
Network Working Group S. Kille
Request for Comments: 1781 ISODE Consortium
Obsoletes: 1484 March 1995
Category: Standards Track

 Using the OSI Directory to Achieve User Friendly Naming

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The OSI Directory has user friendly naming as a goal. A simple
 minded usage of the directory does not achieve this. Two aspects not
 achieved are:

 o A user oriented notation

 o Guessability

 This proposal sets out some conventions for representing names in a
 friendly manner, and shows how this can be used to achieve really
 friendly naming. This then leads to a specification of a standard
 format for representing names, and to procedures to resolve them.
 This leads to a specification which allows directory names to be
 communicated between humans. The format in this specification is
 identical to that defined in [5], and it is intended that these
 specifications are compatible.

Table of Contents

 1. Why a notation is needed 2
 2. The Notation ... 3
 3. Communicating Directory Names 7
 4. Matching a purported name 9
 4.1 Environment .. 9
 4.2 Matching ... 10
 4.3 Top Level .. 12
 4.4 Intermediate Level 13
 4.5 Bottom Level ... 14
 5. Examples ... 14
 6. Support required from the standard 15

Kille [Page 1]

RFC 1781 User Friendly Naming March 1995

 7. Support of OSI Services 15
 8. Experience ... 16
 9. Relationship to other work 17
 10. Issues ... 19
 11. References ... 20
 12. Security Considerations 21
 13. Author’s Address ... 21
 A. Pseudo-code for the matching algorithm 22
 List of Figures
 1. Example usage of User Friendly Naming 18
 2. Matching Algorithm 22
 List of Tables
 1. Local environment for private DUA 10
 2. Local environment for US Public DUA 11

1. Why a notation is needed

 Many OSI Applications make use of Distinguished Names (DN) as defined
 in the OSI Directory [1]. The main reason for having a notation for
 name format is to interact with a user interface. This specification
 is coming dangerously close to the sin of standardising interfaces.
 However, there are aspects of presentation which it is desirable to
 standardise.

 It is important to have a common format to be able to conveniently
 refer to names. This might be done to represent a directory name on
 a business card or in an email message. There is a need for a format
 to support human to human communication, which must be string based
 (not ASN.1) and user oriented.

 In very many cases, a user will be required to input a name. This
 notation is designed to allow this to happen in a uniform manner
 across many user interfaces. The intention is that the name can just
 be typed in. There should not be any need to engage in form filling
 or complex dialogue. It should be possible to take the "human"
 description given at the meeting, and use it directly. The means in
 which this happens will become clear later.

 This approach uses the syntax defined in [5] for representing
 distinguished names. By relaxing some of the constraints on this
 specification, it is argued that a more user oriented specification
 is produced. However, this syntax cannot be mapped algorithmically
 onto a distinguished name without the use of a directory.

 This notation is targeted towards a general user oriented system, and
 in particular to represent the names of humans. Other syntaxes may
 be more appropriate for other uses of the directory. For example,
 the OSF Syntax may be more appropriate for some system oriented uses.

Kille [Page 2]

RFC 1781 User Friendly Naming March 1995

 (The OSF Syntax uses "/" as a separator, and forms names in a manner
 intended to resemble UNIX filenames).

 This notation is targeted towards names which follow a particular DIT
 structure: organisationally oriented. This may make it
 inappropriate for some types of application. There may be a
 requirement to extend this notation to deal more cleanly with fully
 geographical names.

 This approach effectively defines a definition of descriptive names
 on top of the primitive names defined by the OSI Directory.

2. The Notation

 The notation used in this specification is defined in [5]. This
 notation defines an unambiguous representation of distinguished name,
 and this specification is designed to be used in conjunction with
 this format. Both specifications arise from the same piece of
 research work [4]. Some examples of the specification are given
 here. The author’s User Friendly Name (UFN) might be written:

 Steve Kille, Computer Science, University College London, GB

 or

 S. Kille, Computer Science, University College London, GB

 This may be folded, perhaps to display in multi-column format. For
 example:

 Steve Kille,
 Computer Science,
 University College London,
 GB

 Another UFN might be:

 Christian Huitema, INRIA, FR

 or
 James Hacker,
 Basingstoke,
 Widget Inc,
 GB

 The final example shows quoting of a comma in an Organisation name:

 L. Eagle, "Sue, Grabbit and Runn", GB

Kille [Page 3]

RFC 1781 User Friendly Naming March 1995

 A purported name is what a user supplies to an interface for
 resolution into one or more distinguished names. A system should
 almost always store a name as a distinguished name. This will be
 more efficient, and avoid problems with purported names which become
 ambiguous when a new name appears. A user interface may display a
 distinguished name, using the distinguished name notation. However,
 it may display a purported name in cases where this will be more
 pleasing to the user. Examples of this might be:

 o Omission of the higher components of the distinguished name are
 not displayed (abbreviation).

 o Omission of attribute types, where the type is unlikely to be
 needed to resolve ambiguity.

 The ways in which a purported name may vary from a distinguished name
 are now described:

 Type Omission

 There are two cases of this.

 o Schema defaulting. In this case, although the type is not
 present, a schema defaulting is used to deduce the type. The
 first two types of schema defaulting may be used to deduce a
 distinguished name without the use of the directory. The use
 of schema defaulting may be useful to improve the performance
 of UFN resolution. The types of schema defaulting are:

 -- Default Schema

 -- Context Dependent Default Schema

 -- Data Dependent Default Schema

 o Omission of the type to be resolved by searching.

 Default Schema

 The attribute type of an attribute may always be present. This may
 be done to emphasise the type structure of a name. In some cases,
 the typing may be omitted. This is done in a way so that in many
 common cases, no attribute types are needed. The following type
 hierarchy (schema) is assumed:

Kille [Page 4]

RFC 1781 User Friendly Naming March 1995

 Common Name, (((Organisational Unit)*, Organisation,) Country).

 Explicitly typed RDNs may be inserted into this hierarchy at any
 point. The least significant component is always of type Common
 Name. Other types follow the defined organisational hierarchy.
 The following are equivalent:

 Filestore Access, Bells, Computer Science,
 University College London, GB

 and

 CN=Filestore Access, OU=Bells, OU=Computer Science,
 O=University College London, C=GB

 To interpet a distinguished name presented in this format, with some
 or all of the attributes with the type not specified, the types are
 derived according to the type hierarchy by the following algorithm:

 1. If the first attribute type is not specified, it is
 CommonName.

 2. If the last attribute type is not specified, it is Country.

 3. If there is no organisation explicitly specified, the last
 attribute with type not specified is of type Organisation.

 4. Any remaining attribute with type unspecified must be before
 an Organisation or OrganisationalUnit attribute, and is of
 type OrganisationalUnit.

 To take a distinguished name, and generate a name of this format with
 attribute types omitted, the following steps are followed.

 1. If the first attribute is of type CommonName, the type may be
 omitted.

 2. If the last attribute is of type Country, the type may be
 omitted.

 3. If the last attribute is of type Country, the last
 Organisation attribute may have the type omitted.

 4. All attributes of type OrganisationalUnit may have the type
 omitted, unless they are after an Organisation attribute or
 the first attribute is of type OrganisationalUnit.

Kille [Page 5]

RFC 1781 User Friendly Naming March 1995

 Context Dependent Default Schema

 The distinguished name notation defines a fixed schema for type
 defaulting. It may be useful to have different defaults in different
 contexts. For example, the defaulting convention may be applied in a
 modified fashion to objects which are known not to be common name
 objects. This will always be followed if the least significant
 component is explicitly typed. In this case, the following hierarchy
 is followed:

 ((Organisational Unit)*, Organisation,) Country

 Data Dependent Defaulting

 There are cases where it would be optimal
 to default according to the data. For example, in:

 Einar Stefferud, Network Management Associates, CA, US

 It would be useful to default "CA" to type State. This might be done
 by defaulting all two letter attributes under C=US to type State.

 General Defaulting

 A type may be omitted in cases where it does not follow a default
 schema hierarchy, and then type variants can be explored by
 searching. Thus a distinguished name could be represented by a
 uniquely matching purported name. For example,

 James Hacker,
 Basingstoke,
 Widget Inc,
 GB

 Would match the distinguished name:

 CN=James Hacker,
 L=Basingstoke,
 O=Widget Inc,
 C=GB

 Abbreviation

 Some of the more significant components of the DN will be omitted,
 and then defaulted in some way (e.g., relative to a local context).
 For example:

 Steve Kille

Kille [Page 6]

RFC 1781 User Friendly Naming March 1995

 Could be interpreted in the context of an organisational default.

 Local Type Keywords

 Local values can be used to identify types, in addition to the
 keywords defined in [5]. For example, "Organisation" may be
 recognised as an alternative to "O".

 Component Omission

 An intermediate component of the name may be omitted. Typically this
 will be an organisational unit. For example:

 Steve Kille, University College London, GB

 In some cases, this can be combined with abbreviation. For example:

 Steve Kille, University College London

 Approximation

 Approximate renditions or alternate values of one or
 more of the components will be supplied. For example:

 Stephen Kille, CS, UCL, GB

 or

 Steve Keill, Comp Sci, Univarstiy College London, GB

 Friendly Country

 A "friendly country name" can be used instead of the ISO 3166 two
 letter code. For example: UK; USA; France; Deutchland.

3. Communicating Directory Names

 A goal of this standard is to provide a means of communicating
 directory names. Two approaches are given, one defined in [5], and
 the other here. A future version of these specifications may contain
 only one of these approaches, or recommend use of one approach. The
 approach can usually be distinguished implicitly, as types are
 normally omitted in the UFN approach, and are always present in the
 Distinguished Name approach. No recommendation is made here, but the
 merits of each approach is given.

Kille [Page 7]

RFC 1781 User Friendly Naming March 1995

 1. Distinguished Name or DN. A representation of the distinguished
 name, according to the specification of [5].

 2. User Friendly Name or UFN. A purported name, which is expected to
 unambiguously resolve onto the distinguished name.

 When a UFN is communicated, a form which should efficiently and
 unambiguously resolve onto a distinguished name should be chosen.
 Thus it is reasonable to omit types, or to use alternate values which
 will unambiguously identify the entry in question (e.g., by use of an
 alternate value of the RDN attribute type). It is not reasonable to
 use keys which are (or are likely to become) ambiguous. The approach
 used should be implicit from the context, rather than wired into the
 syntax. The terms "Directory Name" and "X.500 Name" should be used
 to refer to a name which might be either a DN or UFN. An example of
 appropriate usage of both forms is given in the Section which defines
 the Author’s location in Section 12. Advantages of communicating the
 DN are:

 o The Distinguished Name is an unambiguous and stable reference to
 the user.

 o The DN will be used efficiently by the directory to obtain
 information.

 Advantages of communicating the UFN are:

 o Redundant type information can be omitted (e.g., "California",
 rather than "State=California", where there is known to be no
 ambiguity.

 o Alternate values can be used to identify a component. This might
 be used to select a value which is meaningful to the recipient, or
 to use a shorter form of the name. Often the uniqueness
 requirements of registration will lead to long names, which users
 will wish to avoid.

 o Levels of the hierarchy may be omitted. For example in a very
 small organisation, where a level of hierarchy has been used to
 represent company structure, and the person has a unique name
 within the organisation.

 Where UFN form is used, it is important to specify an unambiguous
 form. In some ways, this is analogous to writing a postal address.
 There are many legal ways to write it. Care needs to be taken to
 make the address unambiguous.

Kille [Page 8]

RFC 1781 User Friendly Naming March 1995

4. Matching a purported name

 The following approach specifies a default algorithm to be used with
 the User Friendly Naming approach. It is appropriate to modify this
 algorithm, and future specifications may propose alternative
 algorithms. Two simple algorithms are noted in passing, which may be
 useful in some contexts:

 1. Use type omission only, but otherwise require the value of the RDN
 attribute to be present.

 2. Require each RDN to be identified as in 1), or by an exact match
 on an alternate value of the RDN attribute.

 These algorithms do not offer the flexibility of the default
 algorithm proposed, but give many of the benefits of the approach in
 a very simple manner.

 The major utility of the purported name is to provide the important
 "user friendly" characteristic of guessability. A user will supply a
 purported name to a user interface, and this will be resolved onto a
 distinguished name. When a user supplies a purported name there is a
 need to derive the DN. In most cases, it should be possible to derive
 a single name from the purported name. In some cases, ambiguities
 will arise and the user will be prompted to select from a multiple
 matches. This should also be the case where a component of the name
 did not "match very well".

 There is an assumption that the user will simply enter the name
 correctly. The purported name variants are designed to make this
 happen! There is no need for fancy window based interfaces or form
 filling for many applications of the directory. Note that the fancy
 interfaces still have a role for browsing, and for more complex
 matching. This type of naming is to deal with cases where
 information on a known user is desired and keyed on the user’s name.

4.1 Environment

 All matches occur in the context of a local environment. The local
 environment defines a sequence of names of a non-leaf objects in the
 DIT. This environment effectively defines a list of acceptable name
 abbreviations where the DUA is employed. The environment should be
 controllable by the individual user. It also defines an order in
 which to operate.

 This list is defined in the context of the number of name components
 supplied. This allows varying heuristics, depending on the
 environment, to make the approach have the "right" behaviour. In

Kille [Page 9]

RFC 1781 User Friendly Naming March 1995

 most cases, the environment will start at a local point in the DIT,
 and move upwards. Examples are given in Tables 1 and 2. Table 1
 shows an example for a typical local DUA, which has the following
 characteristics:

 One component

 Assumed first to be a user in the department, then a user or
 department within the university, then a national organisation, and
 finally a country.

 Two components

 Most significant component is first assumed to be a national
 organisation, then a department (this might be reversed in some
 organisations), and finally a country.

 Three or more components

 The most significant component is first assumed to be a country, then
 a national organisation, and finally a department.

4.2 Matching

 A purported name will be supplied, usually with a small number of
 components. This will be matched in the context of an environment.
 Where there are multiple components to be matched, these should be
 matched sequentially. If an unambiguous DN is determined, the match
 continues as if the full DN had been supplied. For example, if

 +-----------+--------------------------------------+
 |Number of |Environment |
 |Components | |
 +-----------+--------------------------------------+
 |1 |Physics, University College London, GB|
 | |University College London, GB |
 | |GB |
 +-----------+--------------------------------------+
 |2 |GB |
 | |University College London, GB |
 | |-- |
 +-----------+--------------------------------------+
 |3+ |-- |
 | |GB |
 | |University College London, GB |
 +-----------+--------------------------------------+

 Table 1: Local environment for private DUA

Kille [Page 10]

RFC 1781 User Friendly Naming March 1995

 +------------+-----------+
 | Number of |Environment|
 | Components | |
 +------------+-----------+
 | 1,2 | US |
 | | CA |
 | | -- |
 +------------+-----------+
 | 3+ | -- |
 | | US |
 | | CA |
 +------------+-----------+

 Table 2: Local environment for US Public DUA

 Stephen Kille, UCL

 is being matched in the context of environment GB, first UCL is
 resolved to the distinguished name:

 University College London, GB

 Then the next component of the purported name is taken to determine
 the final name. If there is an ambiguity (e.g., if UCL had made two
 matches, both paths are explored to see if the ambiguity can be
 resolved. Eventually a set of names will be passed back to the user.

 Each component of the environment is taken in turn. If the purported
 name has more components than the maximum depth, the environment
 element is skipped. The advantage of this will be seen in the
 example given later.

 A match of a name is considered to have three levels:

 Exact A DN is specified exactly

 Good Initially, a match should be considered good if it is
 unambiguous, and exactly matches an attribute value in the entry.
 For human names, a looser metric is probably desirable (e.g.,
 S Kille should be a good match of S. Kille, S.E. Kille or Steve
 Kille even if these are not explicit alternate values).

 Poor Any other substring or approximate match

 Following a match, the reference can be followed, or the user
 prompted. If there are multiple matches, more than one path may be
 followed. There is also a shift/reduce type of choice: should any
 partial matches be followed or should the next element of the

Kille [Page 11]

RFC 1781 User Friendly Naming March 1995

 environment be tried. The following heuristics are suggested, which
 may be modified in the light of experience. The overall aim is to
 resolve cleanly specified names with a minimum of fuss, but give
 sufficient user control to prevent undue searching and delay.

 1. Always follow an exact match.

 2. Follow all good matches if there are no exact matches.

 3. If there are only poor matches, prompt the user. If the user
 accepts one or more matches, they can be considered as good. If
 all are rejected, this can be treated as no matches.

 4. Automatically move to the next element of the environment if no
 matches are found.

 When the final component is matched, a set of names will be
 identified. If none are identified, proceed to the next environment
 element. If the user rejects all of the names, processing of the
 next environment element should be confirmed.

 The exact approach to matching will depend on the level of the tree
 at which matching is being done. We can now consider how attributes
 are matched at various levels of the DIT.

 There is an issue of approximate matching. Sometimes it helps, and
 sometimes just returns many spurious matches. When a search is
 requested, all relevant attributes should be returned, so that
 distinguished and non-distinguished values can be looked at. This
 will allow a distinction to be made between good and poor matches.
 It is important that where, for example, an acronym exactly matches
 an organisation, that the user is not prompted about other
 organisations where it matches as a substring.

4.3 Top Level

 In this case, a match is being done at the root of the DIT. Three
 approaches are suggested, dependent on the length of supplied name.
 All lead to a single level search of the top level of the DIT.

 Exactly 2

 This is assumed to be a 3166 two letter country code, or an exact
 match on a friendly country or organisation (e.g., UK or UN). Do
 exact match on country and friendly country.

Kille [Page 12]

RFC 1781 User Friendly Naming March 1995

 Greater than 2

 Make an approximate and substring match on friendly country and
 organisation.

4.4 Intermediate Level

 Once the root level has been dealt with, intermediate levels will be
 looking for organisational components (Organisation, Locality, Org
 Unit). In some cases, private schema control will allow the system
 to determine which is at the next level. In general this will not be
 possible. In each case, make a substring and approximate match
 search of one level. The choice depends on the base object used in
 the search.

 1. If DN has no Organisation or Locality, filter on Organisation and
 Locality.

 2. If DN has Org Unit, filter on Org Unit.

 3. If DN has Organisation, filter on Locality and Org Unit.

 4. If DN has Locality, filter on Organisation.

 These allow some optimisation, based on legal choices of schema.
 Keeping filters short is usually desirable to improve performance. A
 few examples of this, where a base object has been determined (either
 by being the environment or by partial resolution of a purported
 name), and the next element of a purported name is being considered.
 This will generate a single level search. What varies is the types
 being filtered against. If the DN is:

 University College London, GB

 The search should be for Org Unit or Locality. If the DN is:

 Organisation=UN

 the search should be for Org Unit or Locality.

 There may be some improvements with respect to very short keys. Not
 making approximate or substring matches in these cases seems sensible
 (It might be desirable to allow "*" as a part of the purported name
 notation.)

Kille [Page 13]

RFC 1781 User Friendly Naming March 1995

4.5 Bottom Level

 The "Bottom Level" is to deal with leaf entries in the DIT. This will
 often be a person, but may also be a role, an application entity or
 something else.

 The last component of a purported name may either reference a leaf or
 non-leaf. For this reason, both should be tested for. As a
 heuristic, if the base object for the search has two or more
 components it should be tested first as a bottom level name and then
 intermediate. Reverse this for shorter names. This optimises for
 the (normal) case of non-leaves high up the tree and leaves low down
 the tree.

 For bottom level names, make an approximate and substring match
 against Common Name, Surname, and User ID. Where common name is
 looked for, a full subtree search will be used when at the second
 level of the DIT or lower, otherwise a single level search.

 For example, if I have resolved a purported name to the distinguished
 name

 University College London, GB

 and have a single component Bloggs, this will generate a subtree
 search.

5. Examples

 This is all somewhat confusing, and a few examples are given. These
 are all in the context of the environment shown in Table 1 on Page
 13.

 If "Joe Bloggs" is supplied, a subtree search of

 Physics, University College London, GB

 will be made, and the user prompted for "Joseph Z. Bloggs" as the
 only possible match.

 If "Computer Science" is supplied, first

 Physics, University College London, GB

 will be searched, and the user will reject the approximate match of
 "Colin Skin". Then a subtree search of

 University College London, GB

Kille [Page 14]

RFC 1781 User Friendly Naming March 1995

 will be made, looking for a person. Then a single level search will
 be made looking for Org Unit, and

 Computer Science, University College London, GB

 will be returned without prompting (exact match). Supplying "Steve
 Kille" will lead to a failed subtree search of

 Physics, University College London, GB

 and lead straight to a subtree search of

 University College London, GB

 This will lead to an exact value match, and so a single entry
 returned without prompting.

 If "Andrew Findlay, Brunel" is supplied, the first element of the
 environment will be skipped, single level search of "Brunel" under
 "GB" will find:

 Brunel University, GB

 and a subtree search for "Andrew Findlay" initiated. This will yield

 Andrew Findlay, Computing and Media Services, Brunel University, GB

 Dr A J Findlay, Manufacturing and Engineering Systems, Brunel
 University, GB

 and the user will be prompted with a choice.

 This approach shows how a simple format of this nature will "do the
 right thing" in many cases.

6. Support required from the standard

 Fortunately, all that is needed is there! It would be useful to have
 "friendly country name" as a standard attribute.

7. Support of OSI Services

 The major focus of this work has been to provide a mechanism for
 identifying Organisations and Users. A related function is to
 identify applications. Where the Application is identified by an AET
 (Application Entity Title) with an RDN of Common Name, this
 specification leads to a natural usage. For example, if a filestore
 is named "gannet", then this could easily be identified by the name:

Kille [Page 15]

RFC 1781 User Friendly Naming March 1995

 Gannet, Computer Laboratory, Cambridge University, GB

 In normal usage, this might lead to access (using a purported name)
 of:

 FTAM gannet,cambridge

 A second type of access is where the user identifies an Organisation
 (Organisational Unit), and expects to obtain a default service. The
 service is implied by the application, and should not require any
 additional naming as far as the user is concerned. It is proposed
 that this is supported by User Friendly Naming in the following way.

 1. Determine that the purported name identifies a non-leaf object,
 which is of object class Organisation or Organisational Unit or
 Locality.

 2. Perform a single level search for Application Entities which
 support the required application contexts. This assumes that all
 services which are supporting default access for the organisation
 are registered at one level below (possibly by the use of
 aliases), and that other services (specific machines or parts of
 the organisation) are represented further down the tree. This
 seems to be a reasonable layout, and its utility can be evaluated
 by experiment.

8. Experience

 An experimental implementation of this has been written by Colin
 Robbins. The example in Figure 1 shows that it can be very effective
 at locating known individuals with a minimum of effort. This code has
 been deployed within the "FRED" interface of the PSI Pilot [9], and
 within an prototype interface for managing distribution lists. The
 user reaction has been favourable:

 Some issues have arisen from this experience:

 o Where there is more than one level of Organisational Unit, and the
 user guesses one which is not immediately below the organisation,
 the algorithm works badly. There does not appear to be an easy
 fix for this. It is not clear if this is a serious deficiency.

 o Substring searching is currently done with leading and trailing
 wildcards. As many implementations will not implement leading
 wildcards efficiently, it may be preferable to only use trailing
 wildcards. The effect of this on the algorithm needs to be
 investigated.

Kille [Page 16]

RFC 1781 User Friendly Naming March 1995

 Implementors of this specification are encouraged to investigate
 variants of the basic algorithm. A final specification should depend
 on experience with such variants.

9. Relationship to other work

 Colin Robbin’s work on the interface "Tom" and implementation of a
 distribution list interface strongly influenced this specification
 [6].

 Some of the ideas used here originally came from a UK Proposal to the
 ISO/CCITT Directory Group on "New Name Forms" [2]. This defined, and
 showed how to implement, four different types of names:

 Typed and Ordered The current Distinguished Name is a restricted
 example of this type of name.

Kille [Page 17]

RFC 1781 User Friendly Naming March 1995

 -> t hales, csiro, australia
 Found good match(es) for ’australia’
 Found exact match(es) for ’csiro’
 Please select from the following:
 Trevor Hales, OC, HPCC, DIT, IICT, CSIRO, AU [y/n] ? y
 The following were matched...
 Trevor Hales, OC, HPCC, DIT, IICT, CSIRO, AU

 -> g michaelson, queensland, au
 Found exact match(es) for ’au’
 Please select from the following:
 University of Queensland, AU [y/n] ? y
 Axolotl, AU [y/n] ? n
 Please select from the following:
 George Michaelson, Prentice Computer Centre, University of
 Queensland, AU
 [y/n] ? y
 Manager, University of Queensland, AU [y/n] ? n
 The following were matched...
 George Michaelson, Prentice Computer Centre, University of
 Queensland, AU

 -> r needham, cambridge
 Found good match(es) for ’cambridge’
 Please select from the following:
 Roger Needham, Computer Lab, Cambridge University [y/n] ? y
 The following were matched...
 Roger Needham, Computer Lab, Cambridge University

 -> kirstein
 Found good match(es) for ’kirstein’
 The following were matched...
 Peter Kirstein

 Figure 1: Example usage of User Friendly Naming

 Untyped and Ordered

 This is the type of name proposed here (with some extensions to allow
 optional typing). It is seen as meeting the key user requirement of
 disliking typed names, and is efficient to implement.

 Typed and Unordered

 This sort of name is proposed by others as the key basis for user
 friendly naming. Neufeld shows how X.500 can be used to provide this
 [7], and Peterson proposes the Profile system to provide this [8].

Kille [Page 18]

RFC 1781 User Friendly Naming March 1995

 The author contends that whilst typed naming is interesting for some
 types of searching (e.g., yellow page searching), it is less
 desirable for naming objects. This is borne out by operational
 experience with OSI Directories [3].

 Untyped and Unordered

 Surprisingly this form of name can be supported quite easily.
 However, a considerable gain in efficiency can be achieved by
 requiring ordering. In practice, users can supply this easily.
 Therefore, this type of name is not proposed.

10. Issues

 The following issues are noted, which would need to be resolved
 before this document is progressed as an Internet Standard.

 Potential Ambiguity

 Whilst the intention of the notation is to allow for specification of
 alternate values, it inherently allows for ambiguous names to be
 specified. It needs to be demonstrated that problems of this
 characteristic are outweighed by other benefits of the notation.

 Utility

 Determine that the specification is being implemented and used.

 Performance

 Measurements on the performance implications of using this approach
 should be made.

 Alogrithm

 The utility of the algorithm, and possible variants, should be
 investigated.

 This format, and the procedures for resolving purported names, should
 be evolved to an Internet Standard. The syntax can be expected to be
 stable. In light of experience, the algorithm for resolving
 purported names may be changed.

Kille [Page 19]

RFC 1781 User Friendly Naming March 1995

11. References

 [1] The Directory --- overview of concepts, models and services,
 1993. CCITT X.500 Series Recommendations.

 [2] S.E. Kille. New name forms, May 1989. ISO/IEC/JTC 21/ WG4/N797
 UK National Body Contribution to the Oslo Directory Meeting.

 [3] S.E. Kille. The THORN large scale pilot exercise. Computer
 Networks and ISDN Systems, 16(1):143--145, January 1989.

 [4] S.E. Kille. Using the OSI directory to achieve user friendly
 naming. Research Note RN/20/29, Department of Computer Science,
 University College London, February 1990.

 [5] Kille, S., "A String Representation of Distinguished Names", RFC
 1779, ISODE Consortium, March 1995.

 [6] S.E. Kille and C.J. Robbins. The ISO development environment:
 User’s manual (version 7.0), July 1991. Volume 5: QUIPU.

 [7] G.W. Neufeld. Descriptive names in X.500. In SIGCOMM 89
 Symposiun Communications Architectures and Protocols, pages 64--
 71, September 1989.

 [8] L.L. Petersen. The profile naming service. ACM Transactions on
 Computing Systems, 6(4):341--364, November 1988.

 [9] M.T. Rose. Realizing the White Pages using the OSI Directory
 Service. Technical Report 90--05--10--1, Performance Systems
 International, Inc., May 1990.

Kille [Page 20]

RFC 1781 User Friendly Naming March 1995

12. Security Considerations

 Security issues are not discussed in this memo.

13. Author’s Address

 Steve Kille
 ISODE Consortium
 The Dome
 The Square
 Richmond, Surrey
 TW9 1DT
 England

 Phone:+44-181-332-9091
 EMail: S.Kille@ISODE.COM

 DN: CN=Steve Kille,
 O=ISODE Consortium, C=GB

 UFN: S. Kille,
 ISODE Consortium, GB

Kille [Page 21]

RFC 1781 User Friendly Naming March 1995

A. Pseudo-code for the matching algorithm

 The following pseudo-code is intended to clarify the matching
 algorithm. The language uses ASN.1 data types, with flow control
 "C"-like, but with keywords upper-cased.

PurportedName ::= SEQUENCE OF String
 -- simplication, as attribute types can optionally be
 -- specified

 -- Each element of the Purported Name is a string
 -- which has been parsed from the BNF

Attribute ::= SEQUENCE {
 type OBJECT IDENTIFIER,
 value ANY }

RDN ::= Attribute -- simplification, as can be multi-value

DN ::= SEQUENCE OF RDN

Environment ::= SEQUENCE OF DN

EnvironmentList ::= SEQUENCE OF SEQUENCE {
 lower-bound INTEGER,
 upper-bound INTEGER,
 environment Environment }

friendlyMatch(p: PurportedName; el: EnvironmentList): SET OF DN
{
 -- Find correct environment

 IF length(el) == 0 THEN return(NULL);

 IF length(p) <= head(el).upper-bound
 && length(p) >= head(el).lower-bound THEN
 return envMatch (p, head(el).environment);
 ELSE
 return(friendlyMatch(p, tail(el));
}

envMatch(p: PurportedName; e: Environment): SET OF DN
{
 -- Check elements of environment
 -- in the defined order

 matches: SET OF DN;

Kille [Page 22]

RFC 1781 User Friendly Naming March 1995

 IF length(e) == 0 THEN return(NULL);

 matches = purportedMatch(head(e).DN, p)
 IF matches != NULL THEN
 return(matches);
 ELSE
 return(envMatch(p, tail(e));
}

purportedMatch(base: DN; p: PurportedName): SET OF DN
{
 s: String = head(p);
 matches: SET OF DN = NULL;

 IF length(p) == 1 THEN
 IF length(base) == 0 THEN
 IF (matches = rootSearch(s)) != NULL THEN
 return(matches);
 ELSE return(leafSearch(base, s, one-level);
 ELSE IF length(base) == 1 THEN
 IF (matches = intSearch(base, s)) != NULL THEN
 return(matches);
 ELSE return(leafSearch(base, s, one-level);
 ELSE
 IF (matches = leafSearch(base, s, subtree)) !=
 NULL THEN return(matches);
 ELSE return(intsearch(base, s);

 IF length(base) == 0 THEN
 FOR x IN rootSearch(s) DO
 matches += (purportedMatch(x, tail(p));
 ELSE
 FOR x IN intSearch(base, s) DO
 matches += (purportedMatch(x, tail(p));
 return(matches);
}

Kille [Page 23]

RFC 1781 User Friendly Naming March 1995

-- General. Might need to tighten the filter for short strings,
-- in order to stop being flooded. Alternatively, this could be
-- done if the loose search hits a size limit

rootSearch(s: String): SET OF DN
{
 IF length(s) == 2 THEN
 return(search(NULL, one-level, s, {CountryName,
 FriendlyCountryName, OrganizationName},
 {exact}, {Country, Organisation}));
 -- test exact match only
 -- probably a country code
 ELSE
 return(search(NULL, one-level, s, {OrganizationName,
 FriendlyCountryName}, {substring, approx},
 {Country, Organisation}));
}

intSearch(base: DN; s: String)
{
 IF present(base, OrgUnitName) THEN
 return(search(base, one-level, s, {OrgUnitName},
 {substring, approx}, {OrgUnit}));
 ELSE IF present(base, OrganisationName) THEN
 return(search(base, one-level, s, {OrgUnitName,
 LocalityName}, {substring, approx},
 {Organization, OrgUnit, Locality}));
 ELSE IF present(base, LocalityName) THEN
 return(search(base, one-level, s, {OrganisationName},
 {substring, approx}, {Locality});
 ELSE
 return(search(base, one-level, s, {OrganisationName,
 LocalityName}, {substring, approx},
 {Organisation, Locality}));
}

present(d: DN; t: AttributeType): BOOLEAN
{
 FOR x IN d DO
 IF x.type == t THEN return(TRUE);
 return(FALSE);
}

SearchScope := ENUMERATED (base-object, one-level, subtree)

leafSearch(base: DN; s: String; search-scope: SearchScope)

Kille [Page 24]

RFC 1781 User Friendly Naming March 1995

{
 return(search(base, search-scope, s, {CommonName, Surname,
 UserId}, {substring, approx}));
}

search(base: DN; search-scope: SearchScope; s: string;
 alist SET OF AttributeType; matchtypes SET OF MatchType
 objectClasses SET OF ObjectClass OPTIONAL): SET OF DN
{
 -- mapped onto Directory Search, with OR conjunction
 -- of filter items

 return dNSelect (s, search-results, alist);
}

read(base: DN; alist SET OF AttributeType): SET OF Attribute;
{
 -- mapped onto Directory Read
 -- Types repeated to deal with multiple values
 -- This would be implemented by returning selected info
 -- with the search operation
}

dNSelect(s: String; dlist SET OF DN;
 alist: SET OF AttributeType):16SET0OF DN
{
 exact, good: SET OF DN;

 FOR x IN dlist DO
 IF last(DN).Value == s THEN
 exact += x;
 ELSE IF FOR y IN read(x, alist) DO
 IF y.value == s THEN
 good += x;

 IF exact != NULL THEN return(exact);
 IF good != NULL THEN return(good);
 return(userQuery(dlist));
}

userQuery(dlist SET OF DN): SET OF DN
{
 -- pass back up for manual checking
 -- user can strip all matches to force progres....
}

head() -- return first element of list
tail() -- return list with first element removed

Kille [Page 25]

RFC 1781 User Friendly Naming March 1995

length() -- return size of list
last() -- return last element of list

 Figure 2: Matching Algorithm

Kille [Page 26]

