
Network Working Group J. Woods
Request for Comments: 1979 Proteon, Inc.
Category: Informational August 1996

 PPP Deflate Protocol

Status of This Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 The Point-to-Point Protocol (PPP) [1] provides a standard method for
 transporting multi-protocol datagrams over point-to-point links.

 The PPP Compression Control Protocol [2] provides a method to
 negotiate and utilize compression protocols over PPP encapsulated
 links.

 This document describes the use of the PPP Deflate compression
 protocol for compressing PPP encapsulated packets.

Table of Contents

 1. Introduction 2
 1.1 Licensing 2
 2. PPP Deflate Packets 3
 2.1 Packet Format 6
 3. Configuration Option Format 8
 SECURITY CONSIDERATIONS 9
 REFERENCES ... 9
 ACKNOWLEDGEMENTS ... 9
 CHAIR’S ADDRESS .. 10
 AUTHOR’S ADDRESS ... 10

Woods Informational [Page 1]

RFC 1979 PPP Deflate August 1996

1. Introduction

The ’deflate’ compression format[3], as used by the PKZIP and gzip
compressors and as embodied in the freely and widely distributed
zlib[4] library source code, has the following features:

 - an apparently unencumbered encoding and compression
 algorithm, with an open and publically-available
 specification.

 - low-overhead escape mechanism for incompressible data. The
 PPP Deflate specification offers options to reduce that
 overhead further.

 - heavily used for many years in networks, on modem and other
 point-to-point links to transfer files for personal computers
 and workstations.

 - easily achieves 2:1 compression on the Calgary corpus[5]
 using less than 64KBytes of memory on both sender and
 receive.

1.1. Licensing

 The zlib source is widely and freely available, subject to the
 following copyright:

 (C) 1995 Jean-Loup Gailly and Mark Adler

 This software is provided ’as-is’, without any express or implied
 warranty. In no event will the authors be held liable for any
 damages arising from the use of this software.

 Permission is granted to anyone to use this software for any
 purpose, including commercial applications, and to alter it and
 redistribute it freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you
 must not claim that you wrote the original software. If you
 use this software in a product, an acknowledgment in the
 product documentation would be appreciated but is not
 required.

 2. Altered source versions must be plainly marked as such, and
 must not be misrepresented as being the original software.

Woods Informational [Page 2]

RFC 1979 PPP Deflate August 1996

 3. This notice may not be removed or altered from any source
 distribution.

 Jean-Loup Gailly Mark Adler
 gzip@prep.ai.mit.edu madler@alumni.caltech.edu

 If you use the zlib library in a product, we would appreciate
 not receiving lengthy legal documents to sign. The sources are
 provided for free but without warranty of any kind. The library
 has been entirely written by Jean-Loup Gailly and Mark Adler; it
 does not include third-party code.

 The deflate format and compression algorithm are based on Lempel-Ziv
 LZ77 compression; extensive research has been done by the GNU Project
 and the Portable Network Graphics working group supporting its patent
 free status.

2. PPP Deflate Packets

 Before any PPP Deflate packets may be communicated, PPP must reach
 the Network-Layer Protocol phase, and the CCP Control Protocol must
 reach the Opened state.

 Exactly one PPP Deflate datagram is encapsulated in the PPP
 Information field, where the PPP Protocol field contains 0xFD or
 0xFB. 0xFD is used when the PPP multilink protocol is not used or
 "above" multilink. 0xFB is used "below" multilink, to compress
 independently on individual links of a multilink bundle.

 The maximum length of the PPP Deflate datagram transmitted over a PPP
 link is the same as the maximum length of the Information field of a
 PPP encapsulated packet.

 Only packets with PPP Protocol numbers in the range 0x0000 to 0x3FFF
 and neither 0xFD nor 0xFB are compressed. Other PPP packets are
 always sent uncompressed. Control packets are infrequent and should
 not be compressed for robustness.

 Padding

 PPP Deflate packets require the previous negotiation of the Self-
 Describing-Padding Configuration Option [6] if padding is added to
 packets. If no padding is added, than Self-Describing-Padding is
 not required.

Woods Informational [Page 3]

RFC 1979 PPP Deflate August 1996

 Reliability and Sequencing

 PPP Deflate requires the packets to be delivered in sequence. It
 relies on Reset-Request and Reset-Ack LCP packets or on
 renegotiation of the Compression Control Protocol [2] to indicate
 loss of synchronization between the transmitter and receiver. The
 LCP FCS detects corrupted packets and the normal mechanisms
 discard them. Missing or out of order packets are detected by the
 sequence number in each packet. The packet sequence number ought
 to be checked before decoding the packet.

 Instead of transmitting a Reset-Request packet when detecting a
 sequence error, the receiver MAY momentarily force CCP to drop out
 of the Opened state by transmitting a new CCP Configure-Request.
 This method is more expensive than using Reset-Requests.

 When the receiver first encounters an unexpected sequence number
 it SHOULD send a Reset-Request LCP packet as defined in the
 Compression Control Protocol. When the transmitter sends the
 Reset-Ack or when the receiver receives a Reset-ACK, they must
 reset the sequence number to zero, clear the compression
 dictionary, and resume sending and receiving compressed packets.
 The receiver MUST discard all compressed packets after detecting
 an error and until it receives a Reset-Ack. This strategy can be
 thought of as abandoning the transmission of one "file" and
 starting the transmission of a new "file."

 The transmitter must clear its compression history and respond
 with a Reset-Ack each time it receives a Reset-Request, because it
 cannot know if previous Reset-Acks reached the receiver. The
 receiver need not do anything to its history when it receives a
 Reset-Ack, because the transmitter will simply not refer to any
 prior history (’deflate’ is a sliding-window compressor).

 When the link is busy, one decompression error is usually followed
 by several more before the Reset-Ack can be received. It is
 undesirable to transmit Reset-Requests more frequently than the
 round-trip-time of the link, because redundant Reset-Requests
 cause unnecessary compression dictionary clearing. The receiver
 MAY transmit an additional Reset-Request each time it receives a
 compressed or uncompressed packet until it finally receives a
 Reset-Ack, but the receiver ought not transmit another Reset-
 Request until the Reset-Ack for the previous one is late. The
 receiver MUST transmit enough Reset-Request packets to ensure that
 the transmitter receives at least one. For example, the receiver
 might choose to not transmit another Reset-Request until after one
 second (or, of course, a Reset-Ack has been received and
 decompression resumed).

Woods Informational [Page 4]

RFC 1979 PPP Deflate August 1996

 Data Expansion

 ’Deflate’, as used in this standard, expands incompressible data
 by approximately 14-18 bytes (8 bytes worst-case at the ’deflate’
 level, two further bytes for the ’deflate’ end-of-block and the
 zero-length synchronization block header, two bytes of sequence
 number, and two bytes to account for adding the PPP Protocol Field
 to the transmitted data unit).

 The BSD Compress draft proposal[7] describes an escape mechanism
 for incompressible data that trades off a layering violation for
 the irritating complications of variable and potentially
 unpredictable effective MRU lengths. That direct escape mechanism
 (and much of the text of its description) is used here as well.

 If an incompressible data packet does not fit within the MRU of
 the link, the packet MUST be sent in its original form without CCP
 encapsulation; PPP packets with significant data expansion that do
 not exceed the MRU of the link SHOULD be sent in their original
 form without CCP encapsulation. In both of these cases, the
 transmitter must increment the sequence number, as future
 encapsulated packets will depend on the correct reception of some
 number of unencapsulated packets.

 When a PPP packet is received with PPP Protocol numbers in the
 range 0x0000 to 0x3FFF, (except, of course, 0xFD and 0xFB) it is
 assumed that the packet would have caused expansion. The packet
 is locally added to the compression history. (Given the
 definition of the ’deflate’ format, a convenient method of doing
 this is to locally "decompress" a stored-block header of the
 appropriate length, followed by the actual data block; or the data
 can simply be appended to the receiver’s history, depending on
 implementation details.)

 Sending incompressible packets in their native encapsulation
 avoids maximum transmission unit complications. If uncompressed
 packets could be larger than their native form, then it would be
 necessary for the upper layers of an implementation to treat the
 PPP link as if it had a smaller MTU, to ensure that compressed
 incompressible packets are never larger than the negotiated PPP
 MTU.

 Using native encapsulation for incompressible packets complicates
 the implementation. The transmitter and the receiver must start
 putting information into the compression dictionary starting with
 the same packets, without relying upon seeing a compressed packet
 for synchronization. The first few packets after clearing the
 dictionary are usually incompressible, and so are likely to sent

Woods Informational [Page 5]

RFC 1979 PPP Deflate August 1996

 in their native encapsulation, just like packets before
 compression is turned on. If CCP or LCP packets are handled
 separately from Network-Layer packets (e.g. a "daemon" for control
 packets and "kernel code" for data packets), care must be taken to
 ensure that the transmitter synchronizes clearing the dictionary
 with the transmission of the configure-ACK or Reset-Ack that
 starts compression, and the receiver must similarly ensure that
 its dictionary is cleared before it processes the next packet.

2.1. Packet Format

 A summary of the PPP Deflate packet format is shown below.

 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PPP Protocol | Sequence |
 +-+
 | Data ...
 +-+-+-+-+-+-+-+-+

 PPP Protocol

 The PPP Protocol field is described in the Point-to-Point Protocol
 Encapsulation [1].

 When the PPP Deflate compression protocol is successfully
 negotiated by the PPP Compression Control Protocol [2], the value
 of the protocol field is 0xFD or 0xFB. This value MAY be
 compressed when Protocol-Field-Compression is negotiated.

 Sequence

 The sequence number is sent most significant octet first. It
 starts at 0 when the dictionary is cleared, and is incremented by
 1 for each packet, including uncompressed packets. The sequence
 number after 65535 is zero. In other words, the sequence number
 "wraps" in the usual way.

 The sequence number ensures that lost or out of order packets do
 not cause the compression databases of the peers to become
 unsynchronized. When an unexpected sequence number is
 encountered, the dictionaries must be resynchronized with a CCP
 Reset-Request or Configure-Request. The packet sequence number
 can be checked before a compressed packet is decoded.

Woods Informational [Page 6]

RFC 1979 PPP Deflate August 1996

 Data

 The compressed PPP encapsulated packet, consisting of the Protocol
 and Data fields of the original, uncompressed packet follows.

 The Protocol field compression MUST be applied to the protocol
 field in the original packet before the sequence number is
 computed or the entire packet is compressed, regardless of whether
 the PPP protocol field compression has been negotiated. Thus, if
 the original protocol number was less than 0x100, it must be
 compressed to a single byte.

 The basic format of the compressed data is precisely described by
 the ’Deflate’ Compressed Data Format Specification[3]. Each
 transmitted packet must begin at a ’deflate’ block boundary, to
 ensure synchronization when incompressible data resets the
 transmitter’s state; to ensure this, each transmitted packet must
 be terminated with a zero-length ’deflate’ non-compressed block
 (BTYPE of 00). This means that the last four bytes of the
 compressed format must be 0x00 0x00 0xFF 0xFF. These bytes MUST
 be removed before transmission; the receiver can reinsert them if
 required by the implementation.

Woods Informational [Page 7]

RFC 1979 PPP Deflate August 1996

3. Configuration Option Format

 Description

 The CCP PPP Deflate Configuration Option negotiates the use of PPP
 Deflate on the link. By default or ultimate disagreement, no
 compression is used.

 A summary of the PPP Deflate Configuration Option format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |Window | Method| MBZ |Chk|
 +-+

 Type

 26 for PPP Deflate.

 Length

 3

 Window

 Represents the maximum window size the decompressor is willing to
 allocate; expressed as the base-2 logarithm of the LZ77 window
 size, minus 8. ’Deflate’ compliant decompressors must be willing
 to accept the maximum 32KB window size, represented by a value of
 7. A ’deflate’ compliant compressor is at liberty to use a
 reduced window size, so a PPP Deflate compressor MUST either honor
 the restriction requested or reject the option.

 Method

 Must be the binary number 1000. Represents the ’zlib’ Compression
 Method identifier of ’8’ for ’deflate’ compression with up to 32K
 window size.

 MBZ

 Must be all 0 bits.

Woods Informational [Page 8]

RFC 1979 PPP Deflate August 1996

 Chk

 Must be 00 to specify sequence number check method.

Security Considerations

 Security issues are not discussed in this memo.

References

 [1] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51,
 RFC 1661, July 1994.

 [2] Rand, D., "The PPP Compression Control Protocol (CCP)",
 RFC 1962, June 1996.

 [3] Deutsch, L.P., "’Deflate’ Compressed Data Format
 Specification", draft available in
 ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc.

 [4] Gailly, J.-L., "Zlib 0.95 beta".

 [5] Bell, T.C., Cleary, G. G. and Witten, I.H., "Text Compression",
 Prentice_Hall, Englewood Cliffs NJ, 1990. The compression
 corpus itself can be found in ftp.uu.net:/pub/archiving/zip/.

 [6] Simpson, W., "PPP LCP Extensions", RFC 1570, January 1994.

 [7] Schryver, V., "PPP BSD Compression Protocol", RFC 1977,
 August 1996.

Acknowledgments

 William Simpson provided the very valuable idea of not using any
 additional header bytes for incompressible packets.

Woods Informational [Page 9]

RFC 1979 PPP Deflate August 1996

Chair’s Address

 The working group can be contacted via the current chair:

 Karl Fox
 Ascend Communications
 3518 Riverside Drive, Suite 101
 Columbus, Ohio 43221

 EMail: karl@ascend.com

Author’s Address

 Questions about this memo can also be directed to:

 John Woods
 Proteon, Inc.
 9 Technology Drive
 Westborough MA 01581-1799

 (508) 898-2800 ext. 2651
 EMail: jfw@funhouse.com

Woods Informational [Page 10]

