Net wor k Wor ki ng Group P. Deutsch
Request for Comments: 1951 Al addin Enterprises
Cat egory: | nformational May 1996

DEFLATE Conpressed Data Format Specification version 1.3
Status of This Menp

This meno provides information for the Internet comunity. This neno
does not specify an Internet standard of any kind. Distribution of
this meno is unlinted.

| ESG Not e:

The I ESG takes no position on the validity of any Intellectua
Property Rights statenents contained in this docunent.

Noti ces
Copyright (c) 1996 L. Peter Deutsch

Pernission is granted to copy and distribute this docunent for any
pur pose and wi thout charge, including translations into other

| anguages and i ncorporation into conpilations, provided that the
copyright notice and this notice are preserved, and that any
substantive changes or deletions fromthe original are clearly

mar ked.

A pointer to the latest version of this and rel ated docunentation in
HTML format can be found at the URL
<ftp://ftp.uu. net/graphi cs/png/docunents/zlib/zdoc-index.htnl >,

Abst r act

This specification defines a | ossless conpressed data fornmat that
conpresses data using a conbination of the LZ77 al gorithm and Huf f man
coding, with efficiency conparable to the best currently avail abl e
gener al - pur pose conpressi on nethods. The data can be produced or
consuned, even for an arbitrarily long sequentially presented input
data stream using only an a priori bounded amobunt of internediate
storage. The fornmat can be inplenented readily in a manner not
covered by patents.

Deut sch I nf or mat i onal [ Page 1]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

Tabl e of Contents

1

CoNOU M

Introducti On . ... ... 2
1. L. PUI POSE . 2
1.2. Intended audi ence . ....... ... . 3
1. 3. SCOPE .o 3
1.4, Conpliance .. ... e 3
1.5 Definitions of terns and conventions used ................ 3
1.6. Changes fromprevious versions ................ciuiiineon... 4
Conpressed representati on OVEIrVIi €W ...ttt 4
Detailed specification .......... ... . i 5
3.1. Overall conventions ........... ..., 5
3.1.1. Packing into bytes ......... ... ... . ... .. .. 5
3.2. Conpressed block format ......... ... ... . ... .. . . . ... . . ... 6
3.2.1. Synopsis of prefix and Huffrman coding ............... 6
3.2.2. Use of Huffrman coding in the "deflate" format ....... 7
3.2.3. Details of block format ................ ... .. ... ..... 9
3.2.4. Non-conpressed blocks (BTYPE=00) ................... 11
3.2.5. Conpressed blocks (length and distance codes) ...... 11
3.2.6. Conpression with fixed Huf fman codes (BTYPE=01) .... 12
3.2.7. Conpression with dynanic Huf frman codes (BTYPE=10) .. 13
3.3, Conpliance . ... 14
Compression algorithmdetails ........ .. .. ... ... . . . .. . . ..., 14
Ref erenCes . ... 16
Security Considerati oOns . ........ ... e 16
SOUrCE COAB ..t e e 16
Acknow edgemment S . .. ... 16
Author’ s Address .. ... 17

1. Introduction

1.1. Purpose

The purpose of this specification is to define a |ossless
conpressed data format that:

* |s independent of CPU type, operating system file system
and character set, and hence can be used for interchange;

* Can be produced or consunmed, even for an arbitrarily |ong
sequentially presented i nput data stream using only an a
priori bounded amount of internedi ate storage, and hence
can be used in data conmunications or simlar structures
such as Unix filters;

* Conpresses data with efficiency conparable to the best
currently avail abl e general - purpose conpressi on net hods,
and in particular considerably better than the "conpress"
pr ogr am

* Can be inplenented readily in a manner not covered by
patents, and hence can be practiced freely;

Deut sch I nf or mat i onal [ Page 2]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

* |s conpatible with the file format produced by the current
wi dely used gzip utility, in that conformi ng deconpressors
will be able to read data produced by the existing gzip
conpr essor.

The data format defined by this specification does not attenpt to:

* Al ow random access to conpressed dat a;
* Conpress specialized data (e.g., raster graphics) as well
as the best currently avail able specialized al gorithns.

A sinple counting argunent shows that no | ossl ess conpression

al gorithm can conpress every possible input data set. For the
format defined here, the worst case expansion is 5 bytes per 32K-
byte block, i.e., a size increase of 0.015%for large data sets.
English text usually conpresses by a factor of 2.5 to 3;
executable files usually conpress sonmewhat |ess; graphical data
such as raster images may conpress nuch nore

1.2. I ntended audi ence

This specification is intended for use by inplenentors of software
to conpress data into "deflate" format and/or deconpress data from
"deflate" fornat.

The text of the specification assumes a basic background in
programing at the level of bits and other primitive data
representations. Famliarity with the technique of Huffman codi ng
i s hel pful but not required.

1.3. Scope
The specification specifies a nmethod for representing a sequence
of bytes as a (usually shorter) sequence of bits, and a nethod for
packing the latter bit sequence into bytes.

1. 4. Conpliance
Unl ess ot herwi se indicated below, a conpliant deconpressor must be
abl e to accept and deconpress any data set that conforns to all
the specifications presented here; a conpliant conpressor nust
produce data sets that conformto all the specifications presented
here.

1.5. Definitions of terms and conventions used

Byte: 8 bits stored or transmitted as a unit (sanme as an octet).
For this specification, a byte is exactly 8 bits, even on nachi nes

Deut sch I nf or mat i onal [ Page 3]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

whi ch store a character on a nunber of bits different from ei ght.
See below, for the numbering of bits within a byte.

String: a sequence of arbitrary bytes.
1. 6. Changes from previ ous versions

There have been no technical changes to the deflate format since
version 1.1 of this specification. |In version 1.2, sone
term nol ogy was changed. Version 1.3 is a conversion of the
specification to RFC style.

2. Conpressed representation overvi ew

A conpressed data set consists of a series of blocks, corresponding
to successive blocks of input data. The block sizes are arbitrary,
except that non-conpressible blocks are limted to 65,535 bytes.

Each bl ock is conpressed using a conbination of the LZ77 al gorithm
and Huf fman codi ng. The Huf frman trees for each bl ock are independent
of those for previous or subsequent blocks; the LZ77 al gorithm may
use a reference to a duplicated string occurring in a previous bl ock
up to 32K i nput bytes before.

Each bl ock consists of two parts: a pair of Huffman code trees that
describe the representation of the conpressed data part, and a
conpressed data part. (The Huffman trees thensel ves are conpressed
usi ng Huf f man encoding.) The conpressed data consists of a series of
el ements of two types: literal bytes (of strings that have not been
detected as duplicated within the previous 32K i nput bytes), and
pointers to duplicated strings, where a pointer is represented as a
pair <length, backward di stance>  The representation used in the
"deflate" format linmts distances to 32K bytes and I engths to 258
bytes, but does not limt the size of a block, except for

unconpr essi bl e bl ocks, which are linmted as noted above.

Each type of value (literals, distances, and |l engths) in the
conpressed data is represented using a Huffnman code, using one code
tree for literals and I engths and a separate code tree for distances.
The code trees for each bl ock appear in a conpact formjust before
the conpressed data for that block

Deut sch I nf or mat i onal [ Page 4]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

3. Detailed specification
3.1. COverall conventions In the diagrans below, a box like this:
+---+
| | <-- the vertical bars might be nissing

SR ——

represents one byte; a box like this:

+ +

+ +

represents a variabl e nunber of bytes.

Bytes stored within a conputer do not have a "bit order", since
they are always treated as a unit. However, a byte considered as
an integer between 0 and 255 does have a nost- and | east-
significant bit, and since we wite nunbers with the nost-
significant digit on the left, we also wite bytes with the nost-

significant bit on the left. |In the diagrans bel ow, we nunmber the
bits of a byte so that bit 0 is the least-significant bit, i.e.,
the bits are nunbered:

Fommmnaan +

| 76543210

Fomm e o - +

Wthin a conputer, a nunber nmay occupy multiple bytes. Al

mul ti-byte nunbers in the format described here are stored with
the | east-significant byte first (at the | ower nenory address).
For exanple, the decimal nunmber 520 is stored as:

0 1

[ [ +

| 00001000| 00000010
E R E R +

AN AN

| |

| + nore significant byte = 2 x 256
+ less significant byte = 8

3.1.1. Packing into bytes
Thi s docunent does not address the issue of the order in which

bits of a byte are transmitted on a bit-sequential medium
since the final data format described here is byte- rather than

Deut sch I nf or mat i onal [ Page 5]



RFC 1951

DEFLATE Conpressed Data Format Specification May 1996

bit-oriented. However, we describe the conpressed bl ock fornat
in below, as a sequence of data el ements of various bit

| engt hs, not a sequence of bytes. W nust therefore specify
how to pack these data elenents into bytes to formthe fina
conpressed byte sequence:

* Data el enments are packed into bytes in order of
increasing bit nunber within the byte, i.e., starting
with the least-significant bit of the byte.

* Data el ements other than Huf fman codes are packed
starting with the least-significant bit of the data
el ement .

* Huf f man codes are packed starting with the nost-
significant bit of the code.

In other words, if one were to print out the conpressed data as
a sequence of bytes, starting with the first byte at the
*right* margin and proceeding to the *left*, with the nost-
significant bit of each byte on the left as usual, one would be
able to parse the result fromright to left, with fixed-width
elements in the correct MSB-to-LSB order and Huffrman codes in
bit-reversed order (i.e., with the first bit of the code in the
relative LSB position).

3.2. Conpressed bl ock fornat

3.2.1. Synopsis of prefix and Huf fnan codi ng

Deut sch

Prefix coding represents synbols froman a priori known

al phabet by bit sequences (codes), one code for each synbol, in
a manner such that different synbols may be represented by bit
sequences of different | engths, but a parser can always parse
an encoded string unanbi guously synbol - by-synbol

We define a prefix code in ternms of a binary tree in which the
two edges descending from each non-leaf node are | abeled 0 and
1 and in which the | eaf nodes correspond one-for-one with (are

| abel ed with) the synbols of the al phabet; then the code for a
synbol is the sequence of 0's and 1's on the edges |eading from
the root to the |leaf |labeled with that synbol. For exanple:

I nf or mat i onal [ Page 6]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

/\ Synbol Code
o1 e----- .-
/ \ A 00
I\ B B 1
0 1 C 011
/ \ D 010
A /\
0 1
/ \
D C

A parser can decode the next synbol from an encoded i nput
stream by wal ki ng down the tree fromthe root, at each step
choosi ng the edge corresponding to the next input bit.

G ven an al phabet with known synmbol frequencies, the Huffman
algorithmallows the construction of an optimal prefix code
(one which represents strings with those synbol frequencies
using the fewest bits of any possible prefix codes for that
al phabet). Such a code is called a Huffrman code. (See
reference [1] in Chapter 5, references for additiona

i nformati on on Huf f man codes.)

Note that in the "deflate" format, the Huffman codes for the
various al phabets nmust not exceed certain naxi nrum code | engt hs.
This constraint conplicates the algorithmfor conputing code

I engths from synbol frequencies. Again, see Chapter 5,
references for details.

3.2.2. Use of Huffrman coding in the "deflate" fornmat

The Huf fman codes used for each al phabet in the "defl ate"
format have two additional rules:

* Al codes of a given bit Iength have | exicographically
consecutive values, in the sane order as the synbols
t hey represent;

* Shorter codes | exicographically precede | onger codes.

Deut sch I nf or mat i onal [ Page 7]



RFC 1951

Deut sch

DEFLATE Conpressed Data Format Specification May 1996

We coul d recode the exanple above to followthis rule as
foll ows, assuming that the order of the al phabet is ABCD

Synmbol  Code
A 10
B 0
C 110
D 111

I.e., O precedes 10 which precedes 11x, and 110 and 111 are
| exi cographi cally consecuti ve.

Gven this rule, we can define the Huf fman code for an al phabet
just by giving the bit Iengths of the codes for each symbol of
the al phabet in order; this is sufficient to determ ne the
actual codes. In our exanple, the code is conpletely defined
by the sequence of bit lengths (2, 1, 3, 3). The follow ng

al gorithm generates the codes as integers, intended to be read
fromnmost- to least-significant bit. The code lengths are
initially in tree[l].Len; the codes are produced in

tree[l]. Code.

1) Count the nunber of codes for each code length. Let
bl _count[N] be the nunber of codes of length N, N>=1

2) Find the nunerical value of the smallest code for each
code | engt h:

code = 0;

bl _count[0] = 0;

for (bits = 1; bits <= MAX BITS; bits++) {
code = (code + bl _count[bits-1]) << 1
next code[ bits] = code

3) Assign nunerical values to all codes, using consecutive
val ues for all codes of the same length with the base
val ues determ ned at step 2. Codes that are never used
(whi ch have a bit length of zero) nust not be assigned a
val ue.

for (n =0; n <= max_code; n++) {
len = tree[n]. Len;
if (len!=0) {
tree[n]. Code = next_code[l en];
next _code[ | en] ++;

I nf or mat i onal [ Page 8]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

}
Exanpl e:

Consi der the al phabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
3, 2, 4, 4). After step 1, we have:

N bl _count[N]
2 1
3 5
4 2

Step 2 conputes the foll owi ng next code val ues:

N next _code[ N|
1 0

2 0

3 2

4 14

Synbol Length Code
010
011
100
101
110

00

1110

1111

IOTMMOO®T>
ARANWWWWW

3.2.3. Details of block formmt

Each bl ock of conpressed data begins with 3 header bits
containing the foll owi ng data:

first bit BFI NAL
next 2 bits BTYPE

Note that the header bits do not necessarily begin on a byte

boundary, since a block does not necessarily occupy an integra
nunber of bytes.

Deut sch I nf or mat i onal [ Page 9]



RFC 1951

Deut sch

DEFLATE Conpressed Data Format Specification May 1996

BFINAL is set if and only if this is the last block of the data
set.

BTYPE specifies how the data are conpressed, as follows:

00 - no conpression

01 - conpressed with fixed Huf f man codes
10 - conpressed with dynani c Huf f man codes
11 - reserved (error)

The only difference between the two conpressed cases i s how the
Huf f man codes for the literal/length and distance al phabets are
def i ned.

In all cases, the decoding algorithmfor the actual data is as
fol |l ows:

do
read bl ock header frominput stream
if stored with no conpression
skip any remaining bits in current partially
processed byte
read LEN and NLEN (see next section)
copy LEN bytes of data to out put
ot herw se
if conpressed with dynani ¢ Huf f man codes
read representation of code trees (see
subsecti on bel ow)
I oop (until end of block code recognized)
decode literal/length value frominput stream
if value < 256
copy value (literal byte) to output stream
ot herw se
if value = end of bl ock (256)
break from | oop
ot herw se (value = 257..285)
decode di stance frominput stream

nmove backwards di stance bytes in the output
stream and copy length bytes fromthis
position to the output stream
end | oop
whil e not |ast block

Note that a duplicated string reference nay refer to a string
in a previous block; i.e., the backward di stance nay cross one
or nore bl ock boundaries. However a distance cannot refer past
the begi nning of the output stream (An application using a

I nf or mat i onal [ Page 10]



RFC 1951

DEFLATE Conpressed Data Format Specification May 1996

preset dictionary nmight discard part of the output stream a
di stance can refer to that part of the output stream anyway)
Note also that the referenced string nmay overlap the current
position; for exanple, if the last 2 bytes decoded have val ues
X and Y, a string reference with <length = 5, distance = 2>
adds X, VY, X, Y, X to the output stream

We now specify each conpression nethod in turn

3.2.4. Non-conpressed bl ocks (BTYPE=00)

Any bits of input up to the next byte boundary are ignored.
The rest of the bl ock consists of the follow ng infornation:

0 1 2 3 4.

B S L. +
| LEN | NLEN |... LEN bytes of literal data...
B e +

LEN i s the nunber of data bytes in the block. NLEN is the
one’ s conpl enent of LEN

3.2.5. Conpressed bl ocks (length and di stance codes)

Deut sch

As noted above, encoded data blocks in the "deflate" format
consi st of sequences of synbols drawn fromthree conceptually
di stinct al phabets: either literal bytes, fromthe al phabet of
byte values (0..255), or <length, backward distance> pairs,
where the length is drawn from (3..258) and the distance is
drawmn from(1..32,768). 1In fact, the literal and length

al phabets are nerged into a single al phabet (0..285), where
val ues 0..255 represent literal bytes, the value 256 indicates
end- of - bl ock, and val ues 257..285 represent |ength codes
(possibly in conjunction with extra bits follow ng the synbol
code) as foll ows:

I nf or mat i onal [ Page 11]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

Extra Extra Extra
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)
257 0 3 267 1 15, 16 277 4 67-82
258 0 4 268 1 17,18 278 4  83-98
259 0 5 269 2 19- 22 279 4 99-114
260 O 6 270 2 23-26 280 4 115-130
261 O 7 271 2 27-30 281 5 131-162
262 0 8 272 2 31-34 282 5 163-194
263 0 9 273 3 35-42 283 5 195-226
264 0 10 274 3 43-50 284 5 227-257
265 1 11,12 275 3 51-58 285 O 258
266 1 13,14 276 3 59-66

The extra bits should be interpreted as a machi ne integer
stored with the nost-significant bit first, e.g., bits 1110
represent the value 14.

17-24 18
25-32 19

513-768 28 13 16385- 24576
769- 1024 29 13 24577-32768

Extra Extra Extra

Code Bits Dist Code Bits D st Code Bits Distance
0 0 1 10 4 33-48 20 9 1025- 1536
1 0 2 11 4 49- 64 21 9 1537-2048
2 0 3 12 5 65- 96 22 10 2049- 3072
3 0 4 13 5 97-128 23 10 3073-4096
4 1 5,6 14 6 129- 192 24 11 4097-6144
5 1 7,8 15 6 193- 256 25 11 6145-8192
6 2 9-12 16 7 257-384 26 12 8193-12288
7 2 13-16 17 7 385-512 27 12 12289- 16384
8 3 8
9 3 8

3.2.6. Conpression with fixed Huf fman codes (BTYPE=01)

The Huffman codes for the two al phabets are fixed, and are not
represented explicitly in the data. The Huf fman code | engths
for the literal/length al phabet are:

Lit Val ue Bits Codes
0 - 143 8 00110000 t hrough

10111111

144 - 255 9 110010000 t hrough
111111111

256 - 279 7 0000000 t hrough
0010111

280 - 287 8 11000000 t hrough
11000111

Deut sch I nf or mat i onal [ Page 12]



RFC 1951

DEFLATE Conpressed Data Format Specification May 1996

The code lengths are sufficient to generate the actual codes,
as described above; we show the codes in the table for added
clarity. Literal/length values 286-287 will never actually
occur in the conpressed data, but participate in the code
const ructi on.

Di stance codes 0-31 are represented by (fixed-length) 5-bit
codes, with possible additional bits as shown in the table
shown in Paragraph 3.2.5, above. Note that distance codes 30-
31 will never actually occur in the conpressed data.

3.2.7. Conpression with dynam ¢ Huf f man codes (BTYPE=10)

Deut sch

The Huf fman codes for the two al phabets appear in the bl ock

i medi ately after the header bits and before the actua
conpressed data, first the literal/length code and then the

di stance code. Each code is defined by a sequence of code

| engt hs, as discussed in Paragraph 3.2.2, above. For even
greater conpactness, the code | ength sequences thensel ves are
conpressed using a Huf fman code. The al phabet for code |engths
is as follows:

0 - 15: Represent code lengths of 0 - 15
16: Copy the previous code length 3 - 6 tines.
The next 2 bits indicate repeat |ength
(0=3, ..., 3=2¢6)
Exanpl e: Codes 8, 16 (+2 bits 11),
16 (+2 bits 10) will expand to
12 code lengths of 8 (1 + 6 + 5)
17: Repeat a code length of 0 for 3 - 10 tines.
(3 bits of Ilength)
18: Repeat a code length of O for 11 - 138 times
(7 bits of length)

A code length of O indicates that the corresponding synbol in
the literal/length or distance al phabet will not occur in the
bl ock, and should not participate in the Huffnman code
construction algorithmgiven earlier. |f only one distance
code is used, it is encoded using one bit, not zero bits; in
this case there is a single code length of one, with one unused
code. One distance code of zero bits neans that there are no
di stance codes used at all (the data is all literals).

We can now define the format of the bl ock
5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)

5 Bits: HDI ST, # of Distance codes - 1 (1 - 32)
4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)

I nf or mat i onal [ Page 13]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

(HCLEN + 4) x 3 bits: code lengths for the code |length
al phabet given just above, in the order: 16, 17, 18,
o, 8 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15

These code lengths are interpreted as 3-bit integers
(0-7); as above, a code length of 0 neans the
correspondi ng synbol (literal/length or distance code
[ ength) is not used.

HLIT + 257 code lengths for the literal/length al phabet,
encoded using the code | ength Huf fman code

HDI ST + 1 code lengths for the distance al phabet,
encoded using the code | ength Huf frman code

The actual conpressed data of the block
encoded using the literal/length and di stance Huffman
codes

The literal/length synbol 256 (end of data),
encoded using the literal/length Huffrman code

The code |l ength repeat codes can cross fromHLIT + 257 to the
HDI ST + 1 code lengths. |In other words, all code | engths form
a single sequence of HLIT + HDI ST + 258 val ues.

3.3. Conpliance

A compressor may limt further the ranges of values specified in
the previous section and still be conpliant; for exanple, it may
limt the range of backward pointers to some value snaller than
32K. Simlarly, a conpressor may limt the size of blocks so that
a conpressible block fits in nmenory.

A compl i ant deconpressor must accept the full range of possible
val ues defined in the previous section, and nust accept bl ocks of
arbitrary size

4. Conpression algorithmdetails

VWhile it is the intent of this docunent to define the "deflate"
conpressed data format w thout reference to any particul ar
conpression algorithm the fornat is related to the conpressed
formats produced by LZ77 (Lenpel-Ziv 1977, see reference [2] bel ow);
since many variations of LZ77 are patented, it is strongly
recommended that the inplenmentor of a conpressor follow the genera
al gorithm presented here, which is known not to be patented per se.
The material in this section is not part of the definition of the

Deut sch I nf or mat i onal [ Page 14]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

specification per se, and a conpressor need not followit in order to
be conpliant.

The conpressor terminates a block when it determines that starting a
new bl ock with fresh trees would be useful, or when the block size
fills up the conpressor’s bl ock buffer

The conpressor uses a chained hash table to find duplicated strings,
usi ng a hash function that operates on 3-byte sequences. At any

gi ven point during conpression, let XYZ be the next 3 input bytes to
be exam ned (not necessarily all different, of course). First, the

conpressor exam nes the hash chain for XYZ. If the chain is enpty,
the conpressor sinmply wites out X as a literal byte and advances one
byte in the input. |If the hash chain is not enpty, indicating that

the sequence XYZ (or, if we are unlucky, sone other 3 bytes with the
same hash function value) has occurred recently, the conpressor
conmpares all strings on the XYZ hash chain with the actual input data
sequence starting at the current point, and selects the |ongest

mat ch.

The conpressor searches the hash chains starting with the nost recent
strings, to favor small distances and thus take advantage of the
Huf f man encodi ng. The hash chains are singly linked. There are no
del etions fromthe hash chains; the algorithmsinply discards nmatches
that are too old. To avoid a worst-case situation, very |long hash
chains are arbitrarily truncated at a certain length, deternined by a
run-time paraneter

To improve overall conpression, the conpressor optionally defers the
sel ection of matches ("lazy matching"): after a match of | ength N has
been found, the conpressor searches for a |longer natch starting at
the next input byte. |If it finds a longer match, it truncates the
previous match to a length of one (thus producing a single literal
byte) and then enmits the longer match. Qherwise, it enmts the
original match, and, as described above, advances N bytes before
conti nui ng.

Run-time paraneters also control this "lazy match" procedure. |If
conpression ratio is nost inportant, the conpressor attenpts a
conpl ete second search regardl ess of the Iength of the first match
In the normal case, if the current match is "l ong enough”, the
conpressor reduces the search for a | onger match, thus speedi ng up

the process. |If speed is nost inportant, the conpressor inserts new
strings in the hash table only when no match was found, or when the
match is not "too long". This degrades the conpression ratio but

saves tine since there are both fewer insertions and fewer searches.

Deut sch I nf or mat i onal [ Page 15]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

5. References

[1] Huffman, D. A, "A Method for the Construction of M ninum
Redundancy Codes", Proceedings of the Institute of Radio
Engi neers, Septenber 1952, Vol une 40, Nunmber 9, pp. 1098-1101.

[2] ziv J., Lenpel A, "A Universal Algorithmfor Sequential Data
Conpression", | EEE Transactions on Information Theory, Vol. 23,
No. 3, pp. 337-343.

[3] Gailly, J.-L., and Adler, M, ZLIB docunentati on and sources,
available in ftp://ftp.uu.net/pub/archiving/zip/doc/

[4] Gailly, J.-L., and Adler, M, GZIP docunentation and sources,
avail able as gzip-*.tar in ftp://prep.ai.nit.edu/pub/gnu/

[5] Schwartz, E. S., and Kallick, B. "Cenerating a canonical prefix
encoding." Comm ACM 7,3 (Mar. 1964), pp. 166-169.

[6] Hirschberg and Lel ewer, "Efficient decoding of prefix codes,"
Comm ACM 33,4, April 1990, pp. 449-459.

6. Security Considerations

Any data conpression nethod involves the reduction of redundancy in
the data. Consequently, any corruption of the data is likely to have
severe effects and be difficult to correct. Unconpressed text, on
the other hand, will probably still be readable despite the presence
of some corrupted bytes.

It is recomended that systens using this data format provide sone
means of validating the integrity of the conpressed data. See
reference [3], for exanple.

7. Source code
Source code for a C language inplenentation of a "deflate" conpliant
conpressor and deconpressor is available within the zlib package at
ftp://ftp.uu. net/pub/archiving/zip/zlib/.

8. Acknow edgenent s

Trademarks cited in this docunent are the property of their
respective owners

Phil Katz designed the deflate format. Jean-Loup Gailly and Mark

Adler wote the related software described in this specification
G enn Rander s- Pehrson converted this docunment to RFC and HTM. fornat.

Deut sch I nf or mat i onal [ Page 16]



RFC 1951 DEFLATE Conpressed Data Format Specification May 1996

9. Author’s Address

L. Peter Deutsch

Al addin Enterprises

203 Santa Margarita Ave
Menl o Park, CA 94025

Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMai | : <ghost @l addi n. conp

Questions about the technical content of this specification can be
sent by enmail to:

Jean-Loup Gailly <gzi p@rep.ai.nt.edu> and
Mar k Adl er <nmmdl er @l ummi . cal t ech. edu>

Editorial comments on this specification can be sent by email to:

L. Peter Deutsch <ghost @l addi n. conr and
d enn Rander s- Pehrson <randeg@l umi . rpi . edu>

Deut sch I nf or mat i onal [ Page 17]



