Net wor k Wor ki ng Group T. Howes
Request for Comments: 1823 M Snith
Cat egory: | nformational Uni versity of M chigan

August 1995

The LDAP Application ProgramInterface
Status of this Meno

This meno provides information for the Internet comunity. This neno
does not specify an Internet standard of any kind. Distribution of
this meno is unlinted.

1. I nt roducti on

This docunent defines a C |anguage application programinterface to
the lightweight directory access protocol (LDAP). The LDAP APl is
designed to be powerful, yet sinple to use. It defines conpatible
synchronous and asynchronous interfaces to LDAP to suit a wi de
variety of applications. This docunent gives a brief overview of the
LDAP nodel, then an overview of how the APl is used by an application
programto obtain LDAP information. The APl calls are described in
detail, followed by an appendi x that provi des sone exanpl e code
denmonstrating the use of the API.

2. Overview of the LDAP Mde

LDAP is the lightweight directory access protocol, described in [2]
and [7]. It can provide a |lightweight frontend to the X 500 directory
[1], or a stand-alone service. In either node, LDAP is based on a
client-server nodel in which a client nakes a TCP connection to an
LDAP server, over which it sends requests and receives responses.

The LDAP infornation nodel is based on the entry, which contains

i nformati on about sone object (e.g., a person). Entries are conposed
of attributes, which have a type and one or nore val ues. Each
attribute has a syntax that determ nes what kinds of values are
allowed in the attribute (e.g., ASCI| characters, a jpeg photograph
etc.) and how those val ues behave during directory operations (e.g.
is case significant during conparisons).

Entries are organized in a tree structure, usually based on
political, geographical, and organi zati onal boundaries. Each entry is
uni quely nanmed relative to its sibling entries by its relative

di stingui shed nanme (RDN) consisting of one or nore distinguished
attribute values fromthe entry. At nost one value from each
attribute may be used in the RDN. For exanple, the entry for the

Howes & Snith I nf or mat i onal [Page 1]

RFC 1823 LDAP API August 1995

person Babs Jensen night be nanmed with the "Barbara Jensen" val ue
fromthe commonNane attribute. A globally unique nanme for an entry,
call ed a distinguished name or DN, is constructed by concatenating
the sequence of RDNs fromthe root of the tree down to the entry. For
exanple, if Babs worked for the University of Mchigan, the DN of her
U Mentry mght be "cn=Barbara Jensen, o=University of M chigan
c=US". The DN fornmat used by LDAP is defined in [4].

Operations are provided to authenticate, search for and retrieve

i nformation, nodify information, and add and delete entries fromthe
tree. The next sections give an overview of how the APl is used and
detail ed descriptions of the LDAP APl calls that inplenent all of

t hese functi ons.

3. Overview of LDAP APl Use
An application generally uses the LDAP APl in four sinple steps.

o} Open a connection to an LDAP server. The | dap_open() cal
returns a handle to the connection, allowing multiple
connections to be open at once.

o Aut henticate to the LDAP server and/or the X 500 DSA. The
| dap_bind() call and friends support a variety of
aut henti cati on net hods.

o] Per f orm sone LDAP operations and obtain sone results.
| dap_search() and friends return results which can be parsed
by I dap_result2error(), ldap_first_entry(), |dap_next_entry(),
etc.

o] Cl ose the connection. The | dap_unbind() call closes the
connecti on.

Operations can be perfornmed either synchronously or asynchronously.
Synchronous calls end in _s. For exanple, a synchronous search can be
conpl eted by calling Idap_search_s(). An asynchronous search can be
initiated by calling |Idap_search(). Al synchronous routines return
an indication of the outconme of the operation (e.g, the constant
LDAP_SUCCESS or sone other error code). The asynchronous routines
return the nmessage id of the operation initiated. This id can be used
in subsequent calls to Idap _result() to obtain the result(s) of the
operation. An asynchronous operation can be abandoned by calling

| dap_abandon() .

Howes & Snmith I nf or mat i onal [Page 2]

RFC 1823 LDAP API August 1995

Results and errors are returned in an opaque structure called
LDAPMessage. Routines are provided to parse this structure, step
through entries and attributes returned, etc. Routines are also
provided to interpret errors. The next sections describe these
routines in nore detail

4., Calls for perform ng LDAP operations
This section describes each LDAP operation APl call in detail. Al
calls take a "connection handle", a pointer to an LDAP structure
cont ai ni ng per-connection information. Mny routines return results
in an LDAPMessage structure. These structures and others are
descri bed as needed bel ow.

4.1. Opening a connection
| dap_open() opens a connection to the LDAP server

typedef struct ldap {

/* ... opaque paraneters ... */
i nt | d_deref;

i nt Idtinelimt;

i nt Id sizelimt;

i nt I d_errno;

char *| d_mat ched

char *|d_error;

/* ... opaque paraneters ... */

} LDAP;
LDAP *| dap_open(char *hostnane, int portno);
Paraneters are:

host nanme Contai ns a space-separated |ist of hostnames or dotted
strings representing the I P address of hosts running an
LDAP server to connect to. The hosts are tried in the
order listed, stopping with the first one to which a
successful connection is made;

portno contains the TCP port number to which to connect. The
default LDAP port can be obtained by supplying the
const ant LDAP_PORT.

| dap_open() returns a "connection handle", a pointer to an LDAP
structure that should be passed to subsequent calls pertaining to the
connection. It returns NULL if the connection cannot be opened. One
of the Idap_bind calls described bel ow nmust be conpl eted before other
operations can be performed on the connection

Howes & Snmith I nf or mat i onal [Page 3]

RFC 1823 LDAP API August 1995

The cal ling program shoul d assunme not hi ng about the order of the

fields in the LDAP structure. There nmay be other fields in the

structure for internal library use. The fields shown above are

descri bed as needed in the description of other calls bel ow

4.2. Authenticating to the directory

| dap_bind() and friends are used to authenticate to the directory.
i nt |dap_bind(LDAP *Id, char *dn, char *cred, int nethod);
int ldap_bind s(LDAP *Id, char *dn, char *cred, int nethod);
int |dap_sinple_bind(LDAP *Id, char *dn, char *passwd);
int |dap_sinple_bind_s(LDAP *lId, char *dn, char *passwd);
int |dap_kerberos_bind(LDAP *lId, char *dn);
int |dap_kerberos_bind s(LDAP *1d, char *dn);

Par aneters are:

Id The connection handl e;

dn The nane of the entry to bind as;

cred The credentials with which to authenticate;

net hod One of LDAP_AUTH_SI MPLE, LDAP_AUTH KRBV41, or
LDAP_AUTH KRBV42, indicating the authentication nmethod to use;

passwd For |dap_sinple_bind(), the password to conpare to the entry’'s
user Password attri bute;

There are three types of bind calls, providing sinple authentication
kerberos authentication, and general routines to do either one. In
the case of Kerberos version 4 authentication using the genera

| dap_bi nd() routines, the credentials are ignored, as the routines
assune a valid ticket granting ticket already exists which can be
used to retrieve the appropriate service tickets.

Synchronous versions of the routines have nanes that end in _s.
These routines return the result of the bind operation, either the
constant LDAP_SUCCESS if the operation was successful, or another
LDAP error code if it was not. See the section bel ow on error
handl i ng for nore information about possible errors and how to

interpret them

Howes & Snmith I nf or mat i onal [Page 4]

RFC 1823 LDAP API August 1995

Asynchronous versions of these routines return the nmessage id of the
bind operation initiated. A subsequent call to Idap_result(),

descri bed bel ow, can be used to obtain the result of the bind. In
case of error, these routines will return -1, setting the Id_errno
field in the LDAP structure appropriately.

Not e that no other operations over the connection should be attenpted
before a bind call has successfully conpleted. Subsequent bind calls
can be used to re-authenticate over the same connection

4.3. Cdosing the connection

| dap_unbind() is used to unbind fromthe directory and cl ose the
connecti on.

i nt |dap_unbind(LDAP *Id);
Par aneters are:
Id The connection handl e.
| dap_unbi nd() works synchronously, unbinding fromthe directory,
cl osing the connection, and freeing up the Id structure before
returning. |ldap_unbind() returns LDAP_SUCCESS (or another LDAP error
code if the request cannot be sent to the LDAP server). After a cal
to | dap_unbind(), the Id connection handle is invalid.
4.4. Searching
| dap_search() and friends are used to search the LDAP directory,
returning a requested set of attributes for each entry matched.
There are three variations.

struct tineval {

| ong tv_sec;
| ong tv_usec;
b
i nt |dap_search(
LDAP *| d,
char *base,
i nt scope,
char *filter,
char *attrs[],
i nt attrsonly
)
i nt |dap_search_s(
LDAP *| d,
char *base,

Howes & Snmith I nf or mat i onal [Page 5]

RFC 1823

)

in

)

LDAP API August 1995

i nt scope,
char *filter,
char *attrs[],
i nt attrsonly,
LDAPMessage **res

| dap_search_st(
LDAP *|d,
char *base,
i nt scope,
char *filter,
char *attrs[],
i nt attrsonly,
struct timeval *timeout,
LDAPMessage **res

Paraneters are:

Id
base

scope

filter

attrs

attrsonly

ti meout

res

There are

The connection handl e;
The dn of the entry at which to start the search;

One of LDAP_SCOPE BASE, LDAP_SCOPE_ONELEVEL, or
LDAP_SCOPE_SUBTREE, indicating the scope of the search

A character string as described in RFC 1558 [3],
representing the search filter;

A NULL-termi nated array of strings indicating which
attributes to return for each matching entry. Passing
NULL for this paraneter causes all available attributes
to be retrieved;

A bool ean val ue that should be zero if both attribute
types and values are to be returned, non-zero if only
types are wanted;

For the | dap_search_st() call, this specifies the loca
search tinmeout val ue;

For the synchronous calls, this is a result paraneter
which will contain the results of the search upon
conpl etion of the call.

three fields in the I d connection handl e which control how

the search is performed. They are:

Howes & Smith

I nf or mat i onal [Page 6]

RFC 1823 LDAP API August 1995

ld sizelimit Alimt on the nunber of entries to return fromthe
search. A value of zero nmeans no limt;

Id_timelimit Alimt on the nunber of seconds to spend on the search
A value of zero nmeans no linmt;

| d_der ef One of LDAP_DEREF _NEVER, LDAP_DEREF_SEARCHI NG
LDAP_DEREF _FI NDI NG or LDAP_DEREF_ALWAYS, speci fying
how al i ases shoul d be handl ed during the search. The
LDAP_DEREF SEARCHI NG val ue neans al i ases shoul d be
dereferenced during the search but not when | ocating
the base object of the search. The LDAP_DEREF_FI NDI NG
val ue neans aliases should be dereferenced when
| ocating the base object but not during the search

An asynchronous search is initiated by calling | dap_search(). It
returns the nessage id of the initiated search. The results of the
search can be obtained by a subsequent call to ldap result(). The
results can be parsed by the result parsing routines described in
detail later. 1In case of error, -1 is returned and the Id_errno
field in the LDAP structure is set appropriately.

A synchronous search is perfornmed by calling | dap_search_s() or

| dap_search_st(). The routines are identical, except that

| dap_search_st() takes an additional paraneter specifying a tineout
for the search. Both routines return an indication of the result of
the search, either LDAP_SUCCESS or sone error indication (see Error
Handling below). The entries returned fromthe search (if any) are
contained in the res paraneter. This paranmeter is opaque to the
caller. Entries, attributes, values, etc., should be extracted by
calling the parsing routines described bel ow The results contained
in res should be freed when no longer in use by calling

| dap_nsgfree(), described later

4.5. Reading an entry

LDAP does not support a read operation directly. Instead, this
operation is enulated by a search with base set to the DN of the
entry to read, scope set to LDAP_SCOPE_BASE, and filter set to
"(objectclass=*)". attrs contains the list of attributes to return

4.6. Listing the children of an entry

LDAP does not support a list operation directly. Instead, this
operation is enulated by a search with base set to the DN of the
entry to list, scope set to LDAP_SCOPE _ONELEVEL, and filter set to
"(objectclass=*)". attrs contains the list of attributes to return
for each child entry.

Howes & Snmith I nf or mat i onal [Page 7]

RFC 1823 LDAP API August 1995

4.7. Mdifying an entry

The I dap_nodify() and I dap_nodify_s() routines are used to nodify an
exi sting LDAP entry.

typedef struct |dapnod {

i nt nod_op;
char *nod_type
uni on {
char **nodv_strval s;
struct berval **nodv_bval s;
} nod_val s;
} LDAPM;
#defi ne nod_val ues nmod_val s. nmodv_strval s
#defi ne nod_bval ues nmod_val s. modv_bval s

int |dap_nodi fy(LDAP *Id, char *dn, LDAPMbd *nods[]);
int ldap_nodify s(LDAP *I1d, char *dn, LDAPMbd *nods[]);

Paraneters are:

I d The connection handl e;

dn The nane of the entry to nodify;

nods A NULL-terminated array of nodifications to make to the
entry.

The fields in the LDAPMod structure have the foll owi ng neani ngs:

nmod_op The nodification operation to perform It should be one of
LDAP_MOD ADD, LDAP_MOD DELETE, or LDAP_MOD REPLACE. This
field also indicates the type of values included in the
nod_vals union. It is ORed with LDAP_MOD BVALUES to sel ect
the nod _bvalues form Oherw se, the nod values formis
used;

nmod_type The type of the attribute to nodify;

nmod_val s The values (if any) to add, delete, or replace. Only one of
the nod_val ues or nod_bval ues variants shoul d be used,
selected by ORing the nod _op field with the constant
LDAP_MOD BVALUES. nod_values is a NULL-terni nated array of
zero-terminated strings and nod_bval ues is a NULL-term nated
array of berval structures that can be used to pass binary
val ues such as inages.

Howes & Snmith I nf or mat i onal [Page 8]

RFC 1823 LDAP API August 1995

For LDAP_MOD ADD nodifications, the given values are added to the
entry, creating the attribute if necessary. For LDAP_MOD DELETE
nodi fications, the given values are deleted fromthe entry, renoving
the attribute if no values remain. |If the entire attribute is to be
del eted, the nod _vals field should be set to NULL. For

LDAP_MOD REPLACE nodifications, the attribute will have the |isted
val ues after the nodification, having been created if necessary. Al
nodi fications are performed in the order in which they are I|isted.

| dap_nodify_s() returns the LDAP error code resulting fromthe
nmodi fy operation. This code can be interpreted by | dap_perror()
and friends.
| dap_nodi fy() returns the message id of the request it initiates, or
-1 on error. The result of the operation can be obtained by calling
| dap_result().

4.8. Mdifying the RDN of an entry

The | dap_nodrdn() and | dap_nodrdn_s() routines are used to change the
name of an LDAP entry.

i nt | dap_nodrdn(

LDAP *|d,
char *dn,
char *newr dn,
i nt del et eol drdn
)
i nt | dap_nodrdn_s(
LDAP *|d,
char *dn,
char *newr dn,
i nt del et eol drdn
)
Paraneters are:
Id The connection handl e;
dn The nane of the entry whose RDN is to be changed
newr dn The new RDN to give the entry;

del eteol drdn A bool ean value, if non-zero indicating that the old
RDN val ue(s) should be renmoved, if zero indicating that
the old RDN val ue(s) should be retained as non-
di stingui shed val ues of the entry.

Howes & Snmith I nf or mat i onal [Page 9]

RFC 1823 LDAP AP August 1995
The | dap_nodrdn_s() routine is synchronous, returning the LDAP error
code indicating the outcome of the operation
The | dap_nodrdn() routine is asynchronous, returning the nessage id
of the operation it initiates, or -1 in case of trouble. The result
of the operation can be obtained by calling | dap_result().

4.9. Adding an entry

| dap_add() and | dap_add_s() are used to add entries to the LDAP
directory.

int |dap_add(LDAP *lId, char *dn, LDAPMbd *attrs[]);
int |dap_add_s(LDAP *1d, char *dn, LDAPMbd *attrs[]);
Par aneters are:
Id The connection handl e;
dn The nane of the entry to add;
attrs The entry’s attributes, specified using the LDAPMbd structure
defined for Idap_nodify(). The nod_type and nod vals fields
should be filled in. The nod op field is ignored unless ORed
with the constant LDAP_MOD BVALUES, used to select the
nod_bval ues case of the nod_vals union

Note that the parent of the entry nust already exist.

| dap_add_s() is synchronous, returning the LDAP error code indicating
t he outcone of the operation

| dap_add() is asynchronous, returning the nmessage id of the operation
it initiates, or -1 in case of trouble. The result of the operation
can be obtained by calling |dap_result().

4.10. Deleting an entry

| dap_del ete() and | dap_delete_s() are used to delete entries fromthe
LDAP directory.

int |dap_delete(LDAP *Id, char *dn);

int |dap_delete_s(LDAP *I1d, char *dn);

Howes & Snmith I nf or mat i onal [Page 10]

RFC 1823 LDAP API August 1995

Paraneters are:

I d The connection handl e;
dn The nane of the entry to del ete.
Note that the entry to delete nust be a leaf entry (i.e., it nust

have no children). Deletion of entire subtrees is not supported by
LDAP.

| dap_del ete_s() is synchronous, returning the LDAP error code
i ndi cating the outcone of the operation

| dap_del ete() is asynchronous, returning the nessage id of the
operation it initiates, or -1 in case of trouble. The result of the
operation can be obtained by calling ldap_result().

5. Calls for abandoning an operation
| dap_abandon() is used to abandon an operation in progress.

i nt | dap_abandon(LDAP *1d, int nsgid);

| dap_abandon() abandons the operation with nessage id nsgid. It
returns zero if the abandon was successful, -1 otherwise. After a
successful call to | dap_abandon(), results with the given nessage id
are never returned froma call to Idap_result().

6. Calls for obtaining results
Idap_result() is used to obtain the result of a previous
asynchronously initiated operation. |dap_nsgfree() frees the results
obtained froma previous call to Idap_result(), or a synchronous
search routine.

int ldap_result(

LDAP *|d,

i nt negi d,

i nt all,
struct tinmeval *tineout,
LDAPMessage **res

)
int |dap_msgfree(LDAPMessage *res);

Howes & Snmith I nf or mat i onal [Page 11]

RFC 1823 LDAP API August 1995

Paraneters are:

I d The connection handl e;

nmsgi d The message id of the operation whose results are to be
returned, or the constant LDAP_RES ANY if any result is
desi r ed;

al | A bool ean paraneter that only has neaning for search

results. If non-zero it indicates that all results of a
search should be retrieved before any are returned. |If zero,
search results (entries) will be returned one at a tinme as
they arrive;

timeout A tinmeout specifying howlong to wait for results to be
returned. A NULL value causes ldap_result() to block unti
results are available. A tineout value of zero second
specifies a polling behavior

res For ldap_result(), a result parameter that will contain the
result(s) of the operation. For ldap_nsgfree(), the result
chain to be freed, obtained froma previous call to
| dap_result() or |dap_search_s() or |dap_search_st().

Upon successful conpletion, ldap_result() returns the type of the
result returned in the res paraneter. This will be one of the
foll owi ng constants.

LDAP_RES_BI ND
LDAP_RES_SEARCH_ENTRY
LDAP_RES_SEARCH_RESULT
LDAP_RES_MODI FY
LDAP_RES_ADD
LDAP_RES_DELETE
LDAP_RES_MODRDN
LDAP_RES_COVPARE

I dap_result() returns O if the tineout expired and -1 if an error
occurs, in which case the Id_errno field of the Id structure will be
set accordingly.

| dap_nsgfree() frees the result structure pointed to be res and
returns the type of the nessage it freed.

Howes & Snmith I nf or mat i onal [Page 12]

RFC 1823 LDAP API August 1995

7. Calls for error handling

The following calls are used to interpret errors returned by other
LDAP APl routines.

int |dap_result2error(

LDAP *| d,
LDAPMessage *res,
i nt freeit

)

char *ldap_err2string(int err);

void |l dap_perror(LDAP *Id, char *msg);
Par aneters are:
Id The connection handl e;

res The result of an LDAP operation as returned by ldap_result()
or one of the synchronous APl operation calls;

freeit A bool ean paraneter indicating whether the res paraneter
shoul d be freed (non-zero) or not (zero);

err An LDAP error code, as returned by | dap result2error() or
one of the synchronous APl operation calls;

nsg A nmessage to be displayed before the LDAP error nessage

| dap_result2error() is used to convert the LDAP result nessage
obtained fromldap result(), or the res paraneter returned by one of
t he synchronous APl operation calls, into a numeric LDAP error code.
It also parses the Id_matched and | d_error portions of the result
message and puts theminto the connection handle information. Al the
synchronous operation routines call |dap_result2error() before
returning, ensuring that these fields are set correctly. The rel evant
fields in the connection structue are:

Id matched In the event of an LDAP_NO SUCH OBJECT error return, this
paraneter contains the extent of the DN matched;

Id_error This paraneter contains the error nessage sent in the
result by the LDAP server

I d_errno The LDAP error code indicating the outcone of the
operation. It is one of the follow ng constants:

Howes & Snmith I nf or mat i onal [Page 13]

RFC 1823

LDAP API

LDAP_SUCCESS

LDAP_OPERATI ONS_ERRCR
LDAP_PROTOCOL_ERROR
LDAP_TI MELI M T_EXCEEDED
LDAP_S| ZELI M T_EXCEEDED
LDAP_COMPARE_FALSE
LDAP_COMPARE_TRUE
LDAP_STRONG AUTH_NOT_SUPPORTED
LDAP_STRONG_AUTH_REQUI RED
LDAP_NO_SUCH_ATTRI BUTE
LDAP_UNDEFI NED_TYPE

LDAP_| NAPPROPRI ATE_MATCHI NG
LDAP_CONSTRAI NT_VI OLATI ON
LDAP_TYPE_OR _VALUE_EXI STS
LDAP_| NVALI D_SYNTAX
LDAP_NO_SUCH_OBJECT
LDAP_ALI AS_PROBLEM

LDAP_| NVALI D_DN_SYNTAX
LDAP_| S_LEAF

LDAP_ALI AS_DEREF_PROBLEM
LDAP_| NAPPROPRI ATE_AUTH
LDAP_| NVALI D_CREDENTI ALS
LDAP_| NSUFFI Cl ENT_ACCESS
LDAP_BUSY

LDAP_UNAVAI LABLE
LDAP_UNW LLI NG TO_PERFORM
LDAP_LOOP_DETECT

LDAP_NAM NG_VI OLATI ON
LDAP_OBJECT_CLASS_VI OLATI ON
LDAP_NOT_ALLOWED ON_NONLEAF
LDAP_NOT_ALLOAED_ON_RDN
LDAP_ALREADY_EXI STS
LDAP_NO OBJECT_CLASS_MODS
LDAP_RESULTS_TOO LARGE
LDAP_OTHER

LDAP_SERVER DOWN
LDAP_LOCAL_ERROR
LDAP_ENCODI NG_ERROR
LDAP_DECODI NG_ERROR
LDAP_TI MEOUT
LDAP_AUTH_UNKNOWN

LDAP_FI LTER_ERROR
LDAP_USER_CANCELLED
LDAP_PARAM ERROR
LDAP_NO_MENORY

Howes & Smith I nf or mat i onal

August 1995

[Page 14]

RFC 1823 LDAP API August 1995

| dap_err2string() is used to convert a nuneric LDAP error code, as
returned by | dap result2error() or one of the synchronous API
operation calls, into an informative NULL-termi nated character string
nmessage describing the error. It returns a pointer to static data.

| dap_perror() is used to print the nmessage supplied in nsg, followed
by an indication of the error contained in the Id errno field of the
I d connection handle, to standard error

8. Calls for parsing search entries
The following calls are used to parse the entries returned by
| dap_search() and friends. These entries are returned in an opaque
structure that should only be accessed by calling the routines
descri bed bel ow. Routines are provided to step through the entries
returned, step through the attributes of an entry, retrieve the nane
of an entry, and retrieve the values associated with a given
attribute in an entry.
8.1. Stepping through a set of entries
The I dap_first_entry() and | dap_next_entry() routines are used to
step through a set of entries in a search result.
| dap_count _entries() is used to count the nunber of entries returned.
LDAPMesage *ldap _first _entry(LDAP *1d, LDAPMessage *res);
LDAPMesage *1 dap_next_entry(LDAP *1d, LDAPMessage *entry);
int |dap_count_entries(LDAP *ld, LDAPMessage *res);
Paraneters are:

I d The connecti on handl e;

res The search result, as obtained by a call to one of the syn-
chronous search routines or Idap_result();

entry The entry returned by a previous call to ldap_first_entry() or
| dap_next _entry().

Idap_first _entry() and | dap_next _entry() will return NULL when no
nore entries exist to be returned. NULL is also returned if an error
occurs while stepping through the entries, in which case the |d_errno
field of the Id connection handle will be set to indicate the error

| dap_count _entries() returns the nunber of entries contained in a
chain of entries. It can also be used to count the nunber of entries

Howes & Snmith I nf or mat i onal [Page 15]

RFC 1823 LDAP AP August 1995
that remain in a chain if called with an entry returned by
I dap_first_entry() or |dap_next_entry().

8.2. Stepping through the attributes of an entry

The I dap_first_attribute() and | dap_next_attribute() calls are used
to step through the list of attribute types returned with an entry.

char *ldap_first_attribute(

LDAP *1d,
LDAPMessage *entry,
voi d **ptr
)
char *l dap_next _attri bute(
LDAP *|d,
LDAPMessage *entry,
voi d *ptr
)
Paraneters are:
I d The connecti on handl e;

entry The entry whose attributes are to be stepped through, as
returned by ldap first_entry() or |dap_next_entry();

ptr In Idap_first_attribute(), the address of a pointer used
internally to keep track of the current position in the entry.
In I dap_next _attribute(), the pointer returned by a previous
call to ldap first_attribute().

Idap_first _attribute() and I dap_next_attribute() will return NULL
when the end of the attributes is reached, or if there is an error
in which case the Id errno field in the Id connection handle will be
set to indicate the error.

Both routines return a pointer to a per-connection buffer containing
the current attribute name. This should be treated |ike static data.
Idap_first_attribute() will allocate and return in ptr a pointer to a
Ber El ement used to keep track of the current position. This pointer
shoul d be passed in subsequent calls to | dap_next_attribute() to step
through the entry’s attributes.

The attribute names returned are suitable for passing in a call to
| dap_get _val ues() and friends to retrieve the associated val ues.

Howes & Snmith I nf or mat i onal [Page 16]

RFC 1823 LDAP API August 1995

8.3. Retrieving the values of an attribute

| dap_get val ues() and | dap_get_values_len() are used to retrieve the
val ues of a given attribute froman entry. |dap_count_val ues() and

| dap_count _val ues_len() are used to count the returned val ues.

| dap_val ue _free() and ldap_value free len() are used to free the

val ues.

typedef struct berval {
unsi gned | ong bv_len

char *bv_val
i
char **| dap_get val ues(
LDAP *| d,
LDAPMessage *entry,
char *attr
)
struct berval **|dap_get_val ues_I en(
LDAP *| d,
LDAPMessage *entry,
char *attr
)

int |dap_count_val ues(char **vals);
int |dap_count_values_len(struct berval **vals);
int |dap_value free(char **vals);
int |dap_value free |len(struct berval **vals);
Par aneters are:
Id The connection handl e;

entry The entry fromwhich to retrieve values, as returned by
I dap_first_entry() or ldap_next_entry();

attr The attribute whose values are to be retrieved, as returned by
Idap_first_attribute() or Idap_next_attribute(), or a caller-
supplied string (e.g., "mail");

val s The val ues returned by a previous call to |dap_get_val ues() or
| dap_get _val ues_l en().

Howes & Snmith I nf or mat i onal [Page 17]

RFC 1823 LDAP API August 1995

Two forns of the various calls are provided. The first formis only
suitable for use with non-binary character string data only. The
second _len formis used with any kind of data.

Note that the values returned are malloc’ ed and should be freed by
calling either I dap_value free() or Idap_value free len() when no
| onger in use.

8.4. Retrieving the nane of an entry

| dap_get _dn() is used to retrieve the nane of an entry.

| dap_expl ode_dn() is used to break up the nanme into its conponent
parts. |dap_dn2ufn() is used to convert the nane into a nore "user
friendly" format.

char *|dap_get _dn(LDAP *Id, LDAPMessage *entry);
char **| dap_expl ode_dn(char *dn, int notypes);
char *| dap_dn2ufn(char *dn);

Par aneters are:

Id The connection handl e;

entry The entry whose nane is to be retrieved, as returned by
I dap_first_entry() or ldap_next_entry();

dn The dn to explode, as returned by |dap_get_dn();

notypes A bool ean paraneter, if non-zero indicating that the dn com
ponents shoul d have their type infornmation stripped off
(i.e., "cn=Babs" woul d becone "Babs").

| dap_get _dn() will return NULL if there is some error parsing the dn
setting Id errno in the Id connection handle to indicate the error
It returns a pointer to nmalloc’ ed space that the caller should free
by calling free() when it is no longer in use. Note the format of
the DNs returned is given by [4].

| dap_expl ode_dn() returns a char * array containing the RDN
conponents of the DN supplied, with or without types as indicated by
the notypes paraneter. The array returned should be freed when it is
no longer in use by calling | dap_value_free().

| dap_dn2ufn() converts the DN into the user friendly format described

in[5]. The UFN returned is nmalloc’ ed space that should be freed by a
call to free() when no | onger in use.

Howes & Snmith I nf or mat i onal [Page 18]

RFC 1823 LDAP API August 1995

9.

10.

11.

Security Considerations

LDAP supports mnimal security during connection authentication.

Acknowl edgenent s

This material is based upon work supported by the National Science
Foundati on under Grant No. NCR-9416667.

Bi bl i ogr aphy

[1]

[2]

[3]

[4]

[5]

[6]

[7]

The Directory: Selected Attribute Syntaxes. CCITT,
Recommendati on X. 520.

Howes, T., Kille, S., Yeong, W, and C. Robbins, "The String
Representation of Standard Attribute Syntaxes", University of
M chi gan, | SODE Consortium Perfornmance Systens |nternational,
NeXor Ltd., RFC 1778, March 1995.

Howes, T., "A String Representation of LDAP Search Filters", RFC
1558, University of M chigan, Decenber 1993.

Kille, S., "A String Representation of Distinguished Nanes", RFC
1779, | SODE Consortium March 1995.

Kille, S., "Using the OSI Directory to Achieve User Friendly
Nam ng", RFC 1781, | SODE Consortium March 1995.

S.P. Mller, B.C. Neuman, J.l. Schiller, J.H Saltzer, "Kerberos
Aut hentication and Authorization Systenf, MT Project Athena
Docunentation Section E.2.1, Decenber 1987

Yeong, W, Howes, T., and S. Kille, "Lightweight Directory Access
Protocol ," RFC 1777, Performance Systens |nternational,
Uni versity of M chigan, |SODE Consortium March 1995.

Howes & Snmith I nf or mat i onal [Page 19]

RFC 1823 LDAP API August 1995

12. Authors’ Addresses

Ti m Howes

Uni versity of M chigan

| TD Research Systens

535 WW I liam St.

Ann Arbor, M 48103-4943
USA

Phone: +1 313 747-4454
EMai | : timaum ch. edu

Mark Smith

Uni versity of M chigan

| TD Research Systens

535 WW I liam St.

Ann Arbor, M 48103-4943
USA

Phone: +1 313 764-2277
EMai |l : nts@ni ch. edu

Howes & Snmith I nf or mat i onal [Page 20]

RFC 1823 LDAP API August 1995

13. Appendi x A - Sanple LDAP APl Code

#i ncl ude <l dap. h>

mai n()
LDAP *| d;
LDAPMessage *res, *e;
i nt i
char *a, *dn;
voi d *ptr;
char **val s;

/* open a connection */

if ((Id = 1dap_open("dotted. host.nanme", LDAP_PORT))
== NULL)
exit(1);

/* authenticate as nobody */

if (ldap_sinple_bind_s(Id, NULL, NULL) != LDAP_SUCCESS) {
| dap_perror(Id, "lIdap_sinple_bind_s");
exit(1);

}

/* search for entries with cn of "Babs Jensen"
return all attrs */
if (ldap_search_s(Id, "o=University of M chigan, c=US"
LDAP_SCOPE_SUBTREE, "(cn=Babs Jensen)", NULL, 0, &res)
I = LDAP_SUCCESS) {
| dap_perror(Id, "lIdap_search_s");
exit(1);

/* step through each entry returned */
for (e =Ildap_first_entry(Id, res); e !'= NULL;
e = |l dap_next _entry(Id, e)) {
/* print its name */
dn = ldap_get _dn(Id, e);
printf("dn: %0, dn);
free(dn);

/* print each attribute */
for (a =Ildap_first_attribute(Id, e, &ptr);
a !'= NULL;
a = | dap_next _attribute(Id, e, ptr)) {
printf("attribute: %0, a);

/* print each value */

Howes & Snmith I nf or mat i onal [Page 21]

RFC 1823 LDAP API August 1995

vals = ldap_get _values(Id, e, a);
for (i =0; vals[i] !'= NULL; i++) {
printf("value: %0, vals[i]);

| dap_val ue_free(vals);

}

/* free the search results */
| dap_nsgfree(res);

/* close and free connection resources */
| dap_unbind(Id);

Howes & Snmith I nf or mat i onal [Page 22]

