
Network Working Group J. Flick
Request for Comments: 2020 Hewlett Packard
Category: Standards Track October 1996

 Definitions of Managed Objects for IEEE 802.12 Interfaces

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

 1. Introduction ... 1
 2. Object Definitions ... 2
 3. Overview ... 2
 3.1. MAC Addresses .. 3
 3.2. Relation to RFC 1213 3
 3.3. Relation to RFC 1573 3
 3.3.1. Layering Model ... 4
 3.3.2. Virtual Circuits 4
 3.3.3. ifTestTable .. 4
 3.3.4. ifRcvAddressTable 4
 3.3.5. ifPhysAddress .. 4
 3.3.6. Specific Interface MIB Objects 5
 3.4. Relation to RFC 1643, RFC 1650, and RFC 1748 8
 3.5. Relation to RFC 1749 8
 3.6. Master Mode Operation 9
 3.7. Normal and High Priority Counters 9
 3.8. IEEE 802.12 Training Frames 10
 3.9. Mapping of IEEE 802.12 Managed Objects 12
 4. Definitions .. 14
 5. Acknowledgements ... 30
 6. References ... 30
 7. Security Considerations 31
 8. Author’s Address ... 31

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in TCP/IP-based internets.
 In particular, it defines objects for managing network interfaces
 based on IEEE 802.12.

Flick Standards Track [Page 1]

RFC 2020 IEEE 802.12 Interface MIB October 1996

2. Object Definitions

 Management information is viewed as a collection of managed objects,
 residing in a virtual information store, termed the Management
 Information Base (MIB). Collections of related objects are defined
 in MIB modules. MIB modules are written using a subset of Abstract
 Syntax Notation One (ASN.1) [1] termed the Structure of Management
 Information (SMI) [2]. In particular, each object type is named by
 an OBJECT IDENTIFIER, an administratively assigned name. The object
 type together with an object instance serves to uniquely identify a
 specific instantiation of the object. For human convenience, we
 often use a textual string, termed the descriptor, to refer to the
 object type.

3. Overview

 Instances of these object types represent attributes of an interface
 to an IEEE 802.12 communications medium. At present, IEEE 802.12
 media are identified by one value of the ifType object in the
 Internet-standard MIB:

 ieee80212(55)

 For this interface, the value of the ifSpecific variable in the MIB-
 II [5] has the OBJECT IDENTIFIER value:

 dot12MIB OBJECT IDENTIFIER ::= { transmission 45 }

 The values for the ifType object are defined by the IANAifType
 textual convention. The Internet Assigned Numbers Authority (IANA)
 is responsible for the assignment of all Internet numbers, including
 new ifType values. Therefore, IANA is responsible for maintaining
 the definition of this textual convention. The current definition of
 the IANAifType textual convention is available from IANA’s World Wide
 Web server at:

 http://www.iana.org/iana/

 The definitions presented here are based on the IEEE Standard
 802.12-1995, [6] Clause 13 "Layer management functions and services",
 and Annex C "GDMO Specifications for Demand Priority Managed
 Objects". Implementors of these MIB objects should note that the
 IEEE document explicitly describes (in the form of Pascal pseudocode)
 when, where, and how various MAC attributes are measured. The IEEE
 document also describes the effects of MAC actions that may be
 invoked by manipulating instances of the MIB objects defined here.

Flick Standards Track [Page 2]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 To the extent that some of the attributes defined in [6] are
 represented by previously defined objects in the Internet-standard
 MIB [5] or in the Evolution of the Interfaces Group of MIB-II [7],
 such attributes are not redundantly represented by objects defined in
 this memo. Among the attributes represented by objects defined in
 other memos are the number of octets transmitted or received on a
 particular interface, the MAC address of an interface, and multicast
 information associated with an interface.

3.1. MAC Addresses

 All representations of MAC addresses in this MIB module, and in other
 related MIB modules (like RFC 1573), are in "canonical" order defined
 by 802.1a, i.e., as if it were transmitted least significant bit
 first. This is true even if the interface is operating in token ring
 framing mode, which requires MAC addresses to be transmitted most
 significant bit first.

3.2. Relation to RFC 1213

 This section applies only when this MIB is used in conjunction with
 the "old" (i.e., pre-RFC 1573) interface group.

 The relationship between an IEEE 802.12 interface and an interface in
 the context of the Internet-standard MIB is one-to-one. As such, the
 value of an ifIndex object instance can be directly used to identify
 corresponding instances of the objects defined herein.

3.3. Relation to RFC 1573

 RFC 1573, the Interface MIB Evolution, requires that any MIB which is
 an adjunct of the Interface MIB, clarify specific areas within the
 Interface MIB. These areas are intentionally left vague in RFC 1573
 to avoid over constraining the MIB, thereby precluding management of
 certain media-types.

 An agent which implements this MIB module must support the
 ifGeneralGroup, ifStackGroup, ifHCPacketGroup, and ifRcvAddressGroup
 of RFC 1573.

 Section 3.3 of RFC 1573 enumerates several areas which a media-
 specific MIB must clarify. In addition, there are some objects in
 RFC 1573 for which additional clarification of how to apply them to
 an IEEE 802.12 interface would be helpful. Each of these areas is
 addressed in a following subsection. The implementor is referred to
 RFC 1573 in order to understand the general intent of these areas.

Flick Standards Track [Page 3]

RFC 2020 IEEE 802.12 Interface MIB October 1996

3.3.1. Layering Model

 For the typical usage of this MIB module, there will be no sub-layers
 "above" or "below" the 802.12 Interface. However, this MIB module
 does not preclude such layering.

3.3.2. Virtual Circuits

 This medium does not support virtual circuits and this area is not
 applicable to this MIB.

3.3.3. ifTestTable

 This MIB does not define any tests for media instrumented by this
 MIB. Implementation of the ifTestTable is not required. An
 implementation may optionally implement the ifTestTable to execute
 vendor specific tests.

3.3.4. ifRcvAddressTable

 This table contains all IEEE addresses, unicast, multicast, and
 broadcast, for which this interface will receive packets and forward
 them up to a higher layer entity for consumption. In addition, when
 the interface is using 802.5 framing mode, the ifRcvAddressTable will
 contain the functional address mask.

 In the event that the interface is part of a MAC bridge, this table
 does not include unicast addresses which are accepted for possible
 forwarding out some other port. This table is explicitly not
 intended to provide a bridge address filtering mechanism.

3.3.5. ifPhysAddress

 This object contains the IEEE 802.12 address which is placed in the
 source-address field of any frames that originate at this interface.
 Usually this will be kept in ROM on the interface hardware. Some
 systems may set this address via software.

 In a system where there are several such addresses the designer has a
 tougher choice. The address chosen should be the one most likely to
 be of use to network management (e.g. the address placed in ARP
 responses for systems which are primarily IP systems).

 If the designer truly can not choose, use of the factory-provided ROM
 address is suggested.

 If the address can not be determined, an octet string of zero length
 should be returned.

Flick Standards Track [Page 4]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 The address is stored in binary in this object. The address is
 stored in "canonical" bit order, that is, the Group Bit is positioned
 as the low-order bit of the first octet. Thus, the first byte of a
 multicast address would have the bit 0x01 set. This is true even
 when the interface is using token ring framing mode, which transmits
 addresses high-order bit first.

3.3.6. Specific Interface MIB Objects

 The following table provides specific implementation guidelines for
 the interface group objects in the conformance groups listed above.

 Object Use for an 802.12 Interface

 ifIndex Each 802.12 interface is represented by an
 ifEntry. Interface tables in this MIB
 module are indexed by ifIndex.

 ifDescr Refer to [7].

 ifType The IANA reserved value for 802.12 - 55.

 ifMtu The value of ifMtu on an 802.12 interface
 will depend on the type of framing that is
 in use on that interface. Changing the
 dot12DesiredFramingType may have the effect
 of changing ifMtu after the next time that
 the interface trains. When
 dot12CurrentFramingType is equal to
 frameType88023, ifMtu will be equal to
 1500. When dot12CurrentFramingType is
 equal to frameType88025, ifMtu will be
 4464.

 ifSpeed The speed of the interface in bits per
 second. For current 802.12
 implementations, this will be equal to
 100,000,000 (100 million).

 ifPhysAddress See Section 3.3.5.

Flick Standards Track [Page 5]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 ifAdminStatus Write access is not required. Support for
 ’testing’ is not required. Setting this
 object to ’up’ will cause dot12Commands to
 be set to ’open’. Setting this object to
 ’down’ will cause dot12Commands to be set
 to ’close’. Setting dot12Commands to
 ’open’ will set this object to ’up’.
 Setting dot12Commands to ’close’ will set
 this object to ’down’. Setting
 dot12Commands to ’reset’ will have no
 effect on this object.

 ifOperStatus When dot12Status is equal to ’opened’, this
 object will be equal to ’up’. When
 dot12Status is equal to ’closed’, ’opening’,
 ’openFailure’ or ’linkFailure’, this object
 will be equal to ’down’. Support for
 ’testing’ is not required, but may be used
 to indicate that a vendor specific test is
 in progress. The value ’dormant’ has no
 meaning for an IEEE 802.12 interface.

 ifLastChange Refer to [7].

 ifInOctets The number of octets in valid MAC frames
 received on this interface, including the
 MAC header and FCS.

 ifInUcastPkts Refer to [7].

 ifInDiscards Refer to [7].

 ifInErrors The sum for this interface of
 dot12InIPMErrors,
 dot12InOversizeFrameErrors,
 dot12InDataErrors, and any additional
 internal errors that may occur in an
 implementation.

 ifInUnknownProtos Refer to [7].

 ifOutOctets The number of octets transmitted in MAC
 frames on this interface, including the MAC
 header and FCS.

 ifOutUcastPkts Refer to [7].

 ifOutDiscards Refer to [7].

Flick Standards Track [Page 6]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 ifOutErrors The number of implementation-specific
 internal transmit errors on this interface.

 ifName Locally-significant textual name for the
 interface (e.g. vg0).

 ifInMulticastPkts Refer to [7]. When dot12CurrentFramingType
 is frameType88025, this count includes
 packets addressed to functional addresses.

 ifInBroadcastPkts Refer to [7].

 ifOutMulticastPkts Refer to [7]. When dot12CurrentFramingType
 is frameType88025, this count includes
 packets addressed to functional addresses.

 ifOutBroadcastPkts Refer to [7].

 ifHCInOctets 64-bit version of ifInOctets.

 ifHCOutOctets 64-bit version of ifOutOctets

 ifHC*Pkts Not required for 100 MBit interfaces.
 Future IEEE 802.12 interfaces which operate
 at higher speeds may require implementation
 of these counters, but such interfaces are
 beyond the scope of this memo.

 ifLinkUpDownTrapEnable Refer to [7]. Default is ’enabled’.

 ifHighSpeed The speed of the interface in millions of
 bits per second. For current 802.12
 implementations, this will be equal to 100.

 ifPromiscuousMode Reflects whether the interface has
 successfully trained and is currently
 operating in promiscuous mode.
 dot12DesiredPromiscStatus is used to select
 the promiscuous mode to be requested in the
 next training attempt. Setting
 ifPromiscuousMode will update
 dot12DesiredPromiscStatus and cause the
 interface to attempt to retrain using the
 new promiscuous mode. After the interface
 has retrained, ifPromiscuousMode will
 reflect the mode that is in use, not the
 mode that was requested.

Flick Standards Track [Page 7]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 ifConnectorPresent This will normally be ’true’.

 ifStackHigherLayer Refer to section 3.3.1
 ifStackLowerLayer
 ifStackStatus

 ifRcvAddressAddress Refer to section 3.3.4.
 ifRcvAddressStatus
 ifRcvAddressType

3.4. Relation to RFC 1643, RFC 1650, and RFC 1748

 An IEEE 802.12 interface can be configured to operate in either
 ethernet or token ring framing mode. An IEEE 802.12 interface uses
 the frame format for the configured framing mode, but does not use
 the media access protocol for ethernet or token ring. Instead, IEEE
 802.12 defines its own media access protocol, the Demand Priority
 Access Method (DPAM).

 There are existing standards-track MIB modules for instrumenting
 ethernet-like interfaces and token ring interfaces. At the time of
 this writing, they are: STD 50, RFC 1643, "Definitions of Managed
 Objects for Ethernet-like Interface Types" [8]; RFC 1650,
 "Definitions of Managed Objects for Ethernet-like Interface Types
 using SMIv2" [9]; and RFC 1748, "IEEE 802.5 MIB using SMIv2" [10].
 These MIB modules are designed to instrument the media access
 protocol for these respective technologies. Since IEEE 802.12
 interfaces do not implement either of these media access protocols,
 an agent should not implement RFC 1643, RFC 1650, or RFC 1748 for
 IEEE 802.12 interfaces.

3.5. Relation to RFC 1749

 When an IEEE 802.12 interface is operating in token ring framing
 mode, and the end node supports token ring source routing, the agent
 should implement RFC 1749, the IEEE 802.5 Station Source Routing MIB
 [11] for those interfaces.

Flick Standards Track [Page 8]

RFC 2020 IEEE 802.12 Interface MIB October 1996

3.6. Master Mode Operation

 In an IEEE 802.12 network, "master" devices act as network
 controllers to decide when to grant requesting end-nodes permission
 to transmit. These master devices may be repeaters, or other active
 controller devices such as switches.

 Devices which do not act as network controllers, such as end-nodes or
 passive switches, are considered to be operating in "slave" mode.

 The dot12ControlMode object indicates if the interface is operating
 in master mode or slave mode.

3.7. Normal and High Priority Counters

 The IEEE 802.12 interface MIB does not provide normal priority
 transmit counters. Standardization of normal priority transmit
 counters could not be justified -- ifOutUcastPkts,
 ifOutMulticastPkts, ifOutBroadcastPkts, ifOutOctets,
 dot12OutHighPriorityFrames, and dot12OutHighPriorityOctets should
 suffice. More precisely, the number of normal priority frames
 transmitted can be calculated as:

 outNormPriorityFrames = ifOutUcastPkts +
 ifOutMulticastPkts +
 ifOutBroadcastPkts -
 dot12OutHighPriorityFrames

 The number of normal priority octets transmitted can be calculated
 as:

 outNormPriorityOctets = ifOutOctets -
 dot12OutHighPriorityOctets

 On the other hand, normal priority receive counters are provided.
 The main reason for this is that the normal priority and high
 priority counters include errored frames, whereas the ifIn*Pkts and
 ifInOctets do not include errored frames. dot12InNormPriorityFrames
 could be calculated, but the calculation is tedious:

 inNormPriorityFrames = ifInUcastPkts +
 ifInMulticastPkts +
 ifInBroadcastPkts +
 dot12InNullAddressedFrames +
 ifInErrors +
 ifInDiscards +
 ifInUnknownProtos -
 dot12InHighPriorityFrames

Flick Standards Track [Page 9]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 dot12InNormPriorityOctets includes octets in unreadable frames, which
 is not available elsewhere. The number of octets in unreadable
 frames can be calculated as:

 octetsInUnreadableFrames = dot12InNormPriorityOctets +
 dot12InHighPriorityOctets -
 ifInOctets

 Also, the total traffic at this interface can be calculated as:

 traffic = dot12InNormPriorityOctets +
 dot12InHighPriorityOctets +
 ifOutOctets

 In other words, the normal priority receive counters were deemed
 useful, whereas the normal priority transmit counters can be easily
 calculated from other available counters.

3.8. IEEE 802.12 Training Frames

 Training frames are special MAC frames that are used only during link
 initialization. Training frames are initially constructed by the
 device at the lower end of a link, which is the slave mode device for
 the link. The training frame format is as follows:

 +----+----+------------+--------------+----------+-----+
 | DA | SA | Req Config | Allow Config | Data | FCS |
 +----+----+------------+--------------+----------+-----+

 DA = destination address (six octets)
 SA = source address (six octets)
 Req Config = requested configuration (2 octets)
 Allow Config = allowed configuration (2 octets)
 Data = data (594 to 675 octets)
 FCS = frame check sequence (4 octets)

 Training frames are always sent with a null destination address. To
 pass training, an end node must use its source address in the source
 address field of the training frame. A repeater may use a non-null
 source address if it has one, or it may use a null source address.

Flick Standards Track [Page 10]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 The requested configuration field allows the slave mode device to
 inform the master mode device about itself and to request
 configuration options. The training response frame from the master
 mode device contains the slave mode device’s requested configuration
 from the training request frame. The currently defined format of the
 requested configuration field as defined in the IEEE Standard
 802.12-1995 standard is shown below. Please refer to the most
 current version of the IEEE document for a more up to date
 description of this field. In particular, the reserved bits may be
 used in later versions of the standard.

 First Octet: Second Octet:

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |v|v|v|r|r|r|r|r| |r|r|r|F|F|P|P|R|
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 vvv: The version of the 802.12 training protocol with which
 the training initiator is compliant. The current version
 is 100.
 r: Reserved bits (set to zero)
 FF: 00 = frameType88023
 01 = frameType88025
 10 = reserved
 11 = frameTypeEither
 PP: 00 = singleAddressMode
 01 = promiscuousMode
 10 = reserved
 11 = reserved
 R: 0 = the training initiator is an end node
 1 = the training initiator is a repeater

 The allowed configuration field allows the master mode device to
 respond with the allowed configuration. The slave mode device sets
 the contents of this field to all zero bits. The master mode device
 sets the allowed configuration field as follows:

 First Octet: Second Octet:

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |v|v|v|D|C|N|r|r| |r|r|r|F|F|P|P|R|
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 vvv: The version of the 802.12 training protocol with which
 the training responder is compliant. The current version
 is 100.

Flick Standards Track [Page 11]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 D: 0 = No duplicate address has been detected.
 1 = Duplicate address has been detected
 C: 0 = The requested configuration is compatible with the
 network.
 1 = The requested configuration is not compatible with
 the network. In this case, the FF, PP, and R bits
 indicate the configuration that would be allowed.
 N: 0 = Access will be allowed, providing the configuration
 is compatible (C = 0).
 1 = Access is not granted because of security
 restrictions
 r: Reserved bits (set to zero)
 FF: 00 = frameType88023 will be used
 01 = frameType88025 will be used
 10 = reserved
 11 = reserved
 PP: 00 = singleAddressMode
 01 = promiscuousMode
 10 = reserved
 11 = reserved
 R: 0 = Requested access as an end node is allowed
 1 = Requested access as a repeater is allowed

 Again, note that the most recent version of the IEEE 802.12 standard
 should be consulted for the most up to date definition of the
 requested configuration and allowed configuration fields.

 The data field contains between 594 and 675 octets and is filled in
 by the training initiator. The first 55 octets may be used for
 vendor specific protocol information. The remaining octets are all
 zeros. The length of the training frame combined with the
 requirement that 24 consecutive training frames be received without
 error to complete training ensures that marginal links will not
 complete training.

3.9. Mapping of IEEE 802.12 Managed Objects

 The following table lists all the managed objects defined for
 oEndNode in the IEEE 802.12 Standard, and the corresponding SNMP
 objects.

 IEEE 802.12 Managed Object Corresponding SNMP Object

 oEndNode
 .aBroadcastFramesReceived IF-MIB - ifInBroadcastPkts
 .aBroadcastFramesTransmitted IF-MIB - ifOutBroadcastPkts
 .aDataErrorFramesReceived dot12InDataErrors
 .aDesiredFramingType dot12DesiredFramingType

Flick Standards Track [Page 12]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 .aDesiredPromiscuousStatus dot12DesiredPromiscStatus
 .aFramesTransmitted IF-MIB - ifOutUCastPkts +
 ifOutMulticastPkts +
 ifOutBroadcastPkts
 .aFramingCapability dot12FramingCapability
 .aFunctionalAddresses IF-MIB - ifRcvAddressTable
 .aHighPriorityFramesReceived dot12InHighPriorityFrames
 .aHighPriorityFramesTransmitted dot12OutHighPriorityFrames
 .aHighPriorityOctetsReceived dot12InHighPriorityOctets or
 dot12InHCHighPriorityOctets
 .aHighPriorityOctetsTransmitted dot12OutHighPriorityOctets or
 dot12OutHCHighPriorityOctets
 .aIPMFramesReceived dot12InIPMErrors
 .aLastTrainingConfig dot12LastTrainingConfig
 .aMACID IF-MIB - ifIndex
 .aMACStatus dot12Status
 .aMACVersion dot12TrainingVersion
 .aMediaType <not yet mapped>
 Tranceiver MIB issue
 .aMulticastFramesReceived IF-MIB - ifInMulticastPkts
 .aMulticastFramesTransmitted IF-MIB - ifOutMulticastPkts
 .aMulticastReceiveStatus IF-MIB - ifRcvAddressTable
 .aNormalPriorityFramesReceived dot12InNormPriorityFrames
 .aNormalPriorityOctetsReceived dot12InNormPriorityOctets or
 dot12InHCNormPriorityOctets
 .aNullAddressedFramesReceived dot12InNullAddressedFrames
 .aOctetsTransmitted IF-MIB - ifOutOctets or
 ifHCOutOctets
 .aOversizeFramesReceived dot12InOversizeFrameErrors
 .aReadableFramesReceived IF-MIB - ifInUcastPkts +
 ifInMulticastPkts +
 ifInBroadcastPkts
 .aReadableOctetsReceived IF-MIB - ifInOctets or
 ifHCInOctets
 .aReadMulticastList IF-MIB - ifRcvAddressTable
 .aReadWriteMACAddress IF-MIB - ifPhysAddress
 .aTransitionsIntoTraining dot12TransitionIntoTrainings
 .acAddGroupAddress IF-MIB - ifRcvAddressTable
 .acClose dot12Commands: ’close’
 .acDeleteGroupAddress IF-MIB - ifRcvAddressTable
 .acExecuteSelftest IF-MIB - ifAdminStatus
 .acInitializeMAC dot12Commands: ’reset’
 .acOpen dot12Commands: ’open’

Flick Standards Track [Page 13]

RFC 2020 IEEE 802.12 Interface MIB October 1996

4. Definitions

 DOT12-IF-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 transmission, Counter32, Counter64, OBJECT-TYPE,
 MODULE-IDENTITY
 FROM SNMPv2-SMI
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 ifIndex
 FROM IF-MIB;

 dot12MIB MODULE-IDENTITY
 LAST-UPDATED "9602220452Z" -- February 22, 1996
 ORGANIZATION "IETF 100VG-AnyLAN MIB Working Group"
 CONTACT-INFO
 " John Flick

 Postal: Hewlett Packard Company
 8000 Foothills Blvd. M/S 5556
 Roseville, CA 95747-5556
 Tel: +1 916 785 4018
 Fax: +1 916 785 3583

 E-mail: johnf@hprnd.rose.hp.com"
 DESCRIPTION
 "This MIB module describes objects for
 managing IEEE 802.12 interfaces."
 ::= { transmission 45 }

 dot12MIBObjects OBJECT IDENTIFIER ::= { dot12MIB 1 }

 dot12ConfigTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dot12ConfigEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Configuration information for a collection of
 802.12 interfaces attached to a particular
 system."
 ::= { dot12MIBObjects 1 }

 dot12ConfigEntry OBJECT-TYPE
 SYNTAX Dot12ConfigEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION

Flick Standards Track [Page 14]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 "Configuration for a particular interface to an
 802.12 medium."
 INDEX { ifIndex }
 ::= { dot12ConfigTable 1 }

 Dot12ConfigEntry ::=
 SEQUENCE {
 dot12CurrentFramingType INTEGER,
 dot12DesiredFramingType INTEGER,
 dot12FramingCapability INTEGER,
 dot12DesiredPromiscStatus INTEGER,
 dot12TrainingVersion INTEGER,
 dot12LastTrainingConfig OCTET STRING,
 dot12Commands INTEGER,
 dot12Status INTEGER,
 dot12ControlMode INTEGER
 }

 dot12CurrentFramingType OBJECT-TYPE
 SYNTAX INTEGER {
 frameType88023(1),
 frameType88025(2),
 frameTypeUnknown(3)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "When dot12DesiredFramingType is one of
 ’frameType88023’ or ’frameType88025’, this is the
 type of framing asserted by the interface.

 When dot12DesiredFramingType is ’frameTypeEither’,
 dot12CurrentFramingType shall be one of
 ’frameType88023’ or ’frameType88025’ when the
 dot12Status is ’opened’. When the dot12Status is
 anything other than ’opened’,
 dot12CurrentFramingType shall take the value of
 ’frameTypeUnknown’."
 ::= { dot12ConfigEntry 1 }

 dot12DesiredFramingType OBJECT-TYPE
 SYNTAX INTEGER {
 frameType88023(1),
 frameType88025(2),
 frameTypeEither(3)
 }
 MAX-ACCESS read-write
 STATUS current

Flick Standards Track [Page 15]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 DESCRIPTION
 "The type of framing which will be requested by
 the interface during the next interface MAC
 initialization or open action.

 In master mode, this is the framing mode which
 will be granted by the interface. Note that
 for a master mode interface, this object must be
 equal to ’frameType88023’ or ’frameType88025’,
 since a master mode interface cannot grant
 ’frameTypeEither’."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aDesiredFramingType."
 ::= { dot12ConfigEntry 2 }

 dot12FramingCapability OBJECT-TYPE
 SYNTAX INTEGER {
 frameType88023(1),
 frameType88025(2),
 frameTypeEither(3)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The type of framing this interface is capable of
 supporting."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aFramingCapability."
 ::= { dot12ConfigEntry 3 }

 dot12DesiredPromiscStatus OBJECT-TYPE
 SYNTAX INTEGER {
 singleAddressMode(1),
 promiscuousMode(2)
 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object is used to select the promiscuous
 mode that this interface will request in the next
 training packet issued on this interface.
 Whether the repeater grants the requested mode
 must be verified by examining the state of the PP
 bits in the corresponding instance of
 dot12LastTrainingConfig.

Flick Standards Track [Page 16]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 In master mode, this object controls whether or
 not promiscuous mode will be granted by the
 interface when requested by the lower level
 device.

 Note that this object indicates the desired mode
 for the next time the interface trains. The
 currently active mode will be reflected in
 dot12LastTrainingConfig and in ifPromiscuousMode."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aDesiredPromiscuousStatus."
 ::= { dot12ConfigEntry 4 }

 dot12TrainingVersion OBJECT-TYPE
 SYNTAX INTEGER (0..7)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value that will be used in the version bits
 (vvv bits) in training frames on this interface.
 This is the highest version number supported by
 this MAC."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aMACVersion."
 ::= { dot12ConfigEntry 5 }

 dot12LastTrainingConfig OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(2))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This 16 bit field contains the configuration
 bits from the most recent error-free training
 frame received during training on this interface.
 Training request frames are received when in
 master mode, while training response frames are
 received in slave mode. On master mode interfaces,
 this object contains the contents of the
 requested configuration field of the most recent
 training request frame. On slave mode interfaces,
 this object contains the contents of the allowed
 configuration field of the most recent training
 response frame. The format of the current version
 of this field is described in section 3.8. Please
 refer to the most recent version of the IEEE
 802.12 standard for the most up-to-date definition

Flick Standards Track [Page 17]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 of the format of this object."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aLastTrainingConfig."
 ::= { dot12ConfigEntry 6 }

 dot12Commands OBJECT-TYPE
 SYNTAX INTEGER {
 noOp(1),
 open(2),
 reset(3),
 close(4)
 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "If the current value of dot12Status is ’closed’,
 setting the value of this object to ’open’ will
 change the corresponding instance of MIB-II’s
 ifAdminStatus to ’up’, cause this interface to
 enter the ’opening’ state, and will cause training
 to be initiated on this interface. The progress
 and success of the open is given by the values of
 the dot12Status object. Setting this object to
 ’open’ when dot12Status has a value other than
 ’closed’ has no effect.

 Setting the corresponding instance of ifAdminStatus
 to ’up’ when the current value of dot12Status is
 ’closed’ will have the same effect as setting this
 object to ’open’. Setting ifAdminStatus to ’up’
 when dot12Status has a value other than ’closed’
 has no effect.

 Setting the value of this object to ’close’ will
 move this interface into the ’closed’ state and
 cause all transmit and receive actions to stop.
 This object will then have to be set to ’open’ in
 order to reinitiate training.

 Setting the corresponding instance of ifAdminStatus
 to ’down’ will have the same effect as setting this
 object to ’close’.

 Setting the value of this object to ’reset’ when
 the current value of dot12Status has a value other
 than ’closed’ will reset the interface. On a
 reset, all MIB counters should retain their values.

Flick Standards Track [Page 18]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 This will cause the MAC to initiate an
 acInitializeMAC action as specified in IEEE 802.12.
 This will cause training to be reinitiated on this
 interface. Setting this object to ’reset’ when
 dot12Status has a value of ’closed’ has no effect.
 Setting this object to ’reset’ has no effect on the
 corresponding instance of ifAdminStatus.

 Setting the value of this object to ’noOp’ has no
 effect.

 When read, this object will always have a value
 of ’noOp’."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.2,
 acOpen, acClose, acInitializeMAC.
 Also, RFC1231 IEEE802.5 Token Ring MIB,
 dot5Commands."
 ::= { dot12ConfigEntry 7 }

 dot12Status OBJECT-TYPE
 SYNTAX INTEGER {
 opened(1),
 closed(2),
 opening(3),
 openFailure(5),
 linkFailure(6)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The current interface status with respect to
 training. One of the following values:

 opened - Training has completed
 successfully.
 closed - MAC has been disabled by
 setting dot12Commands to
 ’close’.
 opening - MAC is in training. Training
 signals have been received.
 openFailure - Passed 24 error-free packets,
 but there is a problem, noted
 in the training configuration
 bits (dot12LastTrainingConfig).
 linkFailure - Training signals not received,
 or could not pass 24 error-free
 packets.

Flick Standards Track [Page 19]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 Whenever the dot12Commands object is set to
 ’close’ or ifAdminStatus is set to ’down’, the MAC
 will go silent, dot12Status will be ’closed’, and
 ifOperStatus will be ’down’.

 When the value of this object is equal to ’closed’
 and the dot12Commands object is set to ’open’ or
 the ifAdminStatus object is set to ’up’, training
 will be initiated on this interface. When the
 value of this object is not equal to ’closed’ and
 the dot12Commands object is set to ’reset’,
 training will be reinitiated on this interface.
 Note that sets of some other objects (e.g.
 dot12ControlMode) or external events (e.g. MAC
 protocol violations) may also cause training to be
 reinitiated on this interface.

 When training is initiated or reinitiated on an
 interface, the end node will send Training_Up to
 the master and initially go to the ’linkFailure’
 state and ifOperStatus will go to ’down’.
 When the master sends back Training_Down,
 dot12Status will change to the ’opening’ state,
 and training packets will be transferred.

 After all of the training packets have been
 passed, dot12Status will change to ’linkFailure’
 if 24 consecutive error-free packets were not
 passed, ’opened’ if 24 consecutive error-free
 packets were passed and the training
 configuration bits were OK, or ’openFailure’ if
 there were 24 consecutive error-free packets, but
 there was a problem with the training
 configuration bits.

 When in the ’openFailure’ state, the
 dot12LastTrainingConfig object will contain the
 configuration bits from the last training
 packet which can be examined to determine the
 exact reason for the training configuration
 failure.

 If training did not succeed (dot12Status is
 ’linkFailure’ or ’openFailure), the entire
 process will be restarted after
 MAC_Retraining_Delay_Timer seconds.

 If training does succeed (dot12Status changes to

Flick Standards Track [Page 20]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 ’opened’), ifOperStatus will change to ’up’. If
 training does not succeed (dot12Status changes to
 ’linkFailure’ or ’openFailure’), ifOperStatus will
 remain ’down’."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aMACStatus."
 ::= { dot12ConfigEntry 8 }

 dot12ControlMode OBJECT-TYPE
 SYNTAX INTEGER {
 masterMode(1),
 slaveMode(2),
 learn(3)
 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object is used to configure and report
 whether or not this interface is operating in
 master mode. In a Demand Priority network, end
 node interfaces typically operate in slave mode,
 while switch interfaces may control the Demand
 Priority protocol and operate in master mode.

 This object may be implemented as a read-only
 object by those agents and interfaces that do not
 implement software control of master mode. In
 particular, interfaces that cannot operate in
 master mode, and interfaces on which master mode
 is controlled by a pushbutton on the device,
 should implement this object read-only.

 Some interfaces do not require network management
 configuration of this feature and can autosense
 whether to use master mode or slave mode. The
 value ’learn’ is used for that purpose. While
 autosense is taking place, the value ’learn’ is
 returned.

 A network management operation which modifies the
 value of dot12ControlMode causes the interface
 to retrain."
 ::= { dot12ConfigEntry 9 }

 dot12StatTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dot12StatEntry
 MAX-ACCESS not-accessible

Flick Standards Track [Page 21]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 STATUS current
 DESCRIPTION
 "Statistics for a collection of 802.12 interfaces
 attached to a particular system."
 ::= { dot12MIBObjects 2 }

 dot12StatEntry OBJECT-TYPE
 SYNTAX Dot12StatEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Statistics for a particular interface to an
 802.12 medium. The receive statistics in this
 table apply only to packets received by this
 station (i.e., packets whose destination address
 is either the local station address, the
 broadcast address, or a multicast address that
 this station is receiving, unless the station is
 in promiscuous mode)."
 INDEX { ifIndex }
 ::= { dot12StatTable 1 }

 Dot12StatEntry ::=
 SEQUENCE {
 dot12InHighPriorityFrames Counter32,
 dot12InHighPriorityOctets Counter32,
 dot12InNormPriorityFrames Counter32,
 dot12InNormPriorityOctets Counter32,
 dot12InIPMErrors Counter32,
 dot12InOversizeFrameErrors Counter32,
 dot12InDataErrors Counter32,
 dot12InNullAddressedFrames Counter32,
 dot12OutHighPriorityFrames Counter32,
 dot12OutHighPriorityOctets Counter32,
 dot12TransitionIntoTrainings Counter32,
 dot12HCInHighPriorityOctets Counter64,
 dot12HCInNormPriorityOctets Counter64,
 dot12HCOutHighPriorityOctets Counter64
 }

 dot12InHighPriorityFrames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of high priority frames
 that have been received on this interface.
 Includes both good and bad high priority frames,

Flick Standards Track [Page 22]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 as well as high priority training frames. Does
 not include normal priority frames which were
 priority promoted."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aHighPriorityFramesReceived."
 ::= { dot12StatEntry 1 }

 dot12InHighPriorityOctets OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of the number of octets
 contained in high priority frames that have been
 received on this interface. This counter is
 incremented by OctetCount for each frame received
 on this interface which is counted by
 dot12InHighPriorityFrames.

 Note that this counter will roll over very
 quickly. It is provided for backward
 compatibility for Network Management protocols
 that do not support 64 bit counters (e.g. SNMP
 version 1)."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aHighPriorityOctetsReceived."
 ::= { dot12StatEntry 2 }

 dot12InNormPriorityFrames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of normal priority frames
 that have been received on this interface.
 Includes both good and bad normal priority
 frames, as well as normal priority training
 frames and normal priority frames which were
 priority promoted."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aNormalPriorityFramesReceived."
 ::= { dot12StatEntry 3 }

 dot12InNormPriorityOctets OBJECT-TYPE
 SYNTAX Counter32

Flick Standards Track [Page 23]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of the number of octets
 contained in normal priority frames that have
 been received on this interface. This counter is
 incremented by OctetCount for each frame received
 on this interface which is counted by
 dot12InNormPriorityFrames.

 Note that this counter will roll over very
 quickly. It is provided for backward
 compatibility for Network Management protocols
 that do not support 64 bit counters (e.g. SNMP
 version 1)."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aNormalPriorityOctetsReceived."
 ::= { dot12StatEntry 4 }

 dot12InIPMErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of the number of frames
 that have been received on this interface with an
 invalid packet marker and no PMI errors. A
 repeater will write an invalid packet marker to
 the end of a frame containing errors as it is
 forwarded through the repeater to the other
 ports. This counter is incremented by one for
 each frame received on this interface which has
 had an invalid packet marker added to the end of
 the frame."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aIPMFramesReceived."
 ::= { dot12StatEntry 5 }

 dot12InOversizeFrameErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of oversize frames
 received on this interface. This counter is
 incremented by one for each frame received on

Flick Standards Track [Page 24]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 this interface whose OctetCount is larger than
 the maximum legal frame size. The frame size
 which causes this counter to increment is
 dependent on the current framing type."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aOversizeFramesReceived."
 ::= { dot12StatEntry 6 }

 dot12InDataErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of errored frames
 received on this interface. This counter is
 incremented by one for each frame received on
 this interface with any of the following errors:
 bad FCS (with no IPM), PMI errors (excluding
 frames with an IPM as the only PMI error),
 undersize, bad start of frame delimiter, or bad
 end of packet marker. Does not include frames
 counted by dot12InIPMErrors,
 dot12InNullAddressedFrames, or
 dot12InOversizeFrameErrors.

 This counter indicates problems with the cable
 directly attached to this interface, while
 dot12InIPMErrors indicates problems with remote
 cables."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aDataErrorFramesReceived."
 ::= { dot12StatEntry 7 }

 dot12InNullAddressedFrames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of null addressed frames
 received on this interface. This counter is
 incremented by one for each frame received on
 this interface with a destination MAC address
 consisting of all zero bits. Both void and
 training frames are included in this counter.

 Note that since this station would normally not

Flick Standards Track [Page 25]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 receive null addressed frames, this counter is
 only incremented when this station is operating
 in promiscuous mode or in training."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aNullAddressedFramesReceived."
 ::= { dot12StatEntry 8 }

 dot12OutHighPriorityFrames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This counter is incremented by one for each high
 priority frame successfully transmitted out this
 interface."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aHighPriorityFramesTransmitted."
 ::= { dot12StatEntry 9 }

 dot12OutHighPriorityOctets OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This counter is incremented by OctetCount for
 each frame counted by dot12OutHighPriorityFrames.

 Note that this counter will roll over very
 quickly. It is provided for backward
 compatibility for Network Management protocols
 that do not support 64 bit counters (e.g. SNMP
 version 1)."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aHighPriorityOctetsTransmitted."
 ::= { dot12StatEntry 10 }

 dot12TransitionIntoTrainings OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of the number of times
 this interface has entered the training state.
 This counter is incremented by one each time
 dot12Status transitions to ’linkFailure’ from any

Flick Standards Track [Page 26]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 state other than ’opening’ or ’openFailure’."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aTransitionsIntoTraining."
 ::= { dot12StatEntry 11 }

 dot12HCInHighPriorityOctets OBJECT-TYPE
 SYNTAX Counter64
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of the number of octets
 contained in high priority frames that have been
 received on this interface. This counter is
 incremented by OctetCount for each frame received
 on this interface which is counted by
 dot12InHighPriorityFrames.

 This counter is a 64 bit version of
 dot12InHighPriorityOctets. It should be used by
 Network Management protocols which support 64 bit
 counters (e.g. SNMPv2)."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aHighPriorityOctetsReceived."
 ::= { dot12StatEntry 12 }

 dot12HCInNormPriorityOctets OBJECT-TYPE
 SYNTAX Counter64
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object is a count of the number of octets
 contained in normal priority frames that have
 been received on this interface. This counter is
 incremented by OctetCount for each frame received
 on this interface which is counted by
 dot12InNormPriorityFrames.

 This counter is a 64 bit version of
 dot12InNormPriorityOctets. It should be used by
 Network Management protocols which support 64 bit
 counters (e.g. SNMPv2)."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aNormalPriorityOctetsReceived."
 ::= { dot12StatEntry 13 }

Flick Standards Track [Page 27]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 dot12HCOutHighPriorityOctets OBJECT-TYPE
 SYNTAX Counter64
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This counter is incremented by OctetCount for
 each frame counted by dot12OutHighPriorityFrames.

 This counter is a 64 bit version of
 dot12OutHighPriorityOctets. It should be used by
 Network Management protocols which support 64 bit
 counters (e.g. SNMPv2)."
 REFERENCE
 "IEEE Standard 802.12-1995, 13.2.5.2.1,
 aHighPriorityOctetsTransmitted."
 ::= { dot12StatEntry 14 }

 -- conformance information

 dot12Conformance OBJECT IDENTIFIER ::= { dot12MIB 2 }

 dot12Compliances OBJECT IDENTIFIER ::= { dot12Conformance 1 }
 dot12Groups OBJECT IDENTIFIER ::= { dot12Conformance 2 }

 -- compliance statements

 dot12Compliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for managed network
 entities that have 802.12 interfaces."

 MODULE -- this module
 MANDATORY-GROUPS { dot12ConfigGroup, dot12StatsGroup }

 OBJECT dot12DesiredFramingType
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access to this object is not required."

 OBJECT dot12DesiredPromiscStatus
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access to this object is not required."

 OBJECT dot12Commands
 MIN-ACCESS read-only
 DESCRIPTION

Flick Standards Track [Page 28]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 "Write access to this object is not required."

 OBJECT dot12ControlMode
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access to this object is not required."
 ::= { dot12Compliances 1 }

 -- units of conformance

 dot12ConfigGroup OBJECT-GROUP
 OBJECTS { dot12DesiredFramingType,
 dot12FramingCapability,
 dot12DesiredPromiscStatus,
 dot12TrainingVersion,
 dot12LastTrainingConfig,
 dot12Commands, dot12Status,
 dot12CurrentFramingType,
 dot12ControlMode }
 STATUS current
 DESCRIPTION
 "A collection of objects for managing the status
 and configuration of IEEE 802.12 interfaces."
 ::= { dot12Groups 1 }

 dot12StatsGroup OBJECT-GROUP
 OBJECTS { dot12InHighPriorityFrames,
 dot12InHighPriorityOctets,
 dot12InNormPriorityFrames,
 dot12InNormPriorityOctets,
 dot12InIPMErrors,
 dot12InOversizeFrameErrors,
 dot12InDataErrors,
 dot12InNullAddressedFrames,
 dot12OutHighPriorityFrames,
 dot12OutHighPriorityOctets,
 dot12TransitionIntoTrainings,
 dot12HCInHighPriorityOctets,
 dot12HCInNormPriorityOctets,
 dot12HCOutHighPriorityOctets }
 STATUS current
 DESCRIPTION
 "A collection of objects providing statistics for
 IEEE 802.12 interfaces."
 ::= { dot12Groups 2 }

 END

Flick Standards Track [Page 29]

RFC 2020 IEEE 802.12 Interface MIB October 1996

5. Acknowledgements

 This document was produced by the IETF 100VG-AnyLAN Working Group.
 It is based on the work of IEEE 802.12.

6. References

 [1] Information processing systems - Open Systems Interconnection -
 Specification of Abstract Syntax Notation One (ASN.1),
 International Organization for Standardization. International
 Standard 8824 (December, 1987).

 [2] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Structure of Management Information for Version
 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1902,
 SNMP Research, Inc., Cisco Systems, Inc., Dover Beach
 Consulting, Inc., International Network Services, January 1996.

 [3] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Textual Conventions for Version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1903, SNMP Research,
 Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc.,
 International Network Services, January 1996.

 [4] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Conformance Statements for Version 2 of the
 Simple Network Management Protocol (SNMPv2)", RFC 1904, SNMP
 Research, Inc., Cisco Systems, Inc., Dover Beach Consulting,
 Inc., International Network Services, January 1996.

 [5] McCloghrie, K., and M. Rose, "Management Information Base for
 Network Management of TCP/IP-based internets - MIB-II", STD 17,
 RFC 1213, Hughes LAN Systems, Performance Systems International,
 March 1991.

 [6] IEEE, "Demand Priority Access Method, Physical Layer and
 Repeater Specifications for 100 Mb/s Operation", IEEE Standard
 802.12-1995"

 [7] McCloghrie, K., and Kastenholz, F., "Evolution of the Interfaces
 Group of MIB-II", RFC 1573, Hughes LAN Systems, FTP Software,
 January 1994.

 [8] Kastenholz, F., "Definitions of Managed Objects for the
 Ethernet-like Interface Types", STD 50, RFC 1643, FTP Software,
 Inc., July, 1994.

Flick Standards Track [Page 30]

RFC 2020 IEEE 802.12 Interface MIB October 1996

 [9] Kastenholz, F., "Definitions of Managed Objects for the
 Ethernet-like Interface Types using SMIv2", RFC 1650, FTP
 Software, Inc., August, 1994.

 [10] McCloghrie, K., and Decker, E., "IEEE 802.5 MIB using SMIv2",
 RFC 1748, Cisco Systems, Inc., December, 1994.

 [11] McCloghrie, K., Baker, F., and Decker, E., "IEEE 802.5 Station
 Source Routing MIB using SMIv2", RFC 1749, Cisco Systems, Inc.,
 December, 1994.

7. Security Considerations

 Security issues are not discussed in this memo.

8. Author’s Address

 John Flick
 Hewlett Packard Company
 8000 Foothills Blvd. M/S 5556
 Roseville, CA 95747-5556

 Phone: +1 916 785 4018
 Email: johnf@hprnd.rose.hp.com

Flick Standards Track [Page 31]

