
Network Working Group J. Wray
Request for Comments: 1509 Digital Equipment Corporation
 September 1993

 Generic Security Service API : C-bindings

Status of this Memo

 This RFC specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" for the standardization state and status
 of this protocol. Distribution of this memo is unlimited.

Abstract

 This document specifies C language bindings for the Generic Security
 Service Application Program Interface (GSS-API), which is described
 at a language-independent conceptual level in other documents.

 The Generic Security Service Application Programming Interface (GSS-
 API) provides security services to its callers, and is intended for
 implementation atop alternative underlying cryptographic mechanisms.
 Typically, GSS-API callers will be application protocols into which
 security enhancements are integrated through invocation of services
 provided by the GSS-API. The GSS-API allows a caller application to
 authenticate a principal identity associated with a peer application,
 to delegate rights to a peer, and to apply security services such as
 confidentiality and integrity on a per-message basis.

1. INTRODUCTION

 The Generic Security Service Application Programming Interface [1]
 provides security services to calling applications. It allows a
 communicating application to authenticate the user associated with
 another application, to delegate rights to another application, and
 to apply security services such as confidentiality and integrity on a
 per-message basis.

 There are four stages to using the GSSAPI:

 (a) The application acquires a set of credentials with which it may
 prove its identity to other processes. The application’s
 credentials vouch for its global identity, which may or may not
 be related to the local username under which it is running.

Wray [Page 1]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 (b) A pair of communicating applications establish a joint security
 context using their credentials. The security context is a
 pair of GSSAPI data structures that contain shared state
 information, which is required in order that per-message
 security services may be provided. As part of the
 establishment of a security context, the context initiator is
 authenticated to the responder, and may require that the
 responder is authenticated in turn. The initiator may
 optionally give the responder the right to initiate further
 security contexts. This transfer of rights is termed
 delegation, and is achieved by creating a set of credentials,
 similar to those used by the originating application, but which
 may be used by the responder. To establish and maintain the
 shared information that makes up the security context, certain
 GSSAPI calls will return a token data structure, which is a
 cryptographically protected opaque data type. The caller of
 such a GSSAPI routine is responsible for transferring the token
 to the peer application, which should then pass it to a
 corresponding GSSAPI routine which will decode it and extract
 the information.

 (c) Per-message services are invoked to apply either:

 (i) integrity and data origin authentication, or

 (ii) confidentiality, integrity and data origin authentication
 to application data, which are treated by GSSAPI as
 arbitrary octet-strings. The application transmitting a
 message that it wishes to protect will call the appropriate
 GSSAPI routine (sign or seal) to apply protection, specifying
 the appropriate security context, and send the result to the
 receiving application. The receiver will pass the received
 data to the corresponding decoding routine (verify or unseal)
 to remove the protection and validate the data.

 (d) At the completion of a communications session (which may extend
 across several connections), the peer applications call GSSAPI
 routines to delete the security context. Multiple contexts may
 also be used (either successively or simultaneously) within a
 single communications association.

2. GSSAPI Routines

 This section lists the functions performed by each of the GSSAPI
 routines and discusses their major parameters, describing how they
 are to be passed to the routines. The routines are listed in figure
 4-1.

Wray [Page 2]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 Figure 4-1 GSSAPI Routines

 Routine Function

 gss_acquire_cred Assume a global identity

 gss_release_cred Discard credentials

 gss_init_sec_context Initiate a security context
 with a peer application

 gss_accept_sec_context Accept a security context
 initiated by a peer
 application

 gss_process_context_token Process a token on a security
 context from a peer
 application

 gss_delete_sec_context Discard a security context

 gss_context_time Determine for how long a
 context will remain valid

 gss_sign Sign a message; integrity
 service

 gss_verify Check signature on a message

 gss_seal Sign (optionally encrypt) a
 message; confidentiality
 service

 gss_unseal Verify (optionally decrypt)
 message

 gss_display_status Convert an API status code
 to text

 gss_indicate_mechs Determine underlying
 authentication mechanism

 gss_compare_name Compare two internal-form
 names

 gss_display_name Convert opaque name to text

Wray [Page 3]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 gss_import_name Convert a textual name to
 internal-form

 gss_release_name Discard an internal-form
 name

 gss_release_buffer Discard a buffer

 gss_release_oid_set Discard a set of object
 identifiers

 gss_inquire_cred Determine information about
 a credential

 Individual GSSAPI implementations may augment these routines by
 providing additional mechanism-specific routines if required
 functionality is not available from the generic forms. Applications
 are encouraged to use the generic routines wherever possible on
 portability grounds.

2.1. Data Types and Calling Conventions

 The following conventions are used by the GSSAPI:

2.1.1. Structured data types

 Wherever these GSSAPI C-bindings describe structured data, only
 fields that must be provided by all GSSAPI implementation are
 documented. Individual implementations may provide additional
 fields, either for internal use within GSSAPI routines, or for use by
 non-portable applications.

2.1.2. Integer types

 GSSAPI defines the following integer data type:

 OM_uint32 32-bit unsigned integer

 Where guaranteed minimum bit-count is important, this portable data
 type is used by the GSSAPI routine definitions. Individual GSSAPI
 implementations will include appropriate typedef definitions to map
 this type onto a built-in data type.

2.1.3. String and similar data

 Many of the GSSAPI routines take arguments and return values that
 describe contiguous multiple-byte data. All such data is passed
 between the GSSAPI and the caller using the gss_buffer_t data type.

Wray [Page 4]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 This data type is a pointer to a buffer descriptor, which consists of
 a length field that contains the total number of bytes in the datum,
 and a value field which contains a pointer to the actual datum:

 typedef struct gss_buffer_desc_struct {
 size_t length;
 void *value;
 } gss_buffer_desc, *gss_buffer_t;

 Storage for data passed to the application by a GSSAPI routine using
 the gss_buffer_t conventions is allocated by the GSSAPI routine. The
 application may free this storage by invoking the gss_release_buffer
 routine. Allocation of the gss_buffer_desc object is always the
 responsibility of the application; Unused gss_buffer_desc objects
 may be initialized to the value GSS_C_EMPTY_BUFFER.

2.1.3.1. Opaque data types

 Certain multiple-word data items are considered opaque data types at
 the GSSAPI, because their internal structure has no significance
 either to the GSSAPI or to the caller. Examples of such opaque data
 types are the input_token parameter to gss_init_sec_context (which is
 opaque to the caller), and the input_message parameter to gss_seal
 (which is opaque to the GSSAPI). Opaque data is passed between the
 GSSAPI and the application using the gss_buffer_t datatype.

2.1.3.2. Character strings

 Certain multiple-word data items may be regarded as simple ISO
 Latin-1 character strings. An example of this is the
 input_name_buffer parameter to gss_import_name. Some GSSAPI routines
 also return character strings. Character strings are passed between
 the application and the GSSAPI using the gss_buffer_t datatype,
 defined earlier.

2.1.4. Object Identifiers

 Certain GSSAPI procedures take parameters of the type gss_OID, or
 Object identifier. This is a type containing ISO-defined tree-
 structured values, and is used by the GSSAPI caller to select an
 underlying security mechanism. A value of type gss_OID has the
 following structure:

 typedef struct gss_OID_desc_struct {
 OM_uint32 length;
 void *elements;
 } gss_OID_desc, *gss_OID;

Wray [Page 5]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 The elements field of this structure points to the first byte of an
 octet string containing the ASN.1 BER encoding of the value of the
 gss_OID. The length field contains the number of bytes in this
 value. For example, the gss_OID value corresponding to {iso(1)
 identified- oganization(3) icd-ecma(12) member-company(2) dec(1011)
 cryptoAlgorithms(7) SPX(5)} meaning SPX (Digital’s X.509
 authentication mechanism) has a length field of 7 and an elements
 field pointing to seven octets containing the following octal values:
 53,14,2,207,163,7,5. GSSAPI implementations should provide constant
 gss_OID values to allow callers to request any supported mechanism,
 although applications are encouraged on portability grounds to accept
 the default mechanism. gss_OID values should also be provided to
 allow applications to specify particular name types (see section
 2.1.10). Applications should treat gss_OID_desc values returned by
 GSSAPI routines as read-only. In particular, the application should
 not attempt to deallocate them. The gss_OID_desc datatype is
 equivalent to the X/Open OM_object_identifier datatype [2].

2.1.5. Object Identifier Sets

 Certain GSSAPI procedures take parameters of the type gss_OID_set.
 This type represents one or more object identifiers (section 2.1.4).
 A gss_OID_set object has the following structure:

 typedef struct gss_OID_set_desc_struct {
 int count;
 gss_OID elements;
 } gss_OID_set_desc, *gss_OID_set;

 The count field contains the number of OIDs within the set. The
 elements field is a pointer to an array of gss_OID_desc objects, each
 of which describes a single OID. gss_OID_set values are used to name
 the available mechanisms supported by the GSSAPI, to request the use
 of specific mechanisms, and to indicate which mechanisms a given
 credential supports. Storage associated with gss_OID_set values
 returned to the application by the GSSAPI may be deallocated by the
 gss_release_oid_set routine.

2.1.6. Credentials

 A credential handle is a caller-opaque atomic datum that identifies a
 GSSAPI credential data structure. It is represented by the caller-
 opaque type gss_cred_id_t, which may be implemented as either an
 arithmetic or a pointer type. Credentials describe a principal, and
 they give their holder the ability to act as that principal. The
 GSSAPI does not make the actual credentials available to
 applications; instead the credential handle is used to identify a
 particular credential, held internally by GSSAPI or underlying

Wray [Page 6]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 mechanism. Thus the credential handle contains no security-relavent
 information, and requires no special protection by the application.
 Depending on the implementation, a given credential handle may refer
 to different credentials when presented to the GSSAPI by different
 callers. Individual GSSAPI implementations should define both the
 scope of a credential handle and the scope of a credential itself
 (which must be at least as wide as that of a handle). Possibilities
 for credential handle scope include the process that acquired the
 handle, the acquiring process and its children, or all processes
 sharing some local identification information (e.g., UID). If no
 handles exist by which a given credential may be reached, the GSSAPI
 may delete the credential.

 Certain routines allow credential handle parameters to be omitted to
 indicate the use of a default credential. The mechanism by which a
 default credential is established and its scope should be defined by
 the individual GSSAPI implementation.

2.1.7. Contexts

 The gss_ctx_id_t data type contains a caller-opaque atomic value that
 identifies one end of a GSSAPI security context. It may be
 implemented as either an arithmetic or a pointer type. Depending on
 the implementation, a given gss_ctx_id_t value may refer to different
 GSSAPI security contexts when presented to the GSSAPI by different
 callers. The security context holds state information about each end
 of a peer communication, including cryptographic state information.
 Individual GSSAPI implementations should define the scope of a
 context. Since no way is provided by which a new gss_ctx_id_t value
 may be obtained for an existing context, the scope of a context
 should be the same as the scope of a gss_ctx_id_t.

2.1.8. Authentication tokens

 A token is a caller-opaque type that GSSAPI uses to maintain
 synchronization between the context data structures at each end of a
 GSSAPI security context. The token is a cryptographically protected
 bit-string, generated by the underlying mechanism at one end of a
 GSSAPI security context for use by the peer mechanism at the other
 end. Encapsulation (if required) and transfer of the token are the
 responsibility of the peer applications. A token is passed between
 the GSSAPI and the application using the gss_buffer_t conventions.

2.1.9. Status values

 One or more status codes are returned by each GSSAPI routine. Two
 distinct sorts of status codes are returned. These are termed GSS
 status codes and Mechanism status codes.

Wray [Page 7]

RFC 1509 GSSAPI - Overview and C bindings September 1993

2.1.9.1. GSS status codes

 GSSAPI routines return GSS status codes as their OM_uint32 function
 value. These codes indicate errors that are independent of the
 underlying mechanism used to provide the security service. The
 errors that can be indicated via a GSS status code are either generic
 API routine errors (errors that are defined in the GSSAPI
 specification) or calling errors (errors that are specific to these
 bindings).

 A GSS status code can indicate a single fatal generic API error from
 the routine and a single calling error. In addition, supplementary
 status information may be indicated via the setting of bits in the
 supplementary info field of a GSS status code.

 These errors are encoded into the 32-bit GSS status code as follows:

 MSB LSB
 |--|
 | Calling Error | Routine Error | Supplementary Info |
 |--|
 Bit 31 24 23 16 15 0

 Hence if a GSSAPI routine returns a GSS status code whose upper 16
 bits contain a non-zero value, the call failed. If the calling error
 field is non-zero, the invoking application’s call of the routine was
 erroneous. Calling errors are defined in table 5-1. If the routine
 error field is non-zero, the routine failed for one of the routine-
 specific reasons listed below in table 5-2. Whether or not the upper
 16 bits indicate a failure or a success, the routine may indicate
 additional information by setting bits in the supplementary info
 field of the status code. The meaning of individual bits is listed
 below in table 5-3.

 Table 5-1 Calling Errors

 Name Value in Meaning
 Field
 GSS_S_CALL_INACCESSIBLE_READ 1 A required input
 parameter could
 not be read.
 GSS_S_CALL_INACCESSIBLE_WRITE 2 A required output
 parameter could
 not be written.
 GSS_S_CALL_BAD_STRUCTURE 3 A parameter was
 malformed

Wray [Page 8]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 Table 5-2 Routine Errors

 Name Value in Meaning
 Field

 GSS_S_BAD_MECH 1 An unsupported mechanism was
 requested
 GSS_S_BAD_NAME 2 An invalid name was supplied
 GSS_S_BAD_NAMETYPE 3 A supplied name was of an
 unsupported type
 GSS_S_BAD_BINDINGS 4 Incorrect channel bindings
 were supplied
 GSS_S_BAD_STATUS 5 An invalid status code was
 supplied

 GSS_S_BAD_SIG 6 A token had an invalid
 signature
 GSS_S_NO_CRED 7 No credentials were supplied
 GSS_S_NO_CONTEXT 8 No context has been
 established
 GSS_S_DEFECTIVE_TOKEN 9 A token was invalid
 GSS_S_DEFECTIVE_CREDENTIAL 10 A credential was invalid
 GSS_S_CREDENTIALS_EXPIRED 11 The referenced credentials
 have expired
 GSS_S_CONTEXT_EXPIRED 12 The context has expired
 GSS_S_FAILURE 13 Miscellaneous failure
 (see text)

 Table 5-3 Supplementary Status Bits

 Name Bit Number Meaning
 GSS_S_CONTINUE_NEEDED 0 (LSB) The routine must be called
 again to complete its
 function.
 See routine documentation for
 detailed description.
 GSS_S_DUPLICATE_TOKEN 1 The token was a duplicate of
 an earlier token
 GSS_S_OLD_TOKEN 2 The token’s validity period
 has expired
 GSS_S_UNSEQ_TOKEN 3 A later token has already been
 processed

 The routine documentation also uses the name GSS_S_COMPLETE, which is
 a zero value, to indicate an absence of any API errors or
 supplementary information bits.

Wray [Page 9]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 All GSS_S_xxx symbols equate to complete OM_uint32 status codes,
 rather than to bitfield values. For example, the actual value of the
 symbol GSS_S_BAD_NAMETYPE (value 3 in the routine error field) is 3
 << 16.

 The macros GSS_CALLING_ERROR(), GSS_ROUTINE_ERROR() and
 GSS_SUPPLEMENTARY_INFO() are provided, each of which takes a GSS
 status code and removes all but the relevant field. For example, the
 value obtained by applying GSS_ROUTINE_ERROR to a status code removes
 the calling errors and supplementary info fields, leaving only the
 routine errors field. The values delivered by these macros may be
 directly compared with a GSS_S_xxx symbol of the appropriate type.
 The macro GSS_ERROR() is also provided, which when applied to a GSS
 status code returns a non-zero value if the status code indicated a
 calling or routine error, and a zero value otherwise.

 A GSSAPI implementation may choose to signal calling errors in a
 platform-specific manner instead of, or in addition to the routine
 value; routine errors and supplementary info should be returned via
 routine status values only.

2.1.9.2. Mechanism-specific status codes

 GSSAPI routines return a minor_status parameter, which is used to
 indicate specialized errors from the underlying security mechanism.
 This parameter may contain a single mechanism-specific error,
 indicated by a OM_uint32 value.

 The minor_status parameter will always be set by a GSSAPI routine,
 even if it returns a calling error or one of the generic API errors
 indicated above as fatal, although other output parameters may remain
 unset in such cases. However, output parameters that are expected to
 return pointers to storage allocated by a routine must always set set
 by the routine, even in the event of an error, although in such cases
 the GSSAPI routine may elect to set the returned parameter value to
 NULL to indicate that no storage was actually allocated. Any length
 field associated with such pointers (as in a gss_buffer_desc
 structure) should also be set to zero in such cases.

 The GSS status code GSS_S_FAILURE is used to indicate that the
 underlying mechanism detected an error for which no specific GSS
 status code is defined. The mechanism status code will provide more
 details about the error.

2.1.10. Names

 A name is used to identify a person or entity. GSSAPI authenticates
 the relationship between a name and the entity claiming the name.

Wray [Page 10]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 Two distinct representations are defined for names:

 (a) A printable form, for presentation to a user

 (b) An internal form, for presentation at the API

 The syntax of a printable name is defined by the GSSAPI
 implementation, and may be dependent on local system configuration,
 or on individual user preference. The internal form provides a
 canonical representation of the name that is independent of
 configuration.

 A given GSSAPI implementation may support names drawn from multiple
 namespaces. In such an implementation, the internal form of the name
 must include fields that identify the namespace from which the name
 is drawn. The namespace from which a printable name is drawn is
 specified by an accompanying object identifier.

 Routines (gss_import_name and gss_display_name) are provided to
 convert names between their printable representations and the
 gss_name_t type. gss_import_name may support multiple syntaxes for
 each supported namespace, allowing users the freedom to choose a
 preferred name representation. gss_display_name should use an
 implementation-chosen preferred syntax for each supported name-type.

 Comparison of internal-form names is accomplished via the
 gss_compare_names routine. This removes the need for the application
 program to understand the syntaxes of the various printable names
 that a given GSSAPI implementation may support.

 Storage is allocated by routines that return gss_name_t values. A
 procedure, gss_release_name, is provided to free storage associated
 with a name.

2.1.11. Channel Bindings

 GSSAPI supports the use of user-specified tags to identify a given
 context to the peer application. These tags are used to identify the
 particular communications channel that carries the context. Channel
 bindings are communicated to the GSSAPI using the following
 structure:

Wray [Page 11]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 typedef struct gss_channel_bindings_struct {
 OM_uint32 initiator_addrtype;
 gss_buffer_desc initiator_address;
 OM_uint32 acceptor_addrtype;
 gss_buffer_desc acceptor_address;
 gss_buffer_desc application_data;
 } *gss_channel_bindings_t;

 The initiator_addrtype and acceptor_addrtype fields denote the type
 of addresses contained in the initiator_address and acceptor_address
 buffers. The address type should be one of the following:

 GSS_C_AF_UNSPEC Unspecified address type
 GSS_C_AF_LOCAL Host-local address type
 GSS_C_AF_INET DARPA Internet address type
 GSS_C_AF_IMPLINK ARPAnet IMP address type (eg IP)
 GSS_C_AF_PUP pup protocols (eg BSP) address type
 GSS_C_AF_CHAOS MIT CHAOS protocol address type
 GSS_C_AF_NS XEROX NS address type
 GSS_C_AF_NBS nbs address type
 GSS_C_AF_ECMA ECMA address type
 GSS_C_AF_DATAKIT datakit protocols address type
 GSS_C_AF_CCITT CCITT protocols (eg X.25)
 GSS_C_AF_SNA IBM SNA address type
 GSS_C_AF_DECnet DECnet address type
 GSS_C_AF_DLI Direct data link interface address type
 GSS_C_AF_LAT LAT address type
 GSS_C_AF_HYLINK NSC Hyperchannel address type
 GSS_C_AF_APPLETALK AppleTalk address type
 GSS_C_AF_BSC BISYNC 2780/3780 address type
 GSS_C_AF_DSS Distributed system services address type
 GSS_C_AF_OSI OSI TP4 address type
 GSS_C_AF_X25 X25
 GSS_C_AF_NULLADDR No address specified

 Note that these name address families rather than specific addressing
 formats. For address families that contain several alternative
 address forms, the initiator_address and acceptor_address fields must
 contain sufficient information to determine which address form is
 used. When not otherwise specified, addresses should be specified in
 network byte-order.

 Conceptually, the GSSAPI concatenates the initiator_addrtype,
 initiator_address, acceptor_addrtype, acceptor_address and
 application_data to form an octet string. The mechanism signs this
 octet string, and binds the signature to the context establishment
 token emitted by gss_init_sec_context. The same bindings are
 presented by the context acceptor to gss_accept_sec_context, and a

Wray [Page 12]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 signature is calculated in the same way. The calculated signature is
 compared with that found in the token, and if the signatures differ,
 gss_accept_sec_context will return a GSS_S_BAD_BINDINGS error, and
 the context will not be established. Some mechanisms may include the
 actual channel binding data in the token (rather than just a
 signature); applications should therefore not use confidential data
 as channel-binding components. Individual mechanisms may impose
 additional constraints on addresses and address types that may appear
 in channel bindings. For example, a mechanism may verify that the
 initiator_address field of the channel bindings presented to
 gss_init_sec_context contains the correct network address of the host
 system.

2.1.12. Optional parameters

 Various parameters are described as optional. This means that they
 follow a convention whereby a default value may be requested. The
 following conventions are used for omitted parameters. These
 conventions apply only to those parameters that are explicitly
 documented as optional.

2.1.12.1. gss_buffer_t types

 Specify GSS_C_NO_BUFFER as a value. For an input parameter this
 signifies that default behavior is requested, while for an output
 parameter it indicates that the information that would be returned
 via the parameter is not required by the application.

2.1.12.2. Integer types (input)

 Individual parameter documentation lists values to be used to
 indicate default actions.

2.1.12.3. Integer types (output)

 Specify NULL as the value for the pointer.

2.1.12.4. Pointer types

 Specify NULL as the value.

2.1.12.5. Object IDs

 Specify GSS_C_NULL_OID as the value.

2.1.12.6. Object ID Sets

 Specify GSS_C_NULL_OID_SET as the value.

Wray [Page 13]

RFC 1509 GSSAPI - Overview and C bindings September 1993

2.1.12.7. Credentials

 Specify GSS_C_NO_CREDENTIAL to use the default credential handle.

2.1.12.8. Channel Bindings

 Specify GSS_C_NO_CHANNEL_BINDINGS to indicate that channel bindings
 are not to be used.

3. GSSAPI routine descriptions

2.1. gss_acquire_cred

 OM_uint32 gss_acquire_cred (
 OM_uint32 * minor_status,
 gss_name_t desired_name,
 OM_uint32 time_req,
 gss_OID_set desired_mechs,
 int cred_usage,
 gss_cred_id_t * output_cred_handle,
 gss_OID_set * actual_mechs,
 OM_int32 * time_rec)
 Purpose:

 Allows an application to acquire a handle for a pre-existing
 credential by name. GSSAPI implementations must impose a local
 access-control policy on callers of this routine to prevent
 unauthorized callers from acquiring credentials to which they are not
 entitled. This routine is not intended to provide a "login to the
 network" function, as such a function would result in the creation of
 new credentials rather than merely acquiring a handle to existing
 credentials. Such functions, if required, should be defined in
 implementation-specific extensions to the API.

 If credential acquisition is time-consuming for a mechanism, the
 mechanism may chooses to delay the actual acquisition until the
 credential is required (e.g., by gss_init_sec_context or
 gss_accept_sec_context). Such mechanism-specific implementation
 decisions should be invisible to the calling application; thus a call
 of gss_inquire_cred immediately following the call of
 gss_acquire_cred must return valid credential data, and may therefore
 incur the overhead of a deferred credential acquisition.

 Parameters:

 desired_name gss_name_t, read
 Name of principal whose credential
 should be acquired

Wray [Page 14]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 time_req integer, read
 number of seconds that credentials
 should remain valid

 desired_mechs Set of Object IDs, read
 set of underlying security mechanisms that
 may be used. GSS_C_NULL_OID_SET may be used
 to obtain an implementation-specific default.

 cred_usage integer, read
 GSS_C_BOTH - Credentials may be used
 either to initiate or accept
 security contexts.
 GSS_C_INITIATE - Credentials will only be
 used to initiate security
 contexts.
 GSS_C_ACCEPT - Credentials will only be used to
 accept security contexts.

 output_cred_handle gss_cred_id_t, modify
 The returned credential handle.

 actual_mechs Set of Object IDs, modify, optional
 The set of mechanisms for which the
 credential is valid. Specify NULL
 if not required.

 time_rec Integer, modify, optional
 Actual number of seconds for which the
 returned credentials will remain valid. If the
 implementation does not support expiration of
 credentials, the value GSS_C_INDEFINITE will
 be returned. Specify NULL if not required

 minor_status Integer, modify
 Mechanism specific status code.
 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_BAD_MECH Unavailable mechanism requested

 GSS_S_BAD_NAMETYPE Type contained within desired_name parameter is
 not supported

 GSS_S_BAD_NAME Value supplied for desired_name parameter is

Wray [Page 15]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 ill-formed.

 GSS_S_FAILURE Unspecified failure. The minor_status parameter
 contains more detailed information

3.2. gss_release_cred

 OM_uint32 gss_release_cred (
 OM_uint32 * minor_status,
 gss_cred_id_t * cred_handle)

 Purpose:

 Informs GSSAPI that the specified credential handle is no longer
 required by the process. When all processes have released a
 credential, it will be deleted.

 Parameters:

 cred_handle gss_cred_id_t, modify, optional
 buffer containing opaque credential
 handle. If GSS_C_NO_CREDENTIAL is supplied,
 the default credential will be released

 minor_status integer, modify
 Mechanism specific status code.

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_NO_CRED Credentials could not be accessed.

Wray [Page 16]

RFC 1509 GSSAPI - Overview and C bindings September 1993

3.3. gss_init_sec_context

 OM_uint32 gss_init_sec_context (
 OM_uint32 * minor_status,
 gss_cred_id_t claimant_cred_handle,
 gss_ctx_id_t * context_handle,
 gss_name_t target_name,
 gss_OID mech_type,
 int req_flags,
 int time_req,
 gss_channel_bindings_t
 input_chan_bindings,
 gss_buffer_t input_token
 gss_OID * actual_mech_type,
 gss_buffer_t output_token,
 int * ret_flags,
 OM_uint32 * time_rec)

 Purpose:

 Initiates the establishment of a security context between the
 application and a remote peer. Initially, the input_token parameter
 should be specified as GSS_C_NO_BUFFER. The routine may return a
 output_token which should be transferred to the peer application,
 where the peer application will present it to gss_accept_sec_context.
 If no token need be sent, gss_init_sec_context will indicate this by
 setting the length field of the output_token argument to zero. To
 complete the context establishment, one or more reply tokens may be
 required from the peer application; if so, gss_init_sec_context will
 return a status indicating GSS_S_CONTINUE_NEEDED in which case it
 should be called again when the reply token is received from the peer
 application, passing the token to gss_init_sec_context via the
 input_token parameters.

 The values returned via the ret_flags and time_rec parameters are not
 defined unless the routine returns GSS_S_COMPLETE.

 Parameters:

 claimant_cred_handle gss_cred_id_t, read, optional
 handle for credentials claimed. Supply
 GSS_C_NO_CREDENTIAL to use default
 credentials.

 context_handle gss_ctx_id_t, read/modify
 context handle for new context. Supply
 GSS_C_NO_CONTEXT for first call; use value
 returned by first call in continuation calls.

Wray [Page 17]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 target_name gss_name_t, read
 Name of target

 mech_type OID, read, optional
 Object ID of desired mechanism. Supply
 GSS_C_NULL_OID to obtain an implementation
 specific default

 req_flags bit-mask, read
 Contains four independent flags, each of
 which requests that the context support a
 specific service option. Symbolic
 names are provided for each flag, and the
 symbolic names corresponding to the required
 flags should be logically-ORed
 together to form the bit-mask value. The
 flags are:

 GSS_C_DELEG_FLAG
 True - Delegate credentials to remote peer
 False - Don’t delegate
 GSS_C_MUTUAL_FLAG
 True - Request that remote peer
 authenticate itself
 False - Authenticate self to remote peer
 only
 GSS_C_REPLAY_FLAG
 True - Enable replay detection for signed
 or sealed messages
 False - Don’t attempt to detect
 replayed messages
 GSS_C_SEQUENCE_FLAG
 True - Enable detection of out-of-sequence
 signed or sealed messages
 False - Don’t attempt to detect
 out-of-sequence messages

 time_req integer, read
 Desired number of seconds for which context
 should remain valid. Supply 0 to request a
 default validity period.

 input_chan_bindings channel bindings, read
 Application-specified bindings. Allows
 application to securely bind channel
 identification information to the security
 context.

Wray [Page 18]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 input_token buffer, opaque, read, optional (see text)
 Token received from peer application.
 Supply GSS_C_NO_BUFFER on initial call.

 actual_mech_type OID, modify
 actual mechanism used.

 output_token buffer, opaque, modify
 token to be sent to peer application. If
 the length field of the returned buffer is
 zero, no token need be sent to the peer
 application.

 ret_flags bit-mask, modify
 Contains six independent flags, each of which
 indicates that the context supports a specific
 service option. Symbolic names are provided
 for each flag, and the symbolic names
 corresponding to the required flags should be
 logically-ANDed with the ret_flags value to test
 whether a given option is supported by the
 context. The flags are:

 GSS_C_DELEG_FLAG
 True - Credentials were delegated to
 the remote peer
 False - No credentials were delegated
 GSS_C_MUTUAL_FLAG
 True - Remote peer has been asked to
 authenticated itself
 False - Remote peer has not been asked to
 authenticate itself
 GSS_C_REPLAY_FLAG
 True - replay of signed or sealed messages
 will be detected
 False - replayed messages will not be
 detected
 GSS_C_SEQUENCE_FLAG
 True - out-of-sequence signed or sealed
 messages will be detected
 False - out-of-sequence messages will not
 be detected
 GSS_C_CONF_FLAG
 True - Confidentiality service may be
 invoked by calling seal routine
 False - No confidentiality service (via
 seal) available. seal will provide
 message encapsulation, data-origin

Wray [Page 19]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 authentication and integrity
 services only.
 GSS_C_INTEG_FLAG
 True - Integrity service may be invoked by
 calling either gss_sign or gss_seal
 routines.
 False - Per-message integrity service
 unavailable.

 time_rec integer, modify, optional
 number of seconds for which the context
 will remain valid. If the implementation does
 not support credential expiration, the value
 GSS_C_INDEFINITE will be returned. Specify
 NULL if not required.

 minor_status integer, modify
 Mechanism specific status code.

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_CONTINUE_NEEDED Indicates that a token from the peer
 application is required to complete thecontext, and
 that gss_init_sec_context must be called again with
 that token.

 GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks performed on
 the input_token failed

 GSS_S_DEFECTIVE_CREDENTIAL Indicates that consistency checks
 performed on the credential failed.

 GSS_S_NO_CRED The supplied credentials were not valid for context
 initiation, or the credential handle did not
 reference any credentials.

 GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired

 GSS_S_BAD_BINDINGS The input_token contains different channel
 bindings to those specified via the
 input_chan_bindings parameter

 GSS_S_BAD_SIG The input_token contains an invalid signature, or a
 signature that could not be verified

Wray [Page 20]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 GSS_S_OLD_TOKEN The input_token was too old. This is a fatal error
 during context establishment

 GSS_S_DUPLICATE_TOKEN The input_token is valid, but is a duplicate of
 a token already processed. This is a fatal error
 during context establishment.

 GSS_S_NO_CONTEXT Indicates that the supplied context handle did not
 refer to a valid context

 GSS_S_BAD_NAMETYPE The provided target_name parameter contained an
 invalid or unsupported type of name

 GSS_S_BAD_NAME The provided target_name parameter was ill-formed.

 GSS_S_FAILURE Failure. See minor_status for more information

3.4. gss_accept_sec_context

 OM_uint32 gss_accept_sec_context (
 OM_uint32 * minor_status,
 gss_ctx_id_t * context_handle,
 gss_cred_id_t verifier_cred_handle,
 gss_buffer_t input_token_buffer
 gss_channel_bindings_t
 input_chan_bindings,
 gss_name_t * src_name,
 gss_OID * mech_type,
 gss_buffer_t output_token,
 int * ret_flags,
 OM_uint32 * time_rec,
 gss_cred_id_t * delegated_cred_handle)

 Purpose:

 Allows a remotely initiated security context between the application
 and a remote peer to be established. The routine may return a
 output_token which should be transferred to the peer application,
 where the peer application will present it to gss_init_sec_context.
 If no token need be sent, gss_accept_sec_context will indicate this
 by setting the length field of the output_token argument to zero. To
 complete the context establishment, one or more reply tokens may be
 required from the peer application; if so, gss_accept_sec_context
 will return a status flag of GSS_S_CONTINUE_NEEDED, in which case it
 should be called again when the reply token is received from the peer
 application, passing the token to gss_accept_sec_context via the
 input_token parameters.

Wray [Page 21]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 The values returned via the src_name, ret_flags, time_rec, and
 delegated_cred_handle parameters are not defined unless the routine
 returns GSS_S_COMPLETE.

 Parameters:

 context_handle gss_ctx_id_t, read/modify
 context handle for new context. Supply
 GSS_C_NO_CONTEXT for first call; use value
 returned in subsequent calls.

 verifier_cred_handle gss_cred_id_t, read, optional
 Credential handle claimed by context
 acceptor.
 Specify GSS_C_NO_CREDENTIAL to use default
 credentials. If GSS_C_NO_CREDENTIAL is
 specified, but the caller has no default
 credentials established, an
 implementation-defined default credential
 may be used.

 input_token_buffer buffer, opaque, read
 token obtained from remote application

 input_chan_bindings channel bindings, read
 Application-specified bindings. Allows
 application to securely bind channel
 identification information to the security
 context.

 src_name gss_name_t, modify, optional
 Authenticated name of context initiator.
 After use, this name should be deallocated by
 passing it to gss_release_name. If not required,
 specify NULL.

 mech_type Object ID, modify
 Security mechanism used. The returned
 OID value will be a pointer into static
 storage, and should be treated as read-only
 by the caller.

 output_token buffer, opaque, modify
 Token to be passed to peer application. If the
 length field of the returned token buffer is 0,
 then no token need be passed to the peer
 application.

Wray [Page 22]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 ret_flags bit-mask, modify
 Contains six independent flags, each of
 which indicates that the context supports a
 specific service option. Symbolic names are
 provided for each flag, and the symbolic names
 corresponding to the required flags
 should be logically-ANDed with the ret_flags
 value to test whether a given option is
 supported by the context. The flags are:
 GSS_C_DELEG_FLAG
 True - Delegated credentials are available
 via the delegated_cred_handle
 parameter
 False - No credentials were delegated
 GSS_C_MUTUAL_FLAG
 True - Remote peer asked for mutual
 authentication
 False - Remote peer did not ask for mutual
 authentication
 GSS_C_REPLAY_FLAG
 True - replay of signed or sealed messages
 will be detected
 False - replayed messages will not be
 detected
 GSS_C_SEQUENCE_FLAG
 True - out-of-sequence signed or sealed
 messages will be detected
 False - out-of-sequence messages will not
 be detected
 GSS_C_CONF_FLAG
 True - Confidentiality service may be
 invoked by calling seal routine
 False - No confidentiality service (via
 seal) available. seal will
 provide message encapsulation,
 data-origin authentication and
 integrity services only.
 GSS_C_INTEG_FLAG
 True - Integrity service may be invoked
 by calling either gss_sign or
 gss_seal routines.
 False - Per-message integrity service
 unavailable.

 time_rec integer, modify, optional
 number of seconds for which the context
 will remain valid. Specify NULL if not required.

Wray [Page 23]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 delegated_cred_handle
 gss_cred_id_t, modify
 credential handle for credentials received from
 context initiator. Only valid if deleg_flag in
 ret_flags is true.

 minor_status integer, modify
 Mechanism specific status code.

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_CONTINUE_NEEDED Indicates that a token from the peer
 application is required to complete the context,
 and that gss_accept_sec_context must be called
 again with that token.

 GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks
 performed on the input_token failed.

 GSS_S_DEFECTIVE_CREDENTIAL Indicates that consistency checks
 performed on the credential failed.

 GSS_S_NO_CRED The supplied credentials were not valid for
 context acceptance, or the credential handle
 did not reference any credentials.

 GSS_S_CREDENTIALS_EXPIRED The referenced credentials have
 expired.

 GSS_S_BAD_BINDINGS The input_token contains different channel
 bindings to those specified via the
 input_chan_bindings parameter.

 GSS_S_NO_CONTEXT Indicates that the supplied context handle did
 not refer to a valid context.

 GSS_S_BAD_SIG The input_token contains an invalid signature.

 GSS_S_OLD_TOKEN The input_token was too old. This is a fatal
 error during context establishment.

 GSS_S_DUPLICATE_TOKEN The input_token is valid, but is a
 duplicate of a token already processed. This
 is a fatal error during context establishment.

Wray [Page 24]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 GSS_S_FAILURE Failure. See minor_status for more information.

3.5. gss_process_context_token

 OM_uint32 gss_process_context_token (
 OM_uint32 * minor_status,
 gss_ctx_id_t context_handle,
 gss_buffer_t token_buffer)

 Purpose:

 Provides a way to pass a token to the security service. Usually,
 tokens are associated either with context establishment (when they
 would be passed to gss_init_sec_context or gss_accept_sec_context) or
 with per-message security service (when they would be passed to
 gss_verify or gss_unseal). Occasionally, tokens may be received at
 other times, and gss_process_context_token allows such tokens to be
 passed to the underlying security service for processing. At
 present, such additional tokens may only be generated by
 gss_delete_sec_context. GSSAPI implementation may use this service
 to implement deletion of the security context.

 Parameters:

 context_handle gss_ctx_id_t, read
 context handle of context on which token is to
 be processed

 token_buffer buffer, opaque, read
 pointer to first byte of token to process

 minor_status integer, modify
 Implementation specific status code.

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks
 performed on the token failed

 GSS_S_FAILURE Failure. See minor_status for more information

 GSS_S_NO_CONTEXT The context_handle did not refer to a valid
 context

Wray [Page 25]

RFC 1509 GSSAPI - Overview and C bindings September 1993

3.6. gss_delete_sec_context

 OM_uint32 gss_delete_sec_context (
 OM_uint32 * minor_status,
 gss_ctx_id_t * context_handle,
 gss_buffer_t output_token)

 Purpose:

 Delete a security context. gss_delete_sec_context will delete the
 local data structures associated with the specified security context,
 and generate an output_token, which when passed to the peer
 gss_process_context_token will instruct it to do likewise. No
 further security services may be obtained using the context specified
 by context_handle.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code.

 context_handle gss_ctx_id_t, modify
 context handle identifying context to delete.

 output_token buffer, opaque, modify
 token to be sent to remote application to
 instruct it to also delete the context

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_FAILURE Failure, see minor_status for more information

 GSS_S_NO_CONTEXT No valid context was supplied

3.7. gss_context_time

 OM_uint32 gss_context_time (
 OM_uint32 * minor_status,
 gss_ctx_id_t context_handle,
 OM_uint32 * time_rec)
 Purpose:

 Determines the number of seconds for which the specified context will
 remain valid.

Wray [Page 26]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 Parameters:

 minor_status integer, modify
 Implementation specific status code.

 context_handle gss_ctx_id_t, read
 Identifies the context to be interrogated.

 time_rec integer, modify
 Number of seconds that the context will remain
 valid. If the context has already expired,
 zero will be returned.
 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_CONTEXT_EXPIRED The context has already expired

 GSS_S_CREDENTIALS_EXPIRED The context is recognized, but
 associated credentials have expired

 GSS_S_NO_CONTEXT The context_handle parameter did not identify a
 valid context

3.8. gss_sign

 OM_uint32 gss_sign (
 OM_uint32 * minor_status,
 gss_ctx_id_t context_handle,
 int qop_req,
 gss_buffer_t message_buffer,
 gss_buffer_t msg_token)
 Purpose:

 Generates a cryptographic signature for the supplied message, and
 places the signature in a token for transfer to the peer application.
 The qop_req parameter allows a choice between several cryptographic
 algorithms, if supported by the chosen mechanism.

 Parameters:

 minor_status integer, modify
 Implementation specific status code.

 context_handle gss_ctx_id_t, read
 identifies the context on which the message

Wray [Page 27]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 will be sent

 qop_req integer, read, optional
 Specifies requested quality of protection.
 Callers are encouraged, on portability grounds,
 to accept the default quality of protection
 offered by the chosen mechanism, which may be
 requested by specifying GSS_C_QOP_DEFAULT for
 this parameter. If an unsupported protection
 strength is requested, gss_sign will return a
 major_status of GSS_S_FAILURE.

 message_buffer buffer, opaque, read
 message to be signed

 msg_token buffer, opaque, modify
 buffer to receive token

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_CONTEXT_EXPIRED The context has already expired

 GSS_S_CREDENTIALS_EXPIRED The context is recognized, but
 associated credentials have expired

 GSS_S_NO_CONTEXT The context_handle parameter did not identify a
 valid context

 GSS_S_FAILURE Failure. See minor_status for more information.

3.9. gss_verify

 OM_uint32 gss_verify (
 OM_uint32 * minor_status,
 gss_ctx_id_t context_handle,
 gss_buffer_t message_buffer,
 gss_buffer_t token_buffer,
 int * qop_state)
 Purpose:

 Verifies that a cryptographic signature, contained in the token
 parameter, fits the supplied message. The qop_state parameter allows
 a message recipient to determine the strength of protection that was
 applied to the message.

Wray [Page 28]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 Parameters:

 minor_status integer, modify
 Mechanism specific status code.

 context_handle gss_ctx_id_t, read
 identifies the context on which the message
 arrived

 message_buffer buffer, opaque, read
 message to be verified

 token_buffer buffer, opaque, read
 token associated with message

 qop_state integer, modify
 quality of protection gained from signature

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_DEFECTIVE_TOKEN The token failed consistency checks

 GSS_S_BAD_SIG The signature was incorrect

 GSS_S_DUPLICATE_TOKEN The token was valid, and contained a correct
 signature for the message, but it had already
 been processed

 GSS_S_OLD_TOKEN The token was valid, and contained a correct
 signature for the message, but it is too old

 GSS_S_UNSEQ_TOKEN The token was valid, and contained a correct
 signature for the message, but has been
 verified out of sequence; an earlier token has
 been signed or sealed by the remote
 application, but not yet been processed
 locally.

 GSS_S_CONTEXT_EXPIRED The context has already expired

 GSS_S_CREDENTIALS_EXPIRED The context is recognized, but
 associated credentials have expired

Wray [Page 29]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 GSS_S_NO_CONTEXT The context_handle parameter did not identify a
 valid context

 GSS_S_FAILURE Failure. See minor_status for more information.

3.10. gss_seal

 OM_uint32 gss_seal (
 OM_uint32 * minor_status,
 gss_ctx_id_t context_handle,
 int conf_req_flag,
 int qop_req
 gss_buffer_t input_message_buffer,
 int * conf_state,
 gss_buffer_t output_message_buffer)

 Purpose:

 Cryptographically signs and optionally encrypts the specified
 input_message. The output_message contains both the signature and
 the message. The qop_req parameter allows a choice between several
 cryptographic algorithms, if supported by the chosen mechanism.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code.

 context_handle gss_ctx_id_t, read
 identifies the context on which the message
 will be sent

 conf_req_flag boolean, read
 True - Both confidentiality and integrity
 services are requested
 False - Only integrity service is requested

 qop_req integer, read, optional
 Specifies required quality of protection. A
 mechanism-specific default may be requested by
 setting qop_req to GSS_C_QOP_DEFAULT. If an
 unsupported protection strength is requested,
 gss_seal will return a major_status of
 GSS_S_FAILURE.

 input_message_buffer buffer, opaque, read
 message to be sealed

Wray [Page 30]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 conf_state boolean, modify
 True - Confidentiality, data origin
 authentication and integrity services
 have been applied
 False - Integrity and data origin services only
 has been applied.

 output_message_buffer buffer, opaque, modify
 buffer to receive sealed message

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_CONTEXT_EXPIRED The context has already expired

 GSS_S_CREDENTIALS_EXPIRED The context is recognized, but
 associated credentials have expired

 GSS_S_NO_CONTEXT The context_handle parameter did not identify a
 valid context

 GSS_S_FAILURE Failure. See minor_status for more information.

3.11. gss_unseal

 OM_uint32 gss_unseal (
 OM_uint32 * minor_status,
 gss_ctx_id_t context_handle,
 gss_buffer_t input_message_buffer,
 gss_buffer_t output_message_buffer,
 int * conf_state,
 int * qop_state)

 Purpose:

 Converts a previously sealed message back to a usable form, verifying
 the embedded signature. The conf_state parameter indicates whether
 the message was encrypted; the qop_state parameter indicates the
 strength of protection that was used to provide the confidentiality
 and integrity services.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code.

Wray [Page 31]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 context_handle gss_ctx_id_t, read
 identifies the context on which the message
 arrived

 input_message_buffer buffer, opaque, read
 sealed message

 output_message_buffer buffer, opaque, modify
 buffer to receive unsealed message

 conf_state boolean, modify
 True - Confidentiality and integrity protection
 were used
 False - Inteegrity service only was used

 qop_state integer, modify
 quality of protection gained from signature

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_DEFECTIVE_TOKEN The token failed consistency checks

 GSS_S_BAD_SIG The signature was incorrect

 GSS_S_DUPLICATE_TOKEN The token was valid, and contained a
 correct signature for the message, but it had
 already been processed

 GSS_S_OLD_TOKEN The token was valid, and contained a correct
 signature for the message, but it is too old

 GSS_S_UNSEQ_TOKEN The token was valid, and contained a correct
 signature for the message, but has been
 verified out of sequence; an earlier token has
 been signed or sealed by the remote
 application, but not yet been processed
 locally.

 GSS_S_CONTEXT_EXPIRED The context has already expired

 GSS_S_CREDENTIALS_EXPIRED The context is recognized, but
 associated credentials have expired

Wray [Page 32]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 GSS_S_NO_CONTEXT The context_handle parameter did not identify a
 valid context

 GSS_S_FAILURE Failure. See minor_status for more information.

3.12. gss_display_status

 OM_uint32 gss_display_status (
 OM_uint32 * minor_status,
 int status_value,
 int status_type,
 gss_OID mech_type,
 int * message_context,
 gss_buffer_t status_string)

 Purpose:

 Allows an application to obtain a textual representation of a GSSAPI
 status code, for display to the user or for logging purposes. Since
 some status values may indicate multiple errors, applications may
 need to call gss_display_status multiple times, each call generating
 a single text string. The message_context parameter is used to
 indicate which error message should be extracted from a given
 status_value; message_context should be initialized to 0, and
 gss_display_status will return a non-zero value if there are further
 messages to extract.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code.

 status_value integer, read
 Status value to be converted

 status_type integer, read
 GSS_C_GSS_CODE - status_value is a GSS status
 code
 GSS_C_MECH_CODE - status_value is a mechanism
 status code

 mech_type Object ID, read, optional
 Underlying mechanism (used to interpret a
 minor status value) Supply GSS_C_NULL_OID to
 obtain the system default.

 message_context integer, read/modify
 Should be initialized to zero by caller

Wray [Page 33]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 on first call. If further messages are
 contained in the status_value parameter,
 message_context will be non-zero on return,
 and this value should be passed back to
 subsequent calls, along with the same
 status_value, status_type and mech_type
 parameters.

 status_string buffer, character string, modify
 textual interpretation of the status_value

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_BAD_MECH Indicates that translation in accordance with
 an unsupported mechanism type was requested

 GSS_S_BAD_STATUS The status value was not recognized, or the
 status type was neither GSS_C_GSS_CODE nor
 GSS_C_MECH_CODE.

3.13. gss_indicate_mechs

 OM_uint32 gss_indicate_mechs (
 OM_uint32 * minor_status,
 gss_OID_set * mech_set)

 Purpose:

 Allows an application to determine which underlying security
 mechanisms are available.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code.

 mech_set set of Object IDs, modify
 set of implementation-supported mechanisms.
 The returned gss_OID_set value will be a
 pointer into static storage, and should be
 treated as read-only by the caller.

Wray [Page 34]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

3.14. gss_compare_name

 OM_uint32 gss_compare_name (
 OM_uint32 * minor_status,
 gss_name_t name1,
 gss_name_t name2,
 int * name_equal)

 Purpose:

 Allows an application to compare two internal-form names to determine
 whether they refer to the same entity.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code.

 name1 gss_name_t, read
 internal-form name

 name2 gss_name_t, read
 internal-form name

 name_equal boolean, modify
 True - names refer to same entity
 False - names refer to different entities
 (strictly, the names are not known to
 refer to the same identity).
 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_BAD_NAMETYPE The type contained within either name1 or
 name2 was unrecognized, or the names were of
 incomparable types.

 GSS_S_BAD_NAME One or both of name1 or name2 was ill-formed

Wray [Page 35]

RFC 1509 GSSAPI - Overview and C bindings September 1993

3.15. gss_display_name

 OM_uint32 gss_display_name (
 OM_uint32 * minor_status,
 gss_name_t input_name,
 gss_buffer_t output_name_buffer,
 gss_OID * output_name_type)

 Purpose:

 Allows an application to obtain a textual representation of an opaque
 internal-form name for display purposes. The syntax of a printable
 name is defined by the GSSAPI implementation.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code.

 input_name gss_name_t, read
 name to be displayed

 output_name_buffer buffer, character-string, modify
 buffer to receive textual name string

 output_name_type Object ID, modify
 The type of the returned name. The returned
 gss_OID will be a pointer into static storage,
 and should be treated as read-only by the caller

 Function value:

 GSS status code:

 GSS_S_COMPLETE Successful completion

 GSS_S_BAD_NAMETYPE The type of input_name was not recognized

 GSS_S_BAD_NAME input_name was ill-formed

3.16. gss_import_name

 OM_uint32 gss_import_name (
 OM_uint32 * minor_status,
 gss_buffer_t input_name_buffer,
 gss_OID input_name_type,
 gss_name_t * output_name)

Wray [Page 36]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 Purpose:

 Convert a printable name to internal form.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code

 input_name_buffer buffer, character-string, read
 buffer containing printable name to convert

 input_name_type Object ID, read, optional
 Object Id specifying type of printable
 name. Applications may specify either
 GSS_C_NULL_OID to use a local system-specific
 printable syntax, or an OID registered by the
 GSSAPI implementation to name a particular
 namespace.

 output_name gss_name_t, modify
 returned name in internal form

 Function value:

 GSS status code

 GSS_S_COMPLETE Successful completion

 GSS_S_BAD_NAMETYPE The input_name_type was unrecognized

 GSS_S_BAD_NAME The input_name parameter could not be
 interpreted as a name of the specified type

3.17. gss_release_name

 OM_uint32 gss_release_name (
 OM_uint32 * minor_status,
 gss_name_t * name)

 Purpose:

 Free GSSAPI-allocated storage associated with an internal form name.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code

Wray [Page 37]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 name gss_name_t, modify
 The name to be deleted

 Function value:

 GSS status code

 GSS_S_COMPLETE Successful completion

 GSS_S_BAD_NAME The name parameter did not contain a valid name

3.18. gss_release_buffer

 OM_uint32 gss_release_buffer (
 OM_uint32 * minor_status,
 gss_buffer_t buffer)

 Purpose:

 Free storage associated with a buffer format name. The storage must
 have been allocated by a GSSAPI routine. In addition to freeing the
 associated storage, the routine will zero the length field in the
 buffer parameter.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code

 buffer buffer, modify
 The storage associated with the buffer will be
 deleted. The gss_buffer_desc object will not
 be freed, but its length field will be zeroed.

 Function value:

 GSS status code

 GSS_S_COMPLETE Successful completion

3.19. gss_release_oid_set

 OM_uint32 gss_release_oid_set (
 OM_uint32 * minor_status,
 gss_OID_set * set)

 Purpose:

Wray [Page 38]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 Free storage associated with a gss_OID_set object. The storage must
 have been allocated by a GSSAPI routine.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code

 set Set of Object IDs, modify
 The storage associated with the gss_OID_set
 will be deleted.

 Function value:

 GSS status code

 GSS_S_COMPLETE Successful completion

3.20. gss_inquire_cred

 OM_uint32 gss_inquire_cred (
 OM_uint32 * minor_status,
 gss_cred_id_t cred_handle,
 gss_name_t * name,
 OM_uint32 * lifetime,
 int * cred_usage,
 gss_OID_set * mechanisms)

 Purpose:

 Obtains information about a credential. The caller must already have
 obtained a handle that refers to the credential.

 Parameters:

 minor_status integer, modify
 Mechanism specific status code

 cred_handle gss_cred_id_t, read
 A handle that refers to the target credential.
 Specify GSS_C_NO_CREDENTIAL to inquire about
 the default credential.

 name gss_name_t, modify
 The name whose identity the credential asserts.
 Specify NULL if not required.

 lifetime Integer, modify

Wray [Page 39]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 The number of seconds for which the credential
 will remain valid. If the credential has
 expired, this parameter will be set to zero.
 If the implementation does not support
 credential expiration, the value
 GSS_C_INDEFINITE will be returned. Specify
 NULL if not required.

 cred_usage Integer, modify
 How the credential may be used. One of the
 following:
 GSS_C_INITIATE
 GSS_C_ACCEPT
 GSS_C_BOTH
 Specify NULL if not required.

 mechanisms gss_OID_set, modify
 Set of mechanisms supported by the credential.
 Specify NULL if not required.

 Function value:

 GSS status code

 GSS_S_COMPLETE Successful completion

 GSS_S_NO_CRED The referenced credentials could not be
 accessed.

 GSS_S_DEFECTIVE_CREDENTIAL The referenced credentials were
 invalid.

 GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired.
 If the lifetime parameter was not passed as
 NULL, it will be set to 0.

 #ifndef GSSAPI_H_
 #define GSSAPI_H_

 /*
 * First, define the platform-dependent types.
 */
 typedef <platform-specific> OM_uint32;
 typedef <platform-specific> gss_ctx_id_t;
 typedef <platform-specific> gss_cred_id_t;
 typedef <platform-specific> gss_name_t;

Wray [Page 40]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 /*
 * Note that a platform supporting the xom.h X/Open header file
 * may make use of that header for the definitions of OM_uint32
 * and the structure to which gss_OID_desc equates.
 */

 typedef struct gss_OID_desc_struct {
 OM_uint32 length;
 void *elements;
 } gss_OID_desc, *gss_OID;

 typedef struct gss_OID_set_desc_struct {
 int count;
 gss_OID elements;
 } gss_OID_set_desc, *gss_OID_set;

 typedef struct gss_buffer_desc_struct {
 size_t length;
 void *value;
 } gss_buffer_desc, *gss_buffer_t;

 typedef struct gss_channel_bindings_struct {
 OM_uint32 initiator_addrtype;
 gss_buffer_desc initiator_address;
 OM_uint32 acceptor_addrtype;
 gss_buffer_desc acceptor_address;
 gss_buffer_desc application_data;
 } *gss_channel_bindings_t;

 /*
 * Six independent flags each of which indicates that a context
 * supports a specific service option.
 */
 #define GSS_C_DELEG_FLAG 1
 #define GSS_C_MUTUAL_FLAG 2
 #define GSS_C_REPLAY_FLAG 4
 #define GSS_C_SEQUENCE_FLAG 8
 #define GSS_C_CONF_FLAG 16
 #define GSS_C_INTEG_FLAG 32

 /*
 * Credential usage options
 */
 #define GSS_C_BOTH 0
 #define GSS_C_INITIATE 1
 #define GSS_C_ACCEPT 2

Wray [Page 41]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 /*
 * Status code types for gss_display_status
 */
 #define GSS_C_GSS_CODE 1
 #define GSS_C_MECH_CODE 2

 /*
 * The constant definitions for channel-bindings address families
 */
 #define GSS_C_AF_UNSPEC 0;
 #define GSS_C_AF_LOCAL 1;
 #define GSS_C_AF_INET 2;
 #define GSS_C_AF_IMPLINK 3;
 #define GSS_C_AF_PUP 4;
 #define GSS_C_AF_CHAOS 5;
 #define GSS_C_AF_NS 6;
 #define GSS_C_AF_NBS 7;
 #define GSS_C_AF_ECMA 8;
 #define GSS_C_AF_DATAKIT 9;
 #define GSS_C_AF_CCITT 10;
 #define GSS_C_AF_SNA 11;
 #define GSS_C_AF_DECnet 12;
 #define GSS_C_AF_DLI 13;
 #define GSS_C_AF_LAT 14;
 #define GSS_C_AF_HYLINK 15;
 #define GSS_C_AF_APPLETALK 16;
 #define GSS_C_AF_BSC 17;
 #define GSS_C_AF_DSS 18;
 #define GSS_C_AF_OSI 19;
 #define GSS_C_AF_X25 21;

 #define GSS_C_AF_NULLADDR 255;

 #define GSS_C_NO_BUFFER ((gss_buffer_t) 0)
 #define GSS_C_NULL_OID ((gss_OID) 0)
 #define GSS_C_NULL_OID_SET ((gss_OID_set) 0)
 #define GSS_C_NO_CONTEXT ((gss_ctx_id_t) 0)
 #define GSS_C_NO_CREDENTIAL ((gss_cred_id_t) 0)
 #define GSS_C_NO_CHANNEL_BINDINGS ((gss_channel_bindings_t) 0)
 #define GSS_C_EMPTY_BUFFER {0, NULL}

 /*
 * Define the default Quality of Protection for per-message
 * services. Note that an implementation that offers multiple
 * levels of QOP may either reserve a value (for example zero,
 * as assumed here) to mean "default protection", or alternatively
 * may simply equate GSS_C_QOP_DEFAULT to a specific explicit QOP
 * value.

Wray [Page 42]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 */
 #define GSS_C_QOP_DEFAULT 0

 /*
 * Expiration time of 2^32-1 seconds means infinite lifetime for a
 * credential or security context
 */
 #define GSS_C_INDEFINITE 0xfffffffful

 /* Major status codes */

 #define GSS_S_COMPLETE 0

 /*
 * Some "helper" definitions to make the status code macros obvious.
 */
 #define GSS_C_CALLING_ERROR_OFFSET 24
 #define GSS_C_ROUTINE_ERROR_OFFSET 16
 #define GSS_C_SUPPLEMENTARY_OFFSET 0
 #define GSS_C_CALLING_ERROR_MASK 0377ul
 #define GSS_C_ROUTINE_ERROR_MASK 0377ul
 #define GSS_C_SUPPLEMENTARY_MASK 0177777ul

 /*
 * The macros that test status codes for error conditions
 */
 #define GSS_CALLING_ERROR(x) \
 (x & (GSS_C_CALLING_ERROR_MASK << GSS_C_CALLING_ERROR_OFFSET))
 #define GSS_ROUTINE_ERROR(x) \
 (x & (GSS_C_ROUTINE_ERROR_MASK << GSS_C_ROUTINE_ERROR_OFFSET))
 #define GSS_SUPPLEMENTARY_INFO(x) \
 (x & (GSS_C_SUPPLEMENTARY_MASK << GSS_C_SUPPLEMENTARY_OFFSET))
 #define GSS_ERROR(x) \
 ((GSS_CALLING_ERROR(x) != 0) || (GSS_ROUTINE_ERROR(x) != 0))

 /*
 * Now the actual status code definitions
 */

 /*
 * Calling errors:
 */
 #define GSS_S_CALL_INACCESSIBLE_READ \
 (1ul << GSS_C_CALLING_ERROR_OFFSET)
 #define GSS_S_CALL_INACCESSIBLE_WRITE \
 (2ul << GSS_C_CALLING_ERROR_OFFSET)

Wray [Page 43]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 #define GSS_S_CALL_BAD_STRUCTURE \
 (3ul << GSS_C_CALLING_ERROR_OFFSET)

 /*
 * Routine errors:
 */
 #define GSS_S_BAD_MECH (1ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_BAD_NAME (2ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_BAD_NAMETYPE (3ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_BAD_BINDINGS (4ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_BAD_STATUS (5ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_BAD_SIG (6ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_NO_CRED (7ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_NO_CONTEXT (8ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_DEFECTIVE_TOKEN (9ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_DEFECTIVE_CREDENTIAL (10ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_CREDENTIALS_EXPIRED (11ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_CONTEXT_EXPIRED (12ul << GSS_C_ROUTINE_ERROR_OFFSET)
 #define GSS_S_FAILURE (13ul << GSS_C_ROUTINE_ERROR_OFFSET)

 /*
 * Supplementary info bits:
 */
 #define GSS_S_CONTINUE_NEEDED (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 0))
 #define GSS_S_DUPLICATE_TOKEN (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 1))
 #define GSS_S_OLD_TOKEN (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 2))
 #define GSS_S_UNSEQ_TOKEN (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 3))

 /*
 * Finally, function prototypes for the GSSAPI routines.
 */

 OM_uint32 gss_acquire_cred
 (OM_uint32*, /* minor_status */
 gss_name_t, /* desired_name */
 OM_uint32, /* time_req */
 gss_OID_set, /* desired_mechs */
 int, /* cred_usage */
 gss_cred_id_t*, /* output_cred_handle */
 gss_OID_set*, /* actual_mechs */
 OM_uint32* /* time_rec */
);

 OM_uint32 gss_release_cred,
 (OM_uint32*, /* minor_status */
 gss_cred_id_t* /* cred_handle */
);

Wray [Page 44]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 OM_uint32 gss_init_sec_context
 (OM_uint32*, /* minor_status */
 gss_cred_id_t, /* claimant_cred_handle */
 gss_ctx_id_t*, /* context_handle */
 gss_name_t, /* target_name */
 gss_OID, /* mech_type */
 int, /* req_flags */
 OM_uint32, /* time_req */
 gss_channel_bindings_t,
 /* input_chan_bindings */
 gss_buffer_t, /* input_token */
 gss_OID*, /* actual_mech_type */
 gss_buffer_t, /* output_token */
 int*, /* ret_flags */
 OM_uint32* /* time_rec */
);

 OM_uint32 gss_accept_sec_context
 (OM_uint32*, /* minor_status */
 gss_ctx_id_t*, /* context_handle */
 gss_cred_id_t, /* verifier_cred_handle */
 gss_buffer_t, /* input_token_buffer */
 gss_channel_bindings_t,
 /* input_chan_bindings */
 gss_name_t*, /* src_name */
 gss_OID*, /* mech_type */
 gss_buffer_t, /* output_token */
 int*, /* ret_flags */
 OM_uint32*, /* time_rec */
 gss_cred_id_t* /* delegated_cred_handle */
);

 OM_uint32 gss_process_context_token
 (OM_uint32*, /* minor_status */
 gss_ctx_id_t, /* context_handle */
 gss_buffer_t /* token_buffer */
);

 OM_uint32 gss_delete_sec_context
 (OM_uint32*, /* minor_status */
 gss_ctx_id_t*, /* context_handle */
 gss_buffer_t /* output_token */
);

Wray [Page 45]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 OM_uint32 gss_context_time
 (OM_uint32*, /* minor_status */
 gss_ctx_id_t, /* context_handle */
 OM_uint32* /* time_rec */
);

 OM_uint32 gss_sign
 (OM_uint32*, /* minor_status */
 gss_ctx_id_t, /* context_handle */
 int, /* qop_req */
 gss_buffer_t, /* message_buffer */
 gss_buffer_t /* message_token */
);

 OM_uitn32 gss_verify
 (OM_uint32*, /* minor_status */
 gss_ctx_id_t, /* context_handle */
 gss_buffer_t, /* message_buffer */
 gss_buffer_t, /* token_buffer */
 int* /* qop_state */
);

 OM_uint32 gss_seal
 (OM_uint32*, /* minor_status */
 gss_ctx_id_t, /* context_handle */
 int, /* conf_req_flag */
 int, /* qop_req */
 gss_buffer_t, /* input_message_buffer */
 int*, /* conf_state */
 gss_buffer_t /* output_message_buffer */
);

 OM_uint32 gss_unseal
 (OM_uint32*, /* minor_status */
 gss_ctx_id_t, /* context_handle */
 gss_buffer_t, /* input_message_buffer */
 gss_buffer_t, /* output_message_buffer */
 int*, /* conf_state */
 int* /* qop_state */
);

Wray [Page 46]

RFC 1509 GSSAPI - Overview and C bindings September 1993

 OM_uint32 gss_display_status
 (OM_uint32*, /* minor_status */
 OM_uint32, /* status_value */
 int, /* status_type */
 gss_OID, /* mech_type */
 int*, /* message_context */
 gss_buffer_t /* status_string */
);

 OM_uint32 gss_indicate_mechs
 (OM_uint32*, /* minor_status */
 gss_OID_set* /* mech_set */
);

 OM_uint32 gss_compare_name
 (OM_uint32*, /* minor_status */
 gss_name_t, /* name1 */
 gss_name_t, /* name2 */
 int* /* name_equal */
);

 OM_uint32 gss_display_name,
 (OM_uint32*, /* minor_status */
 gss_name_t, /* input_name */
 gss_buffer_t, /* output_name_buffer */
 gss_OID* /* output_name_type */
);

 OM_uint32 gss_import_name
 (OM_uint32*, /* minor_status */
 gss_buffer_t, /* input_name_buffer */
 gss_OID, /* input_name_type */
 gss_name_t* /* output_name */
);

 OM_uint32 gss_release_name
 (OM_uint32*, /* minor_status */
 gss_name_t* /* input_name */
);

 OM_uint32 gss_release_buffer
 (OM_uint32*, /* minor_status */
 gss_buffer_t /* buffer */
);

 OM_uint32 gss_release_oid_set
 (OM_uint32*, /* minor_status */
 gss_OID_set* /* set */

Wray [Page 47]

RFC 1509 GSSAPI - Overview and C bindings September 1993

);

 OM_uint32 gss_inquire_cred
 (OM_uint32 *, /* minor_status */
 gss_cred_id_t, /* cred_handle */
 gss_name_t *, /* name */
 OM_uint32 *, /* lifetime */
 int *, /* cred_usage */
 gss_OID_set * /* mechanisms */
);

 #endif /* GSSAPI_H_ */

References

 [1] Linn, J., "Generic Security Service Application Program
 Interface", RFC 1508, Geer Zolot Associate, September 1993.

 [2] "OSI Object Management API Specification, Version 2.0 t", X.400
 API Association & X/Open Company Limited, August 24, 1990.
 Specification of datatypes and routines for manipulating
 information objects.

Security Considerations

 Security issues are discussed throughout this memo.

Author’s Address

 John Wray
 Digital Equipment Corporation
 550 King Street, LKG2-2/AA6
 Littleton, MA 01460
 USA

 Phone: +1-508-486-5210
 EMail: Wray@tuxedo.enet.dec.com

Wray [Page 48]

