Net wor k Wor ki ng Group G H Mealy

Request for Comments: 195 HARV
NI C 7140 16 July, 1971
Cat egori es: D.4, D7

Data Conmputers -- Data Descriptions and Access Language

According to the mnutes of the NWG neeting in May (RFC 164), it
appears that a unified approach to Network data nanagenent is being
proposed to CCA. The purpose of this paper is to discuss sonme of the
probl ens involved and to suggest possible avenues of approach toward
their resolution. Parenthetically, | believe that a non-unified
approach | eads to even worse probl ens.

My main remarks are predicated on a few assunptions and their
consequences. Since sone or all may turn out to be wong, it seens
appropriate to state themexplicitly. The steps in the argunments

| eading fromthe assunptions to their consequences nay appear to be
(and in fact may be) less than obvious. They are all of a piece,
however, and revol ve around the necessity for doing business with a
nunber of dissimlar HOST systens while attenpting to nake it
unnecessary for an individual user or user programto know the
details of data file organization and representation. Gven this as
an objective, | believe that the argunents are quite direct.

Assunpt i ons

1. W face the usual set of naming, catal oging, protection
backup, etc. problens.

(I say this only to disnmiss the subject as far as the follow ng
is concerned. In ny estimation, these problens and feasible
solutions are reasonably well understood; our real problemin
this area is in reaching agreenent on specifics while |eaving
sufficient ratholes for future expansion).

2. Files stored will contain arbitrarily conpl ex data objects.
3. The organi zation of any file (that is, the way its structure is

mapped i nto physical storage by the data conmputer) will
normal |y be unknown by the user

Heal y [Page 1]

RFC 195 Dat a Conputers July 1971

4. Data itens in files may be stored in arbitrary representations
(e.g., those of the originating user’s HOST rather than that of
the data conputer or other "standard" representation).

5. Access to a file will normally be to sonme subset of it. (l.e.,
the unit for transmission will usually be part of a file rather
than the whole file, and access will not necessarily be
sequenti al).

Consequences

1. A nethod of data description significantly nore powerful than
now comonl y available (as with COBOL or PL/1) is required.
The descriptions nust be stored with the files. Data item
representati ons and storage organi zati ons nmust be descri babl e.

2. The data conputer nust offer a "data reconfiguration service"
based on use of the data descriptions.

3. A representation and organi zati on-i ndependent | evel of
di scourse nmust be made avail able for controlling access.

Dat a Descri ption

As it happens, the descriptive facilities in ELI (References 1 and 2)
are al nost adequate as they stand. ELI is an extensible |Ianguage --
the conpiler and interpreter for ELI are principal conponents of a
system i npl enented on the PDP-1 O at Harvard -- which allows the
definition of arbitrary data structures in terns of a few prinmtive
data types (BOOL, CHAR, |INT, REAL, SYMBOL, MODE, FORM and ROUTI NE)
These data types are of the sort | called "generic" in Reference 3.
To the EL1 inplenentation on the PDP-10, say, we would have to add
met hods to describe a specific representation of INT, etc. and
primtive routines to convert between specific representations.

In the ECL system (in which EL1 is enbedded), there is no rigid

di stinction between conpile tine and run tinme. |In particular, if the
argunents and free variables of a routine are evaluable at conpile
time, then the routine is evaluated and the val ue replaces the call
More generally, arbitrarily large anmounts of a routine being conpiled
may col |l apse into values. As far as the data conputer is concerned
this offers the possibility of producing tailor-nade data
reconfiguration progranms, taking maxi nrum advantage of the data
descriptions at conpile time rather than using a strictly
interpretative node of operation

Heal y [Page 2]

RFC 195 Dat a Conputers July 1971

Access Language

Here, | amon less firmground. | wll suggest, however, that sone
of the ideas of Sattley, et al (Reference 4) deserve consideration
I will quote fromthe Reference:

" Qur proposal is a |language for describing the transferable
features of files, in which conventional progranm ng | anguages (e.g.
FORTRAN, ALGCOL, etc.,) can be enbedded, and from which the

i nformati on necessary to optimze the use of secondary storage can be
easily abstracted. This |anguage defines our abstract nodel of
secondary storage in the sane way that FORTRAN defi ned an abstract
machi ne. This | anguage shoul d have (at | east) the follow ng

f eat ures:

1. File declarations nane the file and the elenents in the file,
and specify the range of forns that the el enents can take.
Each file has precisely one naned el enent. Each file includes
the (maxi mun) size (in nunber of elenments) of the file.

2. Subsets of files can be created by neans of grouping
declarations. Such subsets can be nested.

3. Subsets of files can be naned by neans of naning declarations.
Such decl arations can al so nanme individual elenents of the
file. Some formof inplicit naming, allow ng | anguage
constructs such as GET ANOTHER TRI PLE, is i ncl uded.

4. Menbers of a set (i.e., elements in a subset or file, subsets
in a containing subset or file) can be ordered by order
declarations. Some formof arbitrary but fixed ordering,
al l owi ng | anguage constructs such as GET NEXT TRIPLE, is
i ncl uded.

5. The portions of a file transacted with at a point of access is
declared. The size of this portion can be expressed in
absolute or relative terns.

6. At each point of access to secondary storage, an environnment is
described (or referenced) which contains those declarations of
types (1)-(5) necessary to define the transaction with
secondary.

Heal y [Page 3]

RFC 195 Dat a Conputers July 1971

A |l anguage with the above features nakes no nention of hardware
devices, but it provides the programer with the neans of defining
the al gorithm dependent features of his files so that those files
m ght be transferred efficiently from machi ne to nachi ne”

In the Sattley, et al study, the notion was that a conpiler would
take the source program and actually conpile the hardware-dependent
file accessing code. In our environment, we are concerned with
control commands to the data conmputer (e.g., GET NEXT WALDO) and
supplying the data conmputer with enough information to define a
WALDO The basic functions would seemto be the sane, in either
case, albeit inplenented rather differently.

Ref er ences

1. Wegbreit, B. The Treatnent of Data Types in EL1. Technical
Report, Division of Engineering and Applied Physics, Harvard
Uni versity, Canbridge, Massachusetts, May 1971.

2. Wegbreit, B. The ECL Progranm ng System Technical Report,
Di vi sion of Engi neering and Applied Physics, Harvard University,
Canbri dge, Massachusetts, April 1971.

3. Mealy, G H Another Look at Data. AFIPS Conference Proceedings,
vol. 31, 1967 Fall Joint Conputer Conference

4. Sattley, K, MIllstein, R and Warshall, S. On Program

Transferability. Report CA-7011-2411, Massachusetts Conputer
Associ ates, Wakefield, Massachusetts, Myvenber 1970.

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Larry Masinter 10/99]

Heal y [Page 4]

