Net wor k Wor ki ng Group J. Way
Request for Comments: 1509 Di gital Equi pnent Corporation
Sept ember 1993

Generic Security Service APl : C- bindings
Status of this Menp

This RFC specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" for the standardization state and status
of this protocol. Distribution of this nmeno is unlinited.

Abst r act

Thi s docunent specifies C |anguage bindings for the Generic Security
Service Application ProgramInterface (GSS-APlI), which is described
at a | anguage-i ndependent conceptual |evel in other docunents.

The Generic Security Service Application Programm ng Interface (GSS-
APl) provides security services to its callers, and is intended for

i mpl ementation atop alternative underlying cryptographi c mechani smns.
Typically, GSS-API callers will be application protocols into which
security enhancenents are integrated through invocation of services
provi ded by the GSS-API. The GSS-API allows a caller application to
authenticate a principal identity associated with a peer application,
to delegate rights to a peer, and to apply security services such as
confidentiality and integrity on a per-nessage basis.

1. | NTRODUCTI ON

The Generic Security Service Application Programing Interface [1]
provi des security services to calling applications. It allows a
communi cating application to authenticate the user associated wth
anot her application, to delegate rights to another application, and
to apply security services such as confidentiality and integrity on a
per - message basi s.

There are four stages to using the GSSAPI
(a) The application acquires a set of credentials with which it may
prove its identity to other processes. The application’s

credentials vouch for its global identity, which may or nmay not
be related to the I ocal usernane under which it is running.

W ay [Page 1]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

(b) A pair of communicating applications establish a joint security
context using their credentials. The security context is a
pair of GSSAPI data structures that contain shared state
i nformation, which is required in order that per-nessage
security services may be provided. As part of the
establishnent of a security context, the context initiator is
aut henticated to the responder, and nmay require that the
responder is authenticated in turn. The initiator nay
optionally give the responder the right to initiate further
security contexts. This transfer of rights is terned
del egation, and is achieved by creating a set of credentials,
simlar to those used by the originating application, but which
may be used by the responder. To establish and naintain the
shared i nformati on that makes up the security context, certain
GSSAPI calls will return a token data structure, which is a
cryptographically protected opaque data type. The caller of
such a GSSAPI routine is responsible for transferring the token
to the peer application, which should then pass it to a
correspondi ng GSSAPI routine which will decode it and extract
the i nformation.

(c) Per-message services are invoked to apply either:
(i) integrity and data origin authentication, or

(ii) confidentiality, integrity and data origin authentication
to application data, which are treated by GSSAPI as
arbitrary octet-strings. The application transmtting a
message that it wishes to protect will call the appropriate
GSSAPI routine (sign or seal) to apply protection, specifying
the appropriate security context, and send the result to the
receiving application. The receiver will pass the received
data to the corresponding decodi ng routine (verify or unseal)
to renove the protection and validate the data.

(d) At the conpletion of a communications session (which nmay extend
across several connections), the peer applications call GSSAP
routines to delete the security context. Miltiple contexts nmay
al so be used (either successively or sinultaneously) within a
si ngl e conmmuni cati ons associ ati on

2. CSSAPI Routines
This section lists the functions performed by each of the GSSAP
routines and di scusses their mmjor paraneters, describing how they

are to be passed to the routines. The routines are listed in figure
4-1.

W ay [Page 2]

RFC 1509

W ay

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

Figure 4-1 GSSAP

Rout i ne
gss_acquire_cred
gss_rel ease _cred

gss_init_sec_cont ext

gss_accept _sec_cont ext

gss_process_cont ext _t oken

gss_del et e_sec_cont ext

gss_context _tine

gss_sign

gss_verify

gss_seal

gss_unsea

gss_di splay_status

gss_i ndi cat e_mechs

gss_conpar e_name

gss_di spl ay_nane

Rout i nes

Functi on
Assunme a global identity
Di scard credentials

Initiate a security context
with a peer application

Accept a security context
initiated by a peer
application

Process a token on a security
context froma peer
application

Di scard a security context

Determ ne for how |l ong a
context will remain valid

Sign a nessage; integrity
service

Check signature on a message
Sign (optionally encrypt) a
message; confidentiality

service

Verify (optionally decrypt)
nessage

Convert an APl status code
to text

Det erm ne underl ying
aut henti cati on nechani sm

Conmpare two internal-form
names

Convert opaque nane to text

[Page 3]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

gss_i nport _name Convert a textual nane to
i nternal -form

gss_rel ease_nane Di scard an internal-form
name

gss_rel ease_buffer Di scard a buffer

gss_rel ease_oi d_set Di scard a set of object

identifiers

gss_inquire cred Determ ne i nformati on about
a credenti al

I ndi vi dual GSSAPI inplenentations nay augnment these routines by
provi di ng additional mechani smspecific routines if required
functionality is not available fromthe generic forms. Applications
are encouraged to use the generic routines wherever possible on
portability grounds.

2.1. Data Types and Calling Conventions
The follow ng conventions are used by the GSSAPI

2.1.1. Structured data types
Wher ever these GSSAPI C- bindi ngs describe structured data, only
fields that must be provided by all GSSAPI inplenentation are
docunented. |Individual inplenentations may provide additiona
fields, either for internal use within GSSAPI routines, or for use by
non- portabl e applications.

2.1.2. Integer types
GSSAPI defines the follow ng integer data type

OM ui nt 32 32-bit unsigned integer

Where guaranteed mininumbit-count is inportant, this portable data
type is used by the GSSAPI routine definitions. Individual GSSAP
i npl ementations will include appropriate typedef definitions to map
this type onto a built-in data type.

2.1.3. String and simlar data
Many of the GSSAPI routines take argunents and return val ues that

descri be contiguous nultiple-byte data. All such data is passed
bet ween the GSSAPI and the caller using the gss buffer_t data type.

W ay [Page 4]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

This data type is a pointer to a buffer descriptor, which consists of
a length field that contains the total nunber of bytes in the datum
and a value field which contains a pointer to the actual datum

typedef struct gss_buffer_desc_struct {
size t length;
voi d *val ue;

} gss_buffer _desc, *gss buffer _t;

Storage for data passed to the application by a GSSAPI routine using
the gss_buffer_t conventions is allocated by the GSSAPI routine. The
application nay free this storage by invoking the gss_rel ease buffer
routine. Allocation of the gss_buffer_desc object is always the
responsibility of the application; Unused gss_buffer_desc objects
may be initialized to the value GSS_C EMPTY_BUFFER

2.1.3.1. Opaque data types

Certain multiple-word data itens are consi dered opaque data types at
the GSSAPI, because their internal structure has no significance
either to the GSSAPI or to the caller. Exanples of such opaque data
types are the input_token parameter to gss_init_sec_context (which is
opaque to the caller), and the input_nessage parameter to gss_sea
(which is opaque to the GSSAPI). Opaque data is passed between the
GSSAPI and the application using the gss_buffer_t datatype.

2.1.3.2. Character strings

Certain multiple-wrd data itens may be regarded as sinple |ISO
Latin-1 character strings. An exanple of this is the

i nput _name_buffer parameter to gss_inport_nane. Sonme GSSAPI routines
al so return character strings. Character strings are passed between
the application and the GSSAPI using the gss_buffer_t datatype,
defined earlier.

2.1.4. bject ldentifiers

Certain GSSAPI procedures take paraneters of the type gss_QO D, or
hject identifier. This is a type containing | SO defined tree-
structured values, and is used by the GSSAPI caller to select an
underlying security nechanism A value of type gss_QOD has the
foll owi ng structure:

typedef struct gss_O D desc_struct {
OM_ui nt 32 | engt h;
voi d *el enent s

} gss_A D desc, *gss_QAD;

W ay [Page 5]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

The elenents field of this structure points to the first byte of an
octet string containing the ASN. 1 BER encodi ng of the value of the
gss_OD. The length field contains the nunber of bytes in this

val ue. For exanple, the gss_O D value corresponding to {iso(1)
identified- oganization(3) icd-ecma(12) nenber-conpany(2) dec(1011)
cryptoAl gorithns(7) SPX(5)} nmeaning SPX (Digital’s X 509

aut henti cation nmechanisnm has a length field of 7 and an el enents
field pointing to seven octets containing the follow ng octal val ues:
53, 14, 2, 207, 163, 7, 5. GSSAPI inpl ement ati ons shoul d provi de const ant
gss_O D values to allow callers to request any supported nmechani sm
al t hough applications are encouraged on portability grounds to accept
the default nechani sm gss_QO D val ues should al so be provided to
al l ow applications to specify particular nane types (see section
2.1.10). Applications should treat gss_O D desc val ues returned by
GSSAPI routines as read-only. |In particular, the application should
not attenpt to deallocate them The gss_O D desc datatype is

equi valent to the X/ Open OM object _identifier datatype [2].

2.1.5. bject Identifier Sets

Certai n GSSAPI procedures take paraneters of the type gss_QO D set
This type represents one or nore object identifiers (section 2.1.4).
A gss_O D set object has the followi ng structure:

typedef struct gss O D set _desc_struct {
i nt count;
gss_OD elenents;

} gss_O D set_desc, *gss_QO D set

The count field contains the nunber of ODs within the set. The
elements field is a pointer to an array of gss_(O D desc objects, each
of which describes a single OD. gss OD set values are used to nane
t he avail abl e nechani sns supported by the GSSAPI, to request the use
of specific nechani snms, and to indicate which nechani sns a given
credential supports. Storage associated with gss_O D set val ues
returned to the application by the GSSAPI nay be deal |l ocated by the
gss_rel ease_oid _set routine.

2.1.6. Credentials

A credential handle is a caller-opaque atom c datumthat identifies a
GSSAPI credential data structure. It is represented by the caller-
opaque type gss _cred_id t, which nmay be i nplenented as either an
arithnmetic or a pointer type. Credentials describe a principal, and
they give their holder the ability to act as that principal. The
GSSAPI does not make the actual credentials available to
applications; instead the credential handle is used to identify a
particular credential, held internally by GSSAPI or underlying

W ay [Page 6]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

mechani sm Thus the credential handle contains no security-rel avent
i nformati on, and requires no special protection by the application
Dependi ng on the inplenmentation, a given credential handle may refer
to different credentials when presented to the GSSAPI by different
callers. Individual GSSAPI inplenentations should define both the
scope of a credential handle and the scope of a credential itself
(whi ch nust be at least as wide as that of a handle). Possibilities
for credential handle scope include the process that acquired the
handl e, the acquiring process and its children, or all processes
sharing some local identification information (e.g., UD. If no
handl es exist by which a given credential may be reached, the GSSAP
may del ete the credenti al

Certain routines allow credential handle parameters to be onmitted to
i ndi cate the use of a default credential. The nmechani sm by which a
default credential is established and its scope should be defined by
t he individual GSSAPI i nplenentation

2.1.7. Contexts

The gss_ctx_id_t data type contains a caller-opaque atomni c val ue that
identifies one end of a GSSAPI security context. It may be

i npl emented as either an arithnetic or a pointer type. Dependi ng on
the inplenentation, a given gss ctx id t value may refer to different
GSSAPI security contexts when presented to the GSSAPI by different
callers. The security context holds state information about each end
of a peer conmunication, including cryptographic state information

I ndi vi dual GSSAPI inpl enentations should define the scope of a
context. Since no way is provided by which a new gss_ctx_id_t val ue
may be obtained for an existing context, the scope of a context
shoul d be the sanme as the scope of a gss_ctx id_ t.

2.1.8. Authentication tokens

A token is a caller-opaque type that GSSAPI uses to maintain
synchroni zati on between the context data structures at each end of a
GSSAPI security context. The token is a cryptographically protected
bit-string, generated by the underlying nmechani smat one end of a
GSSAPI security context for use by the peer mechani smat the other
end. Encapsulation (if required) and transfer of the token are the
responsibility of the peer applications. A token is passed between
the GSSAPI and the application using the gss buffer_t conventions.

2.1.9. Status val ues
One or nore status codes are returned by each GSSAPI routine. Two

distinct sorts of status codes are returned. These are terned GSS
status codes and Mechani sm st at us codes.

W ay [Page 7]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

2.1.9.1. GSS status codes

GSSAPI routines return GSS status codes as their OM uint32 function
val ue. These codes indicate errors that are independent of the
under | yi ng mechani smused to provide the security service. The
errors that can be indicated via a GSS status code are either generic
APl routine errors (errors that are defined in the GSSAP
specification) or calling errors (errors that are specific to these
bi ndi ngs).

A GSS status code can indicate a single fatal generic APl error from
the routine and a single calling error. 1|In addition, supplenentary
status infornation may be indicated via the setting of bits in the
suppl enentary info field of a GSS status code

These errors are encoded into the 32-bit GSS status code as fol |l ows:

Hence if a GSSAPI routine returns a GSS status code whose upper 16
bits contain a non-zero value, the call failed. If the calling error
field is non-zero, the invoking application’s call of the routine was
erroneous. Calling errors are defined in table 5-1. If the routine
error field is non-zero, the routine failed for one of the routine-
specific reasons listed belowin table 5-2. Whether or not the upper
16 bits indicate a failure or a success, the routine nay indicate
additional information by setting bits in the supplenentary info
field of the status code. The neaning of individual bits is listed
below in table 5-3.

Table 5-1 Calling Errors

Nare Val ue in Meani ng
Field
GSS_S CALL_I NACCESSI BLE_READ 1 A required input

par aneter could
not be read.
GSS_S CALL_I NACCESSI BLE_WRI TE 2 A required out put
paraneter coul d
not be witten.
GSS_S CALL_BAD_STRUCTURE 3 A paraneter was
mal f or med

W ay [Page 8]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

Table 5-2 Routine Errors

Nane Val ue in
Field
GSS S BAD MECH 1
GSS S BAD NAMVE 2
GSS_S BAD NAMETYPE 3
GSS_S BAD BI NDI NGS 4
GSS S BAD STATUS 5
GSS S BAD SIG 6
GSS S NO CRED 7
GSS S NO CONTEXT 8
GSS_S DEFECTI VE_TOKEN 9
GSS S DEFECTI VE_CREDENTI AL 10
GSS S CREDENTI ALS EXPI RED 11
GSS S CONTEXT_EXPI RED 12
GSS S FAI LURE 13

Meani ng

An unsupported nechani sm was
requested

An invalid name was supplied
A supplied name was of an
unsupported type

I ncorrect channel bindings
were supplied

An invalid status code was
supplied

A token had an invalid

si gnature

No credentials were supplied
No cont ext has been

est abl i shed

A token was invalid

A credential was invalid
The referenced credentials
have expired

The context has expired

M scel | aneous failure

(see text)

Table 5-3 Supplementary Status Bits

Name Bit Nunber
GSS_S CONTI NUE_NEEDED 0 (LSB)

GSS_S_DUPLI CATE_TOKEN 1
GSS_S_OLD_TOKEN 2

GSS_S_UNSEQ TOKEN 3

Meani ng
The routine nmust be called
again to conplete its
function.
See routine docunentation for
det ai |l ed description.
The token was a duplicate of
an earlier token
The token's validity period
has expired
A later token has al ready been
processed

The routine docunmentation also uses the nane GSS_S COWPLETE, which is
a zero value, to indicate an absence of any APl errors or

suppl enentary information bits.

W ay

[Page 9]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

Al'l GSS S xxx synbols equate to conplete OM uint32 status codes
rather than to bitfield values. For exanple, the actual value of the
synbol GSS_S BAD NAMETYPE (value 3 in the routine error field) is 3
<< 16.

The macros GSS_CALLI NG ERROR(), GSS_ROUTI NE_ERROR() and

GSS _SUPPLEMENTARY | NFQ() are provided, each of which takes a GSS
status code and renoves all but the relevant field. For exanple, the
val ue obtai ned by applying GSS ROUTI NE_ERROR to a status code renpves
the calling errors and supplenentary info fields, |leaving only the
routine errors field. The values delivered by these macros may be
directly conpared with a GSS_ S xxx synbol of the appropriate type.
The macro GSS ERROR() is al so provided, which when applied to a GSS
status code returns a non-zero value if the status code indicated a
calling or routine error, and a zero val ue otherw se.

A GSSAPI inplenentation may choose to signal calling errors in a

pl atform specific nanner instead of, or in addition to the routine
val ue; routine errors and suppl enentary info should be returned via
routine status val ues only.

2.1.9.2. Mechani smspecific status codes

GSSAPI routines return a nminor_status paraneter, which is used to

i ndi cate specialized errors fromthe underlying security nechani sm
This paraneter may contain a single mechani smspecific error

i ndi cated by a OM ui nt 32 val ue.

The m nor_status paraneter will always be set by a GSSAPI routine,
even if it returns a calling error or one of the generic APl errors

i ndi cated above as fatal, although other output paraneters nmay renain
unset in such cases. However, output paraneters that are expected to
return pointers to storage allocated by a routine nust always set set
by the routine, even in the event of an error, although in such cases
the GSSAPI routine may elect to set the returned paraneter value to
NULL to indicate that no storage was actually allocated. Any length
field associated with such pointers (as in a gss_buffer_desc
structure) should al so be set to zero in such cases

The GSS status code GSS S FAILURE is used to indicate that the
under | yi ng mechani sm detected an error for which no specific GSS
status code is defined. The nechanismstatus code will provide nore
details about the error.

2.1.10. Nanes

A name is used to identify a person or entity. GSSAPI authenticates
the rel ationship between a nane and the entity claimng the nane.

W ay [Page 10]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

Two distinct representations are defined for nanes:
(a) Aprintable form for presentation to a user
(b) An internal form for presentation at the AP

The syntax of a printable nane is defined by the GSSAP

i mpl enentation, and nay be dependent on |ocal system configuration
or on individual user preference. The internal form provides a
canoni cal representation of the nanme that is independent of
configuration.

A given GSSAPI inplenentation nmay support names drawn fromnultiple
nanespaces. In such an inplenentation, the internal formof the nane
nmust include fields that identify the namespace from which the nane
is drawn. The nanespace fromwhich a printable nanme is drawn is
speci fied by an acconpanyi ng object identifier

Routines (gss_inport_nane and gss_display nane) are provided to
convert names between their printable representations and the
gss_hane_t type. gss_inport_name nmay support nultiple syntaxes for
each supported nanespace, allow ng users the freedomto choose a
preferred nane representation. gss_display_nane should use an

i mpl enent ati on-chosen preferred syntax for each supported nane-type.

Conpari son of internal-formnanes is acconplished via the
gss_conpare_nanes routine. This renoves the need for the application
programto understand the syntaxes of the various printable nanes
that a given GSSAPI inplenmentation nmay support.

Storage is allocated by routines that return gss_nane_t values. A
procedure, gss_release name, is provided to free storage associ ated
with a nane.

2.1.11. Channel Bindings

GSSAPI supports the use of user-specified tags to identify a given
context to the peer application. These tags are used to identify the
particul ar communi cati ons channel that carries the context. Channe
bi ndi ngs are conmuni cated to the GSSAPI using the foll ow ng
structure:

W ay [Page 11]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

typedef struct gss_channel bindings_struct {

OM ui nt 32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM _ui nt 32 accept or _addrtype;

gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;
} *gss_channel _bindings_t;

The initiator_addrtype and acceptor_addrtype fields denote the type
of addresses contained in the initiator_address and acceptor_address
buffers. The address type should be one of the follow ng:

GSS _C _AF_UNSPEC Unspeci fied address type

GSS C AF_LOCAL Host -1 ocal address type

GSS _C AF_|I NET DARPA | nternet address type

GSS_C _AF_ | MPLI NK ARPAnet | MP address type (eg I P)
GSS_C _AF_PUP pup protocols (eg BSP) address type
GSS _C _AF_CHACs M T CHACS protocol address type
GSS C AF NS XEROX NS address type

GSS C AF_NBS nbs address type

GSS _C AF_ECMVA ECVA address type

GSS _C AF_DATAKI T dat akit protocol s address type
GSS C AF CaTT CClI TT protocols (eg X 25)

GSS _C AF_SNA | BM SNA address type

GSS _C _AF_DECnet DECnet address type

GSS C AF DL Direct data link interface address type
GSS _C AF_LAT LAT address type

GSS_C _AF_HYLI NK NSC Hyper channel address type

GSS _C AF_APPLETALK Appl eTal k address type
GSS_C_AF_BSC Bl SYNC 2780/ 3780 address type

GSS _C _AF_DSS Di stributed system servi ces address type
GSS C AF sl Sl TP4 address type

GSS_C_AF_X25 X25

GSS_C _AF_NULLADDR No address specified

Note that these nane address families rather than specific addressing
formats. For address fanmilies that contain several alternative
address forms, the initiator_address and acceptor_address fiel ds nust
contain sufficient information to determni ne which address formis
used. When not ot herw se specified, addresses should be specified in
net wor k byt e- or der.

Conceptual ly, the GSSAPI concatenates the initiator_addrtype,
initiator_address, acceptor_addrtype, acceptor_address and
application_data to forman octet string. The nmechanismsigns this
octet string, and binds the signature to the context establishnent
token emtted by gss_init_sec_context. The same bindings are
presented by the context acceptor to gss_accept_sec_context, and a

W ay [Page 12]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

signature is calculated in the sane way. The calculated signature is
conpared with that found in the token, and if the signatures differ
gss_accept _sec_context will return a GSS_S BAD BI NDI NGS error, and
the context will not be established. Sone nechani snms may include the
actual channel binding data in the token (rather than just a
signature); applications should therefore not use confidential data
as channel - bi ndi ng conponents. Individual nechani sns nmay i npose
addi tional constraints on addresses and address types that may appear
i n channel bindings. For exanple, a mechanismmay verify that the
initiator_address field of the channel bindings presented to
gss_init_sec_context contains the correct network address of the host
system

2.1.12. Optional paraneters
Various paraneters are described as optional. This neans that they
foll ow a conventi on whereby a default value may be requested. The
foll owi ng conventions are used for onmtted paraneters. These
conventions apply only to those paraneters that are explicitly
docunent ed as opti onal

2.1.12.1. gss_buffer_t types
Specify GSS C NO BUFFER as a value. For an input paraneter this
signifies that default behavior is requested, while for an output
paraneter it indicates that the information that would be returned
via the parameter is not required by the application

2.1.12.2. Integer types (input)

I ndi vi dual paraneter docunentation lists values to be used to
i ndi cate default actions.

2.1.12.3. Integer types (output)

Specify NULL as the value for the pointer
2.1.12. 4. Pointer types

Specify NULL as the val ue.
2.1.12.5. Object IDs

Specify GSS C NULL_A D as the val ue
2.1.12.6. oject ID Sets

Specify GSS C NULL_O D SET as the val ue.

W ay [Page 13]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

2.1.12.7. Credentials
Specify GSS_C NO CREDENTI AL to use the default credential handle
2.1.12.8. Channel Bindings

Specify GSS _C NO CHANNEL_BI NDI NGS to indicate that channel bindings
are not to be used.

3. GSSAPI routine descriptions
2.1. gss_acquire cred

OM uint32 gss_acquire cred (

OM uint32 * m nor _st at us,
gss_hane_t desi red_nane,
OM ui nt 32 time_req,
gss_QA D set desired_mechs
i nt cred_usage,

gss_cred_ id t * output_cred_handl e,
gss_O D set * act ual _mechs,
OMint32 * time_rec)

Pur pose

Allows an application to acquire a handle for a pre-existing
credential by name. GSSAPI inpl enentations nmust inpose a |loca
access-control policy on callers of this routine to prevent

unaut hori zed callers fromacquiring credentials to which they are not
entitled. This routine is not intended to provide a "login to the
net wor k" function, as such a function would result in the creation of
new credentials rather than nerely acquiring a handle to existing
credentials. Such functions, if required, should be defined in

i mpl enent ati on-specific extensions to the API

If credential acquisition is tine-consum ng for a nechanism the
mechani sm nay chooses to delay the actual acquisition until the
credential is required (e.g., by gss init_sec_context or

gss_accept _sec_context). Such nmechani smspecific inplenentation

deci sions should be invisible to the calling application; thus a cal
of gss_inquire_cred i mediately followi ng the call of
gss_acquire_cred nust return valid credential data, and may therefore
i ncur the overhead of a deferred credential acquisition

Par anet ers:
desi red_nane gss_nane_t, read

Name of principal whose credenti al
shoul d be acquired

W ay [Page 14]

RFC 1509

tinme_req

desired_nechs

cred_usage

out put _cred_handl e

actual _nechs

tinme_rec

m nor _status

Functi on val ue:

W ay

GSS st atus code:
GSS_S COVPLETE

GSS_S_BAD_MECH

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

i nteger, read
nunber of seconds that credentials
should remain valid

Set of Object IDs, read

set of underlying security nechani sns that
may be used. GSS C NULL O D SET may be used
to obtain an inplenentation-specific default.

i nteger, read
GSS C BOTH - Credentials may be used
either to initiate or accept
security contexts
GSS_C INITIATE - Credentials will only be
used to initiate security
cont ext s.
GSS _C ACCEPT - Credentials will only be used to
accept security contexts.

gss _cred_id t, nodify
The returned credential handle.

Set of Object IDs, nodify, optiona
The set of mechani snms for which the
credential is valid. Specify NULL
if not required.

Integer, nodify, optiona

Actual nunber of seconds for which the

returned credentials will remain valid. |If the
i mpl enent ati on does not support expiration of
credentials, the value GSS_C | NDEFI NI TE wi | |

be returned. Specify NULL if not required

Integer, nodify
Mechani sm speci fic status code.

Successful conpletion

Unavai | abl e mechani sm request ed

GSS_S BAD NAMETYPE Type contained within desired_nane paraneter is

GSS_S_BAD_NAME

not supported

Val ue supplied for desired _nane paraneter is

[Page 15]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

ill-forned.

GSS_ S FAI LURE Unspecified failure. The m nor_status paraneter
contains nore detailed information

3.2. gss_release cred
OM uint32 gss_release cred (
OM uint32 * m nor _st at us,
gss_cred_id_t * cred_handle)
Pur pose
I nforms GSSAPI that the specified credential handle is no | onger
required by the process. Wen all processes have rel eased a
credential, it will be del eted.
Par anet ers:
cred_handl e gss_cred id t, nodify, optiona
buf f er contai ni ng opaque credenti al
handle. |If GSS_C NO CREDENTIAL is supplied
the default credential will be rel eased

m nor _st at us i nteger, nodify
Mechani sm specific status code

Functi on val ue:
GSS st atus code:
GSS S COWLETE Successful conpl etion

GSS_S NO CRED Credentials could not be accessed.

W ay [Page 16]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

3.3. gss_init_sec_context

OMuint32 gss_init_sec_context (
OMuint32 * m nor _st at us,
gss_cred_id_t cl ai mant _cred_handl e,
gss ctx _id t * context_handle,

gss_nane_t t ar get _nane,
gss_AD mech_t ype
i nt req_fl ags,
i nt time_req,

gss_channel _bi ndi ngs_t
i nput _chan_bi ndi ngs,

gss_buffer t i nput _t oken
gss_ OD * actual _mech_type
gss_buffer _t out put _t oken

int * ret _flags,
OMuint32 * time_rec)

Pur pose

Initiates the establishnent of a security context between the
application and a renote peer. Initially, the input_token paraneter
shoul d be specified as GSS_C NO BUFFER. The routine may return a
out put _token which should be transferred to the peer application
where the peer application will present it to gss_accept_sec_context.
If no token need be sent, gss init_sec context will indicate this by
setting the length field of the output_token argunent to zero. To
conpl ete the context establishnent, one or nore reply tokens may be
required fromthe peer application; if so, gss_init_sec_context wll
return a status indicating GSS S CONTI NUE_NEEDED i n which case it
shoul d be called again when the reply token is received fromthe peer
application, passing the token to gss_init_sec _context via the

i nput _t oken paraneters.

The values returned via the ret_flags and time_rec paraneters are not
defined unless the routine returns GSS_S COWPLETE.

Par anet ers:

claimant _cred_handle gss_cred_id_t, read, optiona
handl e for credentials clainmed. Supply
GSS C NO CREDENTI AL to use default
credenti al s.

cont ext _handl e gss_ctx_id t, read/ nodify
context handle for new context. Supply
GSS_C NO CONTEXT for first call; use val ue
returned by first call in continuation calls.

W ay [Page 17]

RFC 1509

W ay

target _nane

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

gss_hane_t, read
Name of target

mech_t ype A D, read, optiona
hj ect 1D of desired mechani sm Supply
GSS C NULL_ O D to obtain an inplenentation
specific default
req_flags bi t-mask, read
Cont ai ns four independent flags, each of
whi ch requests that the context support a
specific service option. Synbolic
nanes are provided for each flag, and the
synbol i ¢ nanmes corresponding to the required
flags should be | ogically-ORed
together to formthe bit-mask value. The
flags are:
GSS_C DELEG FLAG
True - Delegate credentials to renote peer
Fal se - Don't del egate
GSS_C MJUTUAL_FLAG
True - Request that renpte peer
authenticate itself
Fal se - Authenticate self to renpte peer
only
GSS_C_REPLAY_FLAG
True - Enable replay detection for signed
or seal ed nmessages
False - Don't attenpt to detect
repl ayed nessages
GSS_C_SEQUENCE_FLAG
True - Enabl e detection of out-of-sequence
signed or seal ed nessages
Fal se - Don’'t attenpt to detect
out - of - sequence nessages
time_req i nteger, read
Desired nunber of seconds for which context
should remain valid. Supply O to request a
default validity period.
i nput _chan_bi ndi ngs channel bindi ngs, read

Appli cation-specified bindings. Allows
application to securely bind channel
identification information to the security
cont ext .

[Page 18]

RFC 1509

W ay

i nput _t oken

act ual _mech_t ype

out put _t oken

ret _flags

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

buf fer, opaque, read, optional (see text)
Token received from peer application
Supply GSS_C NO BUFFER on initial call

A D, nodify
actual nmechani sm used

buf fer, opaque, nodify

token to be sent to peer application. |If
the length field of the returned buffer is
zero, no token need be sent to the peer
application.

bi t-mask, nodify

Cont ai ns si x i ndependent flags, each of which

i ndi cates that the context supports a specific
service option. Synbolic names are provided

for each flag, and the synbolic nanes
corresponding to the required flags should be

| ogically-ANDed with the ret_flags value to test
whet her a given option is supported by the
context. The flags are:

GSS_C DELEG FLAG
True - Credentials were delegated to
the renote peer
Fal se - No credentials were del egat ed
GSS_C MJUTUAL_FLAG
True - Renote peer has been asked to
aut henticated itself
Fal se - Renote peer has not been asked to
authenticate itself
GSS_C_REPLAY_FLAG
True - replay of signed or seal ed nessages
wi |l be detected
Fal se - replayed nessages will not be
detected
GSS_C_SEQUENCE_FLAG
True - out-of-sequence signed or sealed
messages will be detected
Fal se - out-of-sequence nessages will not
be detected
GSS_C_CONF_FLAG
True - Confidentiality service may be
i nvoked by calling seal routine
Fal se - No confidentiality service (via
seal) available. seal will provide
nmessage encapsul ation, data-origin

[Page 19]

RFC 1509

tinme_rec

m nor _status

Functi on val ue:

GSS st atus code:

GSS_S_COVPLETE

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

aut hentication and integrity
services only.
GSS_C_| NTEG _FLAG

True - Integrity service may be invoked by
calling either gss_sign or gss_sea
routines.

Fal se - Per-nessage integrity service
unavai | abl e.

i nteger, nodify, optiona

nunber of seconds for which the context

will remain valid. If the inplenentation does
not support credential expiration, the val ue
GSS_C INDEFINITE will be returned. Specify
NULL i f not required.

i nteger, nodify
Mechani sm speci fic status code.

Successful conpl etion

GSS S CONTI NUE_NEEDED I ndi cates that a token fromthe peer

application is required to conplete thecontext, and
that gss_init_sec_context nmust be called again with
t hat token.

GSS S DEFECTI VE_TOKEN I ndi cates that consistency checks perfornmed on

the input_token failed

GSS_S DEFECTI VE_CREDENTI AL | ndi cates that consistency checks

GSS_S_NO_CRED

performed on the credential failed.

The supplied credentials were not valid for context
initiation, or the credential handle did not
ref erence any credentials.

GSS S CREDENTI ALS_EXPI RED The referenced credentials have expired

GSS S BAD BI NDI NGS The i nput _token contains different channe

GSS_S BAD SI G

W ay

bi ndings to those specified via the
i nput _chan_bi ndi ngs par anet er

The i nput _token contains an invalid signature, or a
signature that could not be verified

[Page 20]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

GSS S OLD TOKEN The input_token was too old. This is a fatal error
during context establishnent

GSS S DUPLI CATE_TOKEN The input _token is valid, but is a duplicate of
a token already processed. This is a fatal error
during context establishnent.

GSS S NO CONTEXT I ndicates that the supplied context handle did not
refer to a valid context

GSS_S BAD NAMETYPE The provi ded target_nane paraneter contained an
invalid or unsupported type of nane

GSS S BAD NAMVE The provided target name paraneter was ill-forned.
GSS_ S FAI LURE Failure. See minor_status for nore information
3.4. gss_accept_sec_cont ext

OM uint32 gss_accept _sec_context (
OM uint32 * m nor _st at us,
gss_ctx_id t * context_handle,
gss_cred_id_t verifier_cred_handl e,
gss_buffer t i nput _token_buffer
gss_channel _bi ndi ngs_t
i nput _chan_bi ndi ngs,

gss_nanme_t * Src_narne,
gss_AOD * mech_t ype
gss_buffer _t out put _t oken
int * ret _flags,
OM uint32 * tinme_rec,

gss_cred _id t * del egated_cred_handl e)
Pur pose

Allows a renptely initiated security context between the application
and a renote peer to be established. The routine may return a

out put _t oken whi ch should be transferred to the peer application
where the peer application will present it to gss_init_sec_context.
If no token need be sent, gss_accept_sec_context will indicate this
by setting the length field of the output_token argunent to zero. To
conpl ete the context establishnent, one or nore reply tokens may be
required fromthe peer application; if so, gss_accept_sec_context
will return a status flag of GSS_S CONTI NUE_NEEDED, in which case it
shoul d be called again when the reply token is received fromthe peer
application, passing the token to gss_accept_sec_context via the

i nput _t oken paraneters.

W ay [Page 21]

RFC 1509

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

The val ues returned via the src_nane, ret _flags, tine_rec, and
del egated_cred_handl e paraneters are not defined unless the routine
returns GSS_S COWPLETE.

Par anet ers:

W ay

cont ext _handl e

gss_ ctx _id t, read/ nodify

context handle for new context. Supply
GSS_C NO CONTEXT for first call; use val ue
returned in subsequent calls.

verifier_cred_handl e gss_cred_id t, read, optiona

acceptor.

i nput _t oken_buf fer

Credential handl e clained by context

Specify GSS_C NO CREDENTI AL to use default
credentials. |If GSS C NO CREDENTIAL is
specified, but the caller has no default
credential s established, an

i mpl enent ati on-defined default credentia
may be used.

buf f er, opaque, read
t oken obtai ned fromrenote application

i nput _chan_bi ndi ngs channel bindings, read

src_name

mech_type

out put _t oken

Appli cation-specified bindings. Allows
application to securely bind channel
identification information to the security
cont ext .

gss_nane_t, nodify, optiona

Aut henti cat ed name of context initiator

After use, this name shoul d be deal |l ocated by
passing it to gss_release_nane. |If not required,
speci fy NULL.

bject ID, nodify

Security nechani smused. The returned

O D value will be a pointer into static
storage, and should be treated as read-only
by the caller.

buf fer, opaque, nodify

Token to be passed to peer application. If the
length field of the returned token buffer is O,
then no token need be passed to the peer
appl i cation.

[Page 22]

RFC 1509

W ay

ret _flags

time_rec

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

bi t-mask, nodify
Cont ai ns si x independent flags, each of
whi ch indicates that the context supports a
specific service option. Synbolic names are
provi ded for each flag, and the symbolic nanes
corresponding to the required flags
shoul d be logically-ANDed with the ret _flags
val ue to test whether a given option is
supported by the context. The flags are:
GSS_C _DELEG FLAG
True - Delegated credentials are avail able
via the del egated _cred_handl e
par anet er
Fal se - No credentials were del egat ed
GSS_C_MJTUAL_FLAG
True - Renote peer asked for nutua
aut henti cati on
Fal se - Renote peer did not ask for nmutua
aut henti cati on
GSS_C REPLAY_FLAG
True - replay of signed or seal ed nessages
will be detected
Fal se - replayed nessages will not be
det ected
GSS_C_SEQUENCE_FLAG
True - out-of-sequence signed or sealed
nmessages will be detected
Fal se - out-of-sequence nessages will not
be detected
GSS_C_CONF_FLAG
True - Confidentiality service may be
i nvoked by calling seal routine
False - No confidentiality service (via
seal) available. seal wll
provi de nmessage encapsul ation
data-origin authentication and
integrity services only.
GSS_C_| NTEG _FLAG
True - Integrity service nmay be invoked
by calling either gss_sign or
gss_seal routines.
Fal se - Per-nessage integrity service
unavai | abl e.

i nteger, nodify, optiona

nunber of seconds for which the context
will remain valid. Specify NULL if not required.

[Page 23]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

del egat ed_cred_handl e
gss _cred_id t, nodify
credential handle for credentials received from
context initiator. Only valid if deleg flag in
ret_flags is true.

m nor _st at us i nteger, nodify
Mechani sm specific status code

Functi on val ue:
GSS st atus code:
GSS S COWLETE Successful conpl etion

GSS_S CONTI NUE_NEEDED I ndi cates that a token fromthe peer
application is required to conplete the context,
and that gss_accept_sec_context nmust be called
again with that token

GSS_S DEFECTI VE_TOKEN I ndi cat es that consi stency checks
performed on the input_token failed.

GSS S DEFECTI VE_CREDENTI AL | ndi cates that consistency checks
perfornmed on the credential failed.

GSS_S NO CRED The supplied credentials were not valid for
cont ext acceptance, or the credential handle
did not reference any credentials.

GSS S CREDENTI ALS EXPI RED The referenced credential s have
expired.

GSS_S BAD BI NDI NGS The i nput _token contains different channe
bi ndings to those specified via the
i nput _chan_bi ndi ngs paraneter.

GSS S NO CONTEXT I ndicates that the supplied context handle did
not refer to a valid context.

GSS_ S BAD SIG The i nput _token contains an invalid signature

GSS S OLD TOKEN The input_token was too old. This is a fata
error during context establishnent.

GSS S DUPLI CATE_TOKEN The input _token is valid, but is a

duplicate of a token already processed. This
is a fatal error during context establishnent.

W ay [Page 24]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

GSS S FAI LURE Failure. See minor_status for nore information.
3.5. gss_process_cont ext _token

OM ui nt 32 (gss_process_cont ext _t oken (

OM uint32 * m nor _st at us,
gss_ctx_id._t cont ext _handl e,
gss_buffer t t oken_buf fer)

Pur pose

Provides a way to pass a token to the security service. Usually,
tokens are associated either with context establishnment (when they
woul d be passed to gss _init_sec_context or gss_accept_sec_context) or
wi th per-nmessage security service (when they woul d be passed to
gss_verify or gss_unseal). Occasionally, tokens may be received at
other tinmes, and gss_process_context_token allows such tokens to be
passed to the underlying security service for processing. At
present, such additional tokens nmay only be generated by

gss_del ete_sec_context. GSSAPI inplenmentation nmay use this service
to inplement deletion of the security context.

Par anet er s:
cont ext _handl e gss ctx id t, read
context handl e of context on which token is to
be processed

t oken_buf f er buf fer, opaque, read
pointer to first byte of token to process

nmi nor _st at us i nteger, nodify
| mpl enent ati on specific status code.

Function val ue:
GSS status code
GSS_S COWLETE Successful conpl etion

GSS_S DEFECTI VE_TOKEN I ndi cates that consi stency checks
perforned on the token failed

GSS S FAI LURE Failure. See minor_status for nore information

GSS_ S NO CONTEXT The context _handle did not refer to a valid
cont ext

W ay [Page 25]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

3.6. gss_del ete_sec_cont ext

OM uint32 gss_del ete_sec_context (

OMuint32 * m nor _st at us,
gss_ctx_id_t * context_handle,
gss_buffer t out put _t oken)
Pur pose
Del ete a security context. gss_delete _sec_context will delete the

| ocal data structures associated with the specified security context,
and generate an out put_token, which when passed to the peer
gss_process_context _token will instruct it to do likewise. No
further security services may be obtained using the context specified
by cont ext _handl e.

Par anet er s:

m nor _st at us i nteger, nodify
Mechani sm specific status code

cont ext _handl e gss_ctx_id_t, nodify
context handle identifying context to delete.

out put _t oken buf fer, opaque, nodify
token to be sent to renote application to
instruct it to also delete the context
Functi on val ue:
GSS status code
GSS_S COWLETE Successful conpl etion
GSS_S FAI LURE Failure, see mnor_status for nore infornmation
GSS S NO CONTEXT No valid context was supplied

3.7. gss_context _tinme

OM uint32 gss_context_tinme (

OM uint32 * m nor _st at us,
gss_ctx_id._t cont ext _handl e,
OM uint32 * time_rec)

Pur pose

Det erm nes the nunber of seconds for which the specified context will
remain valid.

W ay [Page 26]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

Par anet ers:

m nor _st at us i nteger, nodify
| mpl enent ati on specific status code.

cont ext _handl e gss ctx _id t, read
Identifies the context to be interrogated.

time_rec i nteger, nodify
Number of seconds that the context will remain
valid. |If the context has already expired

zero will be returned.

Functi on val ue:

GSS status code:
GSS_S COVPLETE Successful conpletion
GSS S CONTEXT_EXPI RED The context has al ready expired

GSS_S CREDENTI ALS_EXPI RED The context is recogni zed, but
associ ated credentials have expired

GSS S NO CONTEXT The context _handl e paraneter did not identify a
val i d context

3.8. gss_sign

OM uint32 gss_sign (

OM uint32 * m nor _st at us,
gss_ctx_id._t cont ext _handl e,
i nt gop_req,
gss_buffer _t nmessage_buf fer
gss_buffer _t nmsg_t oken)

Pur pose

Cenerates a cryptographic signature for the supplied nessage, and

pl aces the signature in a token for transfer to the peer application
The qop_req paraneter allows a choice between several cryptographic
algorithnms, if supported by the chosen nmechani sm

Par anet ers:

W ay

m nor _st at us i nteger, nodify
| mpl enent ati on specific status code.

cont ext _handl e gss_ctx_id t, read
identifies the context on which the nessage

[Page 27]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

qop_req

message_buf fer

nmsg_t oken

Functi on val ue:
GSS st atus code:
GSS_ S COWPLETE

GSS_S_CONTEXT_EXPI

GSS_S_CREDENTI ALS_

GSS_S_NO_CONTEXT

GSS_S _FAI LURE
3.9. gss_verify

OM uint32 gss_ver

oM

gss
gss
gss
i nt

Pur pose

Verifies that a crypt

paraneter, fits the s

a message recipient t
applied to the nessag

W ay

will be sent

i nteger, read, optiona

Specifies requested quality of protection.

Call ers are encouraged, on portability grounds,
to accept the default quality of protection

of fered by the chosen nechani sm which nmay be
requested by specifying GSS C QOP_DEFAULT for
this paraneter. |f an unsupported protection
strength is requested, gss_sign will return a
maj or _status of GSS S FAI LURE

buf fer, opaque, read
message to be signed

buf fer, opaque, nodify
buffer to receive token

Successful conpletion
RED The context has al ready expired

EXPI RED The context is recognized, but
associ ated credentials have expired

The context _handl e paraneter did not identify a
val i d context

Failure. See minor_status for nore information

ify (

uint32 * m nor _st at us,
_ctx_id_t cont ext _handl e,
_buffer_t nmessage_buffer,
_buffer_t t oken_buffer,

* gop_state)

ographi ¢ signature, contained in the token
uppl i ed message. The qop_state paraneter allows
o determ ne the strength of protection that was
e.

[Page 28]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

Par anet ers:

m nor _st at us i nteger, nodify
Mechani sm speci fic status code.

cont ext _handl e gss ctx _id t, read
identifies the context on which the nessage
arrived

nmessage_buf fer buf f er, opaque, read

message to be verified

t oken_buf fer buf fer, opaque, read
t oken associ ated wi th nessage

gop_state i nteger, nodify
quality of protection gained fromsignature

Functi on val ue:
GSS status code:
GSS_S COVPLETE Successful conpletion
GSS S DEFECTI VE_TOKEN The token fail ed consistency checks
GSS S BAD SI G The signature was incorrect

GSS_S DUPLI CATE_TCOKEN The token was valid, and contained a correct
signature for the nessage, but it had al ready
been processed

GSS S O.D TOKEN The token was valid, and contained a correct
signature for the nmessage, but it is too old

GSS S UNSEQ TOKEN The token was valid, and contained a correct
signature for the nmessage, but has been
verified out of sequence; an earlier token has
been signed or sealed by the renote
application, but not yet been processed
| ocal ly.

GSS S CONTEXT_EXPI RED The context has al ready expired

GSS_S CREDENTI ALS_EXPI RED The context is recogni zed, but
associ ated credentials have expired

W ay [Page 29]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993
GSS S NO CONTEXT The context _handl e parameter did not identify a
val i d context
GSS_ S FAI LURE Failure. See mnor_status for nore information
3.10. gss_sea

OM uint32 gss_seal (

OM uint32 * m nor _st at us,
gss_ctx_id_t cont ext _handl e,

i nt conf_req_f1 ag,

i nt qop_req

gss_buffer t i nput _nessage_buffer
int * conf_state,

gss_buffer _t out put _nessage_buffer)

Pur pose

Cryptographically signs and optionally encrypts the specified

i nput _nessage. The out put _nessage contains both the signature and
the nmessage. The qop_req paraneter allows a choice between severa
cryptographic algorithns, if supported by the chosen nechani sm

Par anet ers:

nm nor _st at us i nteger, nodify
Mechani sm specific status code

cont ext _handl e gss_ctx_id t, read
identifies the context on which the nessage
will be sent

conf_req_flag bool ean, read
True - Both confidentiality and integrity
services are requested
False - Only integrity service is requested

gop_req i nteger, read, optiona
Specifies required quality of protection. A
mechani smspecific default may be requested by
setting qop_req to GSS_C QOP_DEFAULT. If an
unsupported protection strength is requested,
gss_seal will return a major_status of
GSS_S FAl LURE.

i nput _nmessage_buffer buf f er, opaque, read
message to be seal ed

W ay [Page 30]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

conf_state bool ean, nodify
True - Confidentiality, data origin
aut hentication and integrity services
have been applied
False - Integrity and data origin services only
has been appli ed.

out put _nessage buffer buffer, opaque, nodify
buffer to receive seal ed nessage

Function val ue:

GSS status code
GSS_S COWLETE Successful conpl etion
GSS S CONTEXT_EXPI RED The context has al ready expired

GSS S CREDENTI ALS _EXPI RED The context is recogni zed, but
associ ated credentials have expired

GSS_ S NO CONTEXT The context _handl e parameter did not identify a
valid context

GSS S FAI LURE Failure. See minor_status for nore information.
3.11. gss_unsea

OM ui nt32 gss_unseal (
OM uint32 * m nor _st at us,
gss_ctx_id._t cont ext _handl e,
gss_buffer t i nput _nessage_buffer
gss_buffer _t out put _nessage_buf fer
int * conf_state,
int * gop_state)

Pur pose

Converts a previously seal ed message back to a usable form verifying
t he enbedded signature. The conf_state paraneter indicates whether
the message was encrypted; the qop_state paraneter indicates the
strength of protection that was used to provide the confidentiality
and integrity services.

Par anet ers:

W ay

m nor _st at us i nteger, nodify
Mechani sm speci fic status code.

[Page 31]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

cont ext _handl e gss ctx id t, read
identifies the context on which the nessage
arrived

i nput _nmessage_buffer buf fer, opaque, read
seal ed nessage

out put _nessage buffer buffer, opaque, nodify
buffer to receive unseal ed nessage

conf_state bool ean, nodify
True - Confidentiality and integrity protection
were used
False - Inteegrity service only was used
gop_state i nteger, nodify

quality of protection gained fromsignature
Functi on val ue:

GSS status code:

GSS_S COVPLETE Successful conpletion

GSS S DEFECTI VE_TOKEN The token fail ed consistency checks

GSS S BAD SI G The signature was incorrect

GSS_S DUPLI CATE_TCKEN The token was valid, and contained a
correct signature for the nessage, but it had

al ready been processed

GSS S OLD TOKEN The token was valid, and contained a correct
signature for the nmessage, but it is too old

GSS S UNSEQ TOKEN The token was valid, and contained a correct
signature for the nmessage, but has been
verified out of sequence; an earlier token has
been signed or sealed by the renote
application, but not yet been processed
| ocal ly.

GSS S CONTEXT_EXPI RED The context has al ready expired

GSS_S CREDENTI ALS_EXPI RED The context is recogni zed, but
associ ated credentials have expired

W ay [Page 32]

RFC 1509

GSS_ S NO CONTEXT The context handl e parameter did not

GSS_S_FAI LURE

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

val i d context

Failure. See mnor_status for nore information

3.12. gss_display_status

OM uint32 gss_display_status (

Pur pose

OM uint32 * m nor _st at us,

st at us_val ue,
status_type

gss_QAD nmech_t ype
* nmessage_cont ext,
gss_buffer_t status_string)

Al'lows an application to obtain a textual representation of a GSSAP
status code, for display to the user or for |ogging purposes. Since
sonme status values may indicate multiple errors, applications nmay
need to call gss_display_status multiple times, each call generating

a single text string.

The message_context paraneter is used to

i ndi cate which error message should be extracted froma given
status_val ue; nessage _context should be initialized to 0, and

gss_display_status will
nessages to extract.

Par anet ers:

m nor _st at us

status_val ue

status_type

mech_type

nmessage_cont ext

W ay

i nteger, nodify
Mechani sm speci fic status code

i nteger, read
Status value to be converted

i nteger, read

GSS C GSS CODE - status _value is a GSS status
code

GSS C MECH CODE - status_value is a nmechani sm
stat us code

hject ID, read, optiona

Under | yi ng mechani sm (used to interpret a

m nor status value) Supply GSS C NULL O D to
obtain the systemdefault.

i nteger, read/nodify
Shoul d be initialized to zero by caller

[Page 33]

identify a

return a non-zero value if there are further

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

on first call. |If further nessages are
contained in the status_val ue paraneter,
nmessage_context will be non-zero on return,

and this val ue should be passed back to
subsequent calls, along with the sane
status_val ue, status_type and nech_type
paraneters

status_string buffer, character string, nodify
textual interpretation of the status_val ue

Functi on val ue:
GSS st atus code:
GSS_ S COVPLETE Successful conpl etion

GSS S BAD MECH I ndicates that translation in accordance with
an unsupported nmechani smtype was requested

GSS_S BAD STATUS The status val ue was not recogni zed, or the
status type was neither GSS_C GSS _CODE nor
GSS_C_MECH_CODE

3.13. gss_indicate_mechs
OM uint32 gss_indicate_mechs (
OMuint32 * m nor _st at us,
gss_AO D set * mech_set)
Pur pose

Al'l ows an application to deterni ne which underlying security
nmechani sns are avail abl e.

Par anet ers:

m nor _st at us i nteger, nodify
Mechani sm speci fic status code.

mech_set set of Ohject IDs, nodify
set of inplenentation-supported nechani sns.
The returned gss_ O D set value will be a
pointer into static storage, and should be
treated as read-only by the caller.

W ay [Page 34]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

Functi on val ue:
GSS status code:
GSS_S COVPLETE Successful conpletion
3.14. gss_conpare_nane

OM ui nt32 gss_conpare_nane (

OMuint32 * m nor _st at us,
gss_nane_t nanel,
gss_nane_t nanez,

int * nane_equal)

Pur pose

Al'lows an application to conpare two internal-formnanes to determne
whet her they refer to the sane entity.

Par anet ers:

m nor _st at us i nteger, nodify
Mechani sm speci fic status code

nanel gss_nhane_t, read
internal -form name

name2 gss_nane_t, read
internal -form nane

nane_equal bool ean, nodify
True - nanes refer to sane entity
Fal se - nanes refer to different entities
(strictly, the names are not known to
refer to the sane identity).
Function val ue:

GSS status code:

GSS_ S COVPLETE Successful conpletion

GSS S BAD NAVETYPE The type contained within either nanel or
nane2 was unrecogni zed, or the nanes were of

i nconpar abl e types

GSS_S BAD NAME One or both of namel or nane2 was ill-forned

W ay [Page 35]

RFC 1509

3. 15.

gss_di spl ay_nane

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

OM uint32 gss_display_nane (

OMuint32 * m nor _st at us,
gss_nane_t i nput _nane,
gss_buffer t out put _nane_buf fer
gss_AOD * out put _nane_t ype)

Pur pose

Allows an application to obtain a textual representation of an opaque
internal -form nane for display purposes. The syntax of a printable
nane is defined by the GSSAPI inpl enentation.

Par anet ers:

m nor _status

i nput _nane

out put _nane_buf fer

out put _nanme_t ype

Functi on val ue:

W ay

GSS st atus code:

GSS_S_COVPLETE

i nteger, nodify
Mechani sm speci fic status code.

gss_nane_t, read
nane to be displayed

buffer, character-string, nodify
buffer to receive textual nane string

Qoj ect 1D, nodify

The type of the returned name. The returned
gss_ ODw Il be a pointer into static storage
and should be treated as read-only by the caller

Successful conpletion

GSS S BAD NAVETYPE The type of input_name was not recognized

GSS_S_BAD _NAME

gss_i nport _nane

i nput _name was ill-forned

OM ui nt 32 gss_inport_name (

OM uint32 * m nor _st at us,
gss_buffer_t i nput _nane_buf f er
gss_AD i nput _name_t ype
gss_nane_t * out put _nane)

[Page 36]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

Pur pose
Convert a printable nane to internal form
Par anet er s:

m nor _st at us i nteger, nodify
Mechani sm speci fic status code

i nput _name_buf f er buffer, character-string, read
buffer containing printable name to convert

i nput _nane_type bject ID, read, optiona
bj ect 1d specifying type of printable
name. Applications may specify either
GSS C NULL_O D to use a local systemspecific
printable syntax, or an OD registered by the
GSSAPI i npl enentation to nane a particul ar
namespace

out put _nane gss_nane_t, nodify
returned nane in internal form

Functi on val ue:
GSS status code
GSS_ S COVPLETE Successful conpl etion
GSS S BAD NAMVETYPE The i nput _nane_type was unrecogni zed

GSS S BAD NAMVE The i nput _name paraneter could not be
interpreted as a nane of the specified type

3.17. gss_rel ease_name
OM ui nt 32 gss_rel ease_nane (
OM uint32 * m nor _st at us,
gss_nhane_t * nane)
Pur pose
Free GSSAPI -al |l ocated storage associated with an internal form nane.

Par anet ers:

m nor _st at us i nteger, nodify
Mechani sm speci fic status code

W ay [Page 37]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993
nane gss_nane_t, nodify
The nanme to be del eted
Functi on val ue:
GSS status code
GSS S COWLETE Successful conpl etion
GSS_S BAD NAME The nane paraneter did not contain a valid nane
3.18. gss_release_bhuffer
OM ui nt 32 gss_rel ease_buffer (
OM uint32 * m nor _st at us,
gss_buffer _t buf f er)
Pur pose
Free storage associated with a buffer format name. The storage nust
have been allocated by a GSSAPI routine. |In addition to freeing the
associ ated storage, the routine will zero the length field in the
buf f er paraneter.

Par anet ers:

m nor _st at us i nteger, nodify
Mechani sm speci fic status code

buf f er buffer, nodify
The storage associated with the buffer will be
del eted. The gss_buffer_desc object will not
be freed, but its Ilength field will be zeroed.
Functi on val ue:
GSS status code
GSS_S COWLETE Successful conpl etion
3.19. gss_release_oid_set
OM ui nt 32 gss_rel ease_oid_set (
OM uint32 * m nor _st at us,
gss_O D set * set)

Pur pose

W ay [Page 38]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993
Free storage associated with a gss_O D set object. The storage nust
have been allocated by a GSSAPI routine.

Par anet er s:

m nor _st at us i nteger, nodify
Mechani sm speci fic status code

set Set of Object IDs, nodify
The storage associated with the gss_QO D set
wi |l be del eted.
Function val ue:
GSS status code
GSS_S COVPLETE Successful conpletion

3.20. gss_inquire_cred

OM uint32 gss_inquire_cred (

OMuint32 * m nor _st at us,
gss_cred_id_t cred_handl e,
gss_nane_t * nane,

OM uint32 * lifetine,

int * cred_usage,

gss_O D set * mechani snms)
Pur pose:

btains information about a credential. The caller nust already have
obtained a handle that refers to the credential.

Par anet ers:

m nor _st at us i nteger, nodify
Mechani sm speci fic status code

cred_handl e gss_cred_id_t, read
A handle that refers to the target credential.
Specify GSS_C NO CREDENTI AL to inquire about
the default credential.

nane gss_nane_t, nodify
The nane whose identity the credential asserts.
Specify NULL if not required.

lifetinme I nteger, nodify

W ay [Page 39]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

cred_usage

mechani sns

Functi on val ue:
GSS status code
GSS S COWLETE

GSS_S_NO_CRED

The nunber of seconds for which the credenti al
will remain valid. |f the credential has
expired, this paraneter will be set to zero

If the inplenmentati on does not support
credential expiration, the val ue

GSS CINDEFINITE will be returned. Specify
NULL i f not required.

I nteger, nodify
How t he credential may be used. One of the
fol | owi ng:
GSS_C_I NI TI ATE
GSS_C_ACCEPT
GSS_C _BOTH
Specify NULL if not required.

gss_QAO D set, nodify

Set of nmechani sns supported by the credenti al
Specify NULL if not required.

Successful conpl etion

The referenced credentials could not be
accessed.

GSS S DEFECTI VE_CREDENTI AL The referenced credentials were

i nval i d.

GSS_S CREDENTI ALS_EXPI RED The referenced credentials have expired.

#i f ndef GSSAPI _H

#define GSSAPI _H_

/*

If the lifetine parameter was not passed as
NULL, it will be set to O.

* First, define the platforndependent types.

*/

t ypedef <pl atform specific> OM uint32;
typedef <platformspecific> gss_ctx_id_t;
typedef <platformspecific> gss_cred_id_t;
typedef <platform specific> gss_nane_t;

W ay

[Page 40]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

/*

* Note that a platformsupporting the xomh X/ Qpen header file
* may make use of that header for the definitions of OM uint32
* and the structure to which gss_O D desc equates.

*/

typedef struct gss_O D desc_struct {
OM ui nt 32 | engt h;
voi d *el ement s;

} gss_O D desc, *gss_QAD;

typedef struct gss O D set _desc_struct {
i nt count;
gss_QO D el enents;

} gss_O D set_desc, *gss_Q D set;

typedef struct gss_buffer_desc_struct {
size_ t |ength;
voi d *val ue;

} gss_buffer _desc, *gss buffer _t;

typedef struct gss_channel _bi ndi ngs_struct {
OM uint32 initiator_addrtype;
gss_buffer _desc initiator_address;
OM ui nt 32 accept or _addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

} *gss_channel _bi ndings_t;

/ *
* Six independent flags each of which indicates that a context
* supports a specific service option.
*/

#define GSS_C DELEG FLAG 1

#define GSS_C_MJTUAL_FLAG 2

#defi ne GSS_C_REPLAY_FLAG 4

#defi ne GSS_C_SEQUENCE _FLAG 8

#define GSS_C _CONF_FLAG 16

#define GSS_C | NTEG FLAG 32

/*
* Credential usage options
*/
#define GSS_C BOTH 0
#define GSS_C INTIATE 1
#defi ne GSS_C_ACCEPT 2

W ay [Page 41]

RFC 1509

/*

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

* Status code types for gss_display_status

*/

#define GSS_C_GSS_CODE 1
#def i ne GSS_C_MECH_CODE 2

/*

* The constant definitions for channel -bindi ngs address fanilies

*/
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

/

L I

W ay

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne
ne
ne
ne
ne
ne

GSS_C_AF_UNSPEC 0;
GSS_C_AF_LOCAL 1;
GSS_C_AF_I NET 2;
GSS_C_AF_IMPLINK 3;
GSS_C_AF_PUP 4:
GSS_C_AF_CHACS 5;
GSS_C_AF_NS 6:
GSS_C_AF_NBS 7;
GSS_C_AF_ECMA 8;
GSS_C_AF DATAKIT O;
GSS_C_AF_CCI TT 10;
GSS_C_AF_SNA 11;
GSS_C_AF_DECnet 12;
GSS_C_AF_DLI 13;
GSS_C_AF_LAT 14;
GSS_C_AF_HYLI NK 15;
GSS_C_AF_APPLETALK 16;
GSS_C_AF_BSC 17;
GSS_C_AF_DSS 18;
GSS_C_AF_Osl 19;
GSS_C_AF_X25 21;

GSS_C AF_NULLADDR 255;

GSS_C NO BUFFER ((gss_buffer_t) 0)

GSS_C NULL_O D ((gss_QO D) 0)

GSS_C NULL_O D_SET ((gss_QO D_set) 0)

GSS C NO CONTEXT ((gss_ctx_id t) 0)

GSS C NO CREDENTI AL ((gss_cred_id t) 0)
GSS_C_NO_CHANNEL_BI NDI NGS ((gss_channel _bi ndi ngs_t) 0)
GSS_C_EMPTY_BUFFER {0, NULL}

Define the default Quality of Protection for per-nessage
services. Note that an inplenmentation that offers multiple

I evel s of QOP may either reserve a value (for exanple zero,

as assuned here) to nean "default protection", or alternatively
may sinply equate GSS _C QOP_DEFAULT to a specific explicit QOP
val ue.

[Page 42]

RFC 1509

* [
#def i ne

/*

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

GSS_C_QOP_DEFAULT 0

* Expiration time of 2732-1 seconds neans infinite lifetinme for a
* credential or security context

* [
#def i ne

GSS_C | NDEFI NI TE Oxfffffffful

/* Major status codes */

#defi ne

/*

* Sone

* [
#defi ne
#defi ne
#def i ne
#def i ne
#def i ne
#def i ne

/*

GSS_S_COWPLETE 0

"hel per" definitions to make the status code nacros obvious.

GSS_C_CALLI NG ERROR_OFFSET 24
GSS_C_ROUTI NE_ERROR_OFFSET 16
GSS_C_SUPPLEMENTARY_OFFSET 0
GSS_C_CALLI NG ERROR_MASK 0377ul
GSS_C_ROUTI NE_ERROR_MASK 0377ul
GSS_C_SUPPLEMENTARY_MASK 0177777ul

* The macros that test status codes for error conditions

* [
#def i ne

GSS_CALLI NG ERROR(x) \

(x & (GSS_C CALLI NG ERROR MASK << GSS_C CALLI NG _ERROR OFFSET))

#defi ne

GSS_ROUTI NE_ERROR(X) \

(x & (GSS_C ROUTI NE_ERROR MASK << GSS_C ROUTI NE_ERROR OFFSET))

#def i ne

GSS_SUPPLEMENTARY_| NFQ(x) \

(x & (GSS_C_SUPPLEMENTARY_MASK << GSS_C_SUPPLEMENTARY_ OFFSET))

#def i ne

GSS_ERROR(X) \

((GSS_CALLI NG ERROR(X) != 0) || (GSS_ROUTI NE_ERROR(X) != 0))

/*

* Now t he actual status code definitions

*/

/*

* Calling errors:

* [
#def i ne

#def i ne

W ay

GSS_S_CALL_| NACCESSI BLE_READ \

(1ul << GSS_C_CALLI NG_ERROR_OFFSET)
GSS_S_CALL_| NACCESSI BLE_WRI TE \

(2ul << GSS_C_CALLI NG_ERROR_OFFSET)

[Page 43]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

#define GSS_S CALL_BAD_STRUCTURE \
(3ul << GSS_C_CALLI NG _ERROR OFFSET)

/ *

* Routine errors:

* [

#define GSS_S BAD MECH (1ul << GSS_C ROUTI NE_ERROR OFFSET)

#define GSS_S BAD NAME (2ul << GSS_C ROUTI NE_ERROR COFFSET)

#define GSS_S BAD NAMETYPE (3ul << GSS_C ROUTI NE_ERROR _COFFSET)
#define GSS_S BAD BI NDI NGS (4ul << GSS_C_ROUTI NE_ERROR _OFFSET)

#define GSS_S BAD STATUS (5ul << GSS_C_ROUTI NE_ERROR _OFFSET)

#define GSS_S BAD SIG (6ul << GSS_C _ROUTI NE_ERROR OFFSET)

#define GSS_S NO CRED (7ul << GSS_C _ROUTI NE_ERROR OFFSET)

#define GSS_ S NO CONTEXT (8ul << GSS_C ROUTI NE_ERROR _OFFSET)

#define GSS_S DEFECTI VE_TOKEN (9ul << GSS_C _ROUTI NE_ERROR_OFFSET)
#defi ne GSS_S DEFECTI VE_CREDENTI AL (10ul << GSS_C ROUTI NE_ERROR_OFFSET)
#define GSS_S CREDENTI ALS EXPI RED (11ul << GSS_C ROUTI NE_ERROR _OFFSET)
#define GSS_ S CONTEXT_EXPI RED (12ul << GSS_C ROUTI NE_ERROR COFFSET)
#define GSS_S FAI LURE (13ul << GSS_C ROUTI NE_ERROR OFFSET)

/ *

* Suppl enentary info bits:

*/

#define GSS_S CONTI NUE_NEEDED (1ul << (GSS_C SUPPLEMENTARY_OFFSET + 0))
#define GSS_S DUPLI CATE TOKEN (1ul << (GSS_C SUPPLEMENTARY_OFFSET + 1))
#define GSS_S OLD TOKEN (1lul << (GSS_C _SUPPLEMENTARY_OFFSET + 2))
#define GSS_S UNSEQ TOKEN (lul << (GSS_C_SUPPLEMENTARY_OFFSET + 3))

/*
* Finally, function prototypes for the GSSAPI routines.
*/

OM ui nt 32 gss_acquire_cred

(OM_ui nt 32*, /* mnor_status */
gss_nane_t, /* desired_nane */

OM ui nt 32, /* tinme_req */

gss_QA D set, /* desired_nechs */

i nt, /* cred_usage */
gss_cred_id_t*, /* output_cred_handle */
gss_A D set*, /* actual _mechs */

OM ui nt 32* /* time_rec */
)

OM _ui nt 32 gss_rel ease_cred,
(OM_ui nt 32*, /* mnor_status */
gss_cred_id_t* /* cred_handl e */

);

W ay [Page 44]

RFC 1509 GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

OM uint32 gss_init_sec_context

(OM _ui nt 32*, /* mnor_status */
gss_cred_id_t, /* claimant _cred_handl e */
gss_ctx_id_ t*, /* context _handle */
gss_nane_t, /* target_name */
gss_A D, /* mech_type */

i nt, /* req_flags */
OM ui nt 32, /* time_req */

gss_channel _bi ndi ngs_t,
/* input_chan_bi ndi ngs */

gss_buffer_t, /* input_token */

gss_Q D, /* actual _nech_type */
gss_buffer _t, /* output _token */
int*, /* ret_flags */

OM_ui nt 32* /* tinme_rec */

)

OM_ui nt 32 gss_accept _sec_cont ext

(OM _ui nt 32*, /* mnor_status */
gss_ctx_ id t*, /* context _handle */
gss_cred_id_t, /* verifier_cred_handle */
gss_buffer_t, /* input_token_buffer */

gss_channel _bi ndi ngs_t,
/* i nput _chan_bi ndi ngs */

gss_hane_t*, /* src_nanme */
gss_Q D, /* mech_type */
gss_buffer _t, /* out put _token */
int*, /* ret_flags */
OM ui nt 32*, /* time_rec */
gss cred id t* /* del egated _cred _handle */
)
OM _ui nt 32 gss_process_cont ext _t oken
(OM_ui nt 32*, /* mnor_status */
gss_ctx_id_t, /* context _handl e */
gss_buffer t /* token_buffer */
)
OM ui nt 32 gss_del et e_sec_cont ext
(OM_ui nt 32*, /* mnor_status */
gss_ctx_id_t*, /* context _handl e */
gss_buffer t /* output _token */
)

W ay [Page 45]

RFC 1509

OM ui nt 32

OM ui nt 32

OM ui t n32

OM ui nt 32

OM _ui nt 32

W ay

GSSAPI -

gss_context _tine

(OM _ui nt 32*,
gss_ctx_id_t,
OM ui nt 32*

)

gss_sign

(OM _ui nt 32*,
gss_ctx_id_t,
int,

gss_buffer_t,
gss_buffer t

) il
gss_verify
(OM_ui nt 32*,

gss_ctx_id_t,
gss_buffer _t,
gss_buffer _t,

int*

)

gss_seal
(OM_ui nt 32*,
gss_ctx_ id_ t,
int,
int,
gss_buffer_t,
int*,
gss_buffer t
)

gss_unsea

(OM_ui nt 32*,

gss_ctx_id_t,
gss_buffer _t,
gss_buffer _t,
int*,
i nt*

)i

Overvi ew and C bi ndi ngs

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*

/*
/*
/*

m nor _status */
context _handl e */
tinme_rec */

m nor _status */
context _handl e */
qgqop_req */
message_buffer */
nmessage_t oken */

m nor_status */
context _handl e */
message_buffer */
t oken_buffer */
gqop_state */

m nor _status */

context _handle */
conf_req_flag */

qgqop_req */

i nput _nmessage_buffer */
conf_state */

out put _nessage_buffer */

m nor_status */

context _handl e */

i nput _nessage_buffer */
out put _nessage_buffer */
conf_state */

gop_state */

Sept ember 1993

[Page 46]

RFC 1509

OM ui nt 32

OM ui nt 32

OM _ui nt 32

OM ui nt 32

OM ui nt 32

OM ui nt 32

OM ui nt 32

OM ui nt 32

W ay

GSSAPI -

gss_di splay_status

(OM _ui nt 32*, /*
OM _ui nt 32, /*
int, /*
gss_Q D, /*
int*, /*
gss_buffer t /*

)

gss_i ndi cat e_mechs

(OM_ui nt 32*, /*
gss_O D set* /*

)

gss_conpar e_nane

(OM_ui nt 32*, /*
gss_nane_t, /*
gss_nane_t, /*
int* /*

)

gss_di spl ay_nane,
(OM_ui nt 32*,

gss_nane_t,
gss_buffer _t, /*
gss_Q D*

)

gss_i nport _nane

(OM_ui nt 32*, /*
gss_buffer _t, /*
gss_A D, /*
gss_hanme_t* /*
)

gss_rel ease_nane

(OM _ui nt 32*, /*
gss_hane_t* /*
)

gss_rel ease_buffer
(OM_ui nt 32*, /*
gss_buffer t /*
)

gss_rel ease_oi d_set
(OM_ui nt 32*, /*
gss_O D set* /*

Overvi ew and C bi ndi ngs

m nor _status */
status_val ue */
status_type */
mech_type */
message_context */
status_string */

m nor_status */
mech_set */

m nor_status */
nanel */
name2 */
nane_equal */

/* mnor_status */
/* input_name */

out put _nane_buffer */

/* output_name_type */

m nor _status */

i nput _name_buffer */
i nput _name_type */
out put _nane */

m nor _status */
i nput _name */

m nor _status */
buffer */

m nor_status */
set */

Sept ember 1993

[Page 47]

RFC 1509

GSSAPI - Overvi ew and C bi ndi ngs Sept ember 1993

)

OM ui nt32 gss_inquire_cred
(OM_ui nt32 *, /* mnor_status */
gss_cred_id_t, /* cred_handl e */
gss_nane_t *, /* nane */
OM ui nt 32 *, /* lifetime */
int *, /* cred_usage */
gss_O D set * /* mechani sns */
)

#endif /* GSSAPI _H_ */

Ref er ences

[1]

[2]

Linn, J., "Generic Security Service Application Program

Interface",

RFC 1508, Geer Zol ot Associ at e,

Sept enber 1993.

"OSl nj ect Managenment APl Specification, Version 2.0 t", X 400
APl Associ ation & X/ Open Conpany Linited, August 24, 1990.

Speci fication of datatypes and routines for manipul ati ng

i nformati on objects.

Security Considerations

Security issues are discussed throughout this neno.

Aut hor’ s Addr ess

John Way

Di gi tal Equi pment Corporation

550 King Street, LKG&2-2/AA6

Littleton, MA 01460

USA

Phone: +1-508-486-5210

EMai | : Way@ uxedo. enet . dec. com
W ay

[Page 48]

