
Network Working Group K. Egevang
Request for Comments: 1631 Cray Communications
Category: Informational P. Francis
 NTT
 May 1994

 The IP Network Address Translator (NAT)

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 The two most compelling problems facing the IP Internet are IP
 address depletion and scaling in routing. Long-term and short-term
 solutions to these problems are being developed. The short-term
 solution is CIDR (Classless InterDomain Routing). The long-term
 solutions consist of various proposals for new internet protocols
 with larger addresses.

 It is possible that CIDR will not be adequate to maintain the IP
 Internet until the long-term solutions are in place. This memo
 proposes another short-term solution, address reuse, that complements
 CIDR or even makes it unnecessary. The address reuse solution is to
 place Network Address Translators (NAT) at the borders of stub
 domains. Each NAT box has a table consisting of pairs of local IP
 addresses and globally unique addresses. The IP addresses inside the
 stub domain are not globally unique. They are reused in other
 domains, thus solving the address depletion problem. The globally
 unique IP addresses are assigned according to current CIDR address
 allocation schemes. CIDR solves the scaling problem. The main
 advantage of NAT is that it can be installed without changes to
 routers or hosts. This memo presents a preliminary design for NAT,
 and discusses its pros and cons.

Acknowledgments

 This memo is based on a paper by Paul Francis (formerly Tsuchiya) and
 Tony Eng, published in Computer Communication Review, January 1993.
 Paul had the concept of address reuse from Van Jacobson.

 Kjeld Borch Egevang edited the paper to produce this memo and
 introduced adjustment of sequence-numbers for FTP. Thanks to Jacob
 Michael Christensen for his comments on the idea and text (we thought

Egevang & Francis [Page 1]

RFC 1631 Network Address Translator May 1994

 for a long time, we were the only ones who had had the idea).

1. Introduction

 The two most compelling problems facing the IP Internet are IP
 address depletion and scaling in routing. Long-term and short-term
 solutions to these problems are being developed. The short-term
 solution is CIDR (Classless InterDomain Routing) [2]. The long-term
 solutions consist of various proposals for new internet protocols
 with larger addresses.

 Until the long-term solutions are ready an easy way to hold down the
 demand for IP addresses is through address reuse. This solution takes
 advantage of the fact that a very small percentage of hosts in a stub
 domain are communicating outside of the domain at any given time. (A
 stub domain is a domain, such as a corporate network, that only
 handles traffic originated or destined to hosts in the domain).
 Indeed, many (if not most) hosts never communicate outside of their
 stub domain. Because of this, only a subset of the IP addresses
 inside a stub domain, need be translated into IP addresses that are
 globally unique when outside communications is required.

 This solution has the disadvantage of taking away the end-to-end
 significance of an IP address, and making up for it with increased
 state in the network. There are various work-arounds that minimize
 the potential pitfalls of this. Indeed, connection-oriented protocols
 are essentially doing address reuse at every hop.

 The huge advantage of this approach is that it can be installed
 incrementally, without changes to either hosts or routers. (A few
 unusual applications may require changes). As such, this solution can
 be implemented and experimented with quickly. If nothing else, this
 solution can serve to provide temporarily relief while other, more
 complex and far-reaching solutions are worked out.

2. Overview of NAT

 The design presented in this memo is called NAT, for Network Address
 Translator. NAT is a router function that can be configured as shown
 in figure 1. Only the stub border router requires modifications.

 NAT’s basic operation is as follows. The addresses inside a stub
 domain can be reused by any other stub domain. For instance, a single
 Class A address could be used by many stub domains. At each exit
 point between a stub domain and backbone, NAT is installed. If there
 is more than one exit point it is of great importance that each NAT
 has the same translation table.

Egevang & Francis [Page 2]

RFC 1631 Network Address Translator May 1994

 \ | / . /
 +---------------+ WAN . +-----------------+/
 |Regional Router|----------------------|Stub Router w/NAT|---
 +---------------+ . +-----------------+\
 . | \
 . | LAN
 . ---------------
 Stub border

 Figure 1: NAT Configuration

 For instance, in the example of figure 2, both stubs A and B
 internally use class A address 10.0.0.0. Stub A’s NAT is assigned the
 class C address 198.76.29.0, and Stub B’s NAT is assigned the class C
 address 198.76.28.0. The class C addresses are globally unique no
 other NAT boxes can use them.

 \ | /
 +---------------+
 |Regional Router|
 +---------------+
 WAN | | WAN
 | |
 Stub A|.... |............ Stub B
 | |
 {s=198.76.29.7,^ | | v{s=198.76.29.7,
 d=198.76.28.4}^ | | v d=198.76.28.4}
 +-----------------+ +-----------------+
 |Stub Router w/NAT| |Stub Router w/NAT|
 +-----------------+ +-----------------+
 | |
 | LAN LAN |
 ------------- -------------
 | |
 {s=10.33.96.5, ^ | | v{s=198.76.29.7,
 d=198.76.28.4}^ +--+ +--+ v d=10.81.13.22}
 |--| |--|
 /____\ /____\
 10.33.96.5 10.81.13.22

 Figure 2: Basic NAT Operation

 When stub A host 10.33.96.5 wishes to send a packet to stub B host
 10.81.13.22, it uses the globally unique address 198.76.28.4 as
 destination, and sends the packet to it’s primary router. The stub
 router has a static route for net 198.76.0.0 so the packet is
 forwarded to the WAN-link. However, NAT translates the source address
 10.33.96.5 of the IP header with the globally unique 198.76.29.7

Egevang & Francis [Page 3]

RFC 1631 Network Address Translator May 1994

 before the package is forwarded. Likewise, IP packets on the return
 path go through similar address translations.

 Notice that this requires no changes to hosts or routers. For
 instance, as far as the stub A host is concerned, 198.76.28.4 is the
 address used by the host in stub B. The address translations are
 completely transparent.

 Of course, this is just a simple example. There are numerous issues
 to be explored. In the next section, we discuss various aspects of
 NAT.

3. Various Aspects of NAT

3.1 Address Spaces

Partitioning of Reusable and Non-reusable Addresses

 For NAT to operate properly, it is necessary to partition the IP
 address space into two parts - the reusable addresses used internal
 to stub domains, and the globally unique addresses. We call the
 reusable address local addresses, and the globally unique addresses
 global addresses. Any given address must either be a local address or
 a global address. There is no overlap.

 The problem with overlap is the following. Say a host in stub A
 wished to send packets to a host in stub B, but the local addresses
 of stub B overlapped the local addressees of stub A. In this case,
 the routers in stub A would not be able to distinguish the global
 address of stub B from its own local addresses.

Initial Assignment of Local and Global Addresses

 A single class A address should be allocated for local networks. (See
 RFC 1597 [3].) This address could then be used for internets with no
 connection to the Internet. NAT then provides an easy way to change
 an experimental network to a "real" network by translating the
 experimental addresses to globally unique Internet addresses.

 Existing stubs which have unique addresses assigned internally, but
 are running out of them, can change addresses subnet by subnet to
 local addresses. The freed adresses can then be used by NAT for
 external communications.

Egevang & Francis [Page 4]

RFC 1631 Network Address Translator May 1994

3.2 Routing Across NAT

 The router running NAT should never advertise the local networks to
 the backbone. Only the networks with global addresses may be known
 outside the stub. However, global information that NAT receives from
 the stub border router can be advertised in the stub the usual way.

Private Networks that Span Backbones

 In many cases, a private network (such as a corporate network) will
 be spread over different locations and will use a public backbone for
 communications between those locations. In this case, it is not
 desirable to do address translation, both because large numbers of
 hosts may want to communicate across the backbone, thus requiring
 large address tables, and because there will be more applications
 that depend on configured addresses, as opposed to going to a name
 server. We call such a private network a backbone-partitioned stub.

 Backbone-partitioned stubs should behave as though they were a non-
 partitioned stub. That is, the routers in all partitions should
 maintain routes to the local address spaces of all partitions. Of
 course, the (public) backbones do not maintain routes to any local
 addresses. Therefore, the border routers must tunnel through the
 backbones using encapsulation. To do this, each NAT box will set
 aside one global address for tunneling. When a NAT box x in stub
 partition X wishes to deliver a packet to stub partition Y, it will
 encapsulate the packet in an IP header with destination address set
 to the global address of NAT box y that has been reserved for
 encapsulation. When NAT box y receives a packet with that destination
 address, it decapsulates the IP header and routes the packet
 internally.

3.3 Header Manipulations

 In addition to modifying the IP address, NAT must modify the IP
 checksum and the TCP checksum. Remember, TCP’s checksum also covers a
 pseudo header which contains the source and destination address. NAT
 must also look out for ICMP and FTP and modify the places where the
 IP address appears. There are undoubtedly other places, where
 modifications must be done. Hopefully, most such applications will be
 discovered during experimentation with NAT.

 The checksum modifications to IP and TCP are simple and efficient.
 Since both use a one’s complement sum, it is sufficient to calculate
 the arithmetic difference between the before-translation and after-
 translation addresses and add this to the checksum. The only tricky
 part is determining whether the addition resulted in a wrap-around
 (in either the positive or negative direction) of the checksum. If

Egevang & Francis [Page 5]

RFC 1631 Network Address Translator May 1994

 so, 1 must be added or subtracted to satisfy the one’s complement
 arithmetic. Sample code (in C) for this is as follows:

 void checksumadjust(unsigned char *chksum, unsigned char *optr,
 int olen, unsigned char *nptr, int nlen)
 /* assuming: unsigned char is 8 bits, long is 32 bits.
 - chksum points to the chksum in the packet
 - optr points to the old data in the packet
 - nptr points to the new data in the packet
 */
 {
 long x, old, new;
 x=chksum[0]*256+chksum[1];
 x=˜x;
 while (olen) {
 if (olen==1) {
 old=optr[0]*256+optr[1];
 x-=old & 0xff00;
 if (x<=0) { x--; x&=0xffff; }
 break;
 }
 else {
 old=optr[0]*256+optr[1]; optr+=2;
 x-=old & 0xffff;
 if (x<=0) { x--; x&=0xffff; }
 olen-=2;
 }
 }
 while (nlen) {
 if (nlen==1) {
 new=nptr[0]*256+nptr[1];
 x+=new & 0xff00;
 if (x & 0x10000) { x++; x&=0xffff; }
 break;
 }
 else {
 new=nptr[0]*256+nptr[1]; nptr+=2;
 x+=new & 0xffff;
 if (x & 0x10000) { x++; x&=0xffff; }
 nlen-=2;
 }
 }
 x=˜x;
 chksum[0]=x/256; chksum[1]=x & 0xff;
 }

Egevang & Francis [Page 6]

RFC 1631 Network Address Translator May 1994

 The arguments to the File Transfer Protocol (FTP) PORT command
 include an IP address (in ASCII!). If the IP address in the PORT
 command is local to the stub domain, then NAT must substitute this.
 Because the address is encoded in ASCII, this may result in a change
 in the size of the packet (for instance 10.18.177.42 is 12 ASCII
 characters, while 193.45.228.137 is 14 ASCII characters). If the new
 size is the same as the previous, only the TCP checksum needs
 adjustment (again). If the new size is less than the previous, ASCII
 zeroes may be inserted, but this is not guaranteed to work. If the
 new size is larger than the previous, TCP sequence numbers must be
 changed too.

 A special table is used to correct the TCP sequence and acknowledge
 numbers with source port FTP or destination port FTP. The table
 entries should have source, destination, source port, destination
 port, initial sequence number, delta for sequence numbers and a
 timestamp. New entries are created only when FTP PORT commands are
 seen. The initial sequence numbers are used to find out if the
 sequence number of a packet is before or after the last FTP PORT
 command (delta may be increased for every FTP PORT command). Sequence
 numbers are incremented and acknowledge numbers are decremented. If
 the FIN bit is set in one of the packets, the associated entry may be
 deleted soon after (1 minute should be safe). Entries that have not
 been used for e.g. 24 hours should be safe to delete too.

 The sequence number adjustment must be coded carefully, not to harm
 performance for TCP in general. Of course, if the FTP session is
 encrypted, the PORT command will fail.

 If an ICMP message is passed through NAT, it may require two address
 modifications and three checksum modifications. This is because most
 ICMP messages contain part of the original IP packet in the body.
 Therefore, for NAT to be completely transparent to the host, the IP
 address of the IP header embedded in the data part of the ICMP packet
 must be modified, the checksum field of the same IP header must
 correspondingly be modified, and the ICMP header checksum must be
 modified to reflect the changes to the IP header and checksum in the
 ICMP body. Furthermore, the normal IP header must also be modified as
 already described.

 It is not entirely clear if the IP header information in the ICMP
 part of the body really need to be modified. This depends on whether
 or not any host code actually looks at this IP header information.
 Indeed, it may be useful to provide the exact header seen by the
 router or host that issued the ICMP message to aid in debugging. In
 any event, no modifications are needed for the Echo and Timestamp
 messages, and NAT should never need to handle a Redirect message.

Egevang & Francis [Page 7]

RFC 1631 Network Address Translator May 1994

 SNMP messages could be modified, but it is even more dubious than for
 ICMP messages that it will be necessary.

Applications with IP-address Content

 Any application that carries (and uses) the IP address inside the
 application will not work through NAT unless NAT knows of such
 instances and does the appropriate translation. It is not possible or
 even necessarily desirable for NAT to know of all such applications.
 And, if encryption is used then it is impossible for NAT to make the
 translation.

 It may be possible for such systems to avoid using NAT, if the hosts
 in which they run are assigned global addresses. Whether or not this
 can work depends on the capability of the intra-domain routing
 algorithm and the internal topology. This is because the global
 address must be advertised in the intra-domain routing algorithm.
 With a low-feature routing algorithm like RIP, the host may require
 its own class C address space, that must not only be advertised
 internally but externally as well (thus hurting global scaling). With
 a high-feature routing algorithm like OSPF, the host address can be
 passed around individually, and can come from the NAT table.

Privacy, Security, and Debugging Considerations

 Unfortunately, NAT reduces the number of options for providing
 security. With NAT, nothing that carries an IP address or information
 derived from an IP address (such as the TCP-header checksum) can be
 encrypted. While most application-level encryption should be ok, this
 prevents encryption of the TCP header.

 On the other hand, NAT itself can be seen as providing a kind of
 privacy mechanism. This comes from the fact that machines on the
 backbone cannot monitor which hosts are sending and receiving traffic
 (assuming of course that the application data is encrypted).

 The same characteristic that enhances privacy potentially makes
 debugging problems (including security violations) more difficult. If
 a host is abusing the Internet is some way (such as trying to attack
 another machine or even sending large amounts of junk mail or
 something) it is more difficult to pinpoint the source of the trouble
 because the IP address of the host is hidden.

Egevang & Francis [Page 8]

RFC 1631 Network Address Translator May 1994

4. Conclusions

 NAT may be a good short term solution to the address depletion and
 scaling problems. This is because it requires very few changes and
 can be installed incrementally. NAT has several negative
 characteristics that make it inappropriate as a long term solution,
 and may make it inappropriate even as a short term solution. Only
 implementation and experimentation will determine its
 appropriateness.

The negative characteristics are:

1. It requires a sparse end-to-end traffic matrix. Otherwise, the NAT
 tables will be large, thus giving lower performance. While the
 expectation is that end-to-end traffic matrices are indeed sparse,
 experience with NAT will determine whether or not they are. In any
 event, future applications may require a rich traffic matrix (for
 instance, distributed resource discovery), thus making long-term use
 of NAT unattractive.

2. It increases the probability of mis-addressing.

3. It breaks certain applications (or at least makes them more difficult
 to run).

4. It hides the identity of hosts. While this has the benefit of
 privacy, it is generally a negative effect.

5. Problems with SNMP, DNS, ... you name it.

Current Implementations

 Paul and Tony implemented an experimental prototype of NAT on public
 domain KA9Q TCP/IP software [1]. This implementation manipulates
 addresses and IP checksums.

 Kjeld implemented NAT in a Cray Communications IP-router. The
 implementation was tested with Telnet and FTP. This implementation
 manipulates addresses, IP checksums, TCP sequence/acknowledge numbers
 and FTP PORT commands.

 The prototypes has demonstrated that IP addresses can be translated
 transparently to hosts within the limitations described in this
 paper.

Egevang & Francis [Page 9]

RFC 1631 Network Address Translator May 1994

REFERENCES

 [1] Karn, P., "KA9Q", anonymous FTP from ucsd.edu
 (hamradio/packet/ka9q/docs).

 [2] Fuller, V., Li, T., and J. Yu, "Classless Inter-Domain Routing
 (CIDR) an Address Assignment and Aggregation Strategy", RFC 1519,
 BARRNet, cisco, Merit, OARnet, September 1993.

 [3] Rekhter, Y., Moskowitz, B., Karrenberg, D., and G. de Groot,
 "Address Allocation for Private Internets", RFC 1597, T.J. Watson
 Research Center, IBM Corp., Chrysler Corp., RIPE NCC, March 1994.

Security Considerations

 Security issues are not discussed in this memo.

Authors’ Addresses

 Kjeld Borch Egevang
 Cray Communications
 Smedeholm 12-14
 DK-2730 Herlev
 Denmark

 Phone: +45 44 53 01 00
 EMail: kbe@craycom.dk

 Paul Francis
 NTT Software Lab
 3-9-11 Midori-cho Musashino-shi
 Tokyo 180 Japan

 Phone: +81-422-59-3843
 Fax +81-422-59-3765
 EMail: francis@cactus.ntt.jp

Egevang & Francis [Page 10]

