security considerations.

11. References

 [1] Deering, S., "Host Requirements for IP Multicasting", STD 5,
 RFC 1112, August 1989.

 [2] Braden, R., Zhang, L., Berson, S., Herzog, S. and S. Jamin,
 "Resource Reservation Protocol (RSVP) -- Version 1 Functional
 Specification", RFC 2205, September 1997.

 [3] Wroclawski, J., "The Use of RSVP with IETF Integrated Services",
 RFC 2210, September 1997.

 [4] MIL3 Inc., "OPNET Modeler Tutorial Version 3", Washington, DC,
 1997

 [5] Moy, J., "Multicast Extensions to OSPF", RFC 1584, March 1994.

 [6] Pusateri, T., "Distance Vector Multicast Routing Protocol", Work
 in Progress.

Pullen, et. al. Informational [Page 29]

RFC 2490 IP Multicast with RSVP January 1999

Authors’ Addresses

 J. Mark Pullen
 C3I Center/Computer Science
 Mail Stop 4A5
 George Mason University
 Fairfax, VA 22032

 EMail: mpullen@gmu.edu

 Ravi Malghan
 3141 Fairview Park Drive, Suite 700
 Falls Church VA 22042

 EMail: rmalghan@bacon.gmu.edu

 Lava K. Lavu
 Bay Networks
 600 Technology Park Dr.
 Billerica, MA 01821

 EMail: llavu@bacon.gmu.edu

 Gang Duan
 Oracle Co.
 Redwood Shores, CA 94065

 EMail: gduan@us.oracle.com

 Jiemei Ma
 Newbridge Networks Inc.
 593 Herndon Parkway
 Herndon, VA 20170

 EMail: jma@newbridge.com

 Hoon Nah
 C3I Center
 Mail Stop 4B5
 George Mason University
 Fairfax, VA 22030

 EMail: hnah@bacon.gmu.edu

Pullen, et. al. Informational [Page 30]

RFC 2490 IP Multicast with RSVP January 1999

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Pullen, et. al. Informational [Page 31]

