
Network Working Group J. Oikarinen
Request for Comments: 1459 D. Reed
 May 1993

 Internet Relay Chat Protocol

Status of This Memo

 This memo defines an Experimental Protocol for the Internet
 community. Discussion and suggestions for improvement are requested.
 Please refer to the current edition of the "IAB Official Protocol
 Standards" for the standardization state and status of this protocol.
 Distribution of this memo is unlimited.

Abstract

 The IRC protocol was developed over the last 4 years since it was
 first implemented as a means for users on a BBS to chat amongst
 themselves. Now it supports a world-wide network of servers and
 clients, and is stringing to cope with growth. Over the past 2 years,
 the average number of users connected to the main IRC network has
 grown by a factor of 10.

 The IRC protocol is a text-based protocol, with the simplest client
 being any socket program capable of connecting to the server.

Table of Contents

 1. INTRODUCTION ... 4
 1.1 Servers .. 4
 1.2 Clients .. 5
 1.2.1 Operators .. 5
 1.3 Channels .. 5
 1.3.1 Channel Operators 6
 2. THE IRC SPECIFICATION 7
 2.1 Overview .. 7
 2.2 Character codes ... 7
 2.3 Messages .. 7
 2.3.1 Message format in ’pseudo’ BNF 8
 2.4 Numeric replies ... 10
 3. IRC Concepts .. 10
 3.1 One-to-one communication 10
 3.2 One-to-many ... 11
 3.2.1 To a list .. 11
 3.2.2 To a group (channel) 11
 3.2.3 To a host/server mask 12
 3.3 One to all .. 12

Oikarinen & Reed [Page 1]

RFC 1459 Internet Relay Chat Protocol May 1993

 3.3.1 Client to Client 12
 3.3.2 Clients to Server 12
 3.3.3 Server to Server 12
 4. MESSAGE DETAILS ... 13
 4.1 Connection Registration 13
 4.1.1 Password message 14
 4.1.2 Nickname message 14
 4.1.3 User message 15
 4.1.4 Server message 16
 4.1.5 Operator message 17
 4.1.6 Quit message 17
 4.1.7 Server Quit message 18
 4.2 Channel operations 19
 4.2.1 Join message 19
 4.2.2 Part message 20
 4.2.3 Mode message 21
 4.2.3.1 Channel modes 21
 4.2.3.2 User modes 22
 4.2.4 Topic message 23
 4.2.5 Names message 24
 4.2.6 List message 24
 4.2.7 Invite message 25
 4.2.8 Kick message 25
 4.3 Server queries and commands 26
 4.3.1 Version message 26
 4.3.2 Stats message 27
 4.3.3 Links message 28
 4.3.4 Time message 29
 4.3.5 Connect message 29
 4.3.6 Trace message 30
 4.3.7 Admin message 31
 4.3.8 Info message 31
 4.4 Sending messages .. 32
 4.4.1 Private messages 32
 4.4.2 Notice messages 33
 4.5 User-based queries 33
 4.5.1 Who query .. 33
 4.5.2 Whois query .. 34
 4.5.3 Whowas message 35
 4.6 Miscellaneous messages 35
 4.6.1 Kill message 36
 4.6.2 Ping message 37
 4.6.3 Pong message 37
 4.6.4 Error message 38
 5. OPTIONAL MESSAGES ... 38
 5.1 Away message .. 38
 5.2 Rehash command .. 39
 5.3 Restart command ... 39

Oikarinen & Reed [Page 2]

RFC 1459 Internet Relay Chat Protocol May 1993

 5.4 Summon message .. 40
 5.5 Users message ... 40
 5.6 Operwall command .. 41
 5.7 Userhost message .. 42
 5.8 Ison message .. 42
 6. REPLIES ... 43
 6.1 Error Replies ... 43
 6.2 Command responses 48
 6.3 Reserved numerics 56
 7. Client and server authentication 56
 8. Current Implementations Details 56
 8.1 Network protocol: TCP 57
 8.1.1 Support of Unix sockets 57
 8.2 Command Parsing ... 57
 8.3 Message delivery .. 57
 8.4 Connection ’Liveness’ 58
 8.5 Establishing a server-client connection 58
 8.6 Establishing a server-server connection 58
 8.6.1 State information exchange when connecting 59
 8.7 Terminating server-client connections 59
 8.8 Terminating server-server connections 59
 8.9 Tracking nickname changes 60
 8.10 Flood control of clients 60
 8.11 Non-blocking lookups 61
 8.11.1 Hostname (DNS) lookups 61
 8.11.2 Username (Ident) lookups 61
 8.12 Configuration file 61
 8.12.1 Allowing clients to connect 62
 8.12.2 Operators ... 62
 8.12.3 Allowing servers to connect 62
 8.12.4 Administrivia 63
 8.13 Channel membership 63
 9. Current problems .. 63
 9.1 Scalability ... 63
 9.2 Labels .. 63
 9.2.1 Nicknames .. 63
 9.2.2 Channels ... 64
 9.2.3 Servers .. 64
 9.3 Algorithms .. 64
 10. Support and availability 64
 11. Security Considerations 65
 12. Authors’ Addresses ... 65

Oikarinen & Reed [Page 3]

RFC 1459 Internet Relay Chat Protocol May 1993

1. INTRODUCTION

 The IRC (Internet Relay Chat) protocol has been designed over a
 number of years for use with text based conferencing. This document
 describes the current IRC protocol.

 The IRC protocol has been developed on systems using the TCP/IP
 network protocol, although there is no requirement that this remain
 the only sphere in which it operates.

 IRC itself is a teleconferencing system, which (through the use of
 the client-server model) is well-suited to running on many machines
 in a distributed fashion. A typical setup involves a single process
 (the server) forming a central point for clients (or other servers)
 to connect to, performing the required message delivery/multiplexing
 and other functions.

1.1 Servers

 The server forms the backbone of IRC, providing a point to which
 clients may connect to to talk to each other, and a point for other
 servers to connect to, forming an IRC network. The only network
 configuration allowed for IRC servers is that of a spanning tree [see
 Fig. 1] where each server acts as a central node for the rest of the
 net it sees.

 [Server 15] [Server 13] [Server 14]
 / \ /
 / \ /
 [Server 11] ------ [Server 1] [Server 12]
 / \ /
 / \ /
 [Server 2] [Server 3]
 / \ \
 / \ \
 [Server 4] [Server 5] [Server 6]
 / | \ /
 / | \ /
 / | ____ /
 / | \ /
 [Server 7] [Server 8] [Server 9] [Server 10]

 :
 [etc.]
 :

 [Fig. 1. Format of IRC server network]

Oikarinen & Reed [Page 4]

RFC 1459 Internet Relay Chat Protocol May 1993

1.2 Clients

 A client is anything connecting to a server that is not another
 server. Each client is distinguished from other clients by a unique
 nickname having a maximum length of nine (9) characters. See the
 protocol grammar rules for what may and may not be used in a
 nickname. In addition to the nickname, all servers must have the
 following information about all clients: the real name of the host
 that the client is running on, the username of the client on that
 host, and the server to which the client is connected.

1.2.1 Operators

 To allow a reasonable amount of order to be kept within the IRC
 network, a special class of clients (operators) is allowed to perform
 general maintenance functions on the network. Although the powers
 granted to an operator can be considered as ’dangerous’, they are
 nonetheless required. Operators should be able to perform basic
 network tasks such as disconnecting and reconnecting servers as
 needed to prevent long-term use of bad network routing. In
 recognition of this need, the protocol discussed herein provides for
 operators only to be able to perform such functions. See sections
 4.1.7 (SQUIT) and 4.3.5 (CONNECT).

 A more controversial power of operators is the ability to remove a
 user from the connected network by ’force’, i.e. operators are able
 to close the connection between any client and server. The
 justification for this is delicate since its abuse is both
 destructive and annoying. For further details on this type of
 action, see section 4.6.1 (KILL).

1.3 Channels

 A channel is a named group of one or more clients which will all
 receive messages addressed to that channel. The channel is created
 implicitly when the first client joins it, and the channel ceases to
 exist when the last client leaves it. While channel exists, any
 client can reference the channel using the name of the channel.

 Channels names are strings (beginning with a ’&’ or ’#’ character) of
 length up to 200 characters. Apart from the the requirement that the
 first character being either ’&’ or ’#’; the only restriction on a
 channel name is that it may not contain any spaces (’ ’), a control G
 (^G or ASCII 7), or a comma (’,’ which is used as a list item
 separator by the protocol).

 There are two types of channels allowed by this protocol. One is a
 distributed channel which is known to all the servers that are

Oikarinen & Reed [Page 5]

RFC 1459 Internet Relay Chat Protocol May 1993

 connected to the network. These channels are marked by the first
 character being a only clients on the server where it exists may join
 it. These are distinguished by a leading ’&’ character. On top of
 these two types, there are the various channel modes available to
 alter the characteristics of individual channels. See section 4.2.3
 (MODE command) for more details on this.

 To create a new channel or become part of an existing channel, a user
 is required to JOIN the channel. If the channel doesn’t exist prior
 to joining, the channel is created and the creating user becomes a
 channel operator. If the channel already exists, whether or not your
 request to JOIN that channel is honoured depends on the current modes
 of the channel. For example, if the channel is invite-only, (+i),
 then you may only join if invited. As part of the protocol, a user
 may be a part of several channels at once, but a limit of ten (10)
 channels is recommended as being ample for both experienced and
 novice users. See section 8.13 for more information on this.

 If the IRC network becomes disjoint because of a split between two
 servers, the channel on each side is only composed of those clients
 which are connected to servers on the respective sides of the split,
 possibly ceasing to exist on one side of the split. When the split
 is healed, the connecting servers announce to each other who they
 think is in each channel and the mode of that channel. If the
 channel exists on both sides, the JOINs and MODEs are interpreted in
 an inclusive manner so that both sides of the new connection will
 agree about which clients are in the channel and what modes the
 channel has.

1.3.1 Channel Operators

 The channel operator (also referred to as a "chop" or "chanop") on a
 given channel is considered to ’own’ that channel. In recognition of
 this status, channel operators are endowed with certain powers which
 enable them to keep control and some sort of sanity in their channel.
 As an owner of a channel, a channel operator is not required to have
 reasons for their actions, although if their actions are generally
 antisocial or otherwise abusive, it might be reasonable to ask an IRC
 operator to intervene, or for the usersjust leave and go elsewhere
 and form their own channel.

 The commands which may only be used by channel operators are:

 KICK - Eject a client from the channel
 MODE - Change the channel’s mode
 INVITE - Invite a client to an invite-only channel (mode +i)
 TOPIC - Change the channel topic in a mode +t channel

Oikarinen & Reed [Page 6]

RFC 1459 Internet Relay Chat Protocol May 1993

 A channel operator is identified by the ’@’ symbol next to their
 nickname whenever it is associated with a channel (ie replies to the
 NAMES, WHO and WHOIS commands).

2. The IRC Specification

2.1 Overview

 The protocol as described herein is for use both with server to
 server and client to server connections. There are, however, more
 restrictions on client connections (which are considered to be
 untrustworthy) than on server connections.

2.2 Character codes

 No specific character set is specified. The protocol is based on a a
 set of codes which are composed of eight (8) bits, making up an
 octet. Each message may be composed of any number of these octets;
 however, some octet values are used for control codes which act as
 message delimiters.

 Regardless of being an 8-bit protocol, the delimiters and keywords
 are such that protocol is mostly usable from USASCII terminal and a
 telnet connection.

 Because of IRC’s scandanavian origin, the characters {}| are
 considered to be the lower case equivalents of the characters []\,
 respectively. This is a critical issue when determining the
 equivalence of two nicknames.

2.3 Messages

 Servers and clients send eachother messages which may or may not
 generate a reply. If the message contains a valid command, as
 described in later sections, the client should expect a reply as
 specified but it is not advised to wait forever for the reply; client
 to server and server to server communication is essentially
 asynchronous in nature.

 Each IRC message may consist of up to three main parts: the prefix
 (optional), the command, and the command parameters (of which there
 may be up to 15). The prefix, command, and all parameters are
 separated by one (or more) ASCII space character(s) (0x20).

 The presence of a prefix is indicated with a single leading ASCII
 colon character (’:’, 0x3b), which must be the first character of the
 message itself. There must be no gap (whitespace) between the colon
 and the prefix. The prefix is used by servers to indicate the true

Oikarinen & Reed [Page 7]

RFC 1459 Internet Relay Chat Protocol May 1993

 origin of the message. If the prefix is missing from the message, it
 is assumed to have originated from the connection from which it was
 received. Clients should not use prefix when sending a message from
 themselves; if they use a prefix, the only valid prefix is the
 registered nickname associated with the client. If the source
 identified by the prefix cannot be found from the server’s internal
 database, or if the source is registered from a different link than
 from which the message arrived, the server must ignore the message
 silently.

 The command must either be a valid IRC command or a three (3) digit
 number represented in ASCII text.

 IRC messages are always lines of characters terminated with a CR-LF
 (Carriage Return - Line Feed) pair, and these messages shall not
 exceed 512 characters in length, counting all characters including
 the trailing CR-LF. Thus, there are 510 characters maximum allowed
 for the command and its parameters. There is no provision for
 continuation message lines. See section 7 for more details about
 current implementations.

2.3.1 Message format in ’pseudo’ BNF

 The protocol messages must be extracted from the contiguous stream of
 octets. The current solution is to designate two characters, CR and
 LF, as message separators. Empty messages are silently ignored,
 which permits use of the sequence CR-LF between messages
 without extra problems.

 The extracted message is parsed into the components <prefix>,
 <command> and list of parameters matched either by <middle> or
 <trailing> components.

 The BNF representation for this is:

<message> ::= [’:’ <prefix> <SPACE>] <command> <params> <crlf>
<prefix> ::= <servername> | <nick> [’!’ <user>] [’@’ <host>]
<command> ::= <letter> { <letter> } | <number> <number> <number>
<SPACE> ::= ’ ’ { ’ ’ }
<params> ::= <SPACE> [’:’ <trailing> | <middle> <params>]

<middle> ::= <Any *non-empty* sequence of octets not including SPACE
 or NUL or CR or LF, the first of which may not be ’:’>
<trailing> ::= <Any, possibly *empty*, sequence of octets not including
 NUL or CR or LF>

<crlf> ::= CR LF

Oikarinen & Reed [Page 8]

RFC 1459 Internet Relay Chat Protocol May 1993

NOTES:

 1) <SPACE> is consists only of SPACE character(s) (0x20).
 Specially notice that TABULATION, and all other control
 characters are considered NON-WHITE-SPACE.

 2) After extracting the parameter list, all parameters are equal,
 whether matched by <middle> or <trailing>. <Trailing> is just
 a syntactic trick to allow SPACE within parameter.

 3) The fact that CR and LF cannot appear in parameter strings is
 just artifact of the message framing. This might change later.

 4) The NUL character is not special in message framing, and
 basically could end up inside a parameter, but as it would
 cause extra complexities in normal C string handling. Therefore
 NUL is not allowed within messages.

 5) The last parameter may be an empty string.

 6) Use of the extended prefix ([’!’ <user>] [’@’ <host>]) must
 not be used in server to server communications and is only
 intended for server to client messages in order to provide
 clients with more useful information about who a message is
 from without the need for additional queries.

 Most protocol messages specify additional semantics and syntax for
 the extracted parameter strings dictated by their position in the
 list. For example, many server commands will assume that the first
 parameter after the command is the list of targets, which can be
 described with:

 <target> ::= <to> ["," <target>]
 <to> ::= <channel> | <user> ’@’ <servername> | <nick> | <mask>
 <channel> ::= (’#’ | ’&’) <chstring>
 <servername> ::= <host>
 <host> ::= see RFC 952 [DNS:4] for details on allowed hostnames
 <nick> ::= <letter> { <letter> | <number> | <special> }
 <mask> ::= (’#’ | ’$’) <chstring>
 <chstring> ::= <any 8bit code except SPACE, BELL, NUL, CR, LF and
 comma (’,’)>

 Other parameter syntaxes are:

 <user> ::= <nonwhite> { <nonwhite> }
 <letter> ::= ’a’ ... ’z’ | ’A’ ... ’Z’
 <number> ::= ’0’ ... ’9’
 <special> ::= ’-’ | ’[’ | ’]’ | ’\’ | ’‘’ | ’^’ | ’{’ | ’}’

Oikarinen & Reed [Page 9]

RFC 1459 Internet Relay Chat Protocol May 1993

 <nonwhite> ::= <any 8bit code except SPACE (0x20), NUL (0x0), CR
 (0xd), and LF (0xa)>

2.4 Numeric replies

 Most of the messages sent to the server generate a reply of some
 sort. The most common reply is the numeric reply, used for both
 errors and normal replies. The numeric reply must be sent as one
 message consisting of the sender prefix, the three digit numeric, and
 the target of the reply. A numeric reply is not allowed to originate
 from a client; any such messages received by a server are silently
 dropped. In all other respects, a numeric reply is just like a normal
 message, except that the keyword is made up of 3 numeric digits
 rather than a string of letters. A list of different replies is
 supplied in section 6.

3. IRC Concepts.

 This section is devoted to describing the actual concepts behind the
 organization of the IRC protocol and how the current
 implementations deliver different classes of messages.

 1--\
 A D---4
 2--/ \ /
 B----C
 / \
 3 E

 Servers: A, B, C, D, E Clients: 1, 2, 3, 4

 [Fig. 2. Sample small IRC network]

3.1 One-to-one communication

 Communication on a one-to-one basis is usually only performed by
 clients, since most server-server traffic is not a result of servers
 talking only to each other. To provide a secure means for clients to
 talk to each other, it is required that all servers be able to send a
 message in exactly one direction along the spanning tree in order to
 reach any client. The path of a message being delivered is the
 shortest path between any two points on the spanning tree.

 The following examples all refer to Figure 2 above.

Oikarinen & Reed [Page 10]

RFC 1459 Internet Relay Chat Protocol May 1993

Example 1:
 A message between clients 1 and 2 is only seen by server A, which
 sends it straight to client 2.

Example 2:
 A message between clients 1 and 3 is seen by servers A & B, and
 client 3. No other clients or servers are allowed see the message.

Example 3:
 A message between clients 2 and 4 is seen by servers A, B, C & D
 and client 4 only.

3.2 One-to-many

 The main goal of IRC is to provide a forum which allows easy and
 efficient conferencing (one to many conversations). IRC offers
 several means to achieve this, each serving its own purpose.

3.2.1 To a list

 The least efficient style of one-to-many conversation is through
 clients talking to a ’list’ of users. How this is done is almost
 self explanatory: the client gives a list of destinations to which
 the message is to be delivered and the server breaks it up and
 dispatches a separate copy of the message to each given destination.
 This isn’t as efficient as using a group since the destination list
 is broken up and the dispatch sent without checking to make sure
 duplicates aren’t sent down each path.

3.2.2 To a group (channel)

 In IRC the channel has a role equivalent to that of the multicast
 group; their existence is dynamic (coming and going as people join
 and leave channels) and the actual conversation carried out on a
 channel is only sent to servers which are supporting users on a given
 channel. If there are multiple users on a server in the same
 channel, the message text is sent only once to that server and then
 sent to each client on the channel. This action is then repeated for
 each client-server combination until the original message has fanned
 out and reached each member of the channel.

 The following examples all refer to Figure 2.

Example 4:
 Any channel with 1 client in it. Messages to the channel go to the
 server and then nowhere else.

Oikarinen & Reed [Page 11]

RFC 1459 Internet Relay Chat Protocol May 1993

Example 5:
 2 clients in a channel. All messages traverse a path as if they
 were private messages between the two clients outside a channel.

Example 6:
 Clients 1, 2 and 3 in a channel. All messages to the channel are
 sent to all clients and only those servers which must be traversed
 by the message if it were a private message to a single client. If
 client 1 sends a message, it goes back to client 2 and then via
 server B to client 3.

3.2.3 To a host/server mask

 To provide IRC operators with some mechanism to send messages to a
 large body of related users, host and server mask messages are
 provided. These messages are sent to users whose host or server
 information match that of the mask. The messages are only sent to
 locations where users are, in a fashion similar to that of channels.

3.3 One-to-all

 The one-to-all type of message is better described as a broadcast
 message, sent to all clients or servers or both. On a large network
 of users and servers, a single message can result in a lot of traffic
 being sent over the network in an effort to reach all of the desired
 destinations.

 For some messages, there is no option but to broadcast it to all
 servers so that the state information held by each server is
 reasonably consistent between servers.

3.3.1 Client-to-Client

 There is no class of message which, from a single message, results in
 a message being sent to every other client.

3.3.2 Client-to-Server

 Most of the commands which result in a change of state information
 (such as channel membership, channel mode, user status, etc) must be
 sent to all servers by default, and this distribution may not be
 changed by the client.

3.3.3 Server-to-Server.

 While most messages between servers are distributed to all ’other’
 servers, this is only required for any message that affects either a
 user, channel or server. Since these are the basic items found in

Oikarinen & Reed [Page 12]

RFC 1459 Internet Relay Chat Protocol May 1993

 IRC, nearly all messages originating from a server are broadcast to
 all other connected servers.

4. Message details

 On the following pages are descriptions of each message recognized by
 the IRC server and client. All commands described in this section
 must be implemented by any server for this protocol.

 Where the reply ERR_NOSUCHSERVER is listed, it means that the
 <server> parameter could not be found. The server must not send any
 other replies after this for that command.

 The server to which a client is connected is required to parse the
 complete message, returning any appropriate errors. If the server
 encounters a fatal error while parsing a message, an error must be
 sent back to the client and the parsing terminated. A fatal error
 may be considered to be incorrect command, a destination which is
 otherwise unknown to the server (server, nick or channel names fit
 this category), not enough parameters or incorrect privileges.

 If a full set of parameters is presented, then each must be checked
 for validity and appropriate responses sent back to the client. In
 the case of messages which use parameter lists using the comma as an
 item separator, a reply must be sent for each item.

 In the examples below, some messages appear using the full format:

 :Name COMMAND parameter list

 Such examples represent a message from "Name" in transit between
 servers, where it is essential to include the name of the original
 sender of the message so remote servers may send back a reply along
 the correct path.

4.1 Connection Registration

 The commands described here are used to register a connection with an
 IRC server as either a user or a server as well as correctly
 disconnect.

 A "PASS" command is not required for either client or server
 connection to be registered, but it must precede the server message
 or the latter of the NICK/USER combination. It is strongly
 recommended that all server connections have a password in order to
 give some level of security to the actual connections. The
 recommended order for a client to register is as follows:

Oikarinen & Reed [Page 13]

RFC 1459 Internet Relay Chat Protocol May 1993

 1. Pass message
 2. Nick message
 3. User message

4.1.1 Password message

 Command: PASS
 Parameters: <password>

 The PASS command is used to set a ’connection password’. The
 password can and must be set before any attempt to register the
 connection is made. Currently this requires that clients send a PASS
 command before sending the NICK/USER combination and servers *must*
 send a PASS command before any SERVER command. The password supplied
 must match the one contained in the C/N lines (for servers) or I
 lines (for clients). It is possible to send multiple PASS commands
 before registering but only the last one sent is used for
 verification and it may not be changed once registered. Numeric
 Replies:

 ERR_NEEDMOREPARAMS ERR_ALREADYREGISTRED

 Example:

 PASS secretpasswordhere

4.1.2 Nick message

 Command: NICK
 Parameters: <nickname> [<hopcount>]

 NICK message is used to give user a nickname or change the previous
 one. The <hopcount> parameter is only used by servers to indicate
 how far away a nick is from its home server. A local connection has
 a hopcount of 0. If supplied by a client, it must be ignored.

 If a NICK message arrives at a server which already knows about an
 identical nickname for another client, a nickname collision occurs.
 As a result of a nickname collision, all instances of the nickname
 are removed from the server’s database, and a KILL command is issued
 to remove the nickname from all other server’s database. If the NICK
 message causing the collision was a nickname change, then the
 original (old) nick must be removed as well.

 If the server recieves an identical NICK from a client which is
 directly connected, it may issue an ERR_NICKCOLLISION to the local
 client, drop the NICK command, and not generate any kills.

Oikarinen & Reed [Page 14]

RFC 1459 Internet Relay Chat Protocol May 1993

 Numeric Replies:

 ERR_NONICKNAMEGIVEN ERR_ERRONEUSNICKNAME
 ERR_NICKNAMEINUSE ERR_NICKCOLLISION

 Example:

 NICK Wiz ; Introducing new nick "Wiz".

 :WiZ NICK Kilroy ; WiZ changed his nickname to Kilroy.

4.1.3 User message

 Command: USER
 Parameters: <username> <hostname> <servername> <realname>

 The USER message is used at the beginning of connection to specify
 the username, hostname, servername and realname of s new user. It is
 also used in communication between servers to indicate new user
 arriving on IRC, since only after both USER and NICK have been
 received from a client does a user become registered.

 Between servers USER must to be prefixed with client’s NICKname.
 Note that hostname and servername are normally ignored by the IRC
 server when the USER command comes from a directly connected client
 (for security reasons), but they are used in server to server
 communication. This means that a NICK must always be sent to a
 remote server when a new user is being introduced to the rest of the
 network before the accompanying USER is sent.

 It must be noted that realname parameter must be the last parameter,
 because it may contain space characters and must be prefixed with a
 colon (’:’) to make sure this is recognised as such.

 Since it is easy for a client to lie about its username by relying
 solely on the USER message, the use of an "Identity Server" is
 recommended. If the host which a user connects from has such a
 server enabled the username is set to that as in the reply from the
 "Identity Server".

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_ALREADYREGISTRED

 Examples:

 USER guest tolmoon tolsun :Ronnie Reagan

Oikarinen & Reed [Page 15]

RFC 1459 Internet Relay Chat Protocol May 1993

 ; User registering themselves with a
 username of "guest" and real name
 "Ronnie Reagan".

 :testnick USER guest tolmoon tolsun :Ronnie Reagan
 ; message between servers with the
 nickname for which the USER command
 belongs to

4.1.4 Server message

 Command: SERVER
 Parameters: <servername> <hopcount> <info>

 The server message is used to tell a server that the other end of a
 new connection is a server. This message is also used to pass server
 data over whole net. When a new server is connected to net,
 information about it be broadcast to the whole network. <hopcount>
 is used to give all servers some internal information on how far away
 all servers are. With a full server list, it would be possible to
 construct a map of the entire server tree, but hostmasks prevent this
 from being done.

 The SERVER message must only be accepted from either (a) a connection
 which is yet to be registered and is attempting to register as a
 server, or (b) an existing connection to another server, in which
 case the SERVER message is introducing a new server behind that
 server.

 Most errors that occur with the receipt of a SERVER command result in
 the connection being terminated by the destination host (target
 SERVER). Error replies are usually sent using the "ERROR" command
 rather than the numeric since the ERROR command has several useful
 properties which make it useful here.

 If a SERVER message is parsed and attempts to introduce a server
 which is already known to the receiving server, the connection from
 which that message must be closed (following the correct procedures),
 since a duplicate route to a server has formed and the acyclic nature
 of the IRC tree broken.

 Numeric Replies:

 ERR_ALREADYREGISTRED

 Example:

Oikarinen & Reed [Page 16]

RFC 1459 Internet Relay Chat Protocol May 1993

SERVER test.oulu.fi 1 :[tolsun.oulu.fi] Experimental server
 ; New server test.oulu.fi introducing
 itself and attempting to register. The
 name in []’s is the hostname for the
 host running test.oulu.fi.

:tolsun.oulu.fi SERVER csd.bu.edu 5 :BU Central Server
 ; Server tolsun.oulu.fi is our uplink
 for csd.bu.edu which is 5 hops away.

4.1.5 Oper

 Command: OPER
 Parameters: <user> <password>

 OPER message is used by a normal user to obtain operator privileges.
 The combination of <user> and <password> are required to gain
 Operator privileges.

 If the client sending the OPER command supplies the correct password
 for the given user, the server then informs the rest of the network
 of the new operator by issuing a "MODE +o" for the clients nickname.

 The OPER message is client-server only.

 Numeric Replies:

 ERR_NEEDMOREPARAMS RPL_YOUREOPER
 ERR_NOOPERHOST ERR_PASSWDMISMATCH

 Example:

 OPER foo bar ; Attempt to register as an operator
 using a username of "foo" and "bar" as
 the password.

4.1.6 Quit

 Command: QUIT
 Parameters: [<Quit message>]

 A client session is ended with a quit message. The server must close
 the connection to a client which sends a QUIT message. If a "Quit
 Message" is given, this will be sent instead of the default message,
 the nickname.

 When netsplits (disconnecting of two servers) occur, the quit message

Oikarinen & Reed [Page 17]

RFC 1459 Internet Relay Chat Protocol May 1993

 is composed of the names of two servers involved, separated by a
 space. The first name is that of the server which is still connected
 and the second name is that of the server that has become
 disconnected.

 If, for some other reason, a client connection is closed without the
 client issuing a QUIT command (e.g. client dies and EOF occurs
 on socket), the server is required to fill in the quit message with
 some sort of message reflecting the nature of the event which
 caused it to happen.

 Numeric Replies:

 None.

 Examples:

 QUIT :Gone to have lunch ; Preferred message format.

4.1.7 Server quit message

 Command: SQUIT
 Parameters: <server> <comment>

 The SQUIT message is needed to tell about quitting or dead servers.
 If a server wishes to break the connection to another server it must
 send a SQUIT message to the other server, using the the name of the
 other server as the server parameter, which then closes its
 connection to the quitting server.

 This command is also available operators to help keep a network of
 IRC servers connected in an orderly fashion. Operators may also
 issue an SQUIT message for a remote server connection. In this case,
 the SQUIT must be parsed by each server inbetween the operator and
 the remote server, updating the view of the network held by each
 server as explained below.

 The <comment> should be supplied by all operators who execute a SQUIT
 for a remote server (that is not connected to the server they are
 currently on) so that other operators are aware for the reason of
 this action. The <comment> is also filled in by servers which may
 place an error or similar message here.

 Both of the servers which are on either side of the connection being
 closed are required to to send out a SQUIT message (to all its other
 server connections) for all other servers which are considered to be
 behind that link.

Oikarinen & Reed [Page 18]

RFC 1459 Internet Relay Chat Protocol May 1993

 Similarly, a QUIT message must be sent to the other connected servers
 rest of the network on behalf of all clients behind that link. In
 addition to this, all channel members of a channel which lost a
 member due to the split must be sent a QUIT message.

 If a server connection is terminated prematurely (e.g. the server on
 the other end of the link died), the server which detects
 this disconnection is required to inform the rest of the network
 that the connection has closed and fill in the comment field
 with something appropriate.

 Numeric replies:

 ERR_NOPRIVILEGES ERR_NOSUCHSERVER

 Example:

 SQUIT tolsun.oulu.fi :Bad Link ? ; the server link tolson.oulu.fi has
 been terminated because of "Bad Link".

 :Trillian SQUIT cm22.eng.umd.edu :Server out of control
 ; message from Trillian to disconnect
 "cm22.eng.umd.edu" from the net
 because "Server out of control".

4.2 Channel operations

 This group of messages is concerned with manipulating channels, their
 properties (channel modes), and their contents (typically clients).
 In implementing these, a number of race conditions are inevitable
 when clients at opposing ends of a network send commands which will
 ultimately clash. It is also required that servers keep a nickname
 history to ensure that wherever a <nick> parameter is given, the
 server check its history in case it has recently been changed.

4.2.1 Join message

 Command: JOIN
 Parameters: <channel>{,<channel>} [<key>{,<key>}]

 The JOIN command is used by client to start listening a specific
 channel. Whether or not a client is allowed to join a channel is
 checked only by the server the client is connected to; all other
 servers automatically add the user to the channel when it is received
 from other servers. The conditions which affect this are as follows:

 1. the user must be invited if the channel is invite-only;

Oikarinen & Reed [Page 19]

RFC 1459 Internet Relay Chat Protocol May 1993

 2. the user’s nick/username/hostname must not match any
 active bans;

 3. the correct key (password) must be given if it is set.

 These are discussed in more detail under the MODE command (see
 section 4.2.3 for more details).

 Once a user has joined a channel, they receive notice about all
 commands their server receives which affect the channel. This
 includes MODE, KICK, PART, QUIT and of course PRIVMSG/NOTICE. The
 JOIN command needs to be broadcast to all servers so that each server
 knows where to find the users who are on the channel. This allows
 optimal delivery of PRIVMSG/NOTICE messages to the channel.

 If a JOIN is successful, the user is then sent the channel’s topic
 (using RPL_TOPIC) and the list of users who are on the channel (using
 RPL_NAMREPLY), which must include the user joining.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_BANNEDFROMCHAN
 ERR_INVITEONLYCHAN ERR_BADCHANNELKEY
 ERR_CHANNELISFULL ERR_BADCHANMASK
 ERR_NOSUCHCHANNEL ERR_TOOMANYCHANNELS
 RPL_TOPIC

 Examples:

 JOIN #foobar ; join channel #foobar.

 JOIN &foo fubar ; join channel &foo using key "fubar".

 JOIN #foo,&bar fubar ; join channel #foo using key "fubar"
 and &bar using no key.

 JOIN #foo,#bar fubar,foobar ; join channel #foo using key "fubar".
 and channel #bar using key "foobar".

 JOIN #foo,#bar ; join channels #foo and #bar.

 :WiZ JOIN #Twilight_zone ; JOIN message from WiZ

4.2.2 Part message

 Command: PART
 Parameters: <channel>{,<channel>}

Oikarinen & Reed [Page 20]

RFC 1459 Internet Relay Chat Protocol May 1993

 The PART message causes the client sending the message to be removed
 from the list of active users for all given channels listed in the
 parameter string.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_NOSUCHCHANNEL
 ERR_NOTONCHANNEL

 Examples:

 PART #twilight_zone ; leave channel "#twilight_zone"

 PART #oz-ops,&group5 ; leave both channels "&group5" and
 "#oz-ops".

4.2.3 Mode message

 Command: MODE

 The MODE command is a dual-purpose command in IRC. It allows both
 usernames and channels to have their mode changed. The rationale for
 this choice is that one day nicknames will be obsolete and the
 equivalent property will be the channel.

 When parsing MODE messages, it is recommended that the entire message
 be parsed first and then the changes which resulted then passed on.

4.2.3.1 Channel modes

 Parameters: <channel> {[+|-]|o|p|s|i|t|n|b|v} [<limit>] [<user>]
 [<ban mask>]

 The MODE command is provided so that channel operators may change the
 characteristics of ‘their’ channel. It is also required that servers
 be able to change channel modes so that channel operators may be
 created.

 The various modes available for channels are as follows:

 o - give/take channel operator privileges;
 p - private channel flag;
 s - secret channel flag;
 i - invite-only channel flag;
 t - topic settable by channel operator only flag;
 n - no messages to channel from clients on the outside;
 m - moderated channel;
 l - set the user limit to channel;

Oikarinen & Reed [Page 21]

RFC 1459 Internet Relay Chat Protocol May 1993

 b - set a ban mask to keep users out;
 v - give/take the ability to speak on a moderated channel;
 k - set a channel key (password).

 When using the ’o’ and ’b’ options, a restriction on a total of three
 per mode command has been imposed. That is, any combination of ’o’
 and

4.2.3.2 User modes

 Parameters: <nickname> {[+|-]|i|w|s|o}

 The user MODEs are typically changes which affect either how the
 client is seen by others or what ’extra’ messages the client is sent.
 A user MODE command may only be accepted if both the sender of the
 message and the nickname given as a parameter are both the same.

 The available modes are as follows:

 i - marks a users as invisible;
 s - marks a user for receipt of server notices;
 w - user receives wallops;
 o - operator flag.

 Additional modes may be available later on.

 If a user attempts to make themselves an operator using the "+o"
 flag, the attempt should be ignored. There is no restriction,
 however, on anyone ‘deopping’ themselves (using "-o"). Numeric
 Replies:

 ERR_NEEDMOREPARAMS RPL_CHANNELMODEIS
 ERR_CHANOPRIVSNEEDED ERR_NOSUCHNICK
 ERR_NOTONCHANNEL ERR_KEYSET
 RPL_BANLIST RPL_ENDOFBANLIST
 ERR_UNKNOWNMODE ERR_NOSUCHCHANNEL

 ERR_USERSDONTMATCH RPL_UMODEIS
 ERR_UMODEUNKNOWNFLAG

 Examples:

 Use of Channel Modes:

MODE #Finnish +im ; Makes #Finnish channel moderated and
 ’invite-only’.

MODE #Finnish +o Kilroy ; Gives ’chanop’ privileges to Kilroy on

Oikarinen & Reed [Page 22]

RFC 1459 Internet Relay Chat Protocol May 1993

 channel #Finnish.

MODE #Finnish +v Wiz ; Allow WiZ to speak on #Finnish.

MODE #Fins -s ; Removes ’secret’ flag from channel
 #Fins.

MODE #42 +k oulu ; Set the channel key to "oulu".

MODE #eu-opers +l 10 ; Set the limit for the number of users
 on channel to 10.

MODE &oulu +b ; list ban masks set for channel.

MODE &oulu +b *!*@* ; prevent all users from joining.

MODE &oulu +b *!*@*.edu ; prevent any user from a hostname
 matching *.edu from joining.

 Use of user Modes:

:MODE WiZ -w ; turns reception of WALLOPS messages
 off for WiZ.

:Angel MODE Angel +i ; Message from Angel to make themselves
 invisible.

MODE WiZ -o ; WiZ ’deopping’ (removing operator
 status). The plain reverse of this
 command ("MODE WiZ +o") must not be
 allowed from users since would bypass
 the OPER command.

4.2.4 Topic message

 Command: TOPIC
 Parameters: <channel> [<topic>]

 The TOPIC message is used to change or view the topic of a channel.
 The topic for channel <channel> is returned if there is no <topic>
 given. If the <topic> parameter is present, the topic for that
 channel will be changed, if the channel modes permit this action.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_NOTONCHANNEL
 RPL_NOTOPIC RPL_TOPIC
 ERR_CHANOPRIVSNEEDED

Oikarinen & Reed [Page 23]

RFC 1459 Internet Relay Chat Protocol May 1993

 Examples:

 :Wiz TOPIC #test :New topic ;User Wiz setting the topic.

 TOPIC #test :another topic ;set the topic on #test to "another
 topic".

 TOPIC #test ; check the topic for #test.

4.2.5 Names message

 Command: NAMES
 Parameters: [<channel>{,<channel>}]

 By using the NAMES command, a user can list all nicknames that are
 visible to them on any channel that they can see. Channel names
 which they can see are those which aren’t private (+p) or secret (+s)
 or those which they are actually on. The <channel> parameter
 specifies which channel(s) to return information about if valid.
 There is no error reply for bad channel names.

 If no <channel> parameter is given, a list of all channels and their
 occupants is returned. At the end of this list, a list of users who
 are visible but either not on any channel or not on a visible channel
 are listed as being on ‘channel’ "*".

 Numerics:

 RPL_NAMREPLY RPL_ENDOFNAMES

 Examples:

 NAMES #twilight_zone,#42 ; list visible users on #twilight_zone
 and #42 if the channels are visible to
 you.

 NAMES ; list all visible channels and users

4.2.6 List message

 Command: LIST
 Parameters: [<channel>{,<channel>} [<server>]]

 The list message is used to list channels and their topics. If the
 <channel> parameter is used, only the status of that channel
 is displayed. Private channels are listed (without their
 topics) as channel "Prv" unless the client generating the query is
 actually on that channel. Likewise, secret channels are not listed

Oikarinen & Reed [Page 24]

RFC 1459 Internet Relay Chat Protocol May 1993

 at all unless the client is a member of the channel in question.

 Numeric Replies:

 ERR_NOSUCHSERVER RPL_LISTSTART
 RPL_LIST RPL_LISTEND

 Examples:

 LIST ; List all channels.

 LIST #twilight_zone,#42 ; List channels #twilight_zone and #42

4.2.7 Invite message

 Command: INVITE
 Parameters: <nickname> <channel>

 The INVITE message is used to invite users to a channel. The
 parameter <nickname> is the nickname of the person to be invited to
 the target channel <channel>. There is no requirement that the
 channel the target user is being invited to must exist or be a valid
 channel. To invite a user to a channel which is invite only (MODE
 +i), the client sending the invite must be recognised as being a
 channel operator on the given channel.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_NOSUCHNICK
 ERR_NOTONCHANNEL ERR_USERONCHANNEL
 ERR_CHANOPRIVSNEEDED
 RPL_INVITING RPL_AWAY

 Examples:

 :Angel INVITE Wiz #Dust ; User Angel inviting WiZ to channel
 #Dust

 INVITE Wiz #Twilight_Zone ; Command to invite WiZ to
 #Twilight_zone

4.2.8 Kick command

 Command: KICK
 Parameters: <channel> <user> [<comment>]

 The KICK command can be used to forcibly remove a user from a
 channel. It ’kicks them out’ of the channel (forced PART).

Oikarinen & Reed [Page 25]

RFC 1459 Internet Relay Chat Protocol May 1993

 Only a channel operator may kick another user out of a channel.
 Each server that receives a KICK message checks that it is valid
 (ie the sender is actually a channel operator) before removing
 the victim from the channel.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_NOSUCHCHANNEL
 ERR_BADCHANMASK ERR_CHANOPRIVSNEEDED
 ERR_NOTONCHANNEL

 Examples:

KICK &Melbourne Matthew ; Kick Matthew from &Melbourne

KICK #Finnish John :Speaking English
 ; Kick John from #Finnish using
 "Speaking English" as the reason
 (comment).

:WiZ KICK #Finnish John ; KICK message from WiZ to remove John
 from channel #Finnish

NOTE:
 It is possible to extend the KICK command parameters to the
following:

<channel>{,<channel>} <user>{,<user>} [<comment>]

4.3 Server queries and commands

 The server query group of commands has been designed to return
 information about any server which is connected to the network. All
 servers connected must respond to these queries and respond
 correctly. Any invalid response (or lack thereof) must be considered
 a sign of a broken server and it must be disconnected/disabled as
 soon as possible until the situation is remedied.

 In these queries, where a parameter appears as "<server>", it will
 usually mean it can be a nickname or a server or a wildcard name of
 some sort. For each parameter, however, only one query and set of
 replies is to be generated.

4.3.1 Version message

 Command: VERSION
 Parameters: [<server>]

Oikarinen & Reed [Page 26]

RFC 1459 Internet Relay Chat Protocol May 1993

 The VERSION message is used to query the version of the server
 program. An optional parameter <server> is used to query the version
 of the server program which a client is not directly connected to.

 Numeric Replies:

 ERR_NOSUCHSERVER RPL_VERSION

 Examples:

 :Wiz VERSION *.se ; message from Wiz to check the version
 of a server matching "*.se"

 VERSION tolsun.oulu.fi ; check the version of server
 "tolsun.oulu.fi".

4.3.2 Stats message

 Command: STATS
 Parameters: [<query> [<server>]]

 The stats message is used to query statistics of certain server. If
 <server> parameter is omitted, only the end of stats reply is sent
 back. The implementation of this command is highly dependent on the
 server which replies, although the server must be able to supply
 information as described by the queries below (or similar).

 A query may be given by any single letter which is only checked by
 the destination server (if given as the <server> parameter) and is
 otherwise passed on by intermediate servers, ignored and unaltered.
 The following queries are those found in the current IRC
 implementation and provide a large portion of the setup information
 for that server. Although these may not be supported in the same way
 by other versions, all servers should be able to supply a valid reply
 to a STATS query which is consistent with the reply formats currently
 used and the purpose of the query.

 The currently supported queries are:

 c - returns a list of servers which the server may connect
 to or allow connections from;
 h - returns a list of servers which are either forced to be
 treated as leaves or allowed to act as hubs;
 i - returns a list of hosts which the server allows a client
 to connect from;
 k - returns a list of banned username/hostname combinations
 for that server;
 l - returns a list of the server’s connections, showing how

Oikarinen & Reed [Page 27]

RFC 1459 Internet Relay Chat Protocol May 1993

 long each connection has been established and the traffic
 over that connection in bytes and messages for each
 direction;
 m - returns a list of commands supported by the server and
 the usage count for each if the usage count is non zero;
 o - returns a list of hosts from which normal clients may
 become operators;
 y - show Y (Class) lines from server’s configuration file;
 u - returns a string showing how long the server has been up.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_STATSCLINE RPL_STATSNLINE
 RPL_STATSILINE RPL_STATSKLINE
 RPL_STATSQLINE RPL_STATSLLINE
 RPL_STATSLINKINFO RPL_STATSUPTIME
 RPL_STATSCOMMANDS RPL_STATSOLINE
 RPL_STATSHLINE RPL_ENDOFSTATS

 Examples:

STATS m ; check the command usage for the server
 you are connected to

:Wiz STATS c eff.org ; request by WiZ for C/N line
 information from server eff.org

4.3.3 Links message

 Command: LINKS
 Parameters: [[<remote server>] <server mask>]

 With LINKS, a user can list all servers which are known by the server
 answering the query. The returned list of servers must match the
 mask, or if no mask is given, the full list is returned.

 If <remote server> is given in addition to <server mask>, the LINKS
 command is forwarded to the first server found that matches that name
 (if any), and that server is then required to answer the query.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_LINKS RPL_ENDOFLINKS

 Examples:

Oikarinen & Reed [Page 28]

RFC 1459 Internet Relay Chat Protocol May 1993

LINKS *.au ; list all servers which have a name
 that matches *.au;

:WiZ LINKS *.bu.edu *.edu ; LINKS message from WiZ to the first
 server matching *.edu for a list of
 servers matching *.bu.edu.

4.3.4 Time message

 Command: TIME
 Parameters: [<server>]

 The time message is used to query local time from the specified
 server. If the server parameter is not given, the server handling the
 command must reply to the query.

 Numeric Replies:

 ERR_NOSUCHSERVER RPL_TIME

 Examples:

 TIME tolsun.oulu.fi ; check the time on the server
 "tolson.oulu.fi"

 Angel TIME *.au ; user angel checking the time on a
 server matching "*.au"

4.3.5 Connect message

 Command: CONNECT
 Parameters: <target server> [<port> [<remote server>]]

 The CONNECT command can be used to force a server to try to establish
 a new connection to another server immediately. CONNECT is a
 privileged command and is to be available only to IRC Operators. If
 a remote server is given then the CONNECT attempt is made by that
 server to <target server> and <port>.

 Numeric Replies:

 ERR_NOSUCHSERVER ERR_NOPRIVILEGES
 ERR_NEEDMOREPARAMS

 Examples:

CONNECT tolsun.oulu.fi ; Attempt to connect a server to
 tolsun.oulu.fi

Oikarinen & Reed [Page 29]

RFC 1459 Internet Relay Chat Protocol May 1993

:WiZ CONNECT eff.org 6667 csd.bu.edu
 ; CONNECT attempt by WiZ to get servers
 eff.org and csd.bu.edu connected on port
 6667.

4.3.6 Trace message

 Command: TRACE
 Parameters: [<server>]

 TRACE command is used to find the route to specific server. Each
 server that processes this message must tell the sender about it by
 sending a reply indicating it is a pass-through link, forming a chain
 of replies similar to that gained from using "traceroute". After
 sending this reply back, it must then send the TRACE message to the
 next server until given server is reached. If the <server> parameter
 is omitted, it is recommended that TRACE command send a message to
 the sender telling which servers the current server has direct
 connection to.

 If the destination given by "<server>" is an actual server, then the
 destination server is required to report all servers and users which
 are connected to it, although only operators are permitted to see
 users present. If the destination given by <server> is a nickname,
 they only a reply for that nickname is given.

 Numeric Replies:

 ERR_NOSUCHSERVER

 If the TRACE message is destined for another server, all intermediate
 servers must return a RPL_TRACELINK reply to indicate that the TRACE
 passed through it and where its going next.

 RPL_TRACELINK
 A TRACE reply may be composed of any number of the following numeric
 replies.

 RPL_TRACECONNECTING RPL_TRACEHANDSHAKE
 RPL_TRACEUNKNOWN RPL_TRACEOPERATOR
 RPL_TRACEUSER RPL_TRACESERVER
 RPL_TRACESERVICE RPL_TRACENEWTYPE
 RPL_TRACECLASS

 Examples:

TRACE *.oulu.fi ; TRACE to a server matching *.oulu.fi

Oikarinen & Reed [Page 30]

RFC 1459 Internet Relay Chat Protocol May 1993

:WiZ TRACE AngelDust ; TRACE issued by WiZ to nick AngelDust

4.3.7 Admin command

 Command: ADMIN
 Parameters: [<server>]

 The admin message is used to find the name of the administrator of
 the given server, or current server if <server> parameter is omitted.
 Each server must have the ability to forward ADMIN messages to other
 servers.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_ADMINME RPL_ADMINLOC1
 RPL_ADMINLOC2 RPL_ADMINEMAIL

 Examples:

 ADMIN tolsun.oulu.fi ; request an ADMIN reply from
 tolsun.oulu.fi

 :WiZ ADMIN *.edu ; ADMIN request from WiZ for first
 server found to match *.edu.

4.3.8 Info command

 Command: INFO
 Parameters: [<server>]

 The INFO command is required to return information which describes
 the server: its version, when it was compiled, the patchlevel, when
 it was started, and any other miscellaneous information which may be
 considered to be relevant.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_INFO RPL_ENDOFINFO

 Examples:

 INFO csd.bu.edu ; request an INFO reply from
 csd.bu.edu

 :Avalon INFO *.fi ; INFO request from Avalon for first
 server found to match *.fi.

Oikarinen & Reed [Page 31]

RFC 1459 Internet Relay Chat Protocol May 1993

 INFO Angel ; request info from the server that
 Angel is connected to.

4.4 Sending messages

 The main purpose of the IRC protocol is to provide a base for clients
 to communicate with each other. PRIVMSG and NOTICE are the only
 messages available which actually perform delivery of a text message
 from one client to another - the rest just make it possible and try
 to ensure it happens in a reliable and structured manner.

4.4.1 Private messages

 Command: PRIVMSG
 Parameters: <receiver>{,<receiver>} <text to be sent>

 PRIVMSG is used to send private messages between users. <receiver>
 is the nickname of the receiver of the message. <receiver> can also
 be a list of names or channels separated with commas.

 The <receiver> parameter may also me a host mask (#mask) or server
 mask ($mask). In both cases the server will only send the PRIVMSG
 to those who have a server or host matching the mask. The mask must
 have at least 1 (one) "." in it and no wildcards following the
 last ".". This requirement exists to prevent people sending messages
 to "#*" or "$*", which would broadcast to all users; from
 experience, this is abused more than used responsibly and properly.
 Wildcards are the ’*’ and ’?’ characters. This extension to
 the PRIVMSG command is only available to Operators.

 Numeric Replies:

 ERR_NORECIPIENT ERR_NOTEXTTOSEND
 ERR_CANNOTSENDTOCHAN ERR_NOTOPLEVEL
 ERR_WILDTOPLEVEL ERR_TOOMANYTARGETS
 ERR_NOSUCHNICK
 RPL_AWAY

 Examples:

:Angel PRIVMSG Wiz :Hello are you receiving this message ?
 ; Message from Angel to Wiz.

PRIVMSG Angel :yes I’m receiving it !receiving it !’u>(768u+1n) .br ;
 Message to Angel.

PRIVMSG jto@tolsun.oulu.fi :Hello !
 ; Message to a client on server

Oikarinen & Reed [Page 32]

RFC 1459 Internet Relay Chat Protocol May 1993

 tolsun.oulu.fi with username of "jto".

PRIVMSG $*.fi :Server tolsun.oulu.fi rebooting.
 ; Message to everyone on a server which
 has a name matching *.fi.

PRIVMSG #*.edu :NSFNet is undergoing work, expect interruptions
 ; Message to all users who come from a
 host which has a name matching *.edu.

4.4.2 Notice

 Command: NOTICE
 Parameters: <nickname> <text>

 The NOTICE message is used similarly to PRIVMSG. The difference
 between NOTICE and PRIVMSG is that automatic replies must never be
 sent in response to a NOTICE message. This rule applies to servers
 too - they must not send any error reply back to the client on
 receipt of a notice. The object of this rule is to avoid loops
 between a client automatically sending something in response to
 something it received. This is typically used by automatons (clients
 with either an AI or other interactive program controlling their
 actions) which are always seen to be replying lest they end up in a
 loop with another automaton.

 See PRIVMSG for more details on replies and examples.

4.5 User based queries

 User queries are a group of commands which are primarily concerned
 with finding details on a particular user or group users. When using
 wildcards with any of these commands, if they match, they will only
 return information on users who are ’visible’ to you. The visibility
 of a user is determined as a combination of the user’s mode and the
 common set of channels you are both on.

4.5.1 Who query

 Command: WHO
 Parameters: [<name> [<o>]]

 The WHO message is used by a client to generate a query which returns
 a list of information which ’matches’ the <name> parameter given by
 the client. In the absence of the <name> parameter, all visible
 (users who aren’t invisible (user mode +i) and who don’t have a
 common channel with the requesting client) are listed. The same
 result can be achieved by using a <name> of "0" or any wildcard which

Oikarinen & Reed [Page 33]

RFC 1459 Internet Relay Chat Protocol May 1993

 will end up matching every entry possible.

 The <name> passed to WHO is matched against users’ host, server, real
 name and nickname if the channel <name> cannot be found.

 If the "o" parameter is passed only operators are returned according
 to the name mask supplied.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_WHOREPLY RPL_ENDOFWHO

 Examples:

 WHO *.fi ; List all users who match against
 "*.fi".

 WHO jto* o ; List all users with a match against
 "jto*" if they are an operator.

4.5.2 Whois query

 Command: WHOIS
 Parameters: [<server>] <nickmask>[,<nickmask>[,...]]

 This message is used to query information about particular user. The
 server will answer this message with several numeric messages
 indicating different statuses of each user which matches the nickmask
 (if you are entitled to see them). If no wildcard is present in the
 <nickmask>, any information about that nick which you are allowed to
 see is presented. A comma (’,’) separated list of nicknames may be
 given.

 The latter version sends the query to a specific server. It is
 useful if you want to know how long the user in question has been
 idle as only local server (ie. the server the user is directly
 connected to) knows that information, while everything else is
 globally known.

 Numeric Replies:

 ERR_NOSUCHSERVER ERR_NONICKNAMEGIVEN
 RPL_WHOISUSER RPL_WHOISCHANNELS
 RPL_WHOISCHANNELS RPL_WHOISSERVER
 RPL_AWAY RPL_WHOISOPERATOR
 RPL_WHOISIDLE ERR_NOSUCHNICK
 RPL_ENDOFWHOIS

Oikarinen & Reed [Page 34]

RFC 1459 Internet Relay Chat Protocol May 1993

 Examples:

 WHOIS wiz ; return available user information
 about nick WiZ

 WHOIS eff.org trillian ; ask server eff.org for user
 information about trillian

4.5.3 Whowas

 Command: WHOWAS
 Parameters: <nickname> [<count> [<server>]]

 Whowas asks for information about a nickname which no longer exists.
 This may either be due to a nickname change or the user leaving IRC.
 In response to this query, the server searches through its nickname
 history, looking for any nicks which are lexically the same (no wild
 card matching here). The history is searched backward, returning the
 most recent entry first. If there are multiple entries, up to
 <count> replies will be returned (or all of them if no <count>
 parameter is given). If a non-positive number is passed as being
 <count>, then a full search is done.

 Numeric Replies:

 ERR_NONICKNAMEGIVEN ERR_WASNOSUCHNICK
 RPL_WHOWASUSER RPL_WHOISSERVER
 RPL_ENDOFWHOWAS

 Examples:

 WHOWAS Wiz ; return all information in the nick
 history about nick "WiZ";

 WHOWAS Mermaid 9 ; return at most, the 9 most recent
 entries in the nick history for
 "Mermaid";

 WHOWAS Trillian 1 *.edu ; return the most recent history for
 "Trillian" from the first server found
 to match "*.edu".

4.6 Miscellaneous messages

 Messages in this category do not fit into any of the above categories
 but are nonetheless still a part of and required by the protocol.

Oikarinen & Reed [Page 35]

RFC 1459 Internet Relay Chat Protocol May 1993

4.6.1 Kill message

 Command: KILL
 Parameters: <nickname> <comment>

 The KILL message is used to cause a client-server connection to be
 closed by the server which has the actual connection. KILL is used
 by servers when they encounter a duplicate entry in the list of valid
 nicknames and is used to remove both entries. It is also available
 to operators.

 Clients which have automatic reconnect algorithms effectively make
 this command useless since the disconnection is only brief. It does
 however break the flow of data and can be used to stop large amounts
 of being abused, any user may elect to receive KILL messages
 generated for others to keep an ’eye’ on would be trouble spots.

 In an arena where nicknames are required to be globally unique at all
 times, KILL messages are sent whenever ’duplicates’ are detected
 (that is an attempt to register two users with the same nickname) in
 the hope that both of them will disappear and only 1 reappear.

 The comment given must reflect the actual reason for the KILL. For
 server-generated KILLs it usually is made up of details concerning
 the origins of the two conflicting nicknames. For users it is left
 up to them to provide an adequate reason to satisfy others who see
 it. To prevent/discourage fake KILLs from being generated to hide
 the identify of the KILLer, the comment also shows a ’kill-path’
 which is updated by each server it passes through, each prepending
 its name to the path.

 Numeric Replies:

 ERR_NOPRIVILEGES ERR_NEEDMOREPARAMS
 ERR_NOSUCHNICK ERR_CANTKILLSERVER

 KILL David (csd.bu.edu <- tolsun.oulu.fi)
 ; Nickname collision between csd.bu.edu
 and tolson.oulu.fi

 NOTE:
 It is recommended that only Operators be allowed to kill other users
 with KILL message. In an ideal world not even operators would need
 to do this and it would be left to servers to deal with.

Oikarinen & Reed [Page 36]

RFC 1459 Internet Relay Chat Protocol May 1993

4.6.2 Ping message

 Command: PING
 Parameters: <server1> [<server2>]

 The PING message is used to test the presence of an active client at
 the other end of the connection. A PING message is sent at regular
 intervals if no other activity detected coming from a connection. If
 a connection fails to respond to a PING command within a set amount
 of time, that connection is closed.

 Any client which receives a PING message must respond to <server1>
 (server which sent the PING message out) as quickly as possible with
 an appropriate PONG message to indicate it is still there and alive.
 Servers should not respond to PING commands but rely on PINGs from
 the other end of the connection to indicate the connection is alive.
 If the <server2> parameter is specified, the PING message gets
 forwarded there.

 Numeric Replies:

 ERR_NOORIGIN ERR_NOSUCHSERVER

 Examples:

 PING tolsun.oulu.fi ; server sending a PING message to
 another server to indicate it is still
 alive.

 PING WiZ ; PING message being sent to nick WiZ

4.6.3 Pong message

 Command: PONG
 Parameters: <daemon> [<daemon2>]

 PONG message is a reply to ping message. If parameter <daemon2> is
 given this message must be forwarded to given daemon. The <daemon>
 parameter is the name of the daemon who has responded to PING message
 and generated this message.

 Numeric Replies:

 ERR_NOORIGIN ERR_NOSUCHSERVER

 Examples:

 PONG csd.bu.edu tolsun.oulu.fi ; PONG message from csd.bu.edu to

Oikarinen & Reed [Page 37]

RFC 1459 Internet Relay Chat Protocol May 1993

 tolsun.oulu.fi

4.6.4 Error

 Command: ERROR
 Parameters: <error message>

 The ERROR command is for use by servers when reporting a serious or
 fatal error to its operators. It may also be sent from one server to
 another but must not be accepted from any normal unknown clients.

 An ERROR message is for use for reporting errors which occur with a
 server-to-server link only. An ERROR message is sent to the server
 at the other end (which sends it to all of its connected operators)
 and to all operators currently connected. It is not to be passed
 onto any other servers by a server if it is received from a server.

 When a server sends a received ERROR message to its operators, the
 message should be encapsulated inside a NOTICE message, indicating
 that the client was not responsible for the error.

 Numerics:

 None.

 Examples:

 ERROR :Server *.fi already exists; ERROR message to the other server
 which caused this error.

 NOTICE WiZ :ERROR from csd.bu.edu -- Server *.fi already exists
 ; Same ERROR message as above but sent
 to user WiZ on the other server.

5. OPTIONALS

 This section describes OPTIONAL messages. They are not required in a
 working server implementation of the protocol described herein. In
 the absence of the option, an error reply message must be generated
 or an unknown command error. If the message is destined for another
 server to answer then it must be passed on (elementary parsing
 required) The allocated numerics for this are listed with the
 messages below.

5.1 Away

 Command: AWAY
 Parameters: [message]

Oikarinen & Reed [Page 38]

RFC 1459 Internet Relay Chat Protocol May 1993

 With the AWAY message, clients can set an automatic reply string for
 any PRIVMSG commands directed at them (not to a channel they are on).
 The automatic reply is sent by the server to client sending the
 PRIVMSG command. The only replying server is the one to which the
 sending client is connected to.

 The AWAY message is used either with one parameter (to set an AWAY
 message) or with no parameters (to remove the AWAY message).

 Numeric Replies:

 RPL_UNAWAY RPL_NOWAWAY

 Examples:

 AWAY :Gone to lunch. Back in 5 ; set away message to "Gone to lunch.
 Back in 5".

 :WiZ AWAY ; unmark WiZ as being away.

5.2 Rehash message

 Command: REHASH
 Parameters: None

 The rehash message can be used by the operator to force the server to
 re-read and process its configuration file.

 Numeric Replies:

 RPL_REHASHING ERR_NOPRIVILEGES

Examples:

REHASH ; message from client with operator
 status to server asking it to reread its
 configuration file.

5.3 Restart message

 Command: RESTART
 Parameters: None

 The restart message can only be used by an operator to force a server
 restart itself. This message is optional since it may be viewed as a
 risk to allow arbitrary people to connect to a server as an operator
 and execute this command, causing (at least) a disruption to service.

Oikarinen & Reed [Page 39]

RFC 1459 Internet Relay Chat Protocol May 1993

 The RESTART command must always be fully processed by the server to
 which the sending client is connected and not be passed onto other
 connected servers.

 Numeric Replies:

 ERR_NOPRIVILEGES

 Examples:

 RESTART ; no parameters required.

5.4 Summon message

 Command: SUMMON
 Parameters: <user> [<server>]

 The SUMMON command can be used to give users who are on a host
 running an IRC server a message asking them to please join IRC. This
 message is only sent if the target server (a) has SUMMON enabled, (b)
 the user is logged in and (c) the server process can write to the
 user’s tty (or similar).

 If no <server> parameter is given it tries to summon <user> from the
 server the client is connected to is assumed as the target.

 If summon is not enabled in a server, it must return the
 ERR_SUMMONDISABLED numeric and pass the summon message onwards.

 Numeric Replies:

 ERR_NORECIPIENT ERR_FILEERROR
 ERR_NOLOGIN ERR_NOSUCHSERVER
 RPL_SUMMONING

 Examples:

 SUMMON jto ; summon user jto on the server’s host

 SUMMON jto tolsun.oulu.fi ; summon user jto on the host which a
 server named "tolsun.oulu.fi" is
 running.

5.5 Users

 Command: USERS
 Parameters: [<server>]

Oikarinen & Reed [Page 40]

RFC 1459 Internet Relay Chat Protocol May 1993

 The USERS command returns a list of users logged into the server in a
 similar format to who(1), rusers(1) and finger(1). Some people
 may disable this command on their server for security related
 reasons. If disabled, the correct numeric must be returned to
 indicate this.

 Numeric Replies:

 ERR_NOSUCHSERVER ERR_FILEERROR
 RPL_USERSSTART RPL_USERS
 RPL_NOUSERS RPL_ENDOFUSERS
 ERR_USERSDISABLED

 Disabled Reply:

 ERR_USERSDISABLED

 Examples:

USERS eff.org ; request a list of users logged in on
 server eff.org

:John USERS tolsun.oulu.fi ; request from John for a list of users
 logged in on server tolsun.oulu.fi

5.6 Operwall message

 Command: WALLOPS
 Parameters: Text to be sent to all operators currently online

 Sends a message to all operators currently online. After
 implementing WALLOPS as a user command it was found that it was
 often and commonly abused as a means of sending a message to a lot
 of people (much similar to WALL). Due to this it is recommended
 that the current implementation of WALLOPS be used as an
 example by allowing and recognising only servers as the senders of
 WALLOPS.

 Numeric Replies:

 ERR_NEEDMOREPARAMS

 Examples:

 :csd.bu.edu WALLOPS :Connect ’*.uiuc.edu 6667’ from Joshua; WALLOPS
 message from csd.bu.edu announcing a
 CONNECT message it received and acted
 upon from Joshua.

Oikarinen & Reed [Page 41]

RFC 1459 Internet Relay Chat Protocol May 1993

5.7 Userhost message

 Command: USERHOST
 Parameters: <nickname>{<space><nickname>}

 The USERHOST command takes a list of up to 5 nicknames, each
 separated by a space character and returns a list of information
 about each nickname that it found. The returned list has each reply
 separated by a space.

 Numeric Replies:

 RPL_USERHOST ERR_NEEDMOREPARAMS

 Examples:

 USERHOST Wiz Michael Marty p ;USERHOST request for information on
 nicks "Wiz", "Michael", "Marty" and "p"

5.8 Ison message

 Command: ISON
 Parameters: <nickname>{<space><nickname>}

 The ISON command was implemented to provide a quick and efficient
 means to get a response about whether a given nickname was currently
 on IRC. ISON only takes one (1) parameter: a space-separated list of
 nicks. For each nickname in the list that is present, the server
 adds that to its reply string. Thus the reply string may return
 empty (none of the given nicks are present), an exact copy of the
 parameter string (all of them present) or as any other subset of the
 set of nicks given in the parameter. The only limit on the number
 of nicks that may be checked is that the combined length must not be
 too large as to cause the server to chop it off so it fits in 512
 characters.

 ISON is only be processed by the server local to the client sending
 the command and thus not passed onto other servers for further
 processing.

 Numeric Replies:

 RPL_ISON ERR_NEEDMOREPARAMS

 Examples:

 ISON phone trillian WiZ jarlek Avalon Angel Monstah
 ; Sample ISON request for 7 nicks.

Oikarinen & Reed [Page 42]

RFC 1459 Internet Relay Chat Protocol May 1993

6. REPLIES

 The following is a list of numeric replies which are generated in
 response to the commands given above. Each numeric is given with its
 number, name and reply string.

6.1 Error Replies.

 401 ERR_NOSUCHNICK
 "<nickname> :No such nick/channel"

 - Used to indicate the nickname parameter supplied to a
 command is currently unused.

 402 ERR_NOSUCHSERVER
 "<server name> :No such server"

 - Used to indicate the server name given currently
 doesn’t exist.

 403 ERR_NOSUCHCHANNEL
 "<channel name> :No such channel"

 - Used to indicate the given channel name is invalid.

 404 ERR_CANNOTSENDTOCHAN
 "<channel name> :Cannot send to channel"

 - Sent to a user who is either (a) not on a channel
 which is mode +n or (b) not a chanop (or mode +v) on
 a channel which has mode +m set and is trying to send
 a PRIVMSG message to that channel.

 405 ERR_TOOMANYCHANNELS
 "<channel name> :You have joined too many \
 channels"
 - Sent to a user when they have joined the maximum
 number of allowed channels and they try to join
 another channel.

 406 ERR_WASNOSUCHNICK
 "<nickname> :There was no such nickname"

 - Returned by WHOWAS to indicate there is no history
 information for that nickname.

 407 ERR_TOOMANYTARGETS
 "<target> :Duplicate recipients. No message \

Oikarinen & Reed [Page 43]

RFC 1459 Internet Relay Chat Protocol May 1993

 delivered"

 - Returned to a client which is attempting to send a
 PRIVMSG/NOTICE using the user@host destination format
 and for a user@host which has several occurrences.

 409 ERR_NOORIGIN
 ":No origin specified"

 - PING or PONG message missing the originator parameter
 which is required since these commands must work
 without valid prefixes.

 411 ERR_NORECIPIENT
 ":No recipient given (<command>)"
 412 ERR_NOTEXTTOSEND
 ":No text to send"
 413 ERR_NOTOPLEVEL
 "<mask> :No toplevel domain specified"
 414 ERR_WILDTOPLEVEL
 "<mask> :Wildcard in toplevel domain"

 - 412 - 414 are returned by PRIVMSG to indicate that
 the message wasn’t delivered for some reason.
 ERR_NOTOPLEVEL and ERR_WILDTOPLEVEL are errors that
 are returned when an invalid use of
 "PRIVMSG $<server>" or "PRIVMSG #<host>" is attempted.

 421 ERR_UNKNOWNCOMMAND
 "<command> :Unknown command"

 - Returned to a registered client to indicate that the
 command sent is unknown by the server.

 422 ERR_NOMOTD
 ":MOTD File is missing"

 - Server’s MOTD file could not be opened by the server.

 423 ERR_NOADMININFO
 "<server> :No administrative info available"

 - Returned by a server in response to an ADMIN message
 when there is an error in finding the appropriate
 information.

 424 ERR_FILEERROR
 ":File error doing <file op> on <file>"

Oikarinen & Reed [Page 44]

RFC 1459 Internet Relay Chat Protocol May 1993

 - Generic error message used to report a failed file
 operation during the processing of a message.

 431 ERR_NONICKNAMEGIVEN
 ":No nickname given"

 - Returned when a nickname parameter expected for a
 command and isn’t found.

 432 ERR_ERRONEUSNICKNAME
 "<nick> :Erroneus nickname"

 - Returned after receiving a NICK message which contains
 characters which do not fall in the defined set. See
 section x.x.x for details on valid nicknames.

 433 ERR_NICKNAMEINUSE
 "<nick> :Nickname is already in use"

 - Returned when a NICK message is processed that results
 in an attempt to change to a currently existing
 nickname.

 436 ERR_NICKCOLLISION
 "<nick> :Nickname collision KILL"

 - Returned by a server to a client when it detects a
 nickname collision (registered of a NICK that
 already exists by another server).

 441 ERR_USERNOTINCHANNEL
 "<nick> <channel> :They aren’t on that channel"

 - Returned by the server to indicate that the target
 user of the command is not on the given channel.

 442 ERR_NOTONCHANNEL
 "<channel> :You’re not on that channel"

 - Returned by the server whenever a client tries to
 perform a channel effecting command for which the
 client isn’t a member.

 443 ERR_USERONCHANNEL
 "<user> <channel> :is already on channel"

 - Returned when a client tries to invite a user to a
 channel they are already on.

Oikarinen & Reed [Page 45]

RFC 1459 Internet Relay Chat Protocol May 1993

 444 ERR_NOLOGIN
 "<user> :User not logged in"

 - Returned by the summon after a SUMMON command for a
 user was unable to be performed since they were not
 logged in.

 445 ERR_SUMMONDISABLED
 ":SUMMON has been disabled"

 - Returned as a response to the SUMMON command. Must be
 returned by any server which does not implement it.

 446 ERR_USERSDISABLED
 ":USERS has been disabled"

 - Returned as a response to the USERS command. Must be
 returned by any server which does not implement it.

 451 ERR_NOTREGISTERED
 ":You have not registered"

 - Returned by the server to indicate that the client
 must be registered before the server will allow it
 to be parsed in detail.

 461 ERR_NEEDMOREPARAMS
 "<command> :Not enough parameters"

 - Returned by the server by numerous commands to
 indicate to the client that it didn’t supply enough
 parameters.

 462 ERR_ALREADYREGISTRED
 ":You may not reregister"

 - Returned by the server to any link which tries to
 change part of the registered details (such as
 password or user details from second USER message).

 463 ERR_NOPERMFORHOST
 ":Your host isn’t among the privileged"

 - Returned to a client which attempts to register with
 a server which does not been setup to allow
 connections from the host the attempted connection
 is tried.

Oikarinen & Reed [Page 46]

RFC 1459 Internet Relay Chat Protocol May 1993

 464 ERR_PASSWDMISMATCH
 ":Password incorrect"

 - Returned to indicate a failed attempt at registering
 a connection for which a password was required and
 was either not given or incorrect.

 465 ERR_YOUREBANNEDCREEP
 ":You are banned from this server"

 - Returned after an attempt to connect and register
 yourself with a server which has been setup to
 explicitly deny connections to you.

 467 ERR_KEYSET
 "<channel> :Channel key already set"
 471 ERR_CHANNELISFULL
 "<channel> :Cannot join channel (+l)"
 472 ERR_UNKNOWNMODE
 "<char> :is unknown mode char to me"
 473 ERR_INVITEONLYCHAN
 "<channel> :Cannot join channel (+i)"
 474 ERR_BANNEDFROMCHAN
 "<channel> :Cannot join channel (+b)"
 475 ERR_BADCHANNELKEY
 "<channel> :Cannot join channel (+k)"
 481 ERR_NOPRIVILEGES
 ":Permission Denied- You’re not an IRC operator"

 - Any command requiring operator privileges to operate
 must return this error to indicate the attempt was
 unsuccessful.

 482 ERR_CHANOPRIVSNEEDED
 "<channel> :You’re not channel operator"

 - Any command requiring ’chanop’ privileges (such as
 MODE messages) must return this error if the client
 making the attempt is not a chanop on the specified
 channel.

 483 ERR_CANTKILLSERVER
 ":You cant kill a server!"

 - Any attempts to use the KILL command on a server
 are to be refused and this error returned directly
 to the client.

Oikarinen & Reed [Page 47]

RFC 1459 Internet Relay Chat Protocol May 1993

 491 ERR_NOOPERHOST
 ":No O-lines for your host"

 - If a client sends an OPER message and the server has
 not been configured to allow connections from the
 client’s host as an operator, this error must be
 returned.

 501 ERR_UMODEUNKNOWNFLAG
 ":Unknown MODE flag"

 - Returned by the server to indicate that a MODE
 message was sent with a nickname parameter and that
 the a mode flag sent was not recognized.

 502 ERR_USERSDONTMATCH
 ":Cant change mode for other users"

 - Error sent to any user trying to view or change the
 user mode for a user other than themselves.

6.2 Command responses.

 300 RPL_NONE
 Dummy reply number. Not used.

 302 RPL_USERHOST
 ":[<reply>{<space><reply>}]"

 - Reply format used by USERHOST to list replies to
 the query list. The reply string is composed as
 follows:

 <reply> ::= <nick>[’*’] ’=’ <’+’|’-’><hostname>

 The ’*’ indicates whether the client has registered
 as an Operator. The ’-’ or ’+’ characters represent
 whether the client has set an AWAY message or not
 respectively.

 303 RPL_ISON
 ":[<nick> {<space><nick>}]"

 - Reply format used by ISON to list replies to the
 query list.

 301 RPL_AWAY
 "<nick> :<away message>"

Oikarinen & Reed [Page 48]

RFC 1459 Internet Relay Chat Protocol May 1993

 305 RPL_UNAWAY
 ":You are no longer marked as being away"
 306 RPL_NOWAWAY
 ":You have been marked as being away"

 - These replies are used with the AWAY command (if
 allowed). RPL_AWAY is sent to any client sending a
 PRIVMSG to a client which is away. RPL_AWAY is only
 sent by the server to which the client is connected.
 Replies RPL_UNAWAY and RPL_NOWAWAY are sent when the
 client removes and sets an AWAY message.

 311 RPL_WHOISUSER
 "<nick> <user> <host> * :<real name>"
 312 RPL_WHOISSERVER
 "<nick> <server> :<server info>"
 313 RPL_WHOISOPERATOR
 "<nick> :is an IRC operator"
 317 RPL_WHOISIDLE
 "<nick> <integer> :seconds idle"
 318 RPL_ENDOFWHOIS
 "<nick> :End of /WHOIS list"
 319 RPL_WHOISCHANNELS
 "<nick> :{[@|+]<channel><space>}"

 - Replies 311 - 313, 317 - 319 are all replies
 generated in response to a WHOIS message. Given that
 there are enough parameters present, the answering
 server must either formulate a reply out of the above
 numerics (if the query nick is found) or return an
 error reply. The ’*’ in RPL_WHOISUSER is there as
 the literal character and not as a wild card. For
 each reply set, only RPL_WHOISCHANNELS may appear
 more than once (for long lists of channel names).
 The ’@’ and ’+’ characters next to the channel name
 indicate whether a client is a channel operator or
 has been granted permission to speak on a moderated
 channel. The RPL_ENDOFWHOIS reply is used to mark
 the end of processing a WHOIS message.

 314 RPL_WHOWASUSER
 "<nick> <user> <host> * :<real name>"
 369 RPL_ENDOFWHOWAS
 "<nick> :End of WHOWAS"

 - When replying to a WHOWAS message, a server must use
 the replies RPL_WHOWASUSER, RPL_WHOISSERVER or
 ERR_WASNOSUCHNICK for each nickname in the presented

Oikarinen & Reed [Page 49]

RFC 1459 Internet Relay Chat Protocol May 1993

 list. At the end of all reply batches, there must
 be RPL_ENDOFWHOWAS (even if there was only one reply
 and it was an error).

 321 RPL_LISTSTART
 "Channel :Users Name"
 322 RPL_LIST
 "<channel> <# visible> :<topic>"
 323 RPL_LISTEND
 ":End of /LIST"

 - Replies RPL_LISTSTART, RPL_LIST, RPL_LISTEND mark
 the start, actual replies with data and end of the
 server’s response to a LIST command. If there are
 no channels available to return, only the start
 and end reply must be sent.

 324 RPL_CHANNELMODEIS
 "<channel> <mode> <mode params>"

 331 RPL_NOTOPIC
 "<channel> :No topic is set"
 332 RPL_TOPIC
 "<channel> :<topic>"

 - When sending a TOPIC message to determine the
 channel topic, one of two replies is sent. If
 the topic is set, RPL_TOPIC is sent back else
 RPL_NOTOPIC.

 341 RPL_INVITING
 "<channel> <nick>"

 - Returned by the server to indicate that the
 attempted INVITE message was successful and is
 being passed onto the end client.

 342 RPL_SUMMONING
 "<user> :Summoning user to IRC"

 - Returned by a server answering a SUMMON message to
 indicate that it is summoning that user.

 351 RPL_VERSION
 "<version>.<debuglevel> <server> :<comments>"

 - Reply by the server showing its version details.
 The <version> is the version of the software being

Oikarinen & Reed [Page 50]

RFC 1459 Internet Relay Chat Protocol May 1993

 used (including any patchlevel revisions) and the
 <debuglevel> is used to indicate if the server is
 running in "debug mode".

 The "comments" field may contain any comments about
 the version or further version details.

 352 RPL_WHOREPLY
 "<channel> <user> <host> <server> <nick> \
 <H|G>[*][@|+] :<hopcount> <real name>"
 315 RPL_ENDOFWHO
 "<name> :End of /WHO list"

 - The RPL_WHOREPLY and RPL_ENDOFWHO pair are used
 to answer a WHO message. The RPL_WHOREPLY is only
 sent if there is an appropriate match to the WHO
 query. If there is a list of parameters supplied
 with a WHO message, a RPL_ENDOFWHO must be sent
 after processing each list item with <name> being
 the item.

 353 RPL_NAMREPLY
 "<channel> :[[@|+]<nick> [[@|+]<nick> [...]]]"
 366 RPL_ENDOFNAMES
 "<channel> :End of /NAMES list"

 - To reply to a NAMES message, a reply pair consisting
 of RPL_NAMREPLY and RPL_ENDOFNAMES is sent by the
 server back to the client. If there is no channel
 found as in the query, then only RPL_ENDOFNAMES is
 returned. The exception to this is when a NAMES
 message is sent with no parameters and all visible
 channels and contents are sent back in a series of
 RPL_NAMEREPLY messages with a RPL_ENDOFNAMES to mark
 the end.

 364 RPL_LINKS
 "<mask> <server> :<hopcount> <server info>"
 365 RPL_ENDOFLINKS
 "<mask> :End of /LINKS list"

 - In replying to the LINKS message, a server must send
 replies back using the RPL_LINKS numeric and mark the
 end of the list using an RPL_ENDOFLINKS reply.

 367 RPL_BANLIST
 "<channel> <banid>"
 368 RPL_ENDOFBANLIST

Oikarinen & Reed [Page 51]

RFC 1459 Internet Relay Chat Protocol May 1993

 "<channel> :End of channel ban list"

 - When listing the active ’bans’ for a given channel,
 a server is required to send the list back using the
 RPL_BANLIST and RPL_ENDOFBANLIST messages. A separate
 RPL_BANLIST is sent for each active banid. After the
 banids have been listed (or if none present) a
 RPL_ENDOFBANLIST must be sent.

 371 RPL_INFO
 ":<string>"
 374 RPL_ENDOFINFO
 ":End of /INFO list"

 - A server responding to an INFO message is required to
 send all its ’info’ in a series of RPL_INFO messages
 with a RPL_ENDOFINFO reply to indicate the end of the
 replies.

 375 RPL_MOTDSTART
 ":- <server> Message of the day - "
 372 RPL_MOTD
 ":- <text>"
 376 RPL_ENDOFMOTD
 ":End of /MOTD command"

 - When responding to the MOTD message and the MOTD file
 is found, the file is displayed line by line, with
 each line no longer than 80 characters, using
 RPL_MOTD format replies. These should be surrounded
 by a RPL_MOTDSTART (before the RPL_MOTDs) and an
 RPL_ENDOFMOTD (after).

 381 RPL_YOUREOPER
 ":You are now an IRC operator"

 - RPL_YOUREOPER is sent back to a client which has
 just successfully issued an OPER message and gained
 operator status.

 382 RPL_REHASHING
 "<config file> :Rehashing"

 - If the REHASH option is used and an operator sends
 a REHASH message, an RPL_REHASHING is sent back to
 the operator.

 391 RPL_TIME

Oikarinen & Reed [Page 52]

RFC 1459 Internet Relay Chat Protocol May 1993

 "<server> :<string showing server’s local time>"

 - When replying to the TIME message, a server must send
 the reply using the RPL_TIME format above. The string
 showing the time need only contain the correct day and
 time there. There is no further requirement for the
 time string.

 392 RPL_USERSSTART
 ":UserID Terminal Host"
 393 RPL_USERS
 ":%-8s %-9s %-8s"
 394 RPL_ENDOFUSERS
 ":End of users"
 395 RPL_NOUSERS
 ":Nobody logged in"

 - If the USERS message is handled by a server, the
 replies RPL_USERSTART, RPL_USERS, RPL_ENDOFUSERS and
 RPL_NOUSERS are used. RPL_USERSSTART must be sent
 first, following by either a sequence of RPL_USERS
 or a single RPL_NOUSER. Following this is
 RPL_ENDOFUSERS.

 200 RPL_TRACELINK
 "Link <version & debug level> <destination> \
 <next server>"
 201 RPL_TRACECONNECTING
 "Try. <class> <server>"
 202 RPL_TRACEHANDSHAKE
 "H.S. <class> <server>"
 203 RPL_TRACEUNKNOWN
 "???? <class> [<client IP address in dot form>]"
 204 RPL_TRACEOPERATOR
 "Oper <class> <nick>"
 205 RPL_TRACEUSER
 "User <class> <nick>"
 206 RPL_TRACESERVER
 "Serv <class> <int>S <int>C <server> \
 <nick!user|*!*>@<host|server>"
 208 RPL_TRACENEWTYPE
 "<newtype> 0 <client name>"
 261 RPL_TRACELOG
 "File <logfile> <debug level>"

 - The RPL_TRACE* are all returned by the server in
 response to the TRACE message. How many are
 returned is dependent on the the TRACE message and

Oikarinen & Reed [Page 53]

RFC 1459 Internet Relay Chat Protocol May 1993

 whether it was sent by an operator or not. There
 is no predefined order for which occurs first.
 Replies RPL_TRACEUNKNOWN, RPL_TRACECONNECTING and
 RPL_TRACEHANDSHAKE are all used for connections
 which have not been fully established and are either
 unknown, still attempting to connect or in the
 process of completing the ’server handshake’.
 RPL_TRACELINK is sent by any server which handles
 a TRACE message and has to pass it on to another
 server. The list of RPL_TRACELINKs sent in
 response to a TRACE command traversing the IRC
 network should reflect the actual connectivity of
 the servers themselves along that path.
 RPL_TRACENEWTYPE is to be used for any connection
 which does not fit in the other categories but is
 being displayed anyway.

 211 RPL_STATSLINKINFO
 "<linkname> <sendq> <sent messages> \
 <sent bytes> <received messages> \
 <received bytes> <time open>"
 212 RPL_STATSCOMMANDS
 "<command> <count>"
 213 RPL_STATSCLINE
 "C <host> * <name> <port> <class>"
 214 RPL_STATSNLINE
 "N <host> * <name> <port> <class>"
 215 RPL_STATSILINE
 "I <host> * <host> <port> <class>"
 216 RPL_STATSKLINE
 "K <host> * <username> <port> <class>"
 218 RPL_STATSYLINE
 "Y <class> <ping frequency> <connect \
 frequency> <max sendq>"
 219 RPL_ENDOFSTATS
 "<stats letter> :End of /STATS report"
 241 RPL_STATSLLINE
 "L <hostmask> * <servername> <maxdepth>"
 242 RPL_STATSUPTIME
 ":Server Up %d days %d:%02d:%02d"
 243 RPL_STATSOLINE
 "O <hostmask> * <name>"
 244 RPL_STATSHLINE
 "H <hostmask> * <servername>"

 221 RPL_UMODEIS
 "<user mode string>"

Oikarinen & Reed [Page 54]

RFC 1459 Internet Relay Chat Protocol May 1993

 - To answer a query about a client’s own mode,
 RPL_UMODEIS is sent back.

 251 RPL_LUSERCLIENT
 ":There are <integer> users and <integer> \
 invisible on <integer> servers"
 252 RPL_LUSEROP
 "<integer> :operator(s) online"
 253 RPL_LUSERUNKNOWN
 "<integer> :unknown connection(s)"
 254 RPL_LUSERCHANNELS
 "<integer> :channels formed"
 255 RPL_LUSERME
 ":I have <integer> clients and <integer> \
 servers"

 - In processing an LUSERS message, the server
 sends a set of replies from RPL_LUSERCLIENT,
 RPL_LUSEROP, RPL_USERUNKNOWN,
 RPL_LUSERCHANNELS and RPL_LUSERME. When
 replying, a server must send back
 RPL_LUSERCLIENT and RPL_LUSERME. The other
 replies are only sent back if a non-zero count
 is found for them.

 256 RPL_ADMINME
 "<server> :Administrative info"
 257 RPL_ADMINLOC1
 ":<admin info>"
 258 RPL_ADMINLOC2
 ":<admin info>"
 259 RPL_ADMINEMAIL
 ":<admin info>"

 - When replying to an ADMIN message, a server
 is expected to use replies RLP_ADMINME
 through to RPL_ADMINEMAIL and provide a text
 message with each. For RPL_ADMINLOC1 a
 description of what city, state and country
 the server is in is expected, followed by
 details of the university and department
 (RPL_ADMINLOC2) and finally the administrative
 contact for the server (an email address here
 is required) in RPL_ADMINEMAIL.

Oikarinen & Reed [Page 55]

RFC 1459 Internet Relay Chat Protocol May 1993

6.3 Reserved numerics.

 These numerics are not described above since they fall into one of
 the following categories:

 1. no longer in use;

 2. reserved for future planned use;

 3. in current use but are part of a non-generic ’feature’ of
 the current IRC server.

 209 RPL_TRACECLASS 217 RPL_STATSQLINE
 231 RPL_SERVICEINFO 232 RPL_ENDOFSERVICES
 233 RPL_SERVICE 234 RPL_SERVLIST
 235 RPL_SERVLISTEND
 316 RPL_WHOISCHANOP 361 RPL_KILLDONE
 362 RPL_CLOSING 363 RPL_CLOSEEND
 373 RPL_INFOSTART 384 RPL_MYPORTIS
 466 ERR_YOUWILLBEBANNED 476 ERR_BADCHANMASK
 492 ERR_NOSERVICEHOST

7. Client and server authentication

 Clients and servers are both subject to the same level of
 authentication. For both, an IP number to hostname lookup (and
 reverse check on this) is performed for all connections made to the
 server. Both connections are then subject to a password check (if
 there is a password set for that connection). These checks are
 possible on all connections although the password check is only
 commonly used with servers.

 An additional check that is becoming of more and more common is that
 of the username responsible for making the connection. Finding the
 username of the other end of the connection typically involves
 connecting to an authentication server such as IDENT as described in
 RFC 1413.

 Given that without passwords it is not easy to reliably determine who
 is on the other end of a network connection, use of passwords is
 strongly recommended on inter-server connections in addition to any
 other measures such as using an ident server.

8. Current implementations

 The only current implementation of this protocol is the IRC server,
 version 2.8. Earlier versions may implement some or all of the
 commands described by this document with NOTICE messages replacing

Oikarinen & Reed [Page 56]

RFC 1459 Internet Relay Chat Protocol May 1993

 many of the numeric replies. Unfortunately, due to backward
 compatibility requirements, the implementation of some parts of this
 document varies with what is laid out. On notable difference is:

 * recognition that any LF or CR anywhere in a message marks the
 end of that message (instead of requiring CR-LF);

 The rest of this section deals with issues that are mostly of
 importance to those who wish to implement a server but some parts
 also apply directly to clients as well.

8.1 Network protocol: TCP - why it is best used here.

 IRC has been implemented on top of TCP since TCP supplies a reliable
 network protocol which is well suited to this scale of conferencing.
 The use of multicast IP is an alternative, but it is not widely
 available or supported at the present time.

8.1.1 Support of Unix sockets

 Given that Unix domain sockets allow listen/connect operations, the
 current implementation can be configured to listen and accept both
 client and server connections on a Unix domain socket. These are
 recognized as sockets where the hostname starts with a ’/’.

 When providing any information about the connections on a Unix domain
 socket, the server is required to supplant the actual hostname in
 place of the pathname unless the actual socket name is being asked
 for.

8.2 Command Parsing

 To provide useful ’non-buffered’ network IO for clients and servers,
 each connection is given its own private ’input buffer’ in which the
 results of the most recent read and parsing are kept. A buffer size
 of 512 bytes is used so as to hold 1 full message, although, this
 will usually hold several commands. The private buffer is parsed
 after every read operation for valid messages. When dealing with
 multiple messages from one client in the buffer, care should be taken
 in case one happens to cause the client to be ’removed’.

8.3 Message delivery

 It is common to find network links saturated or hosts to which you
 are sending data unable to send data. Although Unix typically
 handles this through the TCP window and internal buffers, the server
 often has large amounts of data to send (especially when a new
 server-server link forms) and the small buffers provided in the

Oikarinen & Reed [Page 57]

RFC 1459 Internet Relay Chat Protocol May 1993

 kernel are not enough for the outgoing queue. To alleviate this
 problem, a "send queue" is used as a FIFO queue for data to be sent.
 A typical "send queue" may grow to 200 Kbytes on a large IRC network
 with a slow network connection when a new server connects.

 When polling its connections, a server will first read and parse all
 incoming data, queuing any data to be sent out. When all available
 input is processed, the queued data is sent. This reduces the number
 of write() system calls and helps TCP make bigger packets.

8.4 Connection ’Liveness’

 To detect when a connection has died or become unresponsive, the
 server must ping each of its connections that it doesn’t get a
 response from in a given amount of time.

 If a connection doesn’t respond in time, its connection is closed
 using the appropriate procedures. A connection is also dropped if
 its sendq grows beyond the maximum allowed, because it is better to
 close a slow connection than have a server process block.

8.5 Establishing a server to client connection

 Upon connecting to an IRC server, a client is sent the MOTD (if
 present) as well as the current user/server count (as per the LUSER
 command). The server is also required to give an unambiguous message
 to the client which states its name and version as well as any other
 introductory messages which may be deemed appropriate.

 After dealing with this, the server must then send out the new user’s
 nickname and other information as supplied by itself (USER command)
 and as the server could discover (from DNS/authentication servers).
 The server must send this information out with NICK first followed by
 USER.

8.6 Establishing a server-server connection.

 The process of establishing of a server-to-server connection is
 fraught with danger since there are many possible areas where
 problems can occur - the least of which are race conditions.

 After a server has received a connection following by a PASS/SERVER
 pair which were recognised as being valid, the server should then
 reply with its own PASS/SERVER information for that connection as
 well as all of the other state information it knows about as
 described below.

 When the initiating server receives a PASS/SERVER pair, it too then

Oikarinen & Reed [Page 58]

RFC 1459 Internet Relay Chat Protocol May 1993

 checks that the server responding is authenticated properly before
 accepting the connection to be that server.

8.6.1 Server exchange of state information when connecting

 The order of state information being exchanged between servers is
 essential. The required order is as follows:

 * all known other servers;

 * all known user information;

 * all known channel information.

 Information regarding servers is sent via extra SERVER messages, user
 information with NICK/USER/MODE/JOIN messages and channels with MODE
 messages.

 NOTE: channel topics are *NOT* exchanged here because the TOPIC
 command overwrites any old topic information, so at best, the two
 sides of the connection would exchange topics.

 By passing the state information about servers first, any collisions
 with servers that already exist occur before nickname collisions due
 to a second server introducing a particular nickname. Due to the IRC
 network only being able to exist as an acyclic graph, it may be
 possible that the network has already reconnected in another
 location, the place where the collision occurs indicating where the
 net needs to split.

8.7 Terminating server-client connections

 When a client connection closes, a QUIT message is generated on
 behalf of the client by the server to which the client connected. No
 other message is to be generated or used.

8.8 Terminating server-server connections

 If a server-server connection is closed, either via a remotely
 generated SQUIT or ’natural’ causes, the rest of the connected IRC
 network must have its information updated with by the server which
 detected the closure. The server then sends a list of SQUITs (one
 for each server behind that connection) and a list of QUITs (again,
 one for each client behind that connection).

Oikarinen & Reed [Page 59]

RFC 1459 Internet Relay Chat Protocol May 1993

8.9 Tracking nickname changes

 All IRC servers are required to keep a history of recent nickname
 changes. This is required to allow the server to have a chance of
 keeping in touch of things when nick-change race conditions occur
 with commands which manipulate them. Commands which must trace nick
 changes are:

 * KILL (the nick being killed)

 * MODE (+/- o,v)

 * KICK (the nick being kicked)

 No other commands are to have nick changes checked for.

 In the above cases, the server is required to first check for the
 existence of the nickname, then check its history to see who that
 nick currently belongs to (if anyone!). This reduces the chances of
 race conditions but they can still occur with the server ending up
 affecting the wrong client. When performing a change trace for an
 above command it is recommended that a time range be given and
 entries which are too old ignored.

 For a reasonable history, a server should be able to keep previous
 nickname for every client it knows about if they all decided to
 change. This size is limited by other factors (such as memory, etc).

8.10 Flood control of clients

 With a large network of interconnected IRC servers, it is quite easy
 for any single client attached to the network to supply a continuous
 stream of messages that result in not only flooding the network, but
 also degrading the level of service provided to others. Rather than
 require every ’victim’ to be provide their own protection, flood
 protection was written into the server and is applied to all clients
 except services. The current algorithm is as follows:

 * check to see if client’s ‘message timer’ is less than
 current time (set to be equal if it is);

 * read any data present from the client;

 * while the timer is less than ten seconds ahead of the current
 time, parse any present messages and penalize the client by
 2 seconds for each message;

 which in essence means that the client may send 1 message every 2

Oikarinen & Reed [Page 60]

RFC 1459 Internet Relay Chat Protocol May 1993

 seconds without being adversely affected.

8.11 Non-blocking lookups

 In a real-time environment, it is essential that a server process do
 as little waiting as possible so that all the clients are serviced
 fairly. Obviously this requires non-blocking IO on all network
 read/write operations. For normal server connections, this was not
 difficult, but there are other support operations that may cause the
 server to block (such as disk reads). Where possible, such activity
 should be performed with a short timeout.

8.11.1 Hostname (DNS) lookups

 Using the standard resolver libraries from Berkeley and others has
 meant large delays in some cases where replies have timed out. To
 avoid this, a separate set of DNS routines were written which were
 setup for non-blocking IO operations and then polled from within the
 main server IO loop.

8.11.2 Username (Ident) lookups

 Although there are numerous ident libraries for use and inclusion
 into other programs, these caused problems since they operated in a
 synchronous manner and resulted in frequent delays. Again the
 solution was to write a set of routines which would cooperate with
 the rest of the server and work using non-blocking IO.

8.12 Configuration File

 To provide a flexible way of setting up and running the server, it is
 recommended that a configuration file be used which contains
 instructions to the server on the following:

 * which hosts to accept client connections from;

 * which hosts to allow to connect as servers;

 * which hosts to connect to (both actively and
 passively);

 * information about where the server is (university,
 city/state, company are examples of this);

 * who is responsible for the server and an email address
 at which they can be contacted;

 * hostnames and passwords for clients which wish to be given

Oikarinen & Reed [Page 61]

RFC 1459 Internet Relay Chat Protocol May 1993

 access to restricted operator commands.

 In specifying hostnames, both domain names and use of the ’dot’
 notation (127.0.0.1) should both be accepted. It must be possible to
 specify the password to be used/accepted for all outgoing and
 incoming connections (although the only outgoing connections are
 those to other servers).

 The above list is the minimum requirement for any server which wishes
 to make a connection with another server. Other items which may be
 of use are:

 * specifying which servers other server may introduce;

 * how deep a server branch is allowed to become;

 * hours during which clients may connect.

8.12.1 Allowing clients to connect

 A server should use some sort of ’access control list’ (either in the
 configuration file or elsewhere) that is read at startup and used to
 decide what hosts clients may use to connect to it.

 Both ’deny’ and ’allow’ should be implemented to provide the required
 flexibility for host access control.

8.12.2 Operators

 The granting of operator privileges to a disruptive person can have
 dire consequences for the well-being of the IRC net in general due to
 the powers given to them. Thus, the acquisition of such powers
 should not be very easy. The current setup requires two ’passwords’
 to be used although one of them is usually easy guessed. Storage of
 oper passwords in configuration files is preferable to hard coding
 them in and should be stored in a crypted format (ie using crypt(3)
 from Unix) to prevent easy theft.

8.12.3 Allowing servers to connect

 The interconnection of server is not a trivial matter: a bad
 connection can have a large impact on the usefulness of IRC. Thus,
 each server should have a list of servers to which it may connect and
 which servers may connect to it. Under no circumstances should a
 server allow an arbitrary host to connect as a server. In addition
 to which servers may and may not connect, the configuration file
 should also store the password and other characteristics of that
 link.

Oikarinen & Reed [Page 62]

RFC 1459 Internet Relay Chat Protocol May 1993

8.12.4 Administrivia

 To provide accurate and valid replies to the ADMIN command (see
 section 4.3.7), the server should find the relevant details in the
 configuration.

8.13 Channel membership

 The current server allows any registered local user to join upto 10
 different channels. There is no limit imposed on non-local users so
 that the server remains (reasonably) consistant with all others on a
 channel membership basis

9. Current problems

 There are a number of recognized problems with this protocol, all of
 which hope to be solved sometime in the near future during its
 rewrite. Currently, work is underway to find working solutions to
 these problems.

9.1 Scalability

 It is widely recognized that this protocol does not scale
 sufficiently well when used in a large arena. The main problem comes
 from the requirement that all servers know about all other servers
 and users and that information regarding them be updated as soon as
 it changes. It is also desirable to keep the number of servers low
 so that the path length between any two points is kept minimal and
 the spanning tree as strongly branched as possible.

9.2 Labels

 The current IRC protocol has 3 types of labels: the nickname, the
 channel name and the server name. Each of the three types has its
 own domain and no duplicates are allowed inside that domain.
 Currently, it is possible for users to pick the label for any of the
 three, resulting in collisions. It is widely recognized that this
 needs reworking, with a plan for unique names for channels and nicks
 that don’t collide being desirable as well as a solution allowing a
 cyclic tree.

9.2.1 Nicknames

 The idea of the nickname on IRC is very convenient for users to use
 when talking to each other outside of a channel, but there is only a
 finite nickname space and being what they are, its not uncommon for
 several people to want to use the same nick. If a nickname is chosen
 by two people using this protocol, either one will not succeed or

Oikarinen & Reed [Page 63]

RFC 1459 Internet Relay Chat Protocol May 1993

 both will removed by use of KILL (4.6.1).

9.2.2 Channels

 The current channel layout requires that all servers know about all
 channels, their inhabitants and properties. Besides not scaling
 well, the issue of privacy is also a concern. A collision of
 channels is treated as an inclusive event (both people who create the
 new channel are considered to be members of it) rather than an
 exclusive one such as used to solve nickname collisions.

9.2.3 Servers

 Although the number of servers is usually small relative to the
 number of users and channels, they two currently required to be known
 globally, either each one separately or hidden behind a mask.

9.3 Algorithms

 In some places within the server code, it has not been possible to
 avoid N^2 algorithms such as checking the channel list of a set
 of clients.

 In current server versions, there are no database consistency checks,
 each server assumes that a neighbouring server is correct. This
 opens the door to large problems if a connecting server is buggy or
 otherwise tries to introduce contradictions to the existing net.

 Currently, because of the lack of unique internal and global labels,
 there are a multitude of race conditions that exist. These race
 conditions generally arise from the problem of it taking time for
 messages to traverse and effect the IRC network. Even by changing to
 unique labels, there are problems with channel-related commands being
 disrupted.

10. Current support and availability

 Mailing lists for IRC related discussion:
 Future protocol: ircd-three-request@eff.org
 General discussion: operlist-request@eff.org

 Software implemenations
 cs.bu.edu:/irc
 nic.funet.fi:/pub/irc
 coombs.anu.edu.au:/pub/irc

 Newsgroup: alt.irc

Oikarinen & Reed [Page 64]

RFC 1459 Internet Relay Chat Protocol May 1993

Security Considerations

 Security issues are discussed in sections 4.1, 4.1.1, 4.1.3, 5.5, and
 7.

12. Authors’ Addresses

 Jarkko Oikarinen
 Tuirantie 17 as 9
 90500 OULU
 FINLAND

 Email: jto@tolsun.oulu.fi

 Darren Reed
 4 Pateman Street
 Watsonia, Victoria 3087
 Australia

 Email: avalon@coombs.anu.edu.au

Oikarinen & Reed [Page 65]

