
Network Working Group D. Mills
Request for Comments: 1589 University of Delaware
Category: Informational March 1994

 A Kernel Model for Precision Timekeeping

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Overview

 This memorandum describes an engineering model which implements a
 precision time-of-day function for a generic operating system. The
 model is based on the principles of disciplined oscillators and
 phase-lock loops (PLL) often found in the engineering literature. It
 has been implemented in the Unix kernel for several workstations,
 including those made by Sun Microsystems and Digital Equipment. The
 model changes the way the system clock is adjusted in time and
 frequency, as well as provides mechanisms to discipline its frequency
 to an external precision timing source. The model incorporates a
 generic system-call interface for use with the Network Time Protocol
 (NTP) or similar time synchronization protocol. The NTP Version 3
 daemon xntpd operates with this model to provide synchronization
 limited in principle only by the accuracy and stability of the
 external timing source.

 This memorandum does not obsolete or update any RFC. It does not
 propose a standard protocol, specification or algorithm. It is
 intended to provoke comment, refinement and alternative
 implementations. While a working knowledge of NTP is not required for
 an understanding of the design principles or implementation of the
 model, it may be helpful in understanding how the model behaves in a
 fully functional timekeeping system. The architecture and design of
 NTP is described in [1], while the current NTP Version 3 protocol
 specification is given in RFC-1305 [2] and a subset of the protocol,
 the Simple Network Time Protocol (SNTP), in RFC-1361 [4].

 The model has been implemented in three Unix kernels for Sun
 Microsystems and Digital Equipment workstations. In addition, for the
 Digital machines the model provides improved precision to one
 microsecond (us). Since these specific implementations involve
 modifications to licensed code, they cannot be provided directly.
 Inquiries should be directed to the manufacturer’s representatives.
 However, the engineering model for these implementations, including a

Mills [Page 1]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 simulator with code segments almost identical to the implementations,
 but not involving licensed code, is available via anonymous FTP from
 host louie.udel.edu in the directory pub/ntp and compressed tar
 archive kernel.tar.Z. The NTP Version 3 distribution can be obtained
 via anonymous ftp from the same host and directory in the compressed
 tar archive xntp3.3g.tar.Z, where the version number shown as 3.3g
 may be adjusted for new versions as they occur.

1. Introduction

 This memorandum describes a model and programming interface for
 generic operating system software that manages the system clock and
 timer functions. The model provides improved accuracy and stability
 for most workstations and servers using the Network Time Protocol
 (NTP) or similar time synchronization protocol. This memorandum
 describes the principles of design and implementation of the model.
 Related technical reports discuss the design approach, engineering
 analysis and performance evaluation of the model as implemented in
 Unix kernels for Sun Microsystems and Digital Equipment workstations.
 The NTP Version 3 daemon xntpd operates with these implementations to
 provide improved accuracy and stability, together with diminished
 overhead in the operating system and network. In addition, the model
 supports the use of external timing sources, such as precision
 pulse-per-second (PPS) signals and the industry standard IRIG timing
 signals. The NTP daemon automatically detects the presence of the new
 features and utilizes them when available.

 There are three prototype implementations of the model presented in
 this memorandum, one each for the Sun Microsystems SPARCstation with
 the SunOS 4.1.x kernel, Digital Equipment DECstation 5000 with the
 Ultrix 4.x kernel and Digital Equipment 3000 AXP Alpha with the OSF/1
 V1.x kernel. In addition, for the DECstation 5000/240 and 3000 AXP
 Alpha machines, a special feature provides improved precision to 1 us
 (Sun 4.1.x kernels already do provide 1-us precision). Other than
 improving the system clock accuracy, stability and precision, these
 implementations do not change the operation of existing Unix system
 calls which manage the system clock, such as gettimeofday(),
 settimeofday() and adjtime(); however, if the new features are in
 use, the operations of gettimeofday() and adjtime() can be controlled
 instead by new system calls ntp_gettime() and ntp_adjtime() as
 described below.

 A detailed description of the variables and algorithms is given in
 the hope that similar functionality can be incorporated in Unix
 kernels for other machines. The algorithms involve only minor changes
 to the system clock and interval timer routines and include
 interfaces for application programs to learn the system clock status
 and certain statistics of the time synchronization process. Detailed

Mills [Page 2]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 installation instructions are given in a specific README files
 included in the kernel distributions.

 In this memorandum, NTP Version 3 and the Unix implementation xntp3
 are used as an example application of the new system calls for use by
 a synchronization daemon. In principle, the new system calls can be
 used by other protocols and implementations as well. Even in cases
 where the local time is maintained by periodic exchanges of messages
 at relatively long intervals, such as using the NIST Automated
 Computer Time Service, the ability to precisely adjust the system
 clock frequency simplifies the synchronization procedures and allows
 the telephone call frequency to be considerably reduced.

2. Design Approach

 While not strictly necessary for an understanding or implementation
 of the model, it may be helpful to briefly describe how NTP operates
 to control the system clock in a client workstation. As described in
 [1], the NTP protocol exchanges timestamps with one or more peers
 sharing a synchronization subnet to calculate the time offsets
 between peer clocks and the local clock. These offsets are processed
 by several algorithms which refine and combine the offsets to produce
 an ensemble average, which is then used to adjust the local clock
 time and frequency. The manner in which the local clock is adjusted
 represents the main topic of this memorandum. The goal in the
 enterprise is the most accurate and stable system clock possible with
 the available kernel software and workstation hardware.

 In order to understand how the new software works, it is useful to
 review how most Unix kernels maintain the system time. In the Unix
 design a hardware counter interrupts the kernel at a fixed rate: 100
 Hz in the SunOS kernel, 256 Hz in the Ultrix kernel and 1024 Hz in
 the OSF/1 kernel. Since the Ultrix timer interval (reciprocal of the
 rate) does not evenly divide one second in microseconds, the Ultrix
 kernel adds 64 microseconds once each second, so the timescale
 consists of 255 advances of 3906 us plus one of 3970 us. Similarly,
 the OSF/1 kernel adds 576 us once each second, so its timescale
 consists of 1023 advances of 976 us plus one of 1552 us.

 2.1. Mechanisms to Adjust Time and Frequency

 In most Unix kernels it is possible to slew the system clock to a
 new offset relative to the current time by using the adjtime()
 system call. To do this the clock frequency is changed by adding
 or subtracting a fixed amount (tickadj) at each timer interrupt
 (tick) for a calculated number of ticks. Since this calculation
 involves dividing the requested offset by tickadj, it is possible
 to slew to a new offset with a precision only of tickadj, which is

Mills [Page 3]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 usually in the neighborhood of 5 us, but sometimes much more. This
 results in a roundoff error which can accumulate to an
 unacceptable degree, so that special provisions must be made in
 the clock adjustment procedures of the synchronization daemon.

 In order to implement a frequency-discipline function, it is
 necessary to provide time offset adjustments to the kernel at
 regular adjustment intervals using the adjtime() system call. In
 order to reduce the system clock jitter to the regime considered
 in this memorandum, it is necessary that the adjustment interval
 be relatively small, in the neighborhood of 1 s. However, the Unix
 adjtime() implementation requires each offset adjustment to
 complete before another one can be begun, which means that large
 adjustments must be amortized in possibly many adjustment
 intervals. The requirement to implement the adjustment interval
 and compensate for roundoff error considerably complicates the
 synchronizing daemon implementation.

 In the new model this scheme is replaced by another that
 represents the system clock as a multiple-word, precision-time
 variable in order to provide very precise clock adjustments. At
 each timer interrupt a precisely calibrated quantity is added to
 the kernel time variable and overflows propagated as required. The
 quantity is computed as in the NTP local clock model described in
 [3], which operates as an adaptive-parameter, first-order, type-II
 phase-lock loop (PLL). In principle, this PLL design can provide
 precision control of the system clock oscillator within 1 us and
 frequency to within parts in 10^11. While precisions of this order
 are surely well beyond the capabilities of the CPU clock
 oscillator used in typical workstations, they are appropriate
 using precision external oscillators as described below.

 The PLL design is identical to the one originally implemented in
 NTP and described in [3]. In this design the software daemon
 simulates the PLL using the adjtime() system call; however, the
 daemon implementation is considerably complicated by the
 considerations described above. The modified kernel routines
 implement the PLL in the kernel using precision time and frequency
 representions, so that these complications are avoided. A new
 system call ntp_adjtime() is called only as each new time update
 is determined, which in NTP occurs at intervals of from 16 s to
 1024 s. In addition, doing frequency compensation in the kernel
 means that the system time runs true even if the daemon were to
 cease operation or the network paths to the primary
 synchronization source fail.

 In the new model the new ntp_adjtime() operates in a way similar
 to the original adjtime() system call, but does so independently

Mills [Page 4]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 of adjtime(), which continues to operate in its traditional
 fashion. When used with NTP, it is the design intent that
 settimeofday() or adjtime() be used only for system time
 adjustments greater than +-128 ms, although the dynamic range of
 the new model is much larger at +-512 ms. It has been the Internet
 experience that the need to change the system time in increments
 greater than +-128 ms is extremely rare and is usually associated
 with a hardware or software malfunction or system reboot.

 The easiest way to set the time is with the settimeofday() system
 call; however, this can under some conditions cause the clock to
 jump backward. If this cannot be tolerated, adjtime() can be used
 to slew the clock to the new value without running backward or
 affecting the frequency discipline process. Once the system clock
 has been set within +-128 ms, the ntp_adjtime() system call is
 used to provide periodic updates including the time offset,
 maximum error, estimated error and PLL time constant. With NTP the
 update interval depends on the measured dispersion and time
 constant; however, the scheme is quite forgiving and neither
 moderate loss of updates nor variations in the update interval are
 serious.

 2.2 Daemon and Application Interface

 Unix application programs can read the system clock using the
 gettimeofday() system call, which returns only the system time and
 timezone data. For some applications it is useful to know the
 maximum error of the reported time due to all causes, including
 clock reading errors, oscillator frequency errors and accumulated
 latencies on the path to a primary synchronization source.
 However, in the new model the PLL adjusts the system clock to
 compensate for its intrinsic frequency error, so that the time
 errors expected in normal operation will usually be much less than
 the maximum error. The programming interface includes a new system
 call ntp_gettime(), which returns the system time, as well as the
 maximum error and estimated error. This interface is intended to
 support applications that need such things, including distributed
 file systems, multimedia teleconferencing and other real-time
 applications. The programming interface also includes the new
 system call ntp_adjtime() mentioned previously, which can be used
 to read and write kernel variables for time and frequency
 adjustment, PLL time constant, leap-second warning and related
 data.

 In addition, the kernel adjusts the maximum error to grow by an
 amount equal to the oscillator frequency tolerance times the
 elapsed time since the last update. The default engineering
 parameters have been optimized for update intervals in the order

Mills [Page 5]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 of 64 s. For other intervals the PLL time constant can be adjusted
 to optimize the dynamic response over intervals of 16-1024 s.
 Normally, this is automatically done by NTP. In any case, if
 updates are suspended, the PLL coasts at the frequency last
 determined, which usually results in errors increasing only to a
 few tens of milliseconds over a day using room-temperature quartz
 oscillators of typical modern workstations.

 While any synchronization daemon can in principle be modified to
 use the new system calls, the most likely will be users of the NTP
 Version 3 daemon xntpd. The xntpd code determines whether the new
 system calls are implemented and automatically reconfigures as
 required. When implemented, the daemon reads the frequency offset
 from a file and provides it and the initial time constant via
 ntp_adjtime(). In subsequent calls to ntp_adjtime(), only the time
 offset and time constant are affected. The daemon reads the
 frequency from the kernel using ntp_adjtime() at intervals of
 about one hour and writes it to a system file. This information is
 recovered when the daemon is restarted after reboot, for example,
 so the sometimes extensive training period to learn the frequency
 separately for each system can be avoided.

 2.3. Precision Clocks for DECstation 5000/240 and 3000 AXP Alpha

 The stock microtime() routine in the Ultrix kernel returns system
 time to the precision of the timer interrupt interval, which is in
 the 1-4 ms range. However, in the DECstation 5000/240 and possibly
 other machines of that family, there is an undocumented IOASIC
 hardware register that counts system bus cycles at a rate of 25
 MHz. The new microtime() routine for the Ultrix kernel uses this
 register to interpolate system time between timer interrupts. This
 results in a precision of 1 us for all time values obtained via
 the gettimeofday() and ntp_gettime() system calls. For the Digital
 Equipment 3000 AXP Alpha, the architecture provides a hardware
 Process Cycle Counter and a machine instruction rpcc to read it.
 This counter operates at the fundamental frequency of the CPU
 clock or some submultiple of it, 133.333 MHz for the 3000/400 for
 example. The new microtime() routine for the OSF/1 kernel uses
 this counter in the same fashion as the Ultrix routine.

 In both the Ultrix and OSF/1 kernels the gettimeofday() and
 ntp_gettime() system call use the new microtime() routine, which
 returns the actual interpolated value, but does not change the
 kernel time variable. Therefore, other routines that access the
 kernel time variable directly and do not call either
 gettimeofday(), ntp_gettime() or microtime() will continue their
 present behavior. The microtime() feature is independent of other
 features described here and is operative even if the kernel PLL or

Mills [Page 6]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 new system calls have not been implemented.

 The SunOS kernel already includes a system clock with 1-us
 resolution; so, in principle, no microtime() routine is necessary.
 An existing kernel routine uniqtime() implements this function,
 but it is coded in the C language and is rather slow at 42-85 us
 per call. A replacement microtime() routine coded in assembler
 language is available in the NTP Version 3 distribution and is
 much faster at about 3 us per call.

 2.4. External Time and Frequency Discipline

 The overall accuracy of a time synchronization subnet with respect
 to Coordinated Universal Time (UTC) depends on the accuracy and
 stability of the primary synchronization source, usually a radio
 or satellite receiver, and the system clock oscillator of the
 primary server. As discussed in [5], the traditional interface
 using an RS232 protocol and serial port precludes the full
 accuracy of the radio clock. In addition, the poor stability of
 typical CPU clock oscillators limits the accuracy, whether or not
 precision time sources are available. There are, however, several
 ways in which the system clock accuracy and stability can be
 improved to the degree limited only by the accuracy and stability
 of the synchronization source and the jitter of the operating
 system.

 Many radio clocks produce special signals that can be used by
 external equipment to precisely synchronize time and frequency.
 Most produce a pulse-per-second (PPS) signal that can be read via
 a modem-control lead of a serial port and some produce a special
 IRIG signal that can be read directly by a bus peripheral, such as
 the KSI/Odetics TPRO IRIG SBus interface, or indirectly via the
 audio codec of some workstations, as described in [5]. In the NTP
 Version 3 distribution, the PPS signal can be used to augment the
 less precise ASCII serial timecode to improve accuracy to the
 order of microseconds. Support is also included in the
 distribution for the TPRO interface as well as the audio codec;
 however, the latter requires a modified kernel audio driver
 contained in the bsd_audio.tar.Z distribution in the same host and
 directory as the NTP Version 3 distribution mentioned previously.

 2.4.1. PPS Signal

 The NTP Version 3 distribution includes a special ppsclock
 module for the SunOS 4.1.x kernel that captures the PPS signal
 presented via a modem-control lead of a serial port. Normally,
 the ppsclock module produces a timestamp at each transition of
 the PPS signal and provides it to the synchronization daemon

Mills [Page 7]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 for integration with the serial ASCII timecode, also produced
 by the radio clock. With the conventional PLL implementation in
 either the daemon or the kernel as described above, the
 accuracy of this scheme is limited by the intrinsic stability
 of the CPU clock oscillator to a millisecond or two, depending
 on environmental temperature variations.

 The ppsclock module has been modified to in addition call a new
 kernel routine hardpps() once each second. The kernel routine
 compares the timestamp with a sample of the CPU clock
 oscillator to develop a frequency offset estimate. This offset
 is used to discipline the oscillator frequency, nominally to
 within a few parts in 10^8, which is about two orders of
 magnitude better than the undisciplined oscillator. The new
 feature is conditionally compiled in the code described below
 only if the PPS_SYNC option is used in the kernel configuration
 file.

 When using the PPS signal to adjust the time, there is a
 problem with the SunOS implementation which is very delicate to
 fix. The Sun serial port interrupt routine operates at
 interrupt priority level 12, while the timer interrupt routine
 operates at priority 10. Thus, it is possible that the PPS
 signal interrupt can occur during the timer interrupt routine,
 with result that a tick increment can be missed and the
 returned time early by one tick. It may happen that, if the CPU
 clock oscillator is within a few ppm of the PPS oscillator,
 this condition can persist for two or more successive PPS
 interrupts. A useful workaround has been to use a median filter
 to process the PPS sample offsets. In this filter the sample
 offsets in a window of 20 samples are sorted by offset and the
 six highest and six lowest outlyers discarded. The average of
 the eight samples remaining becomes the output of the filter.

 The problem is not nearly so serious when using the PPS signal
 to discipline the frequency of the CPU clock oscillator. In
 this case the quantity of interest is the contents of the
 microseconds counter only, which does not depend on the kernel
 time variable.

 2.4.2. External Clocks

 It is possible to replace the system clock function with an
 external bus peripheral. The TPRO device mentioned previously
 can be used to provide IRIG-synchronized time with a precision
 of 1 us. A driver for this device tprotime.c and header file
 tpro.h are included in the kernel.tar.Z distribution mentioned
 previously. Using this device the system clock is read directly

Mills [Page 8]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 from the interface; however, the device does not record the
 year, so special provisions have to be made to obtain the year
 from the kernel time variable and initialize the driver
 accordingly. This feature is conditionally compiled in the code
 described below only if the EXT_CLOCK option is used in the
 kernel configuration file.

 While the system clock function is provided directly by the
 microtime() routine in the driver, the kernel time variable
 must be disciplined as well, since not all system timing
 functions use the microtime() routine. This is done by
 measuring the difference between the microtime() clock and
 kernel time variable and using the difference to adjust the
 kernel PLL as if the adjustment were provided by an external
 peer and NTP.

 A good deal of error checking is done in the TPRO driver, since
 the system clock is vulnerable to a misbehaving radio clock,
 IRIG signal source, interface cables and TPRO device itself.
 Unfortunately, there is no easy way to utilize the extensive
 diversity and redundancy capabilities available in the NTP
 synchronization daemon. In order to avoid disruptions that
 might occur if the TPRO time is far different from the kernel
 time variable, the latter is used instead of the former if the
 difference between the two exceeds 1000 s; presumably in that
 case operator intervention is required.

 2.4.3. External Oscillators

 Even if a source of PPS or IRIG signals is not available, it is
 still possible to improve the stability of the system clock
 through the use of a specialized bus peripheral. In order to
 explore the benefits of such an approach, a special SBus
 peripheral caled HIGHBALL has been constructed. The device
 includes a pair of 32-bit hardware counters in Unix timeval
 format, together with a precision, oven-controlled quartz
 oscillator with a stability of a few parts in 10^9. A driver
 for this device hightime.c and header file high.h are included
 in the kernel.tar.Z distribution mentioned previously. This
 feature is conditionally compiled in the code described below
 only if the EXT_CLOCK and HIGHBALL options are used in the
 kernel configuration file.

 Unlike the external clock case, where the system clock function
 is provided directly by the microtime() routine in the driver,
 the HIGHBALL counter offsets with respect to UTC must be
 provided first. This is done using the ordinary kernel PLL,
 but controlling the counter offsets directly, rather than the

Mills [Page 9]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 kernel time variable. At first, this might seem to defeat the
 purpose of the design, since the jitter and wander of the
 synchronization source will affect the counter offsets and thus
 the accuracy of the time. However, the jitter is much reduced
 by the PLL and the wander is small, especially if using a radio
 clock or another primary server disciplined in the same way.
 In practice, the scheme works to reduce the incidental wander
 to a few parts in 10^8, or about the same as using the PPS
 signal.

 As in the previous case, the kernel time variable must be
 disciplined as well, since not all system timing functions use
 the microtime() routine. However, the kernel PLL cannot be used
 for this, since it is already in use providing offsets for the
 HIGHBALL counters. Therefore, a special correction is
 calculated from the difference between the microtime() clock
 and the kernel time variable and used to adjust the kernel time
 variable at the next timer interrupt. This somewhat roundabout
 approach is necessary in order that the adjustment does not
 cause the kernel time variable to jump backwards and possibly
 lose or duplicate a timer event.

 2.5 Other Features

 It is a design feature of the NTP architecture that the system
 clocks in a synchronization subnet are to read the same or nearly
 the same values before during and after a leap-second event, as
 declared by national standards bodies. The new model is designed
 to implement the leap event upon command by an ntp_adjtime()
 argument. The intricate and sometimes arcane details of the model
 and implementation are discussed in [3] and [5]. Further details
 are given in the technical summary later in this memorandum.

3. Technical Summary

 In order to more fully understand the workings of the model, a stand-
 alone simulator kern.c and header file timex.h are included in the
 kernel.tar.Z distribution mentioned previously. In addition, a
 complete C program kern_ntptime.c which implements the ntp_gettime()
 and ntp_adjtime() functions is provided, but with the vendor-specific
 argument-passing code deleted. Since the distribution is somewhat
 large, due to copious comments and ornamentation, it is impractical
 to include a listing of these programs in this memorandum. In any
 case, implementors may choose to snip portions of the simulator for
 use in new kernel designs, but, due to formatting conventions, this
 would be difficult if included in this memorandum.

Mills [Page 10]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 The kern.c program is an implementation of an adaptive-parameter,
 first-order, type-II phase-lock loop. The system clock is implemented
 using a set of variables and algorithms defined in the simulator and
 driven by explicit offsets generated by a driver program also
 included in the program. The algorithms include code fragments almost
 identical to those in the machine-specific kernel implementations and
 operate in the same way, but the operations can be understood
 separately from any licensed source code into which these fragments
 may be integrated. The code fragments themselves are not derived from
 any licensed code. The following discussion assumes that the
 simulator code is available for inspection.

 3.1. PLL Simulation

 The simulator operates in conformance with the analytical model
 described in [3]. The main() program operates as a driver for the
 fragments hardupdate(), hardclock(), second_overflow(), hardpps()
 and microtime(), although not all functions implemented in these
 fragments are simulated. The program simulates the PLL at each
 timer interrupt and prints a summary of critical program variables
 at each time update.

 There are three defined options in the kernel configuration file
 specific to each implementation. The PPS_SYNC option provides
 support for a pulse-per-second (PPS) signal, which is used to
 discipline the frequency of the CPU clock oscillator. The
 EXT_CLOCK option provides support for an external kernel-readable
 clock, such as the KSI/Odetics TPRO IRIG interface or HIGHBALL
 precision oscillator, both for the SBus. The TPRO option provides
 support for the former, while the HIGHBALL option provides support
 for the latter. External clocks are implemented as the microtime()
 clock driver, with the specific source code selected by the kernel
 configuration file.

 3.1.1. The hardupdate() Fragment

 The hardupdate() fragment is called by ntp_adjtime() as each
 update is computed to adjust the system clock phase and
 frequency. Note that the time constant is in units of powers of
 two, so that multiplies can be done by simple shifts. The phase
 variable is computed as the offset divided by the time
 constant. Then, the time since the last update is computed and
 clamped to a maximum (for robustness) and to zero if
 initializing. The offset is multiplied (sorry about the ugly
 multiply) by the result and divided by the square of the time
 constant and then added to the frequency variable. Note that
 all shifts are assumed to be positive and that a shift of a
 signed quantity to the right requires a little dance.

Mills [Page 11]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 With the defines given, the maximum time offset is determined
 by the size in bits of the long type (32 or 64) less the
 SHIFT_UPDATE scale factor (12) or at least 20 bits (signed).
 The scale factor is chosen so that there is no loss of
 significance in later steps, which may involve a right shift up
 to SHIFT_UPDATE bits. This results in a time adjustment range
 over +-512 ms. Since time_constant must be greater than or
 equal to zero, the maximum frequency offset is determined by
 the SHIFT_USEC scale factor (16) or at least 16 bits (signed).
 This results in a frequency adjustment range over +-31,500 ppm.

 In the addition step, the value of offset * mtemp is not
 greater than MAXPHASE * MAXSEC = 31 bits (signed), which will
 not overflow a long add on a 32-bit machine. There could be a
 loss of precision due to the right shift of up to 12 bits,
 since time_constant is bounded at 6. This results in a net
 worst-case frequency resolution of about .063 ppm, which is not
 significant for most quartz oscillators. The worst case could
 be realized only if the NTP peer misbehaves according to the
 protocol specification.

 The time_offset value is clamped upon entry. The time_phase
 variable is an accumulator, so is clamped to the tolerance on
 every call. This helps to damp transients before the oscillator
 frequency has been determined, as well as to satisfy the
 correctness assertions if the time synchronization protocol or
 implementation misbehaves.

 3.1.2. The hardclock() Fragment

 The hardclock() fragment is inserted in the hardware timer
 interrupt routine at the point the system clock is to be
 incremented. Previous to this fragment the time_update variable
 has been initialized to the value computed by the adjtime()
 system call in the stock Unix kernel, normally plus/minus the
 tickadj value, which is usually in the order of 5 us. The
 time_phase variable, which represents the instantaneous phase
 of the system clock, is advanced by time_adj, which is
 calculated in the second_overflow() fragment described below.
 If the value of time_phase exceeds 1 us in scaled units,
 time_update is increased by the (signed) excess and time_phase
 retains the residue.

 Except in the case of an external oscillator such as the
 HIGHBALL interface, the hardclock() fragment advances the
 system clock by the value of tick plus time_update. However, in
 the case of an external oscillator, the system clock is
 obtained directly from the interface and time_update used to

Mills [Page 12]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 discipline that interface instead. However, the system clock
 must still be disciplined as explained previously, so the value
 of clock_cpu computed by the second_overflow() fragment is used
 instead.

 3.1.3. The second_overflow() Fragment

 The second_overflow() fragment is inserted at the point where
 the microseconds field of the system time variable is being
 checked for overflow. Upon overflow the maximum error
 time_maxerror is increased by time_tolerance to reflect the
 maximum time offset due to oscillator frequency error. Then,
 the increment time_adj to advance the kernel time variable is
 calculated from the (scaled) time_offset and time_freq
 variables updated at the last call to the hardclock() fragment.

 The phase adjustment is calculated as a (signed) fraction of
 the time_offset remaining, where the fraction is added to
 time_adj, then subtracted from time_offset. This technique
 provides a rapid convergence when offsets are high, together
 with good resolution when offsets are low. The frequency
 adjustment is the sum of the (scaled) time_freq variable, an
 adjustment necessary when the tick interval does not evenly
 divide one second fixtick and PPS frequency adjustment pps_ybar
 (if configured).

 The scheme of approximating exact multiply/divide operations
 with shifts produces good results, except when an exact
 calculation is required, such as when the PPS signal is being
 used to discipling the CPU clock oscillator frequency, as
 described below. As long as the actual oscillator frequency is
 a power of two in seconds, no correction is required. However,
 in the SunOS kernel the clock frequency is 100 Hz, which
 results in an error factor of 0.78. In this case the code
 increases time_adj by a factor of 1.25, which results in an
 overall error less than three percent.

 On rollover of the day, the leap-second state machine described
 below determines whether a second is to be inserted or deleted
 in the timescale. The microtime() routine insures that the
 reported time is always monotonically increasing.

 3.1.4. The hardpps() Fragment

 The hardpps() fragment is operative only if the PPS_SYNC option
 is specified in the kernel configuration file. It is called
 from the serial port driver or equivalent interface at the on-
 time transition of the PPS signal. The fragment operates as a

Mills [Page 13]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 first-order, type-I frequency-lock loop (FLL) controlled by the
 difference between the frequency represented by the pps_ybar
 variable and the frequency of the hardware clock oscillator.

 In order to avoid calling the microtime() routine more than
 once for each PPS transition, the interface requires the
 calling program to capture the system time and hardware counter
 contents at the on-time transition of the PPS signal and
 provide a pointer to the timestamp (Unix timeval) and counter
 contents as arguments to the hardpps() call. The hardware
 counter contents can be determined by saving the microseconds
 field of the system time, calling the microtime() routine, and
 subtracting the saved value. If a counter overflow has occured
 during the process, the resulting microseconds value will be
 negative, in which case the caller adds 1000000 to normalize
 the microseconds field.

 The frequency of the hardware oscillator can be determined from
 the difference in hardware counter readings at the beginning
 and end of the calibration interval divided by the duration of
 the interval. However, the oscillator frequency tolerance, as
 much as 100 ppm, may cause the difference to exceed the tick
 value, creating an ambiguity. In order to avoid this ambiguity,
 the hardware counter value at the beginning of the interval is
 increased by the current pps_ybar value once each second, but
 computed modulo the tick value. At the end of the interval, the
 difference between this value and the value computed from the
 hardware counter is used as a control signal sample for the
 FLL.

 Control signal samples which exceed the frequency tolerance are
 discarded, as well as samples resulting from excessive interval
 duration jitter. Surviving samples are then processed by a
 three-stage median filter. The signal which drives the FLL is
 derived from the median sample, while the average of
 differences between the other two samples is used as a measure
 of dispersion. If the dispersion is below the threshold
 pps_dispmax, the median is used to correct the pps_ybar value
 with a weight expressed as a shift PPS_AVG (2). In addition to
 the averaging function, pps_disp is increased by the amount
 pps_dispinc once each second. The result is that, should the
 dispersion be exceptionally high, or if the PPS signal fails
 for some reason, the pps_disp will eventually exceed
 pps_dispmax and raise an alarm.

 Initially, an approximate value for pps_ybar is not known, so
 the duration of the calibration interval must be kept small to
 avoid overflowing the tick. The time difference at the end of

Mills [Page 14]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 the calibration interval is measured. If greater than a
 fraction tick/4, the interval is reduced by half. If less than
 this fraction for four successive calibration intervals, the
 interval is doubled. This design automatically adapts to
 nominal jitter in the PPS signal, as well as the value of tick.
 The duration of the calibration interval is set by the
 pps_shift variable as a shift in powers of two. The minimum
 value PPS_SHIFT (2) is chosen so that with the highest CPU
 oscillator frequency 1024 Hz and frequency tolerance 100 ppm
 the tick will not overflow. The maximum value PPS_SHIFTMAX (8)
 is chosen such that the maximum averaging time is about 1000 s
 as determined by measurements of Allan variance [5].

 Should the PPS signal fail, the current frequency estimate
 pps_ybar continues to be used, so the nominal frequency remains
 correct subject only to the instability of the undisciplined
 oscillator. The procedure to save and restore the frequency
 estimate works as follows. When setting the frequency from a
 file, the time_freq value is set as the file value minus the
 pps_ybar value; when retrieving the frequency, the two values
 are added before saving in the file. This scheme provides a
 seamless interface should the PPS signal fail or the kernel
 configuration change. Note that the frequency discipline is
 active whether or not the synchronization daemon is active.
 Since all Unix systems take some time after reboot to build a
 running system, usually by that time the discipline process has
 already settled down and the initial transients due to
 frequency discipline have damped out.

 3.1.4. External Clock Interface

 The external clock driver interface is implemented with two
 routines, microtime(), which returns the current clock time,
 and clock_set(), which furnishes the apparent system time
 derived from the kernel time variable. The latter routine is
 called only when the clock is set using the settimeofday()
 system call, but can be called from within the driver, such as
 when the year rolls over, for example.

 In the stock SunOS kernel and modified Ultrix and OSF/1
 kernels, the microtime() routine returns the kernel time
 variable plus an interpolation between timer interrupts based
 on the contents of a hardware counter. In the case of an
 external clock, such as described above, the system clock is
 read directly from the hardware clock registers. Examples of
 external clock drivers are in the tprotime.c and hightime.c
 routines included in the kernel.tar.Z distribution.

Mills [Page 15]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 The external clock routines return a status code which
 indicates whether the clock is operating correctly and the
 nature of the problem, if not. The return code is interpreted
 by the ntp_gettime() system call, which transitions the status
 state machine to the TIME_ERR state if an error code is
 returned. This is the only error checking implemented for the
 external clock in the present version of the code.

 The simulator has been used to check the PLL operation over the
 design envelope of +-512 ms in time error and +-100 ppm in
 frequency error. This confirms that no overflows occur and that
 the loop initially converges in about 15 minutes for timer
 interrupt rates from 50 Hz to 1024 Hz. The loop has a normal
 overshoot of a few percent and a final convergence time of several
 hours, depending on the initial time and frequency error.

 3.2. Leap Seconds

 It does not seem generally useful in the user application
 interface to provide additional details private to the kernel and
 synchronization protocol, such as stratum, reference identifier,
 reference timestamp and so forth. It would in principle be
 possible for the application to independently evaluate the quality
 of time and project into the future how long this time might be
 "valid." However, to do that properly would duplicate the
 functionality of the synchronization protocol and require
 knowledge of many mundane details of the platform architecture,
 such as the subnet configuration, reachability status and related
 variables. For the curious, the ntp_adjtime() system call can be
 used to reveal some of these mysteries.

 However, the user application may need to know whether a leap
 second is scheduled, since this might affect interval calculations
 spanning the event. A leap-warning condition is determined by the
 synchronization protocol (if remotely synchronized), by the
 timecode receiver (if available), or by the operator (if awake).
 This condition is set by the synchronization daemon on the day the
 leap second is to occur (30 June or 31 December, as announced) by
 specifying in a ntp_adjtime() system call a clock status of either
 TIME_DEL, if a second is to be deleted, or TIME_INS, if a second
 is to be inserted. Note that, on all occasions since the inception
 of the leap-second scheme, there has never been a deletion
 occasion, nor is there likely to be one in future. If the value is
 TIME_DEL, the kernel adds one second to the system time
 immediately following second 23:59:58 and resets the clock status
 to TIME_OK. If the value is TIME_INS, the kernel subtracts one
 second from the system time immediately following second 23:59:59
 and resets the clock status to TIME_OOP, in effect causing system

Mills [Page 16]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 time to repeat second 59. Immediately following the repeated
 second, the kernel resets the clock status to TIME_OK.

 Depending upon the system call implementation, the reported time
 during a leap second may repeat (with the TIME_OOP return code set
 to advertise that fact) or be monotonically adjusted until system
 time "catches up" to reported time. With the latter scheme the
 reported time will be correct before and shortly after the leap
 second (depending on the number of microtime() calls during the
 leap second), but freeze or slowly advance during the leap second
 itself. However, Most programs will probably use the ctime()
 library routine to convert from timeval (seconds, microseconds)
 format to tm format (seconds, minutes,...). If this routine is
 modified to use the ntp_gettime() system call and inspect the
 return code, it could simply report the leap second as second 60.

 3.3. Clock Status State Machine

 The various options possible with the system clock model described
 in this memorandum require a careful examination of the state
 transitions, status indications and recovery procedures should a
 crucial signal or interface fail. In this section is presented a
 prototype state machine designed to support leap second insertion
 and deletion, as well as reveal various kinds of errors in the
 synchronization process. The states of this machine are decoded as
 follows:

 TIME_OK If an external clock is present, it is working properly
 and the system clock is derived from it. If no external
 clock is present, the synchronization daemon is working
 properly and the system clock is synchronized to a radio
 clock or one or more peers.

 TIME_INS An insertion of one second in the system clock has been
 declared following the last second of the current day,
 but has not yet been executed.

 TIME_DEL A deletion of the last second of the current day has
 been declared, but not yet executed.

 TIME_OOP An insertion of one second in the system clock has been
 declared following the last second of the current day.
 The second is in progress, but not yet completed.
 Library conversion routines should interpret this second
 as 23:59:60.

Mills [Page 17]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 TIME_BAD Either (a) the synchronization daemon has declared the
 protocol is not working properly, (b) all sources of
 outside synchronization have been lost or (c) an
 external clock is present and it has just become
 operational following a non-operational condition.

 TIME_ERR An external clock is present, but is in a non-
 operational condition.

 In all except the TIME_ERR state the system clock is derived from
 either an external clock, if present, or the kernel time variable,
 if not. In the TIME_ERR state the external clock is present, but
 not working properly, so the system clock may be derived from the
 kernel time variable. The following diagram indicates the normal
 transitions of the state machine. Not all valid transitions are
 shown.

 +--------+ +--------+ +--------+ +--------+
 | | | | | | | |
 |TIME_BAD|---->|TIME_OK |<----|TIME_OOP|<----|TIME_INS|
 | | | | | | | |
 +--------+ +--------+ +--------+ +--------+
 A A
 | |
 | |
 +--------+ +--------+
 | | | |
 |TIME_ERR| |TIME_DEL|
 | | | |
 +--------+ +--------+

 The state machine makes a transition once each second at an
 instant where the microseconds field of the kernel time variable
 overflows and one second is added to the seconds field. However,
 this condition is checked at each timer interrupt, which may not
 exactly coincide with the actual instant of overflow. This may
 lead to some interesting anomalies, such as a status indication of
 a leap second in progress (TIME_OOP) when actually the leap second
 had already expired.

 The following state transitions are executed automatically by the
 kernel:

 any state -> TIME_ERR This transition occurs when an external
 clock is present and an attempt is made to
 read it when in a non-operational
 condition.

Mills [Page 18]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 TIME_INS -> TIME_OOP This transition occurs immediately
 following second 86,400 of the current day
 when an insert-second event has been
 declared.

 TIME_OOP -> TIME_OK This transition occurs immediately
 following second 86,401 of the current
 day; that is, one second after entry to
 the TIME_OOP state.

 TIME_DEL -> TIME_OK This transition occurs immediately
 following second 86,399 of the current day
 when a delete-second event has been
 declared.

 The following state transitions are executed by specific
 ntp_adjtime() system calls:

 TIME_OK -> TIME_INS This transition occurs as the result of a
 ntp_adjtime() system call to declare an
 insert-second event.

 TIME_OK -> TIME_DEL This transition occurs as the result of a
 ntp_adjtime() system call to declare a
 delete-second event.

 any state -> TIME_BAD This transition occurs as the result of a
 ntp_adjtime() system call to declare loss
 of all sources of synchronization or in
 other cases of error.

 The following table summarizes the actions just before, during and
 just after a leap-second event. Each line in the table shows the
 UTC and NTP times at the beginning of the second. The left column
 shows the behavior when no leap event is to occur. In the middle
 column the state machine is in TIME_INS at the end of UTC second
 23:59:59 and the NTP time has just reached 400. The NTP time is
 set back one second to 399 and the machine enters TIME_OOP. At the
 end of the repeated second the machine enters TIME_OK and the UTC
 and NTP times are again in correspondence. In the right column the
 state machine is in TIME_DEL at the end of UTC second 23:59:58 and
 the NTP time has just reached 399. The NTP time is incremented,
 the machine enters TIME_OK and both UTC and NTP times are again in
 correspondence.

Mills [Page 19]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 No Leap Leap Insert Leap Delete
 UTC NTP UTC NTP UTC NTP

 23:59:58|398 23:59:58|398 23:59:58|398
 | | |
 23:59:59|399 23:59:59|399 00:00:00|400
 | | |
 00:00:00|400 23:59:60|399 00:00:01|401
 | | |
 00:00:01|401 00:00:00|400 00:00:02|402
 | | |
 00:00:02|402 00:00:01|401 00:00:03|403
 | | |

 To determine local midnight without fuss, the kernel code simply
 finds the residue of the time.tv_sec (or time.tv_sec + 1) value
 mod 86,400, but this requires a messy divide. Probably a better
 way to do this is to initialize an auxiliary counter in the
 settimeofday() routine using an ugly divide and increment the
 counter at the same time the time.tv_sec is incremented in the
 timer interrupt routine. For future embellishment.

4. Programming Model and Interfaces

 This section describes the programming model for the synchronization
 daemon and user application programs. The ideas are based on
 suggestions from Jeff Mogul and Philip Gladstone and a similar
 interface designed by the latter. It is important to point out that
 the functionality of the original Unix adjtime() system call is
 preserved, so that the modified kernel will work as the unmodified
 one, should the new features not be in use. In this case the
 ntp_adjtime() system call can still be used to read and write kernel
 variables that might be used by a synchronization daemon other than
 NTP, for example.

 4.1. The ntp_gettime() System Call

 The syntax and semantics of the ntp_gettime() call are given in
 the following fragment of the timex.h header file. This file is
 identical, except for the SHIFT_HZ define, in the SunOS, Ultrix
 and OSF/1 kernel distributions. (The SHIFT_HZ define represents
 the logarithm to the base 2 of the clock oscillator frequency
 specific to each system type.) Note that the timex.h file calls
 the syscall.h system header file, which must be modified to define
 the SYS_ntp_gettime system call specific to each system type. The
 kernel distributions include directions on how to do this.

Mills [Page 20]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 /*
 * This header file defines the Network Time Protocol (NTP)
 * interfaces for user and daemon application programs. These are
 * implemented using private system calls and data structures and
 * require specific kernel support.
 *
 * NAME
 * ntp_gettime - NTP user application interface
 *
 * SYNOPSIS
 * #include <sys/timex.h>
 *
 * int system call(SYS_ntp_gettime, tptr)
 *
 * int SYS_ntp_gettime defined in syscall.h header file
 * struct ntptimeval *tptr pointer to ntptimeval structure
 *
 * NTP user interface - used to read kernel clock values
 * Note: maximum error = NTP synch distance = dispersion + delay /
 * 2
 * estimated error = NTP dispersion.
 */
 struct ntptimeval {
 struct timeval time; /* current time */
 long maxerror; /* maximum error (us) */
 long esterror; /* estimated error (us) */
 };

 The ntp_gettime() system call returns three values in the
 ntptimeval structure: the current time in unix timeval format plus
 the maximum and estimated errors in microseconds. While the 32-bit
 long data type limits the error quantities to something more than
 an hour, in practice this is not significant, since the protocol
 itself will declare an unsynchronized condition well below that
 limit. In the NTP Version 3 specification, if the protocol
 computes either of these values in excess of 16 seconds, they are
 clamped to that value and the system clock declared
 unsynchronized.

 Following is a detailed description of the ntptimeval structure
 members.

Mills [Page 21]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 struct timeval time; /* current time */

 This member returns the current system time, expressed as a
 Unix timeval structure. The timeval structure consists of two
 32-bit words; the first returns the number of seconds past 1
 January 1970, while the second returns the number of
 microseconds.

 long maxerror; /* maximum error (us) */

 This member returns the time_maxerror kernel variable in
 microseconds. See the entry for this variable in section 5 for
 additional information.

 long esterror; /* estimated error (us) */

 This member returns the time_esterror kernel variable in
 microseconds. See the entry for this variable in section 5 for
 additional information.

Mills [Page 22]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 4.2. The ntp_adjtime() System Call

 The syntax and semantics of the ntp_adjtime() call are given in
 the following fragment of the timex.h header file. Note that, as
 in the ntp_gettime() system call, the syscall.h system header file
 must be modified to define the SYS_ntp_adjtime system call
 specific to each system type.

 /*
 * NAME
 * ntp_adjtime - NTP daemon application interface
 *
 * SYNOPSIS
 * #include <sys/timex.h>
 *
 * int system call(SYS_ntp_adjtime, mode, tptr)
 *
 * int SYS_ntp_adjtime defined in syscall.h header file
 * struct timex *tptr pointer to timex structure
 *
 * NTP daemon interface - used to discipline kernel clock
 * oscillator
 */
 struct timex {
 int mode; /* mode selector */
 long offset; /* time offset (us) */
 long frequency; /* frequency offset (scaled ppm) */
 long maxerror; /* maximum error (us) */
 long esterror; /* estimated error (us) */
 int status; /* clock command/status */
 long time_constant; /* pll time constant */
 long precision; /* clock precision (us) (read only)
 */
 long tolerance; /* clock frequency tolerance (scaled
 * ppm) (read only) */
 /*
 * The following read-only structure members are implemented
 * only if the PPS signal discipline is configured in the
 * kernel.
 */
 long ybar; /* frequency estimate (scaled ppm) */
 long disp; /* dispersion estimate (scaled ppm)
 */
 int shift; /* interval duration (s) (shift) */
 long calcnt; /* calibration intervals */
 long jitcnt; /* jitter limit exceeded */
 long discnt; /* dispersion limit exceeded */
 };

Mills [Page 23]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 The ntp_adjtime() system call is used to read and write certain
 time-related kernel variables summarized in this and subsequent
 sections. Writing these variables can only be done in superuser
 mode. To write a variable, the mode structure member is set with
 one or more bits, one of which is assigned each of the following
 variables in turn. The current values for all variables are
 returned in any case; therefore, a mode argument of zero means to
 return these values without changing anything.

 Following is a description of the timex structure members.

 int mode; /* mode selector */

 This is a bit-coded variable selecting one or more structure
 members, with one bit assigned each member. If a bit is set,
 the value of the associated member variable is copied to the
 corresponding kernel variable; if not, the member is ignored.
 The bits are assigned as given in the following fragment of the
 timex.h header file. Note that the precision and tolerance are
 determined by the kernel and cannot be changed by
 ntp_adjtime().

 /*
 * Mode codes (timex.mode)
 */
 #define ADJ_OFFSET 0x0001 /* time offset */
 #define ADJ_FREQUENCY 0x0002 /* frequency offset */
 #define ADJ_MAXERROR 0x0004 /* maximum time error */
 #define ADJ_ESTERROR 0x0008 /* estimated time error */
 #define ADJ_STATUS 0x0010 /* clock status */
 #define ADJ_TIMECONST 0x0020 /* pll time constant */

 long offset; /* time offset (us) */

 If selected, this member replaces the value of the time_offset
 kernel variable in microseconds. The absolute value must be
 less than MAXPHASE microseconds defined in the timex.h header
 file. See the entry for this variable in section 5 for
 additional information.

 If within range and the PPS signal and/or external oscillator
 are configured and operating properly, the clock status is
 automatically set to TIME_OK.

Mills [Page 24]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 long time_constant; /* pll time constant */

 If selected, this member replaces the value of the
 time_constant kernel variable. The value must be between zero
 and MAXTC defined in the timex.h header file. See the entry for
 this variable in section 5 for additional information.

 long frequency; /* frequency offset (scaled ppm) */

 If selected, this member replaces the value of the
 time_frequency kernel variable. The value is in ppm, with the
 integer part in the high order 16 bits and fraction in the low
 order 16 bits. The absolute value must be in the range less
 than MAXFREQ ppm defined in the timex.h header file. See the
 entry for this variable in section 5 for additional
 information.

 long maxerror; /* maximum error (us) */

 If selected, this member replaces the value of the
 time_maxerror kernel variable in microseconds. See the entry
 for this variable in section 5 for additional information.

 long esterror; /* estimated error (us) */

 If selected, this member replaces the value of the
 time_esterror kernel variable in microseconds. See the entry
 for this variable in section 5 for additional information.

 int status; /* clock command/status */

 If selected, this member replaces the value of the time_status
 kernel variable. See the entry for this variable in section 5
 for additional information.

 In order to set this variable by ntp_adjtime(), either (a) the
 current clock status must be TIME_OK or (b) the member value is
 TIME_BAD; that is, the ntp_adjtime() call can always set the
 clock to the unsynchronized state or, if the clock is running
 correctly, can set it to any state. In any case, the
 ntp_adjtime() call always returns the current state in this
 member, so the caller can determine whether or not the request
 succeeded.

Mills [Page 25]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 long time_constant; /* pll time constant */

 If selected, this member replaces the value of the
 time_constant kernel variable. The value must be between zero
 and MAXTC defined in the timex.h header file. See the entry for
 this variable in section 5 for additional information.

 long precision; /* clock precision (us) (read only) */

 This member returns the time_precision kernel variable in
 microseconds. The variable can be written only by the kernel.
 See the entry for this variable in section 5 for additional
 information.

 long tolerance; /* clock frequency tolerance (scaled ppm)
 */

 This member returns the time_tolerance kernel variable in
 microseconds. The variable can be written only by the kernel.
 See the entry for this variable in section 5 for additional
 information.

 long ybar; /* frequency estimate (scaled ppm) */

 This member returns the pps_ybar kernel variable in
 microseconds. The variable can be written only by the kernel.
 See the entry for this variable in section 5 for additional
 information.

 long disp; /* dispersion estimate (scaled ppm) */

 This member returns the pps_disp kernel variable in
 microseconds. The variable can be written only by the kernel.
 See the entry for this variable in section 5 for additional
 information.

 int shift; /* interval duration (s) (shift) */

 This member returns the pps_shift kernel variable in
 microseconds. The variable can be written only by the kernel.
 See the entry for this variable in section 5 for additional
 information.

Mills [Page 26]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 long calcnt; /* calibration intervals */

 This member returns the pps_calcnt kernel variable in
 microseconds. The variable can be written only by the kernel.
 See the entry for this variable in section 5 for additional
 information.

 long jitcnt; /* jitter limit exceeded */

 This member returns the pps_jittcnt kernel variable in
 microseconds. The variable can be written only by the kernel.
 See the entry for this variable in section 5 for additional
 information.

 long discnt; /* dispersion limit exceeded */

 This member returns the pps_discnt kernel variable in
 microseconds. The variable can be written only by the kernel.
 See the entry for this variable in section 5 for additional
 information.

Mills [Page 27]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 4.3. Command/Status Codes

 The kernel routines use the system clock status variable
 time_status, which records whether the clock is synchronized,
 waiting for a leap second, etc. The value of this variable is
 returned as the result code by both the ntp_gettime() and
 ntp_adjtime() system calls. In addition, it can be explicitly read
 and written using the ntp_adjtime() system call, but can be
 written only in superuser mode. Values presently defined in the
 timex.h header file are as follows:

 /*
 * Clock command/status codes (timex.status)
 */
 #define TIME_OK 0 /* clock synchronized */
 #define TIME_INS 1 /* insert leap second */
 #define TIME_DEL 2 /* delete leap second */
 #define TIME_OOP 3 /* leap second in progress */
 #define TIME_BAD 4 /* kernel clock not synchronized */
 #define TIME_ERR 5 /* external oscillator not
 synchronized */

 A detailed description of these codes as used by the leap-second
 state machine is given later in this memorandum. In case of a
 negative result code, the kernel has intercepted an invalid
 address or (in case of the ntp_adjtime() system call), a superuser
 violation.

5. Kernel Variables

 This section contains a list of kernel variables and a detailed
 description of their function, initial value, scaling and limits.

 5.1. Interface Variables

 The following variables are read and set by the ntp_adjtime()
 system call. Additional automatic variables are used as
 temporaries as described in the code fragments.

 int time_status = TIME_BAD;

 This variable controls the state machine used to insert or
 delete leap seconds and show the status of the timekeeping
 system, PPS signal and external oscillator, if configured.

Mills [Page 28]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 long time_offset = 0;

 This variable is used by the PLL to adjust the system time in
 small increments. It is scaled by (1 << SHIFT_UPDATE) (12) in
 microseconds. The maximum value that can be represented is
 about +-512 ms and the minimum value or precision is a few
 parts in 10^10 s.

 long time_constant = 0; /* pll time constant */

 This variable determines the bandwidth or "stiffness" of the
 PLL. The value is used as a shift between zero and MAXTC (6),
 with the effective PLL time constant equal to a multiple of (1
 << time_constant) in seconds. For room-temperature quartz
 oscillator the recommended default value is 2, which
 corresponds to a PLL time constant of about 900 s and a maximum
 update interval of about 64 s. The maximum update interval
 scales directly with the time constant, so that at the maximum
 time constant of 6, the update interval can be as large as 1024
 s.

 Values of time_constant between zero and 2 can be used if quick
 convergence is necessary; values between 2 and 6 can be used to
 reduce network load, but at a modest cost in accuracy. Values
 above 6 are appropriate only if an external oscillator is
 present.

 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */

 This variable represents the maximum frequency error or
 tolerance in ppm of the particular CPU clock oscillator and is
 a property of the architecture; however, in principle it could
 change as result of the presence of external discipline
 signals, for instance. It is expressed as a positive number
 greater than zero in parts-per-million (ppm).

 The recommended value of MAXFREQ is 200 ppm is appropriate for
 room-temperature quartz oscillators used in typical
 workstations. However, it can change due to the operating
 condition of the PPS signal and/or external oscillator. With
 either the PPS signal or external oscillator, the recommended
 value for MAXFREQ is 100 ppm.

Mills [Page 29]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 long time_precision = 1000000 / HZ; /* clock precision (us) */

 This variable represents the maximum error in reading the
 system clock in microseconds. It is usually based on the number
 of microseconds between timer interrupts, 10000 us for the
 SunOS kernel, 3906 us for the Ultrix kernel, 976 us for the
 OSF/1 kernel. However, in cases where the time can be
 interpolated between timer interrupts with microsecond
 resolution, such as in the unmodified SunOS kernel and modified
 Ultrix and OSF/1 kernels, the precision is specified as 1 us.
 In cases where a PPS signal or external oscillator is
 available, the precision can depend on the operating condition
 of the signal or oscillator. This variable is determined by the
 kernel for use by the synchronization daemon, but is otherwise
 not used by the kernel.

 long time_maxerror = MAXPHASE; /* maximum error */

 This variable establishes the maximum error of the indicated
 time relative to the primary synchronization source in
 microseconds. For NTP, the value is initialized by a
 ntp_adjtime() call to the synchronization distance, which is
 equal to the root dispersion plus one-half the root delay. It
 is increased by a small amount (time_tolerance) each second to
 reflect the clock frequency tolerance. This variable is
 computed by the synchronization daemon and the kernel, but is
 otherwise not used by the kernel.

 long time_esterror = MAXPHASE; /* estimated error */

 This variable establishes the expected error of the indicated
 time relative to the primary synchronization source in
 microseconds. For NTP, the value is determined as the root
 dispersion, which represents the best estimate of the actual
 error of the system clock based on its past behavior, together
 with observations of multiple clocks within the peer group.
 This variable is computed by the synchronization daemon and
 returned in system calls, but is otherwise not used by the
 kernel.

Mills [Page 30]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 5.2. Phase-Lock Loop Variables

 The following variables establish the state of the PLL and the
 residual time and frequency offset of the system clock. Additional
 automatic variables are used as temporaries as described in the
 code fragments.

 long time_phase = 0; /* phase offset (scaled us) */

 The time_phase variable represents the phase of the kernel time
 variable at each tick of the clock. This variable is scaled by
 (1 << SHIFT_SCALE) (23) in microseconds, giving a maximum
 adjustment of about +-256 us/tick and a resolution less than
 one part in 10^12.

 long time_offset = 0; /* time offset (scaled us) */

 The time_offset variable represents the time offset of the CPU
 clock oscillator. It is recalculated as each update to the
 system clock is received via the hardupdate() routine and at
 each second in the seconds_overflow routine. This variable is
 scaled by (1 << SHIFT_UPDATE) (12) in microseconds, giving a
 maximum adjustment of about +-512 ms and a resolution of a few
 parts in 10^10 s.

 long time_freq = 0; /* frequency offset (scaled ppm) */

 The time_freq variable represents the frequency offset of the
 CPU clock oscillator. It is recalculated as each update to the
 system clock is received via the hardupdate() routine. It can
 also be set via ntp_adjtime() from a value stored in a file
 when the synchronization daemon is first started. It can be
 retrieved via ntp_adjtime() and written to the file about once
 per hour by the daemon. The time_freq variable is scaled by (1
 << SHIFT_KF) (16) ppm, giving it a maximum value well in excess
 of the limit of +-256 ppm imposed by other constraints. The
 precision of this representation (frequency resolution) is
 parts in 10^11, which is adequate for all but the best external
 oscillators.

 time_adj = 0; /* tick adjust (scaled 1 / HZ) */

 The time_adj variable is the adjustment added to the value of
 tick at each timer interrupt. It is computed once each second
 from the time_offset, time_freq and, if the PPS signal is
 present, the ps_ybar variable once each second.

Mills [Page 31]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 long time_reftime = 0; /* time at last adjustment (s) */

 This variable is the seconds portion of the system time on the
 last update received by the hardupdate() routine. It is used to
 compute the time_freq variable as the time since the last
 update increases.

 int fixtick = 1000000 % HZ; /* amortization factor */

 In the Ultrix and OSF/1 kernels, the interval between timer
 interrupts does not evenly divide the number of microseconds in
 the second. In order that the clock runs at a precise rate, it
 is necessary to introduce an amortization factor into the local
 timescale. In the original Unix code, the value of fixtick is
 amortized once each second, introducing an additional source of
 jitter; in the new model the value is amortized at each tick of
 the system clock, reducing the jitter by the reciprocal of the
 clock oscillator frequency. This is not a new kernel variable,
 but a new use of an existing kernel variable.

 5.3. Pulse-per-second (PPS) Frequency-Lock Loop Variables

 The following variables are used only if a pulse-per-second (PPS)
 signal is available and connected via a modem-control lead, such
 as produced by the optional ppsclock feature incorporated in the
 serial port driver. They establish the design parameters of the
 PPS frequency-lock loop used to discipline the CPU clock
 oscillator to an external PPS signal. Additional automatic
 variables are used as temporaries as described in the code
 fragments.

 long pps_usec; /* microseconds at last pps */

 The pps_usec variable is latched from a high resolution counter
 or external oscillator at each PPS interrupt. In determining
 this value, only the hardware counter contents are used, not
 the contents plus the kernel time variable, as returned by the
 microtime() routine.

 long pps_ybar = 0; /* pps frequency offset estimate */

 The pps_ybar variable is the average CPU clock oscillator
 frequency offset relative to the PPS disciplining signal. It is
 scaled in the same units as the time_freq variable.

Mills [Page 32]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 pps_disp = MAXFREQ; /* dispersion estimate (scaled ppm) */

 The pps_disp variable represents the average sample dispersion
 measured over the last three samples. It is scaled in the same
 units as the time_freq variable.

 pps_dispmax = MAXFREQ / 2; /* dispersion threshold */

 The pps_dispmax variable is used as a dispersion threshold. If
 pps_disp is less than this threshold, the median sample is used
 to update the pps_ybar estimate; if not, the sample is
 discarded.

 pps_dispinc = MAXFREQ >> (PPS_SHIFT + 4); /* pps dispersion
 increment/sec */

 The pps_dispinc variable is the increment to add to pps_disp
 once each second. It is computed such that, if no PPS samples
 have arrived for several calibration intervals, the value of
 pps_disp will exceed the pps_dispmax threshold and raise an
 alarm.

 int pps_mf[] = {0, 0, 0}; /* pps median filter */

 The pps-mf[] array is used as a median filter to detect and
 discard jitter in the PPS signal.

 int pps_count = 0; /* pps calibrate interval counter */

 The pps_count variable measures the length of the calibration
 interval used to calculate the frequency. It normally counts
 from zero to the value 1 << pps_shift.

 pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */

 The pps_shift variable determines the duration of the
 calibration interval, 1 << pps_shift s.

 pps_intcnt = 0; /* intervals at current duration */

 The pps_intcnt variable counts the number of calibration
 intervals at the current interval duration. It is reset to zero
 after four intervals and when the interval duration is changed.

 long pps_calcnt = 0; /* calibration intervals */

 The pps_calcnt variable counts the number of calibration
 intervals.

Mills [Page 33]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 long pps_jitcnt = 0; /* jitter limit exceeded */

 The pps_jitcnt variable counts the number of resets due to
 excessive jitter or frequency offset. These resets are
 usually due to excessive noise in the PPS signal or
 interface.

 long pps_discnt = 0; /* dispersion limit exceeded */

 The pps_discnt variable counts the number of calibration
 intervals where the dispersion is above the pps_dispmax
 limit. These resets are usually due to excessive frequency
 wander in the PPS signal source.

Mills [Page 34]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 5.4. External Oscillator Variables

 The following variables are used only if an external oscillator
 (HIGHBALL or TPRO) is present. Additional automatic variables are
 used as temporaries as described in the code fragments.

 int clock_count = 0; /* CPU clock counter */

 The clock_count variable counts the seconds between adjustments
 to the kernel time variable to discipline it to the external
 clock.

 struct timeval clock_offset; /* HIGHBALL clock offset */

 The clock_offset variable defines the offset between system
 time and the HIGHBALL counters.

 long clock_cpu = 0; /* CPU clock adjust */

 The clock_cpu variable contains the offset between the system
 clock and the HIGHBALL clock for use in disciplining the kernel
 time variable.

6. Architecture Constants

 Following is a list of the important architecture constants that
 establish the response and stability of the PLL and provide maximum
 bounds on behavior in order to satisfy correctness assertions made in
 the protocol specification. Additional definitions are given in the
 timex.h header file.

 6.1. Phase-lock loop (PLL) definitions

 The following defines establish the performance envelope of the
 PLL. They establish the maximum phase error (MAXPHASE), maximum
 frequency error (MAXFREQ), minimum interval between updates
 (MINSEC) and maximum interval between updates (MAXSEC). The intent
 of these bounds is to force the PLL to operate within predefined
 limits in order to satisfy correctness assertions of the
 synchronization protocol. An excursion which exceeds these bounds
 is clamped to the bound and operation proceeds normally. In
 practice, this can occur only if something has failed or is
 operating out of tolerance, but otherwise the PLL continues to
 operate in a stable mode.

 MAXPHASE must be set greater than or equal to CLOCK.MAX (128 ms),
 as defined in the NTP specification. CLOCK.MAX establishes the
 maximum time offset allowed before the system time is reset,

Mills [Page 35]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 rather than incrementally adjusted. Here, the maximum offset is
 clamped to MAXPHASE only in order to prevent overflow errors due
 to defective programming.

 MAXFREQ reflects the manufacturing frequency tolerance of the CPU
 oscillator plus the maximum slew rate allowed by the protocol. It
 should be set to at least the intrinsic frequency tolerance of the
 oscillator plus 100 ppm for vernier frequency adjustments. If the
 kernel frequency discipline code is installed (PPS_SYNC), the CPU
 oscillator frequency is disciplined to an external source,
 presumably with negligible frequency error.

 #define MAXPHASE 512000 /* max phase error (us) */
 #ifdef PPS_SYNC
 #define MAXFREQ 100 /* max frequency error (ppm) */
 #else
 #define MAXFREQ 200 /* max frequency error (ppm) */
 #endif /* PPS_SYNC */
 #define MINSEC 16 /* min interval between updates (s)
 */
 #define MAXSEC 1200 /* max interval between updates (s)
 */

 6.2. Pulse-per-second (PPS) Frequency-lock Loop (FLL) Definitions

 The following defines and declarations are used only if a pulse-
 per-second (PPS) signal is available and connected via a modem-
 control lead, such as produced by the optional ppsclock feature
 incorporated in the serial port driver. They establish the design
 parameters of the frequency-lock loop (FLL) used to discipline the
 CPU clock oscillator to the PPS oscillator.

 PPS_AVG is the averaging constant used to update the FLL from
 frequency samples measured for each calibration interval.
 PPS_SHIFT and PPS_SHIFTMAX are the minimum and maximem,
 respectively, of the calibration interval represented as a power
 of two. The PPS_DISPINC is the initial increment to pps_disp at
 each second.

 #define PPS_AVG 2 /* pps averaging constant (shift) */
 #define PPS_SHIFT 2 /* min interval duration (s) (shift)
 */
 #define PPS_SHIFTMAX 6 /* max interval duration (s) (shift)
 */
 #define PPS_DISPINC 0 /* dispersion increment (us/s) */

Mills [Page 36]

RFC 1589 Kernel Model for Precision Timekeeping March 1994

 6.3. External Oscillator Definitions

 The following definitions and declarations are used only if an
 external oscillator (HIGHBALL or TPRO) is configured on the
 system.

 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */

7. References

 [1] Mills, D., "Internet time synchronization: the Network Time
 Protocol", IEEE Trans. Communications COM-39, 10 (October 1991),
 1482- 1493. Also in: Yang, Z., and T.A. Marsland (Eds.). Global
 States and Time in Distributed Systems, IEEE Press, Los Alamitos,
 CA, 91-102.

 [2] Mills, D., "Network Time Protocol (Version 3) specification,
 implementation and analysis", RFC 1305, University of Delaware,
 March 1992, 113 pp.

 [3] Mills, D., "Modelling and analysis of computer network clocks",
 Electrical Engineering Department Report 92-5-2, University of
 Delaware, May 1992, 29 pp.

 [4] Mills, D., "Simple Network Time Protocol (SNTP)", RFC 1361,
 University of Delaware, August 1992, 10 pp.

 [5] Mills, D., "Precision synchronizatin of computer network clocks",
 Electrical Engineering Department Report 93-11-1, University of
 Delaware, November 1993, 66 pp.

Security Considerations

 Security issues are not discussed in this memo.

Author’s Address

 David L. Mills
 Electrical Engineering Department
 University of Delaware
 Newark, DE 19716

 Phone: (302) 831-8247
 EMail: mills@udel.edu

Mills [Page 37]

