Net wor k Wor ki ng Group C. Adans
Request for Comments: 2025 Bel I - Nort hern Research
Cat egory: Standards Track Cct ober 1996

The Sinple Public-Key GSS-API Mechani sm (SPKM
Status of this Menp

This docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Abst r act

This specification defines protocols, procedures, and conventions to
be enpl oyed by peers inplenenting the Generic Security Service
Application Program Interface (as specified in RFCs 1508 and 1509)
when using the Sinple Public-Key Mechani sm

Background

Al t hough the Kerberos Version 5 GSS-APlI mechani sm [KRB5] is beconing
wel | -established in many environnments, it is inmportant in sone
applications to have a GSS- APl mechani sm which is based on a public-
key, rather than a symetric-key, infrastructure. The nmechani sm
described in this docunent has been proposed to neet this need and to
provide the follow ng features

1) The SPKM al |l ows both unilateral and nutual authentication
to be acconplished without the use of secure tinestanps. This
enabl es envi ronnments whi ch do not have access to secure tine
to neverthel ess have access to secure authentication

2) The SPKM uses Algorithmldentifiers to specify various
algorithnms to be used by the communicating peers. This allows
maxi mum flexibility for a variety of environments, for future
enhancenents, and for alternative al gorithns.

3) The SPKM allows the option of a true, asymetric algorithm
based, digital signature in the gss_sign() and gss_seal ()
operations (now called gss_getMC() and gss_wap() in
[GSSv2]), rather than an integrity checksum based on a MAC
conputed with a symmetric algorithm (e.g., DES). For sone
environnents, the availability of true digital signatures
supporting non-repudiation is a necessity.

Adans St andards Track [Page 1]

RFC 2025 SPKM Cct ober 1996

4) SPKM data formats and procedures are designed to be as sinilar
to those of the Kerberos nechanismas is practical. This is
done for ease of inplenentation in those environnents where
Ker beros has al ready been i npl enent ed.

For the above reasons, it is felt that the SPKMwi Il offer
flexibility and functionality, w thout undue conplexity or overhead.

Key Managenent

The key managenent enployed in SPKMis intended to be as conpatible
as possible with both X 509 [X 509] and PEM [RFC- 1422], since these
represent large conmunities of interest and show relative nmaturity in
st andar ds.

Acknow edgrent s

Much of the material in this docunent is based on the Kerberos
Version 5 GSS- APl nmechani sm [KRB5], and is intended to be as
conpatible with it as possible. This docunent al so owes a great debt
to Warwi ck Ford and Paul Van Oorschot of Bell-Northern Research for
many fruitful discussions, to Kelvin Desplanque for inplenentation-
related clarifications, to John Linn of OpenVision Technol ogies for
hel pful comments, and to Bancroft Scott of OSS for ASN. 1 assistance

1. Overview

The goal of the Generic Security Service Application Program
Interface (GSS-APlI) is stated in the abstract of [RFGC 1508] as
fol | ows:

"This CGeneric Security Service Application ProgramInterface (GSS-
APl) definition provides security services to callers in a generic
fashi on, supportable with a range of underlying nmechani sms and
technol ogi es and hence all owi ng source-level portability of
applications to different environnents. This specification defines
GSS- APl services and primitives at a |l evel independent of
under | yi ng nechani sm and progranmni ng | anguage environnment, and is
to be conplenmented by other, related specifications:

- docunents defining specific paraneter bindings for particul ar
| anguage environnents;

- docunents defining token fornmats, protocols, and procedures to

be inplenmented in order to realize GSS-APlI services atop
particul ar security nechanisns."

Adans St andards Track [Page 2]

RFC 2025 SPKM Cct ober 1996

The SPKMis an instance of the latter type of docunent and is
therefore ternmed a "GSS- APl Mechani sm'. Thi s nmechani sm provi des
aut henti cation, key establishment, data integrity, and data
confidentiality in an on-line distributed application environnent
using a public-key infrastructure. Because it conforns to the
interface defined by [RFC-1508], SPKM can be used as a drop-in

repl acenent by any application which nmakes use of security services
t hrough GSS-API calls (for exanple, any application which already
uses the Kerberos GSS-API for security). The use of a public-key
infrastructure allows digital signatures supporting non-repudi ation
to be enpl oyed for nessage exchanges, and provides other benefits
such as scalability to | arge user popul ati ons.

The tokens defined in SPKM are intended to be used by application
progranms according to the GSS APl "operational paradignl (see [RFC
1508] for further details):

The operational paradigmin which GSS-APlI operates is as follows.

A typical GSS-APlI caller is itself a comrunications protocol [or is
an application program which uses a conmuni cati ons protocol],
calling on GSS-API in order to protect its comunications with

aut hentication, integrity, and/or confidentiality security
services. A GSS-API caller accepts tokens provided to it by its

| ocal GSS-API inplenentation [i.e., its GSS-API nmechani sni and
transfers the tokens to a peer on a renote system that peer passes
the received tokens to its local GSS-APlI inplenentation for
processi ng.

Thi s docunment defines two separate GSS-APlI nechani sms, SPKM 1 and
SPKM 2, whose prinmary difference is that SPKM 2 requires the
presence of secure tinmestanps for the purpose of replay detection
during context establishment and SPKM 1 does not. This allows
greater flexibility for applications since secure tinmestanps cannot
al ways be guaranteed to be available in a given environnment.

Adans St andards Track [Page 3]

RFC 2025 SPKM Cct ober 1996

2. Algorithns

A nunber of algorithmtypes are enployed in SPKM Each type, al ong
with its purpose and a set of specific exanples, is described in this
section. In order to ensure at |east a mnimmlevel of
interoperability anong various inplenentations of SPKM one of the
integrity algorithns is specified as MANDATORY; all renaining
exanpl es (and any other algorithnms) may optionally be supported by a
gi ven SPKM i npl enentation (note that a GSS-confornmant nechani sm need
not support confidentiality). Mking a confidentiality algorithm
mandat ory may preclude exportability of the mechani sminplenentation
this docunent therefore specifies certain algorithns as RECOVMENDED
(that is, interoperability will be enhanced if these algorithns are
included in all SPKM i npl enentations for which exportability is not a
concern).

2.1 Integrity Algorithm(I-ALGQ:
Pur pose

This algorithmis used to ensure that a nessage has not been
altered in any way after being constructed by the legitimte
sender. Depending on the algorithmused, the application of
this algorithmnmay al so provide authenticity and support non-
repudi ati on for the nessage.

Exanpl es:

nd5W t hRSAEncr ypti on OBJECT | DENTIFIER :: = {
i so(1) nenber-body(2) US(840) rsadsi(113549) pkcs(1)
pkcs-1(1) 4 -- inported from [PKCS1]

}

This al gorithm (MANDATORY) provides data integrity and
aut henticity and supports non-repudi ati on by conputing an
RSA signature on the MD5 hash of that data. This is
essentially equivalent to ndSWthRSA {1 3 14 3 2 3},
which is defined by OW(the Open Systens Environnent

| mpl enent ors’ Wor kshop) .

Note that since this is the only integrity/authenticity

al gorithm specified to be nandatory at this tine, for
interoperability reasons it is also stipulated that
nmd5W t hRSA be the algorithmused to sign all context

est abl i shnent tokens which are signed rather than MACed --
see Section 3.1.1 for details. |In future versions of this
docunent, alternate or additional algorithnms may be
specified to be mandatory and so this stipulation on the

Adans St andards Track [Page 4]

RFC 2025 SPKM Cct ober 1996

context establishnent tokens nmay be renoved.

DES- MAC OBJECT | DENTI FIER :: = {
i so(1l) identified-organization(3) oiw14) secsig(3)
algorithm(2) 10 -- carries length in bits of the MAC as

-- an | NTEGER paraneter, constrained to
-- multiples of eight from16 to 64

Thi s al gorithm (RECOMVENDED) provides integrity by conputing
a DES MAC (as specified by [FIPS-113]) on that data.

nd5- DES- CBC OBJECT | DENTI FI ER :: = {
i so(1l) identified-organization(3) dod(6) internet(1)
security(5) integrity(3) nd5-DES-CBC(1)

This algorithmprovides data integrity by encrypting, using
DES CBC, the "confounded" MD5 hash of that data (see Section
3.2.2.1 for the definition and purpose of confounding).

This will typically be faster in practice than conputing a
DES MAC unl ess the input data is extrenely short (e.g., a
few bytes). Note that w thout the confounder the strength
of this integrity nmechanismis (at nost) equal to the
strength of DES under a known-pl ai ntext attack.

sunmb4- DES- CBC OBJECT | DENTI FI ER :: = {
iso(l) identified-organization(3) dod(6) internet(1)
security(5) integrity(3) sunb4-DES- CBC(2)

This algorithm provides data integrity by encrypting, using
DES CBC, the concatenation of the confounded data and the
sum of all the input data bl ocks (the sum conputed using
addition nodulo 2**64 - 1). Thus, in this algorithm
encryption is a requirenment for the integrity to be secure.

For commrents regarding the security of this integrity
al gorithm see [Juen84, Davi 89].

Adans St andards Track [Page 5]

RFC 2025 SPKM Cct ober 1996

2.2 Confidentiality Algorithm (C ALG:
Pur pose:

This symmetric algorithmis used to generate the encrypted
data for gss_seal () / gss_wap().

Exanpl e:

DES- CBC OBJECT | DENTI FIER :: = {
i so(l) identified-organization(3) oiw14) secsig(3)
algorithm(2) 7 -- carries |V (OCTET STRING as a paraneter;
-- this (optional) paraneter is unused in
-- SPKM due to the use of confounding

This algorithmis RECOMVENDED.
2.3 Key Establishnent Algorithm (K-ALG:
Pur pose:

This algorithmis used to establish a symmetric key for use
by both the initiator and the target over the established
context. The keys used for C-ALG and any keyed |-ALGs (for
exanpl e, DES-MAC) are derived fromthis context key. As wll
be seen in Section 3.1, key establishment is done within the
X. 509 aut hentication exchange and so the resulting shared
symretric key is authenticated.

Exanpl es:
RSAEncrypti on OBJECT | DENTI FIER :: = {
i so(1) nenber-body(2) US(840) rsadsi(113549) pkcs(1)
pkcs-1(1) 1 -- inported from[PKCSl1l] and [RFC 1423]
}

In this algorithm (MANDATCORY), the context key is generated
by the initiator, encrypted with the RSA public key of the
target, and sent to the target. The target need not respond
to the initiator for the key to be established.

i d-rsa-key-transport OBJECT IDENTIFIER ::= {

i so(l) identified-organization(3) oiw14) secsig(3)
al gorithm2) 22 -- inmported from [X9. 44]

Simlar to RSAEncryption, but source authenticating info.
is also encrypted with the target’s RSA public key.

Adans St andards Track [Page 6]

RFC 2025 SPKM Cct ober 1996

dhKeyAgreenment OBJECT | DENTIFIER :: = {
i so(1) nenber-body(2) US(840) rsadsi(113549) pkcs(1)
pkcs-3(3) 1

In this algorithm the context key is generated jointly by
the initiator and the target using the Diffie-Hellnman key
establishnent algorithm The target nust therefore respond
to the initiator for the key to be established (so this

K- ALG cannot be used with unilateral authentication in
SPKM 2 (see Section 3.1)).

2.4 One-Way Function (O ALG for Subkey Derivation Al gorithm
Pur pose

Havi ng established a context key using the negotiated K-ALG
both initiator and target nust be able to derive a set of
subkeys for the various CALGs and keyed |-ALGs supported over
the context. Let the (ordered) list of agreed CALGs be
nurmber ed consecutively, so that the first algorithm (the
"default") is nunbered "0", the next is nunbered "1", and so
on. Let the nunmbering for the (ordered) list of agreed I-ALGs
be identical. Finally, let the context key be a binary string
of arbitrary length "M, subject to the followi ng constraint:
L <= M<=U (where the lower limt "L" is the bit length of
the | ongest key needed by any agreed C- ALG or keyed |-ALG and
the upper limt "U is the largest bit size which will fit
within the K-ALG paraneters)

For exanple, if DES and two-key-triple-DES are the negoti ated
confidentiality algorithms and DES-MAC is the negotiated keyed
integrity algorithm (note that digital signatures do not use a
context key), then the context key nust be at |east 112 bits
long. If 512-bit RSAEncryption is the K-ALG in use then the
originator can randonly generate a context key of any greater
length up to 424 bits (the longest allowabl e RSA input
specified in [PKCS-1]) -- the target can deternmine the length
whi ch was chosen by renoving the paddi ng bytes during the RSA
decryption operation. On the other hand, if dhKeyAgreenent is
the K-ALG in use then the context key is the result of the
Diffie-Hell man conputation (with the exception of the high-
order byte, which is discarded for security reasons), so that
its length is that of the Diffie-Hellman nodulus, p, minus 8
bits.

Adans St andards Track [Page 7]

RFC 2025

Adans

SPKM Cct ober 1996

The derivation algorithmfor a k-bit subkey is specified as
fol | ows:

right

nmost _k_bits (OANF(context _key || x || n || s || context_key))

wher e

X" is the ASCII character "C' (0x43) if the subkey is
for a confidentiality algorithmor the ASCI| character
(0x49) if the subkey is for a keyed integrity al gorithm

"n" is the nunber of the algorithmin the appropriate agreed
list for the context (the ASCI|I character "0" (0x30), "1"
(0x31), and so on);

"s" is the "stage" of processing -- always the ASC

character "0" (0x30), unless "k" is greater than the output
size of OAF, in which case the OANF is conputed repeatedly
with increasing ASCI| val ues of "stage" (each OW out put
bei ng concatenated to the end of previous ONF outputs),

until "k" bits have been generat ed;

"I'|" is the concatenation operation; and

"ONF" is any appropriate One-Way Function

Exanpl es:
MD5 OBJECT | DENTI FIER ::= {
i so(1) nenber-body(2) US(840) rsadsi(113549)
digestAlgorithm(2) 5
}
This algorithmis MANDATORY.
SHA OBJECT | DENTIFIER :: = {
i so(l) identified-organization(3) oiw14) secsig(3)
al gorithm(2) 18
}
It is recognized that existing hash functions may not satisfy
all required properties of ONFs. This is the reason for
al | owi ng negotiation of the O ALG OAF during the context

est abl i shnent process (see Section 2.5), since in this way
future inprovenents in OAF design can easily be accomvpdat ed.
For exanple, in sone environnents a preferred OAF techni que

m

ght be an encryption algorithmwhich encrypts the input

speci fi ed above using the context _key as the encryption key.

St andards Track [Page 8]

RFC 2025 SPKM Cct ober 1996

2.5 Negoti ation:

During context establishnent in SPKM the initiator offers a set of
possi ble confidentiality algorithns and a set of possible integrity
algorithnms to the target (note that the term"integrity algorithns”
includes digital signature algorithns). The confidentiality

al gorithns selected by the target becone ones that nay be used for
C- ALG over the established context, and the integrity algorithns
sel ected by the target becone ones that may be used for |-ALG over
the established context (the target "selects" algorithms by
returning, in the sane relative order, the subset of each offered
list that it supports). Note that any C-ALG and |-ALG nay be used
for any nessage over the context and that the first confidentiality
algorithmand the first integrity algorithmin the agreed sets becone
the default algorithms for that context.

The agreed confidentiality and integrity algorithnms for a specific
context define the valid values of the Quality of Protection (QOP)
paraneter used in the gss_getMC() and gss wap() calls -- see
Section 5.2 for further details. |If no response is expected fromthe
target (unilateral authentication in SPKM2) then the algorithns
offered by the initiator are the ones that nay be used over the
context (if this is unacceptable to the target then a del ete token
nust be sent to the initiator so that the context is never

est abl i shed).

Furthermore, in the first context establishment token the initiator
offers a set of possible K-ALGs, along with the key (or key half)
corresponding to the first algorithmin the set (its preferred
algorithm. |If this K-ALGis unacceptable to the target then the
target nust choose one of the other K-ALGs in the set and send this
choice along with the key (or key half) corresponding to this choice
inits response (otherw se a delete token nust be sent so that the
context is never established). |If necessary (that is, if the target
chooses a 2-pass K-ALG such as dhKeyAgreement), the initiator wll
send its key half in a response to the target.

Finally, in the first context establishment token the initiator
offers a set of possible O ALGs (only a single OALGif no response
is expected). The (single) O ALG chosen by the target becones the
subkey derivation algorithm OAF to be used over the context.

In future versions of SPKM other algorithns nmay be specified for any
or all of I-ALG CALG K-ALG and O ALG

Adans St andards Track [Page 9]

RFC 2025 SPKM Cct ober 1996

3. Token Formats

This section discusses protocol -visible characteristics of the SPKM
it defines elenments of protocol for interoperability and is
i ndependent of | anguage bi ndi ngs per [RFC 1509].

The SPKM GSS- APl nmechanismwi |l be identified by an Cbject Identifier
representing "SPKM 1" or "SPKM 2", having the val ue {spkm spkm 1(1)}
or {spkm spkm 2(2)}, where spkm has the value {iso(1l) identified-
organi zation(3) dod(6) internet(1l) security(5) mechani snms(5)
spkm(1)}. SPKM 1 uses random numbers for replay detection during
context establishnent and SPKM 2 uses tinestanps (note that for both
mechani snms, sequence nunbers are used to provide replay and out - of -
sequence detection during the context, if this has been requested by
the application).

Tokens transferred between GSS-APlI peers (for security context
managenent and per-nessage protection purposes) are defined.

3.1. Context Establishnment Tokens

Three cl asses of tokens are defined in this section: "Initiator"
tokens, emtted by calls to gss_init_sec_context() and consumed by
calls to gss_accept_sec_context(); "Target" tokens, emitted by calls
to gss_accept_sec_context() and consuned by calls to
gss_init_sec_context(); and "Error" tokens, potentially emtted by
calls to gss_init_sec_context() or gss_accept_sec_context(), and
potentially consunmed by calls to gss_init_sec_context() or
gss_accept _sec_context ().

Per RFC- 1508, Appendix B, the initial context establishnent token
will be enclosed within franing as foll ows:

Initial Context Token ::= [APPLI CATION 0] I MPLICI T SEQUENCE ({
t hi sMech MechType
-- MechType is OBJECT | DENTI FI ER
-- representing "SPKM 1" or " SPKM 2"
i nner Cont ext Token ANY DEFI NED BY t hi sMech
} -- contents mechani smspecific

Adans St andards Track [Page 10]

RFC 2025 SPKM Cct ober 1996

When thi sMech is SPKM1 or SPKM 2, inner Context Token is defined as
f ol |l ows:

SPKM nner Cont ext Token :: = CHO CE {

req [0] SPKM REQ

rep-ti [1] SPKM REP-TI

rep-it [2] SPKM REP-IT,

error [3] SPKM ERROR

nmc [4] SPKM M C,

wap [5] SPKM WRAP,

del [6] SPKM DEL

}

The above GSS-API fram ng shall be applied to all tokens enmtted by

t he SPKM GSS- APl nechani sm includi ng SPKM REP-TI (the response from
the Target to the Initiator), SPKMREP-IT (the response fromthe
Initiator to the Target), SPKM ERROR, context-deletion, and per-
nmessage tokens, not just to the initial token in a context

est abl i shnent exchange. While not required by RFC- 1508, this enables
i mpl ement ations to perform enhanced error-checking. The tag val ues
provi ded i n SPKM nner Cont ext Token ("[0]" through "[6]") specify a
token-id for each token; sinmilar information is contained in each
token’s tok-id field. Wile seem ngly redundant, the tag val ue and
tok-id actually performdifferent tasks: the tag ensures that

I nitial Context Token can be properly decoded; tok-id ensures, anong
other things, that data associated with the per-nessage tokens is
cryptographically linked to the intended token type. Every

i nner Cont ext Token al so includes a context-id field; see Section 6 for
a di scussion of both token-id and context-id information and their
use in an SPKM support function).

The i nner Cont ext Token field of context establishnent tokens for the
SPKM GSS- APl nmechani smwi || contain one of the foll ow ng nessages:
SPKM REQ SPKM REP- Tl ; SPKM REP-1T; and SPKM ERROR. Furthernore, all
i nner Cont ext Tokens are encoded using ASN. 1 BER (constrained, in the
interests of parsing sinplicity, to the DER subset defined in

[X.509], clause 8.7).

The SPKM cont ext establishment tokens are defined according to

[X.509] Section 10 and are conpatible with [9798]. SPKM 1 (random
nunbers) uses Section 10.3, "Two-way Authentication”, when perfornng
unil ateral authentication of the target to the initiator and uses
Section 10.4, "Three-way Authentication"”, when nutual authentication
is requested by the initiator. SPKM2 (tinmestanps) uses Section
10. 2, "One-way Authentication", when performng unilatera

aut hentication of the initiator to the target and uses Section 10. 3,
"Two-way Aut hentication", when nutual authentication is requested by
the initiator.

Adans St andards Track [Page 11]

RFC 2025 SPKM Cct ober 1996

The inplication of the previous paragraph is that for SPKM 2

uni l ateral authentication no negotiation of K-ALG can be done (the
target either accepts the K-ALG and context key given by the
initiator or disallows the context). For SPKM 2 nutual or SPKM 1
uni |l ateral authentication sone negotiation is possible, but the
target can only choose anpbng the one-pass K-ALGs offered by the
initiator (or disallowthe context). Alternatively, the initiator
can request that the target generate and transnit the context key.
For SPKM 1 nutual authentication the target can choose any one- or
two- pass K-ALG of fered by the initiator and, again, can be requested
to generate and transmt the context key.

It is envisioned that typical use of SPKM1 or SPKM2 will involve

mut ual aut hentication. Although unilateral authentication is

avai l abl e for both nechanisns, its use is not generally recomended.
3.1.1. Context Establishment Tokens - Initiator (first token)

In order to acconplish context establishnment, it may be necessary
that both the initiator and the target have access to the other

partys public-key certificate(s). In some environnments the initiator
may choose to acquire all certificates and send the rel evant ones to
the target in the first token. In other environnents the initiator

may request that the target send certificate data in its response
token, or each side may individually obtain the certificate data it
needs. In any case, however, the SPKMinpl enentati on nmust have the
ability to obtain certificates which correspond to a supplied Namne.
The actual nechanismto be used to achieve this is a |ocal

i npl ementation matter and is therefore outside the scope of this
speci fication.

Rel evant SPKM REQ syntax is as follows (note that inmports from other
docunents are given in Appendi x A):

SPKM REQ : : = SEQUENCE ({
request Token REQ- TOKEN,
certif-data [0] CertificationbData OPTI ONAL,
auth-data [1] Aut hori zat i onDat a OPTI ONAL
-- see [RFC-1510] for a discussion of auth-data
}
CertificationData ::= SEQUENCE {
certificationPath [0] CertificationPath OPTI ONAL,
certificateRevocationList [1] CertificatelList OPTI ONAL
} -- at least one of the above shall be present

Adans St andards Track [Page 12]

RFC 2025 SPKM Cct ober 1996

CertificationPath ::= SEQUENCE {
user Keyl d [0] OCTET STRI NG OPTI ONAL,
-- identifier for user’s public key
userCertif [1] Certificate OPTI ONAL,
-- certificate containing user’s public key
verifKeyld [2] OCTET STRI NG OPTI ONAL,
-- identifier for user’s public verification key
userVerifCertif [3] Certificate OPTI ONAL,
-- certificate containing user’'s public verification key
theCACertificates [4] SEQUENCE OF CertificatePair OPTI ONAL
} -- certification path fromtarget to source

Havi ng separate verification fields allows different key pairs
(possibly corresponding to different algorithns) to be used for
encryption/decryption and signing/verification. Presence of [0] or
[1] and absence of [2] and [3] inplies that the sanme key pair is to
be used for enc/dec and verif/signing (note that this practice is not
typically recommended). Presence of [2] or [3] inplies that a
separate key pair is to be used for verif/signing, and so [0] or [1]
must al so be present. Presence of [4] inplies that at |east one of
[0], [1], [2], and [3] nust also be present.

REQ TOKEN :: = SEQUENCE {

reg-contents Req- contents,

algld Al gorithm dentifier

reg-integrity Integrity -- "token" is Reg-contents
}
Integrity ::= BIT STRING

-- |If corresponding algld specifies a signing algorithm

-- "Integrity" holds the result of applying the signing procedure
-- specified in algld to the BER encoded octet string which results
-- from applying the hashing procedure (also specified in algld) to
-- the DER-encoded octets of "token".

-- Alternatively, if corresponding algld specifies a MAC ng

-- algorithm "Integrity" holds the result of applying the MAG ng
-- procedure specified in algld to the DER encoded octets of

-- "token" (note that for MAC, algld nust be one of the integrity
-- algorithnms offered by the initiator with the appropriate subkey
-- derived fromthe context key (see Section 2.4) used as the key
-- 1nput)

It is envisioned that typical use of the Integrity field for each of
REQ TOKEN, REP-TI-TOKEN, and REP-IT-TOKEN will be a true digita
signature, providing unilateral or nutual authentication along with
replay protection, as required. However, there are situations in

whi ch the MAC choice will be appropriate. One exanple is the case in
which the initiator wishes to remain anonynous (so that the first, or

Adans St andards Track [Page 13]

RFC 2025 SPKM Cct ober 1996

first and third, token(s) will be MACed and the second token will be
signed). Another exanple is the case in which a previously

aut henti cated, established, and cached context is being re-
established at sone later tinme (here all exchanged tokens will be
MACed) .

The prinmary advantage of the MAC choice is that it reduces processing
overhead for cases in which either authentication is not required
(e.g., anonynity) or authentication is established by some other
means (e.g., ability to formthe correct MAC on a "fresh" token in
context re-establishnent).

Reqg-contents ::= SEQUENCE {
tok-id | NTEGER (256), -- shall contain 0100(hex)
context-id Random | nt eger, -- see Section 6.3
pvno BI T STRI NG -- protocol version nunber
ti mestanp UTCTi ne OPTI ONAL, -- nandatory for SPKM 2
randSrc Random | nt eger
tar g- nane Nane
src-nane [0] Name OPTI ONAL,
-- must be supplied unless originator is "anonynous"
req- data Cont ext - Dat a,
validity [1] Validity OPTI ONAL,

-- validity interval for key (may be used in the
-- conputation of security context lifetine)

key- est b- set Key- Est b- Al gs,
-- specifies set of key establishnent algorithns
key-estb-req BI T STRI NG OPTI ONAL,

-- key estb. paraneter corresponding to first K-ALG in set
-- (not used if initiator is unable or unwilling to
-- generate and securely transmt key naterial to target).
-- Established key nust satisfy the key length constraints
-- specified in Section 2.4.

key- src-bi nd OCTET STRI NG OPTI ONAL
-- Used to bind the source nane to the symmetric key.
-- This field nust be present for the case of SPKM 2
-- unilateral authen. if the K-ALG in use does not provide
-- such a binding (but is optional for all other cases).
-- The octet string holds the result of applying the
-- mandatory hashing procedure MD5 (in MANDATCORY |-ALG
-- see Section 2.1) as follows: NMD5(src || context_key),
-- where "src" is the DER-encoded octets of src-nane,
-- "context-key" is the symmetric key (i.e., the
-- unprotected version of what is transnmitted in
-- key-estb-req), and "||" is the concatenati on operation

Adans St andards Track [Page 14]

RFC 2025 SPKM Cct ober 1996

-- The protocol version nunber (pvno) paraneter is a BI T STRI NG which
-- uses as many bits as necessary to specify all the SPKM protoco

-- versions supported by the initiator (one bit per protoco

-- version). The protocol specified by this docunment is version O.

-- Bit O of pvno is therefore set if this version is supported;

-- simlarly, bit 1 is set if version 1 (if defined in the future) is
-- supported, and so on. Note that for unilateral authentication

-- using SPKM 2, no response token is expected during context

-- establishnent, so no protocol negotiation can take place; in this
-- case, the initiator nmust set exactly one bit of pvno. The version
-- of REQ TOKEN nust correspond to the highest bit set in pvno.

-- The "validity" paraneter above is the only way within SPKM for

-- the initiator to transnit desired context lifetine to the target.
-- Since it cannot be guaranteed that the initiator and target have
-- synchroni zed time, the span of tinme specified by "validity" is to
-- be taken as definitive (rather than the actual times given in this
-- paraneter).

Random I nteger ::= BI T STRI NG

-- Each SPKMinplenmentation is responsible for generating a "fresh"
-- random nunber for the purpose of context establishnent; that is,
-- one which (with high probability) has not been used previously.
-- There are no cryptographic requirenents on this random nunber

-- (i.e., it need not be unpredictable, it sinply needs to be fresh).
Cont ext-Data ::= SEQUENCE {
channel 1 d Channel 1 d OPTI ONAL, -- channel bindings
seq- nunber | NTEGER OPTI ONAL, -- sequence nunber
options Opti ons,
conf-alg Conf - Al gs, -- confidentiality. algs
intg-alg I nt g- Al gs, -- integrity algorithm
owf-alg OAF- Al gs -- for subkey derivation
}
Channel Id ::= OCTET STRI NG
Options ::= BIT STRI NG {
del egation-state (0),
mut ual -state (1),
repl ay-det-state (2), -- used for replay det. during context
sequence-state (3), -- used for sequencing during context
conf-avail (4),
i nteg-avail (5),
target-certif-data-required (6)
-- used to request targ’'s certif. data
}

Adans St andards Track [Page 15]

RFC 2025 SPKM Cct ober 1996

Conf-Algs ::= CHO CE {
al gs [0] SEQUENCE OF Al gorithnm dentifier,
nul | [1] NULL

-- used when conf. is not avail abl e over context
} -- for CALG (see Section 5.2 for discussion of QOP)

Intg-Algs ::= SEQUENCE OF Al gorithmdentifier
-- for 1-ALG (see Section 5.2 for discussion of QOP)

OAF- Al gs ::= SEQUENCE OF Al gorithm dentifier
-- Contains exactly one algorithmin REQ TCKEN for SPKM 2
-- unilateral, and contains at |east one al gorithm otherw se.
-- Always contains exactly one algorithmin REP- TOKEN.

Key- Estb- Al gs ::= SEQUENCE OF Al gorithmdentifier
-- to allow negotiation of K-ALG

A context establishnent sequence based on the SPKMw || perform
unilateral authentication if the nutual-req bit is not set in the
application’s call to gss_init_sec _context(). SPKM 2 acconplishes
this using only SPKM REQ (thereby authenticating the initiator to the
target), while SPKM 1 acconplishes this using both SPKM REQ and

SPKM REP- Tl (thereby authenticating the target to the initiator).

Applications requiring authentication of both peers (initiator as
well as target) nust request nutual authentication, resulting in

"mut ual -state" being set within SPKM REQ Options. In response to
such a request, the context target will reply to the initiator with
an SPKM REP-TI token. [|If mechani sm SPKM 2 has been chosen, this
conpl etes the (tinestanp-based) nutual authentication context

est abl i shnent exchange. |f nmechani sm SPKM 1 has been chosen and
SPKM REP-TI is sent, the initiator will then reply to the target with
an SPKM REP-1T token, conpleting the (random nunber-based) nutual

aut henti cation context establishment exchange.

O her bits in the Options field of Context-Data are explained in
RFC- 1508, with the exception of target-certif-data-required, which
the initiator sets to TRUE to request that the target return its
certification data in the SPKM REP-TI token. For unilateral

aut hentication in SPKM2 (in which no SPKM REP-TI token is
constructed), this option bit is ignored by both initiator and
target.

Adans St andards Track [Page 16]

RFC 2025 SPKM Cct ober 1996

3.1.2. Context Establishment Tokens - Target

SPKM REP- Tl :: = SEQUENCE ({
responseToken REP- TI - TOKEN,
certif-data CertificationData OPTI ONAL

-- included if target-certif-data-required option was
-- set to TRUE i n SPKM REQ

}
REP- Tl - TOKEN : : = SEQUENCE {
rep-ti-contents Rep-ti-contents,
algld Al gorithmdentifier,
rep-ti-integ Integrity -- "token" is Rep-ti-contents
}
Rep-ti-contents ::= SEQUENCE ({
tok-id | NTEGER (512), -- shall contain 0200 (hex)
context-id Random | nteger, -- see Section 6.3
pvno [0] BIT STRING OPTI ONAL, -- prot. version nunber
ti mestanp UTCTi me OPTI ONAL, -- mandatory for SPKM 2
randTarg Random | nt eger,
src-nane [1] Name OPTI ONAL,
-- must contain whatever value was supplied in REQ TOKEN
tar g- nane Nane,
randSrc Random | nt eger,
rep- data Cont ext - Dat a,
validity [2] Validity OPTI ONAL,

-- validity interval for key (used if the target can only
-- support a shorter context lifetine than was offered in
-- REQ TOKEN)

key-estb-id Al gorithm dentifier OPTI ONAL,
-- used if target is changing key estb. algorithm (nust be
-- a menber of initiators key-estb-set)

key-estb-str BI T STRI NG OPTI ONAL
-- contains (1) the response to the initiators
-- key-estb-req (if init. used a 2-pass K-ALG, or (2) the
-- key-estb-req corresponding to the K-ALG supplied in
-- above key-estb-id, or (3) the key-estb-req correspondi ng
-- to the first K-ALG supplied in initiator’s key-estb-id,
-- if initiator’s (OPTIONAL) key-estb-req was not used
-- (target’'s key-estb-str nust be present in this case).
-- Established key nust satisfy the key length constraints
-- specified in Section 2.4.

Adans St andards Track [Page 17]

RFC 2025 SPKM Cct ober 1996

The protocol version nunber (pvno) paranmeter is a BI T STRI NG which
uses as many bits as necessary to specify a single SPKM protocol
version offered by the initiator which is supported by the target
(one bit per protocol version); that is, the target sets exactly one

bit of pvno. |If none of the versions offered by the initiator are
supported by the target, a delete token nust be returned so that the
context is never established. |If the initiator’'s pvno has only one

bit set and the target happens to support this protocol version, then
this version is used over the context and the pvno paraneter of REP-
TOKEN can be onmitted. Finally, if the initiator and target do have
one or nore versions in common but the version of the REQ TOKEN
received is not supported by the target, a REP-TOKEN nust be sent
with a desired version bit set in pvno (and dummy val ues used for all
subsequent token fields). The initiator can then respond with a new
REQ TOKEN of the proper version (essentially starting context

est abl i shnent anew).

3.1.3. Context Establishnment Tokens - Initiator (second token)

Rel evant SPKM REP-1T syntax is as foll ows:

SPKM REP- I T :: = SEQUENCE {
responseToken REP- | T- TOKEN,
al gld Al gorithmdentifier,
rep-it-integ Integrity -- "token" is REP-I1T-TCOKEN
}
REP- | T- TOKEN : : = SEQUENCE {
tok-id | NTEGER (768), -- shall contain 0300 (hex)
context-id Random | nt eger,
randSrc Random | nt eger,
randTarg Random | nt eger,
tar g- nane Name, -- the targ-nane specified in REP-TI
Src- nanme Name OPTI ONAL,
-- nmust contain whatever value was supplied in REQ TOKEN
key-estb-rep BI T STRI NG OPTI ONAL

-- contains the response to targets key-estb-str
-- (if target selected a 2-pass K-ALG

}
3.1.4. Error Token

The syntax of SPKM ERROR is as foll ows:

SPKM ERROR : : = SEQUENCE {
error-token ERROR- TOKEN,
al gl d Al gorithm dentifier,
integrity Integrity -- "token" is ERROR- TOKEN

Adans St andards Track [Page 18]

RFC 2025 SPKM Cct ober 1996

}

ERROR- TOKRN :: = SEQUENCE {
tok-id | NTEGER (1024), -- shall contain 0400 (hex)
context-id Random | nt eger
}

The SPKM ERROR token is used only during the context establishnent
process. |If an SPKM REQ or SPKM REP-TI token is received in error,
the receiving function (either gss_init_sec_context() or

gss_accept _sec_context()) wll generate an SPKM ERROR token to be
sent to the peer (if the peer is still in the context establishnent
process) and will return GSS_S CONTI NUE_NEEDED. |If, on the other
hand, no context establishnment response is expected fromthe peer
(i.e., the peer has conpleted context establishnent), the function
will return the appropriate major status code (e.g., GSS_S BAD SI G
along with a minor status of GSS _SPKM S SG CONTEXT_ESTB_ABORT and al |
context-relevant information will be deleted. The output token will
not be an SPKM ERROR token but will instead be an SPKM DEL token
which will be processed by the peer’'s gss_process_context token().

If gss_init_sec_context() receives an error token (whether valid or
invalid), it will regenerate SPKM REQ as its output token and return
a major status code of GSS S CONTINUE NEEDED. (Note that if the
peer’s gss_accept_sec_context () receives SPKM REQ token when it is
expecting a SPKMREP-1T token, it will ignore SPKM REQ and return a
zero-length output token with a major status of

GSS_S_CONTI NUE_NEEDED.)

Simlarly, if gss_accept_sec_context() receives an error token
(whether valid or invalid), it will regenerate SPKMREP-TI as its
output token and return a nmajor status code of GSS_S CONTI NUE_NEEDED.

mi5WthRsa is currently stipulated for the signing of context

est abl i shnent tokens. Discrepancies involving nodulus bitlength can
be resol ved through judicious use of the SPKM ERROR token. The
context initiator signs REQ TOKEN using the strongest RSA it supports
(e.g., 1024 bits). |If the target is unable to verify signatures of
this length, it sends SPKM ERROR signed with the strongest RSA that
it supports (e.g. 512).

At the conpletion of this exchange, both sides know what RSA
bitlength the other supports, since the size of the signature is
equal to the size of the nodulus. Further exchanges can be nade
(using successively smaller supported bitlengths) until either an
agreement is reached or context establishnment is aborted because no
agreenment is possible.

Adans St andards Track [Page 19]

RFC 2025 SPKM Cct ober 1996

3.2. Per-Message and Context Del eti on Tokens

Three cl asses of tokens are defined in this section: "M C' tokens,
emtted by calls to gss_getMC() and consunmed by calls to
gss_verifyMC(); "Wap" tokens, enmtted by calls to gss_wap() and
consuned by calls to gss_unwap(); and context del etion tokens,
emtted by calls to gss_init_sec_context(), gss_accept_sec_context(),
or gss_del ete_sec_context() and consumed by calls to
gss_process_cont ext _t oken().

3.2.1. Per-nessage Tokens - Sign/ MC

Use of the gss_ sign() / gss getMC() call yields a token, separate
fromthe user data being protected, which can be used to verify the
integrity of that data as received. The token and the data may be
sent separately by the sending application and it is the receiving
application’s responsibility to associate the received data with the
received token.

The SPKM M C token has the foll owi ng fornat:

SPKM M C :: = SEQUENCE {
m c- header M c- Header,
i nt-cksum BIT STRI NG
-- Checksum over header and dat a,
-- calculated according to algorithm
-- specified in int-alg field.
}
M c- Header ::= SEQUENCE ({
tok-id | NTEGER (257),
-- shall contain 0101 (hex)
context-id Random | nt eger,
int-alg [0] Al gorithm dentifier OPTI ONAL,
-- Integrity algorithmindicator (nust
-- be one of the agreed integrity
-- algorithms for this context).
-- field not present = default id.
snd-seq [1] SegNum OPTI ONAL -- sequence nunber field.
}
SeqNum : : = SEQUENCE {
num | NTEGCER, -- the sequence nunber itself
dir-ind BOOLEAN -- a direction indicator
}

Adans St andards Track [Page 20]

RFC 2025 SPKM Cct ober 1996

3.2.1.1. Checksum

Checksum cal cul ati on procedure (common to all algorithnms -- note that
for SPKMthe term "checksum includes digital signatures as well as
hashes and MACs): Checksuns are cal cul ated over the data field,

| ogi cally prepended by the bytes of the plaintext token header (mc-
header). The result binds the data to the entire plaintext header

so as to minimze the possibility of malicious splicing.

For exanple, if the int-alg specifies the nd5WthRSA al gorithm then
the checksumis forned by conputing an MD5 [RFC-1321] hash over the
pl ai ntext data (prepended by the header), and then conputing an RSA
signature [PKCS1] on the 16-byte MD5 result. The signature is
conmput ed using the RSA private key retrieved fromthe credentials
structure and the result (whose length is inplied by the "nodul us"
paranmeter in the private key) is stored in the int-cksumfield.

If the int-alg specifies a keyed hashing algorithm (for exanple,
DES- MAC or nd5- DES-CBC), then the key to be used is the appropriate
subkey derived fromthe context key (see Section 2.4). Again, the
result (whose length is inplied by int-alg) is stored in the int-
cksum field.

3.2.1.2. Sequence Nunber

It is assuned that the underlying transport |ayers (of whatever
protocol stack is being used by the application) will provide
adequat e comuni cations reliability (that is, non-malicious |oss,
re-ordering, etc., of data packets will be handled correctly).
Ther ef ore, sequence nunbers are used in SPKM purely for security, as
opposed to reliability, reasons (that is, to avoid nalicious |oss,
replay, or re-ordering of SPKMtokens) -- it is therefore recomended
that applications request sequencing and replay detection over al
contexts. Note that sequence nunmbers are used so that there is no
requi renent for secure tinestanps in the nessage tokens. The
initiator’s initial sequence nunber for the current context nay be
explicitly given in the Context-Data field of SPKM REQ and the
target’s initial sequence number may be explicitly given in the
Context-Data field of SPKMREP-TI; if either of these is not given
then the default value of 00 is to be used.

Sequence nunber field: The sequence nunber field is forned fromthe
sender’s four-byte sequence nunber and a Bool ean direction-indicator
(FALSE - sender is the context initiator, TRUE - sender is the
context acceptor). After constructing a gss_sign/getMC() or
gss_seal /wrap() token, the sender’s seq. nunber is increnented by 1

Adans St andards Track [Page 21]

RFC 2025 SPKM Cct ober 1996

3.2.1.3. Sequence Nunber Processing

The receiver of the token will verify the sequence nunber field by
comparing the sequence nunber with the expected sequence nunber and
the direction indicator with the expected direction indicator. |If

t he sequence nunber in the token is higher than the expected nunber,
then the expected sequence nunber is adjusted and GSS S GAP_TOKEN i s
returned. |f the token sequence nunber is |ower than the expected
nunber, then the expected sequence nunber is not adjusted and

GSS_S DUPLI CATE_TCOKEN, GSS_S UNSEQ TOKEN, or GSS S O.D TOKEN i s
returned, whichever is appropriate. |If the direction indicator is
wrong, then the expected sequence nunber is not adjusted and

GSS S UNSEQ TOKEN i s returned.

Since the sequence nunber is used as part of the input to the
integrity checksum sequence nunbers need not be encrypted, and
attenpts to splice a checksum and sequence nunmber fromdifferent
messages wWill be detected. The direction indicator will detect
t okens whi ch have been naliciously refl ected.

3.2.2. Per-nmessage Tokens - Seal / Wap

Use of the gss_seal () / gss_wap() call yields a token which

encapsul ates the input user data (optionally encrypted) along wth
associated integrity check quantities. The token enitted by

gss_seal () / gss_wrap() consists of an integrity header followed by a
body portion that contains either the plaintext data (if conf-alg =
NULL) or encrypted data (using the appropriate subkey specified in
Section 2.4 for one of the agreed C-ALGs for this context).

The SPKM WRAP t oken has the follow ng fornat:

SPKM VRAP : : = SEQUENCE {
wr ap- header W ap- Header,
wr ap- body W ap- Body
}
W ap- Header ::= SEQUENCE {
tok-id | NTEGER (513),
-- shall contain 0201 (hex)
context-id Random | nt eger,
int-alg [0] Al gorithm dentifier OPTI ONAL,

-- Integrity algorithmindicator (nust
-- be one of the agreed integrity

-- algorithms for this context).

-- field not present = default id.

Adans St andards Track [Page 22]

RFC 2025 SPKM Cct ober 1996

conf-alg [1] Conf - Al g OPTI ONAL,
-- Confidentiality algorithmindicator
-- (nust be NULL or one of the agreed
-- confidentiality algorithms for this
-- context).
-- field not present = default id.
-- NULL = none (no conf. applied).
snd-seq [2] SegNum OPTI ONAL
-- sequence nunber field.

}
W ap- Body ::= SEQUENCE {
i nt-cksum BIT STRI NG
-- Checksum of header and data,
-- calculated according to algorithm
-- specified inint-alg field.
dat a BIT STRI NG
-- encrypted or plaintext data.
}
Conf-Alg ::= CHO CE {
al gld [0] Al gorithmdentifier
nul I [1] NULL
}

3.2.2.1: Confounding

As in [KRB5], an 8-byte random confounder is prepended to the data to
conpensate for the fact that an IV of zero is used for encryption
The result is referred to as the "confounded" data field.

3.2.2.2. Checksum

Checksum cal cul ati on procedure (common to all algorithns): Checksuns
are cal cul ated over the plaintext data field, logically prepended by
the bytes of the plaintext token header (wap-header). As with
gss_sign() / gss_getM(C(), the result binds the data to the entire
pl ai nt ext header, so as to mininmze the possibility of malicious
splicing.

The exanples for nd5WthRSA and DES- MAC are exactly as specified in
3.2.1. 1.

If int-alg specifies nd5-DES-CBC and conf-al g specifies anything
other than DES-CBC, then the checksumis conputed according to

Adans St andards Track [Page 23]

RFC 2025 SPKM Cct ober 1996

3.2.1.1 and the result is stored in int-cksum However, if conf-alg
specifies DES-CBC then the encryption and the integrity are done as
follows. An MD5 [RFC 1321] hash is conmputed over the plaintext data
(prepended by the header). This 16-byte value is appended to the
concat enati on of the "confounded" data and 1-8 padding bytes (the
padding is as specified in [KRB5] for DES-CBC). The result is then
CBC encrypted using the DES-CBC subkey (see Section 2.4) and pl aced
in the "data" field of Wap-Body. The final two bl ocks of ciphertext
(i.e., the encrypted MD5 hash) are also placed in the int-cksumfield
of Wap-Body as the integrity checksum

If int-alg specifies sunb4-DES-CBC then conf-al g nust specify DES-CBC
(i.e., confidentiality nust be requested by the calling application
or SPKMw Il return an error). Encryption and integrity are done in
a single pass using the DES-CBC subkey as follows. The sum (nodul o
2**64 - 1) of all plaintext data bl ocks (prepended by the header) is
computed. This 8-byte value is appended to the concatenation of the
"confounded" data and 1-8 padding bytes (the padding is as specified
in [KRB5] for DES-CBC). As above, the result is then CBC encrypted
and placed in the "data" field of Wap-Body. The final block of

ci phertext (i.e., the encrypted sum is also placed in the int-cksum
field of Wap-Body as the integrity checksum

3.2.2.3 Sequence Nunber

Sequence nunbers are conputed and processed for gss_ wap() exactly as
specified in 3.2.1.2 and 3.2.1.3.

3.2.2.4: Data Encryption

The follow ng procedure is followed unless (a) conf-alg is NULL (no
encryption), or (b) conf-alg is DES-CBC and int-alg is nd5- DES- CBC
(encryption as specified in 3.2.2.2), or (c) int-alg is sunb4- DES- CBC
(encryption as specified in 3.2.2.2):

The "confounded" data is padded and encrypted according to the
algorithmspecified in the conf-alg field. The data is encrypted
using CBC with an IV of zero. The key used is the appropriate subkey
derived fromthe established context key using the subkey derivation
al gorithm described in Section 2.4 (this ensures that the subkey used
for encryption and the subkey used for a separate, keyed integrity
algorithm-- for exanple DES-NMAC, but not sunt4-DES-CBC -- are
different).

3.2.3. Context deletion token

The token emitted by gss_del ete_sec_context() is based on the format
for tokens emtted by gss sign() / gss_getM ().

Adans St andards Track [Page 24]

RFC 2025 SPKM Cct ober 1996

The SPKM DEL token has the foll owi ng fornat:

SPKM DEL ::= SEQUENCE {
del - header Del - Header,
i nt-cksum BI T STRI NG
-- Checksum of header, cal cul ated
-- according to algorithmspecified
--inint-alg field.
}
Del - Header ::= SEQUENCE ({
tok-id | NTEGER (769),
-- shall contain 0301 (hex)
context-id Random | nt eger
int-alg [0] Al gorithmdentifier OPTI ONAL,

-- Integrity algorithmindicator (nust

-- be one of the agreed integrity

-- algorithms for this context).

-- field not present = default id.
snd-seq [1] SegqNum OPTI ONAL

-- sequence nunber field.

}

The field snd-seq will be calculated as for tokens enitted by
gss_sign() / gss_getMC(). The field int-cksumw |l be calcul ated as
for tokens enmitted by gss sign() / gss _getMC(), except that the
user-data conponent of the checksumdata will be a zero-length
string.

If a valid delete token is received, then the SPKM i npl enent ati on
will delete the context and gss_process_context _token() will return a
maj or status of GSS S COWLETE and a minor status of

GSS _SPKM S SG CONTEXT_DELETED. If, on the other hand, the delete
token is invalid, the context will not be deleted and
gss_process_context_token() will return the appropriate nmajor status
(GSS_ S BAD SIG for exanple) and a minor status of

GSS SPKM S SG BAD DELETE TOKEN RECD. The application may wish to
take sonme action at this point to check the context status (such as
sendi ng a seal ed/ wapped test nessage to its peer and waiting for a
seal ed/ wr apped response).

4. Nanme Types and Cbject ldentifiers

No nandatory nanme forns have yet been defined for SPKM This section
is for further study.

Adans St andards Track [Page 25]

RFC 2025 SPKM Cct ober 1996

4.1. Optional Nane Forns

This section discusses name fornms which nay optionally be supported
by i nplementations of the SPKM GSS- APl nmechanism It is recognized
that OS-specific functions outside GSS-API are likely to exist in
order to performtransl ations anong these forms, and that GSS-API

i mpl enent ati ons supporting these forns nmay thensel ves be | ayered atop
such OS-specific functions. |Inclusion of this support w thin GSS-AP
i mpl ementations is intended as a convenience to applications.

4,1.1. User Nane Form

This nane formshall be represented by the ohject Identifier {iso(1l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1) user_name(1)}. The recomended synbolic nane for this
type is "GSS_SPKM NT_USER _NAME".

This nane type is used to indicate a naned user on a |local system
Its interpretation is OS-specific. This nanme formis constructed as

user name
4.1.2. Machine U D Form

This nane formshall be represented by the ohject Identifier {iso(1l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1) machine_uid_nane(2)}. The recommended synbolic nane for
this type is "GSS_SPKM NT_MACHI NE_Ul D_NAME".

This nane type is used to indicate a nuneric user identifier
corresponding to a user on a local system Its interpretationis
OS-specific. The gss_buffer_desc representing a nane of this type
shoul d contain a locally-significant uid_t, represented in host byte
order. The gss_inport_nane() operation resolves this uid into a
usernanme, which is then treated as the User Nane Form

4.1.3. String U D Form

This name formshall be represented by the ohject Identifier {iso(1l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1) string_uid_nanme(3)}. The recommended synbolic nane for
this type is "GSS_SPKM NT_STRI NG Ul D_NAME"

This nanme type is used to indicate a string of digits representing
the nuneric user identifier of a user on a local system |Its
interpretation is OS-specific. This nane type is simlar to the
Machine U D Form except that the buffer contains a string
representing the uid_t.

Adans St andards Track [Page 26]

RFC 2025 SPKM Cct ober 1996

5. Paraneter Definitions

This section defines paraneter val ues used by the SPKM GSS- API
mechanism It defines interface el enents in support of portability.

5.1. Mnor Status Codes

This section recomrends comon synbolic nanes for mnor_status val ues
to be returned by the SPKM GSS- APl nechanism Use of these
definitions will enable independent inplenentors to enhance
application portability across different inplenentations of the
mechani smdefined in this specification. (In all cases,

i mpl enent ati ons of gss_display_status() will enable callers to
convert minor_status indicators to text representations.) Each

i mpl erent ati on nust nmake avail able, through include files or other
means, a facility to translate these synbolic names into the concrete
val ues which a particular GSS-API inplenentation uses to represent
the m nor_status values specified in this section. It is recognized
that this list may grow over tine, and that the need for additiona
m nor _status codes specific to particular inplenmentations nmay ari se.

5.1.1. Non-SPKM specific codes (Mnor Status Code MSB, bit 31, SET)
5.1.1.1. GSS-Related codes (M nor Status Code bit 30 SET)

GSS_S G VALI DATE_FAI LED

/* "Validation error" */
GSS_S G BUFFER _ALLCC

/* "Couldn’t allocate gss_buffer_t data" */
GSS_S G BAD MSG CTX

/* "Message context invalid" */
GSS_S G WRONG_SI ZE

/* "Buffer is the wong size" */
GSS_S G BAD USAGE

/* "Credential usage type is unknown" */
GSS_S_G _UNAVAI L_QOrP

/* "Unavail able quality of protection specified" */

5.1.1.2. Inplenentation-Related codes (Mnor Status Code bit 30 OFF)

GSS_ S G MEMORY_ALLCC
/* "Couldn’t performrequested nenory all ocation" */

5.1.2. SPKM specific-codes (Mnor Status Code MSB, bit 31, OFF)
GSS_SPKM S _SG_CONTEXT_ESTABLI SHED

/* "Context is already fully established" */
GSS_SPKM_S_SG BAD_| NT_ALG TYPE

Adans St andards Track [Page 27]

RFC 2025 SPKM Cct ober 1996

/* "Unknown integrity algorithmtype in token" */
GSS_SPKM S SG BAD CONF_ALG TYPE
/* "Unknown confidentiality algorithmtype in token" */
GSS_SPKM S SG BAD KEY_ESTB_ALG TYPE
/* "Unknown key establishnment algorithmtype in token" */
GSS_SPKM_S_SG_CTX_| NCOWLETE
/* "Attenpt to use inconplete security context" */
GSS_SPKM S _SG BAD | NT_ALG_SET
/* "No integrity algorithmin conmon fromoffered set" */
GSS_SPKM S _SG BAD CONF_ALG SET
/* "No confidentiality algorithmin common fromoffered set” */
GSS_SPKM_S_SG BAD KEY_ESTB_ALG SET
/* "No key establishment algorithmin common fromoffered set" */
GSS_SPKM_S_SG NO_PVNO_| N_COMVON
/* "No protocol version number in common from offered set" */
GSS_SPKM S _SG | NVALI D_TOKEN_DATA
/* "Data is inproperly formatted: cannot encode into token" */
GSS_SPKM_S_SG | NVALI D_TOKEN_FORVAT
/* "Received token is inproperly formatted: cannot decode" */
GSS_SPKM S SG CONTEXT_DELETED
/* "Context deleted at peer’s request" */
GSS_SPKM S SG BAD DELETE _TOKEN_ RECD
/* "lInvalid delete token received -- context not deleted" */
GSS_SPKM_S_SG_CONTEXT_ESTB_ABORT
/* "Unrecoverabl e context establishment error. Context deleted" */

5.2. Quality of Protection Val ues

The Quality of Protection (QOP) paraneter is used in the SPKM GSS- AP
mechani smas input to gss_sign() and gss_seal () (gss_getMC() and
gss_wrap()) to select anong alternate confidentiality and integrity-
checking algorithms. Once these sets of algorithns have been agreed
upon by the context initiator and target, the QOP paraneter sinply
selects fromthese ordered sets.

More specifically, the SPKM REQ t oken sends an ordered sequence of
Alg. IDs specifying integrity-checking algorithns supported by the
initiator and an ordered sequence of Al g. |IDs specifying
confidentiality algorithms supported by the initiator. The target
returns the subset of the offered integrity-checking Al g. |IDs which
it supports and the subset of the offered confidentiality Alg. |IDs
which it supports in the SPKM REP-TI token (in the sane relative
orders as those given by the initiator). Thus, the initiator and
target each know the algorithns which they thensel ves support and the
al gorithms which both sides support (the latter are defined to be
those supported over the established context). The QOP paraneter has
meani ng and validity with reference to this know edge. For exanple,
an application may request integrity algorithmnunber 3 as defined by

Adans St andards Track [Page 28]

RFC 2025 SPKM Cct ober 1996

the mechani sm specification. |If this algorithmis supported over
this context then it is used; otherw se, GSS S FAI LURE and an
appropriate ninor status code are returned.

If the SPKM REP-TI token is not used (unilateral authentication using
SPKM 2), then the "agreed" sets of Alg. IDs are sinply taken to be
the initiator’s sets (if this is unacceptable to the target then it
nmust return an error token so that the context is never established).
Note that, in the interest of interoperability, the initiator is not
required to offer every algorithmit supports; rather, it may offer
only the nandated/reconmended SPKM al gorithns since these are likely
to be supported by the target.

The QOP paraneter for SPKMis defined to be a 32-bit unsigned integer
(an OMuint32) with the following bit-field assignnments:

Confidentiality Integrity
31 (MBSB) 16 15 (LSB) 0O

wher e

TS is a 5-bit Type Specifier (a semantic qualifier whose val ue
specifies the type of algorithmwhich nay be used to protect the
correspondi ng token -- see below for details);

Uis a 3-bit Unspecified field (available for future
use/ expansi on) ;

IAis a 4-bit field enunerating |Inplenentation-specific
Al gorithms; and

MA is a 4-bit field enunerati ng Mechani sm defined Al gorithns.

The interpretation of the QOP paraneter is as follows (note that the
same procedure is used for both the confidentiality and the integrity
hal ves of the paraneter). The MA field is examined first. [If it is
non-zero then the algorithmused to protect the token is the
mechani sm specified al gorithm corresponding to that integer val ue.

If MAis zero then |Ais exanmined. |If this field value is non-zero
then the algorithmused to protect the token is the inplenentation-
specified algorithmcorresponding to that integer value (if this
algorithmis avail abl e over the established context). Note that use
of this field may hinder portability since a particul ar val ue may
specify one algorithmin one inplenentation of the nechani smand nay

Adans St andards Track [Page 29]

RFC 2025 SPKM Cct ober 1996

not be supported or nmay specify a conpletely different algorithmin
anot her inplenmentation of the nechani sm

Finally, if both MA and I A are zero then TS is exani ned. A val ue of
zero for TS specifies the default algorithmfor the established
context, which is defined to be the first algorithmon the
initiator’s list of offered algorithns (confidentiality or integrity,
dependi ng on which half of QOP is being exani ned) which is supported
over the context. A non-zero value for TS corresponds to a
particul ar algorithmqualifier and selects the first algorithm
supported over the context which satisfies that qualifier

The following TS values (i.e., algorithmaqualifiers) are specified
ot her values nmay be added in the future.

For the Confidentiality TS field:

00001 (1) = SPKM SYM ALG STRENGTH_STRONG
00010 (2) = SPKM SYM ALG_STRENGTH_MEDI UM
00011 (3) = SPKM SYM ALG STRENGTH WEAK

For the Integrity TS field:

00001 (1)
00010 (2)

SPKM | NT_ALG_NON_REP_SUPPORT
SPKM_| NT_ALG_REPUDI ABLE

Clearly, qualifiers such as strong, nmedium and weak are debatabl e
and likely to change with time, but for the purposes of this version
of the specification we define these terns as follows. A
confidentiality algorithmis "weak" if the effective key |l ength of
the cipher is 40 bits or less; it is "mediumstrength" if the
effective key length is strictly between 40 and 80 bits; and it is
"strong" if the effective key length is 80 bits or greater. (Note
that "effective key |length" describes the conputational effort
required to break a cipher using the best-known cryptanal ytic attack
agai nst that cipher.)

A five-bit TS field allows up to 31 qualifiers for each of
confidentiality and integrity (since "0" is reserved for "default").
Thi s docunment specifies three for confidentiality and two for
integrity, leaving a lot of roomfor future specification
Suggestions of qualifiers such as "fast", "nediumspeed", and "sl ow'
have been nade, but such terns are difficult to quantify (and in any
case are platform and processor-dependent), and so have been |eft
out of this initial specification. The intention is that the TS
terns be quantitative, environnent-independent qualifiers of

al gorithnms, as much as this is possible.

Adans St andards Track [Page 30]

RFC 2025 SPKM Cct ober 1996

Use of the QOP structure as defined above is ultimtely neant to be
as foll ows.

- TS values are specified at the GSS-API |evel and are therefore
portabl e across mechani snms. Applications which know not hi ng about
algorithns are still able to choose "quality" of protection for
their nessage tokens.

- MA values are specified at the mechanismlevel and are therefore
portabl e across inplenmentations of a nmechanism For exanple, al
i npl enent ati ons of the Kerberos V5 GSS nmechani sm nust support

GSS KRB5 | NTEG C_QOP_MD5 (val ue: 1)
GSS KRB5 | NTEG C QOP_DES MD5 (val ue: 2)
GSS_KRB5_| NTEG C_QOP_DES MAC (val ue: 3).

(Note that these Kerberos-specified integrity QOP val ues do not
conflict with the QOP structure defined above.)

- A values are specified at the inplenentation |level (in user
docunent ation, for exanple) and are therefore typically non-
portable. An application which is aware of its own nmechani sm
i npl enment ati on and the nechani sminplenentation of its peer
however, is free to use these values since they will be perfectly
valid and neani ngful over that context and between those peers.

The receiver of a token nust pass back to its calling application a
QOP paraneter with all relevant fields set. For exanple, if triple-
DES has been specified by a mechanismas algorithm8, then a receiver
of a triple-DES-protected token nust pass to its application (QOP
Confidentiality TS=1, | A=0, MA=8). In this way, the application is
free to read whatever part of the QOP it understands (TS or | A MA).

To aid in inplenmentation and interoperability, the foll ow ng
stipulation is made. The set of integrity Alg. IDs sent by the
initiator nust contain at |east one specifying an al gorithm which
conputes a digital signature supporting non-repudiation, and nust
contain at |east one specifying any other (repudiable) integrity
algorithm The subset of integrity Alg. IDs returned by the target
must al so contain at | east one specifying an al gorithm which conputes
a digital signature supporting non-repudi ation, and at |east one
specifying a repudiable integrity algorithm

The reason for this stipulation is to ensure that every SPKM

i npl enentation will provide an integrity service which supports non-
repudi ati on and one whi ch does not support non-repudiation. An
application with no know edge of underlying algorithnms can choose one
or the other by passing (QOP Integrity TS=1, | A=MA=0) or (QOP

Adans St andards Track [Page 31]

RFC 2025 SPKM Cct ober 1996

Integrity TS=2, | A=MA=0). Although an initiator who wi shes to renain
anonyrmous will never actually use the non-repudiable digital
signature, this integrity service nust be available over the context
so that the target can use it if desired.

Finally, in accordance with the MANDATORY and RECOVMENDED al gorithns
given in Section 2, the followi ng QOP val ues are specified for SPKM

For the Confidentiality MA field:
0001 (1) = DES-CBC
For the Integrity MA field:

0001 (1
0010 (2

nd5W t hRSA
DES- MAC

) =
) =
6. Support Functions
This section describes a mandatory support function for SPKM
conformant inplenentations which may, in fact, be of value in all
GSS- APl nechanisns. It nakes use of the token-id and context-id
i nformati on which is included i n SPKM cont ext - establ i shent, error,
context-del etion, and per-nessage tokens. The function is defined in
the follow ng section.
6.1. SPKM Parse_t oken call
| nputs:
0 input_token OCTET STRI NG
CQut put s:
0 major_status | NTEGER
0 mnor_status | NTEGER,
o mech_type OBJECT | DENTI Fl ER,
0 token_type | NTEGER,

0 context_handl e CONTEXT HANDLE,

Adans St andards Track [Page 32]

RFC 2025 SPKM Cct ober 1996

Return maj or _status codes:

0 GSS_S COWLETE indicates that the input_token could be parsed for
all relevant fields. The resulting values are stored in
mech_t ype, token_type and context_handl e, respectively (with NULLs
in any paraneters which are not relevant).

0 GSS S DEFECTIVE _TOKEN i ndicates that either the token-id or the
context-id (if it was expected) information could not be parsed.
A non-NULL return value in token_type indicates that the latter
situation occurred.

0 GSS S NOTYPE indicates that the token-id information could be
parsed, but it did not correspond to any valid token_type.

(Note that this mjor status code has not been defined for GSS in
RFC-1508. Until such a definition is nmade (if ever), SPKM

i mpl enent ati ons should instead return GSS_S DEFECTI VE TOKEN wi th
both token_type and context handle set to NULL. This essentially
i mplies that unrecogni zed token-id information is considered to be
equi val ent to token-id information which could not be parsed.)

0 GSS_S NO CONTEXT indicates that the context-id could be parsed,
but it did not correspond to any valid context_ handl e.

0 GSS_S FAILURE indicates that the mechanismtype could not be
parsed (for exanple, the token nmay be corrupted).

SPKM Par se_token() is used to return to an application the nmechani sm
type, token type, and context handl e which correspond to a given

i nput token. Since GSS-API tokens are neant to be opaque to the
calling application, this function allows the application to
determi ne information about the token wi thout having to violate the
opaqueness intention of GSS. O primary inportance is the token
type, which the application can then use to decide which GSS function
to call in order to have the token processed.

If all tokens are framed as suggested in RFC 1508, Appendix B
(specified both in the Kerberos V5 GSS nechani sm[KRB5] and in this
docunent), then any nmechani sminpl enentati on should be able to return
at least the mech_type paraneter (the other paraneters being NULL)
for any uncorrupted i nput token. [If the nechanisminplenentation
whose SPKM Parse_token() function is being called does recognize the
token, it can return token_type so that the application can
subsequently call the correct GSS function. Finally, if the
mechani sm provides a context-id field in its tokens (as SPKM does),
then an inplenmentation can map the context-id to a context_handl e and
return this to the application. This is necessary for the situation

Adans St andards Track [Page 33]

RFC 2025 SPKM Cct ober 1996

where an application has nultiple contexts open sinultaneously, all
usi ng the sanme nechanism \hen an inconing token arrives, the
application can use this function to determine not only which GSS
function to call, but also which context _handle to use for the call
Note that this function does no cryptographic processing to determ ne
the validity of tokens; it sinply attenpts to parse the nech_type,
token_type, and context-id fields of any token it is given. Thus, it
is conceivable, for exanple, that an arbitrary buffer of data night
start with random val ues which ook like a valid mech_type and that
SPKM Par se_t oken() would return incorrect information if given this
buffer. \While conceivable, however, such a situation is unlikely.

The SPKM Parse token() function is nandatory for SPKM confor mant

i mpl ementations, but it is optional for applications. That is, if an
application has only one context open and can guess which GSS
function to call (or is willing to put up with sonme error codes),
then it need never call SPKM Parse token(). Furthernore, if this
function ever nigrates up to the GSS-API |evel, then

SPKM Parse_token() will be deprecated at that tine in favour of

GSS Parse_token(), or whatever the new name and function
specification mght be. Note finally that no nminor status return
codes have been defined for this function at this tine.

6.2. The token_type Qutput Paraneter

The follow ng token types are defined:

GSS INIT_TOKEN =1
GSS_ACCEPT_TOKEN = 2
GSS_ERROR TOKEN = 3
GSS_SIGN_ TOKEN = GSS_GETM C_TOKEN = 4
GSS_SEAL_TOKEN = GSS_WRAP_ TOKEN = 5

GSS_DELETE_TOKEN = 6

Al'l SPKM nmechani snms shall be able to performthe mapping fromthe
token-id informati on which is included in every token (through the
tag val ues in SPKM nner Cont ext Token or through the tok-id field) to
one of the above token types. Applications should be able to decide,
on the basis of token_type, which GSS function to call (for exanple,
if the token is a GSS INIT_TOKEN then the application will call
gss_accept _sec_context(), and if the token is a GSS_WRAP_TOKEN t hen
the application will call gss_unwap()).

6.3. The context handl e CQutput Paraneter
The SPKM nechani sminpl enentation is responsible for nmaintaining a

mappi ng between the context-id value which is included in every token
and a context handl e, thus associating an individual token with its

Adans St andards Track [Page 34]

RFC 2025 SPKM Cct ober 1996

proper context. Cearly the value of context _handle may be locally
determi ned and may, in fact, be associated with menory containing
sensitive data on the local system and so having the context-id
actually be set equal to a conmputed context_handle will not work in
general . Conversely, having the context_handl e actually be set equa
to a conputed context-id will not work in general either, because
context _handle nmust be returned to the application by the first cal
to gss_init_sec_context() or gss_accept_sec_context(), whereas

uni queness of the context-id (over all contexts at both ends) may
require that both initiator and target be involved in the

conmput ation. Consequently, context_handl e and context-id nmust be
conput ed separately and the nmechani sminpl enentation nust be able to
map fromone to the other by the conpletion of context establishnent
at the latest.

Conmput ation of context-id during context establishnment is
acconpl i shed as follows. Each SPKM i npl enentation is responsible for
generating a "fresh" random nunber; that is, one which (with high
probability) has not been used previously. Note that there are no
cryptographic requirements on this random nunber (i.e., it need not
be unpredictable, it sinply needs to be fresh). The initiator passes
its random nunber to the target in the context-id field of the SPKM
REQ token. If no further context establishnment tokens are expected
(as for unilateral authentication in SPKM2), then this value is
taken to be the context-id (if this is unacceptable to the target
then an error token nust be generated). Oherw se, the target
generates its random nunmber and concatenates it to the end of the
initiator’s random nunber. This concatenated value is then taken to
be the context-id and is used in SPKM REP-TI and in all subsequent

t okens over that context.

Havi ng both peers contribute to the context-id assures each peer of
freshness and therefore precludes replay attacks between contexts
(where a token froman old context between two peers is maliciously
injected into a new context between the same or different peers).
Such assurance is not available to the target in the case of
uni l ateral authentication using SPKM 2, sinply because it has not
contributed to the freshness of the conputed context-id (instead, it
must trust the freshness of the initiator’s random nunber, or reject
the context). The key-src-bind field in SPKMREQ is required to be
present for the case of SPKM 2 unilateral authentication precisely to
assist the target in trusting the freshness of this token (and its
proposed context key).

7. Security Considerations

Security issues are discussed throughout this neno.

Adans St andards Track [Page 35]

RFC 2025 SPKM Cct ober 1996

8. References

[Davi 89] : D. W Davies and W L. Price, "Security for Conputer
Net wor ks", Second Edition, John WIley and Sons, New York, 1989.

[FIPS-113]: National Bureau of Standards, Federal Information
Processing Standard 113, "Conputer Data Authentication", My 1985.

[GSSv2]: Linn, J., "Ceneric Security Service Application Program
Interface Version 2", Wrk in Progress.

[Juen84]: R R Jueneman, C. H Meyer and S. M Matyas, Message
Aut henti cation with Manipul ati on Detection Codes, in Proceedi ngs of
the 1983 | EEE Synposi um on Security and Privacy, |EEE Conputer

Soci ety Press, 1984, pp. 33-54.

[KRB5] : Linn, J., "The Kerberos Version 5 GSS-APlI Mechanisni,
RFC 1964, June 1996.

[PKCS1] : RSA Encryption Standard, Version 1.5, RSA Data Security,
Inc., Nov. 1993.

[PKCS3] : Diffie-Hell man Key- Agreenment Standard, Version 1.4, RSA
Data Security, Inc., Nov. 1993.

[RFC-1321]: Rivest, R, "The MD5 Message-Digest Algorithni, RFC 1321

[RFC-1422]: Kent, S., "Privacy Enhancenent for Internet Electronic

Mail: Part Il: Certificate-Based Key Managenent"”, RFC 1422.
[RFC-1423]: Bal enson, D., "Privacy Enhancenent for Internet
El ecronic Mail: Part 111: Al gorithms, Mdes, and ldentifiers"”
RFC 1423.

[RFC-1508]: Linn, J., "Generic Security Service Application Program
Interface", RFC 1508.

[RFC-1509]: Way, J., "Generic Security Service Application Program
Interface: C bindings", RFC 1509.

[RFC-1510]: Kohl J., and C. Neuman, "The Kerberos Network
Aut henti cation Service (V5)", RFC 1510.

[9798]: | SO'I EC 9798-3, "Information technol ogy - Security

Techni ques - Entity authentication nmechanisnms - Part 3: Entitiy
aut henti cation using a public key algorithn, 1SOI1EC 1993

Adans St andards Track [Page 36]

RFC 2025 SPKM Cct ober 1996

[X. 501]: | SO | EC 9594-2, "Information Technol ogy - Open Systens
Interconnection - The Directory: Mdels", CCITT/ITU Recomendati on
X. 501, 1993.

[X. 509]: | SO | EC 9594-8, "Information Technol ogy - Open Systens
I nterconnection - The Directory: Authentication Franework",
CCl TT/1 TU Reconmmendati on X. 509, 1993.

[X9. 44]: ANSI, "Public Key Cryptography Using Reversible
Algorithns for the Financial Services Industry: Transport of
Symmetric Al gorithm Keys Using RSA", X9.44-1993.

9. Author’s Address
Carlisle Adans
Bel | - Nort hern Research
P. O Box 3511, Station C
Otawa, Ontario, CANADA K1Y 4H7

Phone: +1 613. 763. 9008
EMai | : cadans@nr. ca

Adans St andards Track [Page 37]

RFC 2025 SPKM Cct ober 1996

Appendi x A: ASN. 1 Modul e Definition

SpknGssTokens {iso(1l) identified-organization(3) dod(6) internet(1)
security(5) nechani sms(5) spkm(1l) spknmGssTokens(10)}

DEFINITIONS I MPLICI T TAGS :: =
BEG N

-- EXPORTS ALL --

| MPORTS

Nanme
FROM I nf or mati onFramework {joint-iso-ccitt(2) ds(5) nodul e(1)
i nformati onFranewor k(1) 2}

Certificate, CertificateList, CertificatePair, A gorithmdentifier,
Validity
FROM Aut henti cati onFramework {joint-iso-ccitt(2) ds(5) nodul e(1)
aut henti cati onFranework(7) 2} ;

-- types --
SPKM REQ : : = SEQUENCE ({
request Token REQ- TOKEN,
certif-data [O] CertificationData OPTI ONAL,
auth-data [1] Aut hori zati onDat a OPTI ONAL
}
CertificationData ::= SEQUENCE {
certificationPath [0] CertificationPath OPTI ONAL,
certificateRevocationList [1] CertificatelList OPTI ONAL
} -- at least one of the above shall be present
CertificationPath ::= SEQUENCE {
user Keyl d [0] OCTET STRI NG OPTI ONAL,
userCertif [1] Certificate OPTI ONAL,
verifKeyld [2] OCTET STRI NG OPTI ONAL,
userVerifCertif [3] Certificate OPTI ONAL,
theCACertificates [4] SEQUENCE OF CertificatePair OPTI ONAL
} -- Presence of [2] or [3] inplies that [0] or [1] nust also be

Adans St andards Track [Page 38]

RFC 2025

-- present.

SPKM Cct ober 1996

Presence of [4] inplies that at |east one of [0], [1],

-- [2], and [3] nust also be present.

REQ TOKEN :: = SEQUENCE {

reg-contents
algld

reg-integrity

}

Integrity ::= BIT STRING

Reqg-contents,
Al gorithmdentifier,
Integrity -- "token" is Reg-contents

-- |If corresponding algld specifies a signing algorithm

-- "Integrity" holds the result of applying the signing procedure
-- specified in algld to the BER-encoded octet string which results
-- from applying the hashing procedure (also specified in algld) to
-- the DER-encoded octets of "token".

-- Alternatively,

if corresponding algld specifies a MAC ng

-- algorithm "Integrity" holds the result of applying the MAG ng
-- procedure specified in algld to the DER encoded octets of

-- "token"

Reg-contents ::= SEQUENCE {
tok-id | NTEGER (256), -- shall contain 0100 (hex)
context-id Random | nt eger
pvno BI T STRI NG
ti mestanp UTCTi ne OPTI ONAL, -- nandatory for SPKM 2
randSrc Random | nt eger
tar g- nane Nane
src-nane [0] Name OPTI ONAL,
req- data Cont ext - Dat a
validity [1] Val idity OPTI ONAL,

key- est b- set
key-estb-req
key- src-bi nd

Key- Est b- Al gs,
BI T STRI NG OPTI ONAL,
OCTET STRI NG OPTI ONAL

-- This field nust be present for the case of SPKM 2

-- unilateral

authen. if the K-ALG in use does not provide

-- such a binding (but is optional for all other cases).
-- The octet string holds the result of applying the
-- mandatory hashing procedure (in MANDATORY |-ALG

-- see Section 2.1) as follows:
-- where "src"

MD5(src || context_key),
is the DER-encoded octets of src-nane,

-- "context-key" is the symmetric key (i.e., the
-- unprotected version of what is transnmitted in

-- key-estb-req), and "||" is the concatenation operation
}
Random I nteger ::= BI T STRI NG
Adans St andards Track [Page 39]

RFC 2025 SPKM Cct ober 1996

Context-Data ::= SEQUENCE {
channel I d Channel | d OPTI ONAL,
seq- nunber | NTEGER OPTI ONAL,
options Opt i ons,
conf-alg Conf - Al gs,
intg-alg I nt g- Al gs,
owf-al g OAF- Al gs

}

Channel Id ::= OCTET STRI NG

Options ::= BI T STRING {

del egation-state (0),

mut ual -state (1),

repl ay-det-state (2),
sequence-state (3),

conf-avail (4),

integ-avail (5),
target-certif-data-required (6)

}
Conf-Algs ::= CHO CE {
al gs [0] SEQUENCE OF Al gorithm dentifier,
nul | [1] NULL
}
Intg-Algs ::= SEQUENCE OF Al gorithm dentifier
OANF- Al gs ::= SEQUENCE OF Al gorithm dentifier
Key- Estb-Al gs ::= SEQUENCE OF Al gorithmdentifier
SPKM REP- Tl ::= SEQUENCE {
responseToken REP- TI - TOKEN,
certif-data CertificationData OPTI ONAL
-- present if target-certif-data-required option was
} -- set to TRUE in SPKM REQ
REP- Tl - TOKEN : : = SEQUENCE {
rep-ti-contents Rep-ti-contents,
al gld Al gorithmdentifier,
rep-ti-integ Integrity -- "token" is Rep-ti-contents
}
Rep-ti-contents ::= SEQUENCE ({
tok-id | NTEGER (512), -- shall contain 0200 (hex)
context-id Random | nt eger,

Adans St andards Track [Page 40]

RFC 2025 SPKM Cct ober 1996

pvno [0] BI T STRI NG OPTI ONAL,
ti mestanp UTCTi me OPTI ONAL, -- mandatory for SPKM 2
randTarg Random | nt eger,
src-nane [1] Name OPTI ONAL,
targ- nanme Name,
randSrc Random | nt eger,
rep-data Cont ext - Dat a,
validity [2] Validity OPTI ONAL,
key-estb-id Al gorithm dentifier OPTI ONAL,
key-estb-str BI T STRI NG OPTI ONAL
}
SPKM REP- I T :: = SEQUENCE ({
responseToken REP- | T- TOKEN,
al gl d Al gorithm dentifier,
rep-it-integ Integrity -- "token" is REP-I1T-TCOKEN
}
REP- | T- TOKEN : : = SEQUENCE ({
tok-id | NTEGER (768), -- shall contain 0300 (hex)
context-id Random | nt eger,
randSrc Random | nt eger,
randTarg Random | nt eger,
tar g- nane Nane,
Src- name Nanme OPTI ONAL,
key-estb-rep BI T STRI NG OPTI ONAL
}
SPKM ERROR :: = SEQUENCE {
error Token ERROR- TOKEN,
al gld Al gorithm dentifier,
integrity Integrity -- "token" is ERROR TOKEN
}
ERROR- TOKEN :: = SEQUENCE ({
tok-id | NTEGER (1024), -- shall contain 0400 (hex)
context-id Random | nt eger
}
SPKM M C :: = SEQUENCE ({
nm c- header M c- Header,
i nt-cksum BIT STRI NG
}
M c- Header ::= SEQUENCE ({
tok-id | NTEGER (257), -- shall contain 0101 (hex)
context-id Random | nt eger,

Adans St andards Track [Page 41]

RFC 2025

int-alg [0]
snd-seq [1]

}

SeqNum : : = SEQUENCE {
num
dir-ind

}

SPKM WRAP : : = SEQUENCE {
wr ap- header
wr ap- body

}

W ap- Header ::= SEQUENCE
tok-id
context-id
int-alg [0]
conf-alg [1]
snd-seq [2]

}

W ap- Body ::= SEQUENCE {
i nt-cksum
dat a

}

Conf-Alg ::= CHO CE {
al gld [0]
nul | [1]

}

SPKM DEL ::= SEQUENCE {
del - header
i nt-cksum

}

Del - Header ::= SEQUENCE ({
tok-id
context-id
int-alg [0]
snd-seq [1]

}

-- other types --

Adans

SPKM Cct ober 1996

Al gorithm dentifier OPTI ONAL,
SeqNum OPTI ONAL

I NTEGER,
BOOLEAN

W ap- Header,
W ap- Body

{
| NTEGER (513), -- shall contain 0201 (hex)

Random | nt eger,

Al gorithm dentifier OPTI ONAL,
Conf - Al g OPTI ONAL,

SeqNum OPTI ONAL

BI T STRI NG
BIT STRI NG

Al gorithm dentifier,
NULL

Del - Header ,
BI T STRI NG

| NTEGER (769), -- shall contain 0301 (hex)
Random | nt eger,

Al gorithm dentifier OPTI ONAL,

SeqNum OPTI ONAL

St andards Track [Page 42]

RFC 2025

SPKM

-- from[RFC 1508] --

MechType ::

I nitial ContextToken :

}

SPKM nner Cont ext Token :

t hi sMech

i nner Cont ext Token

= OBJECT | DENTI FI ER

: = [APPLI CATI ON 0]
MechType,
SPKM nner Cont ext Token

| MPLI G T SEQUENCE {

-- when thisMech is SPKM1 or SPKM 2

req [0]
rep-ti [1]
rep-it [2]
error [3]
mc [4]
wap [5]
del [6]

:= CHO CE {
SPKM REQ

SPKM REP- Tl ,

SPKM REP- I T,

SPKM ERRCR,

SPKM M C,

SPKM \RAP,

SPKM DEL

-- from[RFC 1510] --

Aut hori zati onDat a :
| NTEGER,
ad-data OCTET STRI NG

}

-- object

ad-type

: = SEQUENCE OF SEQUENCE ({

identifier assignnents --

nd5- DES- CBC OBJECT | DENTI FIER :: =

{iso(1)

i denti fi ed-organi zati on(3)

dod(6) internet(1)

integrity(3) md5-DES-CBC(1)}

sunb4- DES- CBC OBJECT | DENTI FIER :: =

{iso(1)

i denti fi ed-organi zati on(3)

dod(6) internet(1)

integrity(3) sunb4-DES- CBC(2)}

spkm 1 OBJECT I DENTIFIER :: =

{iso(1)

i denti fi ed-organi zati on(3)

dod(6) internet(1)

mechani sms(5) spkm(1) spkm 1(1)}

spkm 2 OBJECT | DENTIFIER :: =

END

Adans

{iso(1)

i denti fied-organi zation(3)

dod(6) internet(1)

nmechani sms(5) spkm(1l) spkm 2(2)}

St andards Track

Cct ober

1996

security(5)

security(5)

security(5)

security(5)

[Page 43]

RFC 2025 SPKM Cct ober 1996

Appendi x B: I nported Types

Thi s appendi x contains, for conpl eteness, the relevant ASN. 1 types
i mported from | nformati onFranework (1993), AuthenticationFramework
(1993), and [PKCS3].

AttributeType ::= OBJECT | DENTI FI ER

AttributeValue ::= ANY

AttributeVal ueAssertion ::= SEQUENCE {AttributeType, Attri buteVal ue}
Rel ati veDi sti ngui shedNane ::= SET OF Attri buteVal ueAssertion

-- note that the 1993 | nformati onFranewor k nodul e uses
-- different syntax for the above constructs

RDNSequence ::= SEQUENCE OF Rel ativeDi sti ngui shedNane
Di sti ngui shedName ::= RDNSequence
Name ::= CHOCE { -- only one for now
rdnSequence RDNSequence
}
Certificate ::= SEQUENCE {
certContents Cert Contents,
al gl D Al gorithm dentifier,
sig BIT STRI NG
} -- sig holds the result of applying the signing procedure

-- specified in algld to the BER-encoded octet string which
-- results fromapplying the hashing procedure (also specified in
-- algld) to the DER-encoded octets of CertContents

Cert Contents ::= SEQUENCE {
versi on [0] Ver si on DEFAULT v1,
seri al Nunmber CertificateSerial Nunber,
signature Al gorithmdentifier,
i ssuer Nane,
validity Validity,
subj ect Nane,
subj ect Publ i cKeyl nf o Subj ect Publ i cKeyl nf o,
i ssuerUl D [1] IMPLICIT UD OPTIONAL, -- used in v2 only
subjectU D [2] | MPLICIT U D OPTI ONAL -- used in v2 only
}
Version ::= I NTEGER {v1(0), v2(1)}
CertificateSerial Number ::= | NTEGER
UD::=BIT STRING
Validity ::= SEQUENCE {
not Bef ore UTCTi ne,
not Aft er UTCTi nme
}

Adans St andards Track [Page 44]

RFC 2025 SPKM Cct ober 1996

Subj ect Publ i cKeyl nfo ::= SEQUENCE {
al gorithm Al gorithm dentifier,
subj ect Publ i cKey BIT STRI NG

}

CertificatePair ::= SEQUENCE {
forward [0] Certificate OPTI ONAL,
reverse [1] Certificate OPTI ONAL

} -- at least one of the pair shall be present

CertificateList ::= SEQJENCE {
certlListContents Cert Li st Cont ent s,
algld Al gorithmdentifier,
si g BI T STRI NG
} -- sig holds the result of applying the signing procedure
-- specified in algld to the BER encoded octet string which
-- results fromapplying the hashing procedure (also specified in
-- algld) to the DER-encoded octets of CertlListContents

CertlListContents ::= SEQUENCE {
signature Al gorithm dentifier,
i ssuer Name,
t hi sUpdat e UTCTi ne,
next Updat e UTCTi ne OPTI ONAL,
revokedCertificates SEQUENCE OF SEQUENCE {
userCertificate CertificateSerial Nunber,
revocati onbDat e UTCTi nme } OPTI ONAL
}

Algorithmdentifier ::= SEQUENCE {
al gorithm OBJECT | DENTI Fl ER,
par anet er ANY DEFI NED BY al gorithm OPTI ONAL
} -- note that the 1993 Authenti cati onFramewor k nodul e uses
-- different syntax for this construct

--from [PKCS3] (the paranmeter to be used w th dhKeyAgreenent) --

DHPar amet er :: = SEQUENCE {
prime I NTECER, -- p
base I NTEGER, -- ¢
privat eVal ueLengt h | NTEGER OPTI ONAL
}

Adans St andards Track [Page 45]

