
Network Working Group L. Daigle
Request for Comments: 2016 P. Deutsch
Category: Experimental B. Heelan
 C. Alpaugh
 M. Maclachlan
 Bunyip Information Systems, Inc.
 October 1996

 Uniform Resource Agents (URAs)

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. This memo does not specify an Internet standard of any
 kind. Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Abstract

 This paper presents an experimental architecture for an agent system
 that provides sophisticated Internet information access and
 management. Not a generalized architecture for active objects that
 roam the Internet, these agents are modeled as extensions of existing
 pieces of the Internet information infrastructure. This experimental
 agent technology focuses on the necessary information structures to
 encapsulate Internet activities into objects that can be activated,
 transformed, and combined into larger structured activities.

Acknowledgements

 Several people have shared thoughts and viewpoints that have helped
 shape the thinking behind this work over the past few years. We’d
 like to thank, in particular, Chris Weider, Patrik Faltstrom, Michael
 Mealling, Alan Emtage, and the participants in the IETF URI Working
 Group for many thought-provoking discussions.

 Sima Newell provided insightful comments on the document -- thanks to
 her it is much more readable!

Introduction

 This document outlines an experimental agent system architecture that
 was designed for the purpose of addressing high-level Internet
 activities through encapsulation of protocol-specific actions.
 Originally presented to the Uniform Resource Identifier (URI) working
 group at the IETF, this technology was seen as taking a step beyond
 resource location and resource naming. By providing a structured
 mechanism for abstracting characteristics of desired information and

Daigle, et. al. Experimental [Page 1]

RFC 2016 Uniform Resource Agents October 1996

 distancing the necessary access incantations from the client, the
 notion of a Uniform Resource Agent (URA) was created.

 The evolution of Internet information systems has been characterized
 by building upon successive layers of encapsulated technologies.
 Machine address numbers were devised, and then encapsulated in
 advertised machine names, which has allowed the evolution of the
 Domain Name System (DNS) [RFC1034, RFC1035]. Protocols were
 developed for accessing Internet resources of various descriptions,
 and then uniform mechanisms for specifying resource locations,
 standardized across protocol types, were developed (URLs) [RFC1738].
 Each layer of Internet information primitives has served as the
 building blocks for the next level of abstraction and sophistication
 of information access, location, discovery and management.

 The work described in this paper is an experimental system designed
 to take another step in encapsulation. While TCP/IP protocols for
 routing, addressing, etc, have permitted the connection and
 accessibility of a plethora of information services on the Internet,
 these must yet be considered a diverse collection of heterogeneous
 resources. The World Wide Web effort is the most successful to date
 in attempting to knit these resources into a cohesive whole.
 However, the activity best-supported by this structure is (human)
 browsing of these resources as documents. The URA initiative
 explores the possibility of specifying an activity with the same kind
 of precision accorded to resource naming and identification. By
 focusing on activities, and not actions, URAs encapsulate resource
 access mechanisms based on commonality of information content, not
 protocol similarity.

 An invoker -- human or otherwise -- may delegate an entire set of
 tasks to a fully-instantiated URA. The nature of the tasks is
 completely specified by the agent, because it encapsulates knowledge
 about relevant Internet resources and the information required in
 order to access them. In this way, URAs insulate invokers from the
 details of Internet protocols while allowing them to carry out high-
 level Internet activities (such as searching a set of web pages and
 news groups relevant to a given topic). Also, by formally specifying
 a high-level Internet activity in an agent, the same activity can be
 repeated at a later date by the same invoker, someone else or even
 another agent. Moreover, the agent object may easily be modified to
 carry out another related task.

 More detail describing the underlying philosophy of this particular
 approach can be found in [IIAW95].

Daigle, et. al. Experimental [Page 2]

RFC 2016 Uniform Resource Agents October 1996

Examples

 As a very simple example, consider the client task of subscribing to
 a mailing list. There are many mechanisms for providing users with
 information necessary to complete a subscription. Currently, all
 applications which provide the ability to subscribe to mailing lists
 must contain protocol-aware code to carry out the task once the
 requisite personal data has been solicited from the user.
 Furthermore, any application program that embeds the ability to
 subscribe in its code necessarily limits the set of mailing lists to
 which a client can subscribe (i.e, to those types foreseen by the
 software’s creators). If, instead, there is an agent to which this
 task can be delegated, all applications can make use of the agent,
 and that agent becomes responsible for carrying out the necessary
 interactions to complete the subscription. Furthermore, that agent
 may be a client to other agents which can supply particular
 information about how to subscribe to new types of mail servers, etc.
 URAs have been explored as an agent technology to address just these
 types of issues.

Relationship to Other Internet Agents

 A number of Internet-aware agent and transportable code systems have
 become popular -- Java [JAVA], TCL [TCL] and Safe-TCL, Telescript
 [TELE], and the TACOMA system [TACOMA], to name a few of them. To
 understand the scope of the problem that URAs tackle, it is helpful
 to understand how these systems differ from the URA approach. Some
 of these agent systems, like Java, focus on providing mechanisms for
 creating and distributing (inter)active documents in the World Wide
 Web. Others, like TACOMA, have more general intentions of providing
 environments for mobile, interacting processes.

 While each of these systems makes its individual contribution to
 solving the transportation, communication, and security issues
 normally associated with agent systems, they yield more objects that
 exist within the Internet information space. That is, while they may
 permit individual users to have a more sophisticated interaction with
 a particular information resource, they do not address the more
 general Internet problems of naming, identifying, locating resources,
 and locating the same or similar resources again at a later date. It
 is this set of problems that URAs specifically set out to address.

 In order to create these URA objects that encapsulate a set of
 Internet activities, it is necessary to specify their operating
 environment and design structure. Together, these form an
 experimental architecture for URAs, which can be evaluated in a
 preliminary way through a prototype implementation. The remainder of
 this paper describes such an experimental architecture, and outlines

Daigle, et. al. Experimental [Page 3]

RFC 2016 Uniform Resource Agents October 1996

 a prototype application built to test the concepts involved in the
 creation and execution of URAs.

The Experimental Architecture

 The main goal in designing the URA architecture was to provide a
 mechanism for separating client need descriptions from the
 specifications of mechanisms for satisfying those needs. For
 example, from the client’s perspective, the need to find MIDI music
 files is quite distinct from the particular Internet resource actions
 that might be necessary to find them at a given point in time. This
 one need might be best met by integrating information from several
 very different sources. Also, the client may have the same need on a
 different day, but there may be new or different resources to call on
 to satisfy it.

 A further goal was to provide very structured specifications of the
 Internet actions carried out by a particular URA. By making the
 structure of an action explicit, it becomes possible to operate on
 portions of an agent structure without requiring an understanding of
 the complete semantics of its activity.

 At the centre of the URA architecture is the concept of a
 (persistent) specification of an activity. For purposes that should
 become clear as the expected usage of URAs is described in more
 detail, we choose to support this concept with the following
 requirements of the architecture:

 - there is a formalized environment in which these specifications
 are examined and executed and otherwise manipulated. This is
 referred to as a URAgency.

 - the activity specifications are modular, and independent of a
 given URAgency environment. Thus, they exist as object constructs
 that can be shared amongst URAgencies. There is a standardized
 virtual structure of these URA objects, although different
 types may exist, with different underlying implementations.

Basic URAgency Requirements

 In the most abstract sense, a URAgency is a software system that
 manipulates URA objects. In the terminology of objects, a URAgency
 identifies the types of URAs it handles, and is responsible for
 applying methods to objects of those types. For the purposes of this
 experimental work, the only methods it is required to support are
 those to get information about a given URA, and to execute a URA.

Daigle, et. al. Experimental [Page 4]

RFC 2016 Uniform Resource Agents October 1996

 The expected result of applying the "get information" method to a URA
 is a description of some or all of the URA following the standardized
 virtual structure of a URA object, outlined below.

 The appropriate way to "execute" a URA is to supply information for
 the individual URA data segments (in effect, to permit the creation
 of an instance of a virtual object), or to identify a URA instance.
 Again, the information is to be supplied in accordance with the
 virtual structure below.

 A URAgency claiming to handle a particular type of URA must have the
 ability to map the implementation structure of that type of URA into
 and out of the standard virtual URA structure. The URAgency must also
 know how to activate the URA, and it must satisfy any runtime
 dependencies for that type of URA.

 For example, a URA type may consist of a Pascal program binary which,
 when run with particular command line arguments, yields information
 in the standard URA object structure. Activating this type of URA
 might consist of executing the Pascal binary with an input file
 containing all the necessary data segments. A URAgency claiming to
 handle this sort of URA type must first be able to provide an
 environment to execute the Pascal binary (for whatever platform it
 was compiled), and also be able to interact with the Pascal binary
 according to these conventions to get information about the URA, or
 execute it.

 As an alternative example, a URA type may consist of a script in some
 interpreted language, with the URA object structure embedded as data
 structures within the script. A URAgency handling this type of URA
 might have to be able to parse the script to pull out the standard
 URA object structure, and provide the script language interpreter for
 the purposes of executing the URA.

URA Object Structure

 In order to capture the necessary information for carrying out the
 type of Internet activity described in the introductory paragraphs of
 this document, six basic (virtual) components of a URA object have
 been identified. Any implementation of a URA type is expected to be
 able to conform to this structure within the context of a URAgency.

 The six basic components of a URA object are:

URA HEADER:
 Identification of the URA object, including a URA name, type
 and abstract, creator name, and the resources required by the
 URA.

Daigle, et. al. Experimental [Page 5]

RFC 2016 Uniform Resource Agents October 1996

ACTIVATION DATA:
 Specification of the data elements required to carry out the
 URA activity. For example, in the case of an Internet search
 for "people", this could include specification of fields for
 person name, organization, e-mail address.

TARGETS:
 Specification of the URL/URN’s to be accessed to carry out the
 activity. Note that, until URN’s are in common use, the
 ability to adjust URLs will be necessary. A key issue for
 URAs is the ability to transport them and activate them far
 from the creator’s originating site. This may have
 implications in terms of accessibility of resource sites. For
 example, a software search created in Canada will likely
 access a Canadian Archie server, and North American ftp sites.
 However, an invoker in Australia should not be obliged to edit
 the URA object in order to render it relevant in Australia.
 The creator, then, can use this section to specify the
 expected type of service, with variables for the parts
 that can be modified in context (e.g., the host name for an
 Archie server, or a mirror ftp site).

EXPERIENCE INFORMATION:
 Specification of data elements that are not strictly involved
 in conversing with the targets in order to carry out the
 agent’s activity. This space can be used to store information
 from one invocation of a URA instance to the next.
 This kind of information could include date of last
 execution, or URLs of resources located on a previous
 invocation of the agent.

ACTIVITY:
 If URAs were strictly data objects, specifying required data
 and URL/URN’s would suffice to capture the essence of the
 composite net interaction. However, the variability of
 Internet resource accesses and the scope of what URAs could
 accomplish in the net environment seem to suggest the need to
 give the creator some means of organizing the instantiation of
 the component URL/URN’s. Thus, the body of the URA should
 contain a scripting mechanism that minimally allows
 conditional instantiation of individual URL/URN’s. These
 conditions could be based on which (content) data elements the
 user provided, or accessibility of one URL/URN, etc. It also
 provides a mechanism for suggesting scheduling of URL/URN
 instantiation.

Daigle, et. al. Experimental [Page 6]

RFC 2016 Uniform Resource Agents October 1996

 The activity is specified by a script or program in a language
 specified by the URA type, or by the URA header information.
 All the required activation data, targets, and experience
 information are referenced by their specification names.

RESPONSE FILTER:
 The main purpose of the ACTIVITY module is to specify the
 steps necessary to take the ACTIVATION DATA, contact the
 TARGETS, and collect responses from those services. The
 purpose of the RESPONSE FILTER module is to transform those
 responses into the result of the URA invocation. This
 transformation may be along the lines of reformatting
 some text, or it may be a more elaborate interpretation
 such as a relevance rating for a retrieved HTML page.

 The response filter is specified by a script or program in a
 language specified by the URA type, or by the URA header
 information. All the required activation data, targets, and
 experience information are referenced by their specification
 names.

 See Appendix 1 for a more detailed description of the components of a
 URA. Appendix 2 contains a sample virtual URA structure.

The Architecture in Action

 Having introduced the required capabilities of the URAgency and
 virtual structure of URA objects, it is now time to elaborate on the
 tasks and interactions that are best supported by URAs.

 URAs are constructed by identifying net-based resources of interest
 (targets) to carry out a particular task. The activation data
 component of a URA is the author’s mechanism for specifying (to the
 invoker) the elements of information that are required for successful
 execution . An invoker creates an instance of a URA object by
 providing data that is consistent with, or fills in, this template.
 Such an instance encapsulates everything that the agent "needs to
 know" in order to contact the specified target(s), make a request of
 the resource ("get", "search", etc.) and return a result to the
 invoker. This encapsulation is a sophisticated identification of the
 task results.

 For example, in the case of a mailing list subscription URA, the
 creator will identify the target URL for a resource that handles list
 subscription (e.g., an HTML form), and specify the data required by
 that resource (such as user name, user mail address, and mailing list
 identifier). When an invoker provides that information and
 instantiates the URA, the resulting object completely encapsulates

Daigle, et. al. Experimental [Page 7]

RFC 2016 Uniform Resource Agents October 1996

 all that is needed in order to subscribe the user -- the subscription
 result is identified.

 URAs are manipulated through the application of methods. This, in
 turn , is governed by the URAgency with which the invoker is
 interacting. However, because the virtual structure of URAs is
 represented consistently across URA types and URAgencies, a URAgency
 can act as one of the targets of a URA. Since methods can be applied
 to URAs remotely, URAs can act as invokers of URAs. This can yield a
 complex structure of task modules.

 For example, a URA designed to carry out a generalized search of
 book-selling resources might make use of individual URAs tailored to
 each resource. Thus, the top-level URA becomes the orchestrating URA
 for access to a number of disparate resources, while being insulated
 from the minute details of accessing those resources.

A Prototype Implementation

 The experimental work with URAs includes a prototype implementation
 of URA objects. These are written in the Tcl scripting language. A
 sample prototype Tcl URA can be found in Appendix 3.

 The URAgency that was created to handle these URAs is part of the
 Silk Desktop Internet Resource Discovery tool. Silk provides a
 graphical user interface environment that allows the user to access
 and search for Internet information without having to know where to
 look or how to look. Silk presents a list of the available URAs to
 carry out these activities (e.g., "search for tech reports" or
 "hotlist"). For each activity, the user is prompted for the
 activation data, and Silk’s URAgency executes the URA. The Silk
 software also supports the creation and maintenance of URA object
 instances. Users can add new URAs by creating new Tcl scripts (per
 the guidelines in the "URA Writer’s Guide", available with the Silk
 software. See [SILK]). The Silk graphical interface hides some of
 the mechanics of the underlying URAgency. A more directly-accessible
 version of this URAgency will become available.

Conclusions

 This work was originally conceived as an extension to the family of
 Uniform Resource Identifiers (URIs): Uniform Resource Locators
 (URLs), Uniform Resource Characteristics (URCs), and the proposed
 Uniform Resource Names (URNs). The approach of formalizing the
 characteristics of an information task in a standardized object
 structure is seen as a means of identifying a class of resources, and
 contributes to the level of abstraction with which users can refer to
 Internet resources.

Daigle, et. al. Experimental [Page 8]

RFC 2016 Uniform Resource Agents October 1996

 Although still in its experimental stages, this work has already
 evoked interest and shown promise in the area of providing mechanisms
 for building more advanced tools to interact with the Internet at a
 more sophisticated level than just browsing web pages.

 One of the major difficulties that has been faced in developing a
 collection of URAs is the brittleness induced by interacting with
 services that are primarily geared towards human-users. Small
 changes in output formats that are easily discernible by the human
 eye can be entirely disruptive to a software client that must apply a
 parsing and interpretation mechanism based on placement of cues in
 the text. This problem is certainly not unique to URAs -- any
 software acting upon results from such a service is affected.
 Perhaps there is the need for an evolution of "service entrances" to
 information servers on the Internet -- mechanisms for getting "just
 the facts" from an information server. Of course, one way to provide
 such access is for the service provider to develop and distribute a
 URA that interacts with the service. When the service’s interface
 changes, the service provider will be moved to update the URA that
 was built to access it reliably.

 Work will continue to develop new types of URAs, as well as other
 URAgencies. This will necessitate the creation of URAgency
 interaction standards -- the "common virtual URA object structure" is
 the first step towards defining a lingua franca among URAs of
 disparate types and intention.

Daigle, et. al. Experimental [Page 9]

RFC 2016 Uniform Resource Agents October 1996

References

[IIAW95] Leslie L. Daigle, Peter Deutsch, "Agents for Internet
 Information Clients", CIKM’95 Intelligent Information Agents
 Workshop, December 1995.
 Available from
 <http://www.bunyip.com/products/silk/silktree/uratree/iiaw95.ps>

[JAVA] "The Java Language: A White Paper" Available from
 <http://java.sun.com/1.0alpha2/doc/overview/java/index.html>

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
 STD 13, RFC 1034, November 1987.

[RFC1035] Mockapetris, P., "Domain Names - Implementation and
 Specification", STD 13, RFC 1035, November 1987.

[RFC1738] T. Berners-Lee, L. Masinter, M. McCahill, "Uniform Resource
 Locators (URL)", RFC 1738, December 1994.

[SILK] Bunyip’s Silk project homepage:
 <http://www.bunyip.com/products/silk/>

[SILKURA] Silk URA information:
 <http://www.bunyip.com/products/silk/silktree/uraintro.html>

[TACOMA] Johansen, D. van Renesse, R. Schneider, F. B., "An
 Introduction to the TACOMA Distributed System", Technical Report
 95-23, Department of Computer Science, University of Tromso,
 Norway, June 1995.

[TCL] Ousterhout, J. K. "Tcl and the Tk Toolkit", Addison Wesley,
 1994.

[TELE] White, J. E., "Telescript Technology: The Foundation for the
 Electronic Marketplace", General Magic White Paper, General Magic
 Inc., 1994.

Daigle, et. al. Experimental [Page 10]

RFC 2016 Uniform Resource Agents October 1996

Authors’ Addresses

 Leslie Daigle
 Peter Deutsch
 Bill Heelan
 Chris Alpaugh
 Mary Maclachlan

 Bunyip Information Systems, Inc.
 310 St. Catherine St. West
 Suite 300
 Montreal, Quebec, CANADA
 H2X 2A1

 Phone: (514) 875-8611
 EMail: ura-bunyip@bunyip.com

Daigle, et. al. Experimental [Page 11]

RFC 2016 Uniform Resource Agents October 1996

Appendix 1 -- Virtual URA Structure

 This appendix contains a BNF-style description of the expected
 virtual structure of a URA object. This "virtual structure" acts as
 the canonical representation of the information encapsulated in a
 given URA. It is expected that more information may optionally be
 contained in the elements of the components -- the elements listed
 here are offered as the "minimum" or "standard" set.

 N.B.:
 []-delimited items are optional
 %% denotes a comment
 \0 represents the empty string
 | is "or"
 {} are literal characters

 This form is used for convenience and clarity of expression --
 whitespace and ordering of individual elements are not considered
 significant.

<VIRTUAL_URA> := {<virtual-ura-structure>}

<virtual-ura-structure> := { URAHDR <ura-header> }
 { ACTDATA <activation-data> }
 { TARG <targets> }
 { EXPINFO <experience information> }
 { ACTSPEC <activity> }
 { RESPFILT <response filter> }

<ura-header> := { name <ura-name> }
 { author <ura-author> }
 { version <ura-version> }
 [{ lang <lang-dependencies> }]
 [{ parent <parent-of-instance> }]

<activation-data> := <act-data-element><activation-data> | \0

<act-data-element> := {
 { name <data-elt-name> }
 { response <data-elt-value> }
 { prompt <data-elt-prompt> }
 [{ required <boolean> }]
 [{ default <data-default-val> }]
 }

<targets> := <target-service><targets> | \0

Daigle, et. al. Experimental [Page 12]

RFC 2016 Uniform Resource Agents October 1996

<target-service> := {
 { name <targ-url> }
 { protocol <url-protocol> }
 { url <url-spec> }
 [{ <url-type-specific-data> }]
 }

<url-spec> := <complete-url> | <url-constructor>

<complete-url> := %% a complete, valid URL string
 (e.g., http://www.bunyip.com/)

<url-constructor> := {
 { scheme <url-scheme-spec> }
 { host <url-host-spec> }
 [{ port <url-port-spec> }]
 { selector <url-selector-spec> }
 }

<url-scheme-spec> := {
 { name <scheme-name> }
 { response <scheme-value> }
 { prompt <scheme-prompt> }
 }
<url-host-spec> := {
 { name <host-name> }
 { response <host-value> }
 { prompt <host-prompt> }
 }
<url-port-spec> := {
 { name <port-name> }
 { response <port-value> }
 { prompt <port-prompt> }
 }
<url-selector-spec> := {
 { name <selector-name> }
 { response <selector-value> }
 { prompt <selector-prompt> }
 }

<experience information> := {
 { name <data-elt-name> }
 { response <data-elt-value> }
 }

<activity> := <compound-string>

Daigle, et. al. Experimental [Page 13]

RFC 2016 Uniform Resource Agents October 1996

<response filter> := <compound-string>

%% Without requiring more detail...

<compound-string> := <string>\n<compound-string> | \0
<boolean> := 0 | 1
<ura-name> := <string>
<ura-author> := <string>
<ura-version> := <string>
<lang-dependencies> := <string>
<parent-of-instance> := <string>
<data-elt-name> := <string>
<data-elt-value> := <string>
<data-elt-prompt> := <string>
<data-elt-default> := <string>
<data-default-val> := <string>
<targ-url> := <string>
<url-protocol> := http-get | http-post | ...
<url-type-specific-data> := <string>
<scheme-name> := <string>
<scheme-value> := <string>
<scheme-prompt> := <string>
<host-name> := <string>
<host-value> := <string>
<host-prompt> := <string>
<port-name> := <string>
<port-value> := <string>
<port-prompt> := <string>
<url-selector-name> := <string>
<url-selector-value> := <string>
<url-selector-prompt> := <string>

Appendix 2 -- Sample Virtual URA
 Representation

 A valid virtual representation of a Silk Tcl URA is presented below.
 The actual URA from which it was drawn is given in Appendix 3.

{
 {URAHDR
 {name {DejaNews Search}}
 {author {Leslie Daigle}}
 {version {1.0}}
 }

 {ACTDATA
 {name {Topic Keywords}}

Daigle, et. al. Experimental [Page 14]

RFC 2016 Uniform Resource Agents October 1996

 {prompt {Topic Keywords}}
 {response {}}
 }

 {EXPINFO
 {name {Comments}}
 {prompt {Comments}}
 {response {}}
 }

 {ACTSPEC
 {proc mapResponsesToDejanews {} {
 set resp ""
 if {[uraAreResponsesSet {Topic Keywords}]} {
 lappend resp [list query [uraGetSpecResponse {
 Topic Keywords}]]
 }

 return $resp

 }
 proc uraRun {} {
 global errorInfo

 foreach serv [uraListOfServices] {
 set u [uraGetServiceURL $serv]

 switch -- $serv {
 dejanews {
 if [catch {
 set query [mapResponsesToDejanews]
 if {$query != {}} {
 set result [uraHTTPPostSearch $u $query]
 if {$result != ""} {
 set list [dejanews_uraHTTPPostCanonicalize
 $result]
 puts $list
 }
 }
 }] {
 puts stderr $errorInfo
 }
 }

 default {
 # can’t handle other searches, yet.
 } } } }
 }

Daigle, et. al. Experimental [Page 15]

RFC 2016 Uniform Resource Agents October 1996

 }

 {RESPFILT
 {
 proc dejanews_uraHTTPPostCanonicalize {htmlRes} {

 set result {}
 set lines {}
 set clause {}
 set garb1 ""
 set garb2 ""

 # Get the body of the result page -- throw away leading and
 # trailing URLs

 regexp {([^<PRE>]*)<PRE>(.*)</PRE>.*}
 $htmlRes garb1 garb2 mainres

 set lines [split $mainres "\n"]

 foreach clause $lines {

 if [regexp
 {<DT>.*(..\/..).*([^<]*).*([^<]*).*}
 $clause garb1 dt relurl desc grp] {

 lappend r [list HEADLINE [format "%s (%s, %s)"
 [string trim $desc] \
 [string trim $grp] $dt]]
 lappend r [list URL [format
 "http://www.dejanews.com/cgi-bin/%s" $relurl]]
 lappend r [list TYPE "text/plain"]

 lappend result $r
 }
 }
 return $result
 }
 }

 }

}

Daigle, et. al. Experimental [Page 16]

RFC 2016 Uniform Resource Agents October 1996

Appendix 3 -- Sample Silk Tcl URA

 The following is a valid Silk Tcl URA. For more information on the
 implementation and structure of Silk-specific URAs, see the "URA
 Writers Guide" that accompanies the distribution of the Silk software
 (available from <http://www.bunyip.com/products/silk>).

--
#
URA initialization
#
--

#
Initialize the URA, its search specs and searchable services.
#

URA init.

set uraDebug 1

uraInit {
 {name {DejaNews Search}}
 {author {Leslie Daigle}}
 {version {1.0}}
 {description "This URA will search for UseNet News articles."}
 {help "This is help on UseNet News search script."}
}

#
bug: handling of choices/labels is kind of gross.
#

Search spec. init.

foreach item {
 {
 {name {Topic Keywords}}
 {field Topic}
 {tag STRING}
 {description {Keywords to search for in news articles}}
 {prompt {Topic Keywords}}
 {help {Symbols to look up, separated by spaces.}}
 {type STRING}
 {subtype {}}
 {allowed .*}
 {numvals 1}
 {required 0}

Daigle, et. al. Experimental [Page 17]

RFC 2016 Uniform Resource Agents October 1996

 {response {}}
 {respset 0}
 }
} {
 uraSearchSpecInit $item
}

uraAnnotationInit {
 {help {Enter comments to store with an instance}}
 {numvals 1}
 {subtype {}}
 {response {}}
 {name Comments}
 {required 0}
 {class ANNOTATION}
 {type TEXT}
 {description {General comments about this URA.}}
 {respset 1}
 {prompt Comments}
 {field {}}
 {allowed .*}
}

uraResultInit {
 {name {Related Pages}}
 {contents { {
 {HEADLINE {The DejaNews UseNet search service}}
 {TYPE text/plain}
 {URL http://www.dejanews.com}
} }}
}

foreach item {
 {
 {name dejanews}
 {protocol http-post}
 {url http://marge.dejanews.com/cgi-bin/nph-dnquery}
 }
} {
 uraServicesInit $item
}

proc dejanews_uraHTTPPostCanonicalize {htmlRes} {

 set result {}
 set lines {}

Daigle, et. al. Experimental [Page 18]

RFC 2016 Uniform Resource Agents October 1996

 set clause {}
 set garb1 ""
 set garb2 ""

 # Get the body of the result page
 # -- throw away leading and trailing URLs
 regexp {([^<PRE>]*)<PRE>(.*)</PRE>.*} $htmlRes garb1 garb2 mainres

 set lines [split $mainres "\n"]

 foreach clause $lines {

 uraDebugPuts stderr [format "Line: %s" $clause]

 if [regexp
 {<DT>.*(..\/..).*([^<]*).*([^<]*).*} \
 $clause garb1 dt relurl desc grp] {
 uraDebugPuts stderr [format
 "Date: %s Rel URL: %s Desc: %s Group: %s"
 $dt $relurl $desc $grp]

 lappend r [list HEADLINE [format "%s (%s, %s)"
 [string trim $desc] \
 [string trim $grp] $dt]]
 lappend r [list URL [format
 "http://www.dejanews.com/cgi-bin/%s" $relurl]]
 lappend r [list TYPE "text/plain"]

 lappend result $r
 }
 }
 return $result

}

--
#
Mapping procedures
#
--

#
There is one procedure, for each searchable service, to map the search
spec responses to a form suitable for inclusion into a search URL (or
whatever form the particular query procedure accepts).
#

Daigle, et. al. Experimental [Page 19]

RFC 2016 Uniform Resource Agents October 1996

#
#
proc mapResponsesToDejanews {} {
 set resp ""
 if {[uraAreResponsesSet {Topic Keywords}]} {
 lappend resp [list query [uraGetSpecResponse {Topic Keywords}]]
 }

 return $resp

}

#
bug: need better error reporting
(i.e. which searches didn’t work and why, etc.)
#
proc uraRun {} {
 global errorInfo

 foreach serv [uraListOfServices] {
 set u [uraGetServiceURL $serv]

 switch -- $serv {
 dejanews {
 if [catch {
 set query [mapResponsesToDejanews]
 uraDebugPuts stderr [format "%s: query is ‘%s’."
 $serv $query]
 if {$query != {}} {
 set result [uraHTTPPostSearch $u $query]
 if {$result != ""} {
 uraDebugPuts stderr [format "%s: result is ‘%s’."
 $serv $result]
 set list [dejanews_uraHTTPPostCanonicalize $result]
 uraDebugPuts stderr [format "%s: list is ‘%s’."
 $serv $list]
 puts $list
 }
 }
 }] {
 puts stderr $errorInfo
 }
 }

 default {
 # can’t handle other searches, yet.
 }

Daigle, et. al. Experimental [Page 20]

RFC 2016 Uniform Resource Agents October 1996

 }
 }
}

Daigle, et. al. Experimental [Page 21]

