
Network Working Group R. Braden
Request for Comments: 1379 ISI
 November 1992

 Extending TCP for Transactions -- Concepts

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Abstract

 This memo discusses extension of TCP to provide transaction-oriented
 service, without altering its virtual-circuit operation. This
 extension would fill the large gap between connection-oriented TCP
 and datagram-based UDP, allowing TCP to efficiently perform many
 applications for which UDP is currently used. A separate memo
 contains a detailed functional specification for this proposed
 extension.

 This work was supported in part by the National Science Foundation
 under Grant Number NCR-8922231.

TABLE OF CONTENTS

 1. INTRODUCTION .. 2
 2. TRANSACTIONS USING STANDARD TCP 3
 3. BYPASSING THE 3-WAY HANDSHAKE 6
 3.1 Concept of TAO ... 6
 3.2 Cache Initialization 10
 3.3 Accepting <SYN,ACK> Segments 11
 4. SHORTENING TIME-WAIT STATE 13
 5. CHOOSING A MONOTONIC SEQUENCE 15
 5.1 Cached Timestamps .. 16
 5.2 Current TCP Sequence Numbers 18
 5.3 64-bit Sequence Numbers 20
 5.4 Connection Counts .. 20
 5.5 Conclusions .. 21
 6. CONNECTION STATES ... 24
 7. CONCLUSIONS AND ACKNOWLEDGMENTS 32
 APPENDIX A: TIME-WAIT STATE AND THE 2-PACKET EXCHANGE 34
 REFERENCES ... 37
 Security Considerations .. 38
 Author’s Address ... 38

Braden [Page 1]

RFC 1379 Transaction TCP -- Concepts November 1992

1. INTRODUCTION

 The TCP protocol [STD-007] implements a virtual-circuit transport
 service that provides reliable and ordered data delivery over a
 full-duplex connection. Under the virtual circuit model, the life of
 a connection is divided into three distinct phases: (1) opening the
 connection to create a full-duplex byte stream; (2) transferring data
 in one or both directions over this stream; and (3) closing the
 connection. Remote login and file transfer are examples of
 applications that are well suited to virtual-circuit service.

 Distributed applications, which are becoming increasingly numerous
 and sophisticated in the Internet, tend to use a transaction-oriented
 rather than a virtual circuit style of communication. Currently, a
 transaction-oriented Internet application must choose to suffer the
 overhead of opening and closing TCP connections or else build an
 application-specific transport mechanism on top of the connectionless
 transport protocol UDP. Greater convenience, uniformity, and
 efficiency would result from widely-available kernel implementations
 of a transport protocol supporting a transaction service model [RFC-
 955].

 The transaction service model has the following features:

 * The fundamental interaction is a request followed by a response.

 * An explicit open or close phase would impose excessive overhead.

 * At-most-once semantics is required; that is, a transaction must
 not be "replayed" by a duplicate request packet.

 * In favorable circumstances, a reliable request/response
 handshake can be performed with exactly one packet in each
 direction.

 * The minimum transaction latency for a client is RTT + SPT, where
 RTT is the round-trip time and SPT is the server processing
 time.

 We use the term "transaction transport protocol" for a transport-
 layer protocol that follows this model [RFC-955].

 The Internet architecture allows an arbitrary collection of transport
 protocols to be defined on top of the minimal end-to-end datagram
 service provided by IP [Clark88]. In practice, however, production
 systems implement only TCP and UDP at the transport layer. It has
 proven difficult to leverage a new transport protocol into place, to
 be widely enough available to be useful for application builders.

Braden [Page 2]

RFC 1379 Transaction TCP -- Concepts November 1992

 This memo explores an alternative approach to providing a transaction
 transport protocol: extending TCP to implement the transaction
 service model, while continuing to support the virtual circuit model.
 Each transaction will then be a single instance of a TCP connection.
 The proposed transaction extension is effectively implementable
 within current TCPs and operating systems, and it should also scale
 to the much faster networks, interfaces, and CPUs of the future.

 The present memo explains the theory behind the extension, in
 somewhat exquisite detail. Despite the length and complexity of this
 memo, the TCP extensions required for transactions are in fact quite
 limited and simple. Another memo [TTCP-FS] provides a self-contained
 functional specification of the extensions.

 Section 2 of this memo describes the limitations of standard TCP for
 transaction processing, to motivate the extensions. Sections 3, 4,
 and 5 explore the fundamental extensions that are required for
 transactions. Section 6 discusses the changes required in the TCP
 connection state diagram. Finally, Section 7 presents conclusions
 and acknowledgments. Familiarity with the standard TCP protocol
 [STD-007] is assumed.

2. TRANSACTIONS USING STANDARD TCP

 Reliable transfer of data depends upon sequence numbers. Before data
 transfer can begin, both parties must "synchronize" the connection,
 i.e, agree on common sequence numbers. The synchronization procedure
 must preserve at-most-once semantics, i.e., be free from replay
 hazards due to duplicate packets. The TCP developers adopted a
 synchronization mechanism known as the 3-way handshake.

 Consider a simple transaction in which client host A sends a single-
 segment request to server host B, and B returns a single-segment
 response. Many current TCP implementations use at least ten segments
 (i.e., packets) for this sequence: three for the 3-way handshake
 opening the connection, four to send and acknowledge the request and
 response data, and three for TCP’s full-duplex data-conserving close
 sequence. These ten segments represent a high relative overhead for
 two data-bearing segments. However, a more important consideration
 is the transaction latency seen by the client: 2*RTT + SPT, larger
 than the minimum by one RTT. As CPU and network speeds increase, the
 relative significance of this extra transaction latency also
 increases.

 Proposed transaction transport protocols have typically used a
 "timer-based" approach to connection synchronization [Birrell84]. In
 this approach, once end-to-end connection state is established in the
 client and server hosts, a subset of this state is maintained for

Braden [Page 3]

RFC 1379 Transaction TCP -- Concepts November 1992

 some period of time. A new request before the expiration of this
 timeout period can then reestablish the full state without an
 explicit handshake. Watson pointed out that the timer-based approach
 of his Delta-T protocol [Watson81] would encompass both virtual
 circuits and transactions. However, the TCP group adopted the 3-way
 handshake (because of uncertainty about the robustness of enforcing
 the packet lifetime bounds required by Delta-T, within a general
 Internet environment). More recently, Liskov, Shrira, and Wroclawski
 [Liskov90] have proposed a different timer-based approach to
 connection synchronization, requiring loosely-synchronized clocks in
 the hosts.

 The technique proposed in this memo, suggested by Clark [Clark89],
 depends upon cacheing of connection state but not upon clocks or
 timers; it is described in Section 3 below. Garlick, Rom, and Postel
 also proposed a connection synchronization mechanism using cached
 state [Garlick77]. Their scheme required each host to maintain
 connection records containing the highest sequence number on each
 connection. The technique suggested here retains only per-host
 state, not per-connection state.

 During TCP development, it was suggested that TCP could support
 transactions with data segments containing both SYN and FIN bits.
 (These "Kamikaze" segments were not supported as a service; they were
 used mainly to crash other experimental TCPs!) To illustrate this
 idea, Figure 1 shows a plausible application of the current TCP rules
 to create a minimal transaction. (In fact, some minor adjustments in
 the standard TCP spec would be required to make Figure 1 fully legal
 [STD-007]).

 Figure 1, like many of the examples shown in this memo, uses an
 abbreviated form to illustrate segment sequences. For clarity and
 brevity, it omits explicit sequence and acknowledgment numbers,
 assuming that these will follow the well-known TCP rules. The
 notation "ACK(x)" implies a cumulative acknowledgment for the control
 bit or data "x" and everything preceding "x" in the sequence space.
 The referent of "x" should be clear from the context. Also, host A
 will always be the client and host B will be the server in these
 diagrams.

 The first three segments in Figure 1 implement the standard TCP
 three-way handshake. If segment #1 had been an old duplicate, the
 client side would have sent an RST (Reset) bit in segment #3,
 terminating the sequence. The request data included on the initial
 SYN segment cannot be delivered to user B until segment #3 completes
 the 3-way handshake. Loading control bits onto the segments has
 reduced the total number of segments to 5, but the client still
 observes a transaction latency of 2*RTT + SPT. The 3-way handshake

Braden [Page 4]

RFC 1379 Transaction TCP -- Concepts November 1992

 thus precludes high-performance transaction processing.

 TCP A (Client) TCP B (Server)
 _______________ ______________

 CLOSED LISTEN

 (Client sends request)
 1. SYN-SENT --> <SYN,data1,FIN> --> SYN-RCVD
 (data1 queued)

 2. ESTABLISHED <-- <SYN,ACK(SYN)> <-- SYN-RCVD

 3. FIN-WAIT-1 --> <ACK(SYN),FIN> --> CLOSE-WAIT
 (data1 to server)

 (Server sends reply)
 4. TIME-WAIT <-- <ACK(FIN),data2,FIN> <-- LAST-ACK
 (data2 to client)

 5. TIME-WAIT --> <ACK(FIN)> --> CLOSED

 (timeout)
 CLOSED

 Figure 1: Transaction Sequence: RFC-793 TCP

 The TCP close sequence also poses a performance problem for
 transactions: one or both end(s) of a closed connection must remain
 in "TIME-WAIT" state until a 4 minute timeout has expired [STD-007].
 The same connection (defined by the host and port numbers at both
 ends) cannot be reopened until this delay has expired. Because of
 TIME-WAIT state, a client program should choose a new local port
 number (i.e., a different connection) for each successive
 transaction. However, the TCP port field of 16 bits (less the
 "well-known" port space) provides only 64512 available user ports.
 This limits the total rate of transactions between any pair of hosts
 to a maximum of 64512/240 = 268 per second. This is much too low a
 rate for low-delay paths, e.g., high-speed LANs. A high rate of
 short connections (i.e., transactions) could also lead to excessive
 consumption of kernel memory by connection control blocks in TIME-
 WAIT state.

 In summary, to perform efficient transaction processing in TCP, we
 need to suppress the 3-way handshake and to shorten TIME-WAIT state.

Braden [Page 5]

RFC 1379 Transaction TCP -- Concepts November 1992

 Protocol mechanisms to accomplish these two goals are discussed in
 Sections 3 and 4, respectively. Both require the choice of a
 monotonic sequence-like space; Section 5 analyzes the choices and
 makes a selection for this space. Finally, the TCP connection state
 machine must be extended as described in Section 6.

 Transaction processing in TCP raises some other protocol issues,
 which are discussed in the functional specification memo [TTCP-FS].
 These include:

 (1) augmenting the user interface for transactions,

 (2) delaying acknowledgment segments to allow maximum piggy-backing
 of control bits with data,

 (3) measuring the retransmission timeout time (RTO) on very short
 connections, and

 (4) providing an initial server window.

 A recently proposed set of enhancements [RFC-1323] defines a TCP
 Timestamps option that carries two 32-bit timestamp values. The
 Timestamps option is used to accurately measure round-trip time
 (RTT). The same option is also used in a procedure known as "PAWS"
 (Protect Againsts Wrapped Sequence) to prevent erroneous data
 delivery due to a combination of old duplicate segments and sequence
 number reuse at very high bandwidths. The particular approach to
 transactions chosen in this memo does not require the RFC-1323
 enhancements; however, they are important and should be implemented
 in every TCP, with or without the transaction extensions described
 here.

3. BYPASSING THE 3-WAY HANDSHAKE

 To avoid 3-way handshakes for transactions, we introduce a new
 mechanism for validating initial SYN segments, i.e., for enforcing
 at-most-once semantics without a 3-way handshake. We refer to this
 as the TCP Accelerated Open, or TAO, mechanism.

 3.1 Concept of TAO

 The basis of TAO is this: a TCP uses cached per-host information
 to immediately validate new SYNs [Clark89]. If this validation
 fails, e.g., because there is no current cached state or the
 segment is an old duplicate, the procedure falls back to a normal
 3-way handshake to validate the SYN. Thus, bypassing a 3-way
 handshake is considered to be an optional optimization.

Braden [Page 6]

RFC 1379 Transaction TCP -- Concepts November 1992

 The proposed TAO mechanism uses a finite sequence-like space of
 values that increase monotonically with successive transactions
 (connections) between a given (client, server) host pair. Call
 this monotonic space M, and let each initial SYN segment carry an
 M value SEG.M. If M is not the existing sequence (SEG.SEQ) field,
 SEG.M may be carried in a TCP option.

 When host B receives from host A an initial SYN segment containing
 a new value SEG.M, host B compares this against cache.M[A], the
 latest M value that B has cached for host A. This comparison is
 the "TAO test". Because the M values are monotonically
 increasing, SEG.M > cache.M[A] implies that the SYN must be new
 and can be accepted immediately. If not, a normal 3-way handshake
 is performed to validate the initial SYN segment. Figure 2
 illustrates the TAO mechanism; cached M values are shown enclosed
 in square brackets. The M values generated by host A satisfy
 x0 < x1, and the M values generated by host B satisfy y0 < y1.

 An appropriate choice for the M value space is discussed in
 Section 5. M values are drawn from a finite number space, so
 inequalities must be defined in the usual way for sequence numbers
 [STD-007]. The M space must not wrap so quickly that an old
 duplicate SYN will be erroneously accepted. We assume that some
 maximum segment lifetime (MSL) is enforced by the IP layer.

 ____ T_C_P__A_____ ____ T_C_P__B_____

 cache.M[B] cache.M[A]
 V V

 [y0] [x0]

 1. --> <SYN,data1,M=x1> --> ((x1 > x0) =>
 data1 -> user_B;
 cache.M[A]= x1)

 [y0] [x1]
 2. <-- <SYN,ACK(data1),data2,M=y1> <--

 (data2 -> user_A,
 cache.M[B]= y1)

 [y1] [x1]
 ... (etc.) ...

 Figure 2. TAO: Three-Way Handshake is Bypassed

Braden [Page 7]

RFC 1379 Transaction TCP -- Concepts November 1992

 Figure 2 shows the simplest case: each side has cached the latest
 M value of the other, and the SEG.M value in the client’s SYN
 segment is greater than the value in the cache at the server host.
 As a result, B can accept the client A’s request data1 immediately
 and pass it to the server application. B’s reply data2 is shown
 piggybacked on the <SYN,ACK> segment. As a result of this 2-way
 exchange, the cached M values are updated at both sites; the
 client side becomes relevant only if the client/server roles
 reverse. Validation of the <SYN,ACK> segment at host A is
 discussed later.

 Figure 3 shows the TAO test failing but the consequent 3-way
 handshake succeeding. B updates its cache with the value x2 >= x1
 when the initial SYN is known to be valid.

 _ T_C_P__A _ T_C_P__B

 cache.M[B] cache.M[A]
 V V

 [y0] [x0]
 1. --> <SYN,data1,M=x1> --> ((x1 <= x0) =>
 data1 queued;
 3-way handshake)

 [y0] [x0]
 2. <-- <SYN,ACK(SYN),M=y1> <--
 (cache.M[B]= y1)

 [y1] [x0]
 3. --> <ACK(SYN),M=x2> --> (Handshake OK =>
 data1->user_B,
 cache.M[A]= x2)

 [y1] [x2]
 ... (etc.) ...

 Figure 3. TAO Test Fails but 3-Way Handshake Succeeds.

 There are several possible causes for a TAO test failure on a
 legitimate new SYN segment (not an old duplicate).

 (1) There may be no cached M value for this particular client
 host.

 (2) The SYN may be the one of a set of nearly-simultaneous SYNs
 for different connections but from the same host, which

Braden [Page 8]

RFC 1379 Transaction TCP -- Concepts November 1992

 arrived out of order.

 (3) The finite M space may have wrapped around between successive
 transactions from the same client.

 (4) The M values may advance too slowly for closely-spaced
 transactions.

 None of these TAO failures will cause a lockout, because the
 resulting 3-way handshake will succeed. Note that the first
 transaction between a given host pair will always require a 3-way
 handshake; subsequent transactions can take advantage of TAO.

 The per-host cache required by TAO is highly desirable for other
 reasons, e.g., to retain the measured round trip time and MTU for
 a given remote host. Furthermore, a host should already have a
 per-host routing cache [HR-COMM] that should be easily extensible
 for this purpose.

 Figure 4 illustrates a complete TCP transaction sequence using the
 TAO mechanism. Bypassing the 3-way handshake leads to new
 connection states; Figure 4 shows three of them, "SYN-SENT*",
 "CLOSE-WAIT*", and "LAST-ACK*". Explanation of these states is
 deferred to Section 6.

 TCP A (Client) TCP B (Server)
 _______________ ______________

 CLOSED LISTEN

 1. SYN-SENT* --> <SYN,data1,FIN,M=x1> --> CLOSE-WAIT*
 (TAO test OK=>
 data1->user_B)

 <-- <SYN,ACK(FIN),data2,FIN,M=y1> <-- LAST-ACK*
 2. TIME-WAIT
 (data2->user_A)

 3. TIME-WAIT --> <ACK(FIN),M=x2> --> CLOSED

 (timeout)
 CLOSED

 Figure 4: Minimal Transaction Sequence Using TAO

Braden [Page 9]

RFC 1379 Transaction TCP -- Concepts November 1992

 3.2 Cache Initialization

 The first connection between hosts A and B will find no cached
 state at one or both ends, so both M caches must be initialized.
 This requires that the first transaction carry a specially marked
 SEG.M value, which we call SEG.M.NEW. Receiving a SEG.M.NEW value
 in an initial SYN segment, B will cache this value and send its
 own M back to initialize A’s cache. When a host crashes and
 restarts, all its cached M values cache.M[*] must be invalidated
 in order to force a re-synchronization of the caches at both ends.

 This cache synchronization procedure is illustrated in Figure 5,
 where client host A has crashed and restarted with its cache
 entries undefined, as indicated by "??". Since cache.TS[B] is
 undefined, A sends a SEG.M.NEW value instead of SEG.M in the <SYN>
 segment of its first transaction request to B. Receiving this
 SEG.M.NEW, the server host B invalidates cache.TS[A] and performs
 a 3-way handshake. SEG.M in segment #2 updates A’s cache, and
 when the handshake completes successfully, B updates its cached M
 value to x2 >= x1.

 _ T_C_P__A _ T_C_P__B

 cache.M[B] cache.M[A]
 V V
 [??] [x0]

 1. --> <SYN,data1,M.NEW=x1> --> (invalidate cache;
 queue data1;
 [??] 3-way handshake)

 [??]
 2. <-- <SYN,ACK(SYN),M=y1> <--
 (cache.M[B]= y1)

 [y1] [??]

 3. --> <ACK(SYN),M=x2> --> data1->user_B,
 cache.M[A]= x2)

 [y1] [x2]
 ... (etc.) ...

 Figure 5. Client Host Crashed

 Suppose that the 3-way handshake failed, presumably because

Braden [Page 10]

RFC 1379 Transaction TCP -- Concepts November 1992

 segment #1 was an old duplicate. Then segment #3 from host A
 would be an RST segment, with the result that both side’s caches
 would be left undefined.

 Figure 6 shows the procedure when the server crashes and restarts.
 Upon receiving a <SYN> segment from a host for which it has no
 cached M value, B initiates a 3-way handshake to validate the
 request and sends its own M value to A. Again the result is to
 update cached M values on both sides.

 _ T_C_P__A _ T_C_P__B

 cache.M[B] cache.M[A]
 V V
 [y0] [??]

 1. --> <SYN,data1,M=x1> --> (data1 queued;
 3-way handshake)

 [y0] [??]
 2. <-- <SYN,ACK(SYN),M=y1> <--
 (cache.M[B]= y1)

 [y1] [??]
 3. --> <ACK(SYN),M=x2> --> (data1->user_B,
 cache.M[A]= x2)

 [y1] [x2]
 ... (etc.) ...

 Figure 6. Server Host Crashed

 3.3 Accepting <SYN,ACK> Segments

 Transactions introduce a new hazard of erroneously accepting an
 old duplicate <SYN,ACK> segment. To be acceptable, a <SYN,ACK>
 segment must arrive in SYN-SENT state, and its ACK field must
 acknowledge something that was sent. In current TCPs the
 effective send window in SYN-SENT state is exactly one octet, and
 an acceptable <SYN,ACK> must exactly ACK this one octet. The
 clock-driven selection of Initial Sequence Number (ISN) makes an
 erroneous acceptance exceedingly unlikely. An old duplicate SYN
 could be accepted erroneously only if successive connection
 attempts occurred more often than once every 4 microseconds, or if
 the segment lifetime exceeded the 4 hour wraparound time for ISN

Braden [Page 11]

RFC 1379 Transaction TCP -- Concepts November 1992

 selection.

 However, when TCP is used for transactions, data sent with the
 initial SYN increases the range of sequence numbers that have been
 sent. This increases the danger of accepting an old duplicate
 <SYN,ACK> segment, and the consequences are more serious. In the
 example in Figure 7, segments 1-3 form a normal transaction
 sequence, and segment 4 begins a new transaction (incarnation) for
 the same connection. Segment #5 is a duplicate of segment #2 from
 the preceding transaction. Although the new transaction has a
 larger ISN, the previous ACK value 402 falls into the new range
 [200,700) of sequence numbers that have been sent, so segment #5
 could be erroneously accepted and passed to the client as the
 response to the new request.

 _ T_C_P__A _ T_C_P__B

 CLOSED LISTEN

 1. --> <seq=100,SYN,data=300,FIN,M=x1> --> (TAO test OK)

 2. <-- <seq=800,ack=402,SYN,data=350,FIN,M=y1> <--

 3. TIME-WAIT --> <ACK(FIN)> --> CLOSED
 (short timeout)
 CLOSED

 (New Request)
 4. --> <seq=200,SYN,data=500,FIN,M=x2> --> ...

 (Duplicate of segment #2)
 5. <-- <seq=800,ack=402,SYN,data=300,FIN,M=y1> <--...
 (Acceptable!!)

 Figure 7: Old Duplicate <SYN,ACK> Causing Error

 Unfortunately, we cannot simply use TAO on the client side to
 detect and reject old duplicate <SYN,ACK> segments. A TAO test at
 the client might fail for a valid <SYN,ACK> segment, due to out-
 of-order delivery, and this could result in permanent non-delivery
 of a valid transaction reply.

 Instead, we include a second M value, an echo of the client’s M
 value from the initial <SYN> segment, in the <SYN,ACK> segment. A

Braden [Page 12]

RFC 1379 Transaction TCP -- Concepts November 1992

 specially-marked M value, SEG.M.ECHO, is used for this purpose.
 The client knows the value it sent in the initial <SYN> and can
 therefore positively validate the <SYN,ACK> using the echoed
 value. This is illustrated in Figure 12, which is the same as
 Figure 4 with the addition of the echoed value on the <SYN,ACK>
 segment #2.

 It should be noted that TCP allows a simultaneous open sequence in
 which both sides send and receive an initial <SYN> (see Figure 8
 of [STD-007]. In this case, the TAO test must be performed on
 both sides to preserve the symmetry. See [TTCP-FS] for an
 example.

4. SHORTENING TIME-WAIT STATE

 Once a transaction has been initiated for a particular connection
 (pair of ports) between a given host pair, a new transaction for the
 same connection cannot take place for a time that is at least:

 RTT + SPT + TIME-WAIT_delay

 Since the client host can cycle among the 64512 available port
 numbers, an upper bound on the transaction rate between a particular
 host pair is:

 [1] TRmax = 64512 /(RTT + TIME-WAIT_Delay)

 in transactions per second (Tps), where we assumed SPT is negligible.
 We must reduce TIME-WAIT_Delay to support high-rate TCP transaction
 processing.

 TIME-WAIT state performs two functions: (1) supporting the full-
 duplex reliable close of TCP, and (2) allowing old duplicate segments
 from an earlier connection incarnation to expire before they can
 cause an error (see Appendix to [RFC-1185]). The first function
 impacts the application model of a TCP connection, which we would not
 want to change. The second is part of the fundamental machinery of
 TCP reliable delivery; to safely truncate TIME-WAIT state, we must
 provide another means to exclude duplicate packets from earlier
 incarnations of the connection.

 To minimize the delay in TIME-WAIT state while performing both
 functions, we propose to set the TIME-WAIT delay to:

 [2] TIME-WAIT_Delay = max(K*RTO, U)

 where U and K are constants and RTO is the dynamically-determined
 retransmission timeout, the measured RTT plus an allowance for the

Braden [Page 13]

RFC 1379 Transaction TCP -- Concepts November 1992

 RTT variance [Jacobson88]. We choose K large enough so that there is
 high probability of the close completing successfully if at all
 possible; K = 8 seems reasonable. This takes care of the first
 function of TIME-WAIT state.

 In a real implementation, there may be a minimum RTO value Tr,
 corresponding to the precision of RTO calculation. For example, in
 the popular BSD implementation of TCP, the minimum RTO is Tr = 0.5
 second. Assuming K = 8 and U = 0, Eqns [1] and [2] impose an upper
 limit of TRmax = 16K Tps on the transaction rate of these
 implementations.

 It is possible to have many short connections only if RTO is very
 small, in which case the TIME-WAIT delay [2] reduces to U. To
 accelerate the close sequence, we need to reduce U below the MSL
 enforced by the IP layer, without introducing a hazard from old
 duplicate segments. For this purpose, we introduce another monotonic
 number sequence; call it X. X values are required to be monotonic
 between successive connection incarnations; depending upon the choice
 of the X space (see Section 5), X values may also increase during a
 connection. A value from the X space is to be carried in every
 segment, and a segment is rejected if it is received with an X value
 smaller than the largest X value received. This mechanism does not
 use a cache; the largest X value is maintained in the TCP connection
 control block (TCB) for each connection.

 The value of U depends upon the choice for the X space, discussed in
 the next section. If X is time-like, U can be set to twice the time
 granularity (i.e, twice the minimum "tick" time) of X. The TIME-WAIT
 delay will then ensure that current X values do not overlap the X
 values of earlier incarnations of the same connection. Another
 consequence of time-like X values is the possibility that an open but
 idle connection might allow the X value to wrap its sign bit,
 resulting in a lockup of the connection. To prevent this, a 24-day
 idle timer on each open connection could bypass the X check on the
 first segment following the idle period, for example. In practice,
 many implementations have keep-alive mechanisms that prevent such
 long idle periods [RFC-1323].

 Referring back to Figure 4, our proposed transaction extension
 results in a minimum exchange of 3 packets. Segment #3, the final
 ACK segment, does not increase transaction latency, but in
 combination with the TIME-WAIT delay of K*RTO it ensures that the
 server side of the connection will be closed before a new transaction
 is issued for this same pair of ports. It also provides an RTT
 measurement for the server.

 We may ask whether it would be possible to further reduce the TIME-

Braden [Page 14]

RFC 1379 Transaction TCP -- Concepts November 1992

 WAIT delay. We might set K to zero; alternatively, we might allow
 the client TCP to start a new transaction request while the
 connection was still in TIME-WAIT state, with the new initial SYN
 acting as an implied acknowledgment of the previous FIN. Appendix A
 summarizes the issues raised by these alternatives, which we call
 "truncating" TIME-WAIT state, and suggests some possible solutions.
 Further study would be required, but these solutions appear to bend
 the theory and/or implementations of the TCP protocol farther than we
 wish to bend them.

 We therefore propose using formula [2] with K=8 and retaining the
 final ACK(FIN) transmission. To raise the transaction rate,
 therefore, we require small values of RTO and U.

5. CHOOSING A MONOTONIC SEQUENCE

 For simplicity, we want the monotonic sequence X used for shortening
 TIME-WAIT state to be identical to the monotonic sequence M for
 bypassing the 3-way handshake. Calling the common space M, we will
 send an M value SEG.M in each TCP segment. Upon receipt of an
 initial SYN segment, SEG.M will be compared with a per-host cached
 value to authenticate the SYN without a 3-way handshake; this is the
 TAO mechanism. Upon receipt of a non-SYN segment, SEG.M will be
 compared with the current value in the connection control block and
 used to discard old duplicates.

 Note that the situation with TIME-WAIT state differs from that of
 bypassing 3-way handshakes in two ways: (a) TIME-WAIT requires
 duplicate detection on every segment vs. only on SYN segments, and
 (b) TIME-WAIT applies to a single connection vs. being global across
 all connections. This section discusses possible choices for the
 common monotonic sequence.

 The SEG.M values must satisfy the following requirements.

 * The values must be monotonic; this requirement is defined more
 precisely below.

 * Their granularity must be fine-grained enough to support a high
 rate of transaction processing; the M clock must "tick" at least
 once between successive transactions.

 * Their range (wrap-around time) must be great enough to allow a
 realistic MSL to be enforced by the network.

 The TCP spec calls for an MSL of 120 secs. Since much of the
 Internet does not carefully enforce this limit, it would be safer to
 have an MSL at least an order of magnitude larger. We set as an

Braden [Page 15]

RFC 1379 Transaction TCP -- Concepts November 1992

 objective an MSL of at least 2000 seconds. If there were no TIME-
 WAIT delay, the ultimate limit on transaction rate would be set by
 speed-of-light delays in the network and by the latency of host
 operating systems. As the bottleneck problems with interfacing CPUs
 to gigabit LANs are solved, we can imagine transaction durations as
 short as 1 microsecond. Therefore, we set an ultimate performance
 goal of TRmax at least 10**6 Tps.

 A particular connection between hosts A and B is identified by the
 local and remote TCP "sockets", i.e., by the quadruplet: {A, B,
 Port.A, Port.B}. Imagine that each host keeps a count CC of the
 number of TCP connections it has initiated. We can use this CC
 number to distinguish different incarnations of the same connection.
 Then a particular SEG.M value may be labeled implicitly by 6
 quantities: {A, B, Port.A, Port.B, CC, n}, where n is the byte offset
 of that segment within the connection incarnation.

 To bypass the 3-way handshake, we require thgt SEG.M values on
 successive SYN segments from a host A to a host B be monotone
 increasing. If CC’ > CC, then we require that:

 SEG.M(A,B,Port.A,Port.B,CC’,0) > SEG.M(A,B,Port.A,Port.B,CC,0)

 for any legal values of Port.A and Port.B.

 To delete old duplicates (allowing TIME-WAIT state to be shortened),
 we require that SEG.M values be disjoint across different
 incarnations of the same connection. If CC’ > CC then

 SEG.M(A,B,Port.A,Port.B,CC’,n’) > SEG.M(A,B,Port.A,Port.B,CC,n),

 for any non-negative integers n and n’.

 We now consider four different choices for the common monotonic
 space: RFC-1323 timestamps, TCP sequence numbers, the connection
 count, and 64-bit TCP sequence numbers. The results are summarized
 in Table I.

 5.1 Cached Timestamps

 The PAWS mechanism [RFC-1323] uses TCP "timestamps" as
 monotonically increasing integers in order to throw out old
 duplicate segments within the same incarnation. Jacobson
 suggested the cacheing of these timestamps for bypassing 3-way
 handshakes [Jacobson90], i.e., that TCP timestamps be used for our
 common monotonic space M. This idea is attractive since it would
 allow the same timestamp options to be used for RTTM, PAWS, and
 transactions.

Braden [Page 16]

RFC 1379 Transaction TCP -- Concepts November 1992

 To obtain at-most-once service, the criterion for immediate
 acceptance of a SYN must be that SEG.M is strictly greater than
 the cached M value. That is, to be useful for bypassing 3-way
 handshakes, the timestamp clock must tick at least once between
 any two successive transactions between the same pair of hosts
 (even if different ports are used). Hence, the timestamp clock
 rate would determine TRmax, the maximum possible transaction rate.

 Unfortunately, the timestamp clock frequency called for by RFC-
 1323, in the range 1 sec to 1 ms, is much too slow for
 transactions. The TCP timestamp period was chosen to be
 comparable to the fundamental interval for computing and
 scheduling retransmission timeouts; this is generally in the range
 of 1 sec. to 1 ms., and in many operating systems, much closer to
 1 second. Although it would be possible to increase the timestamp
 clock frequency by several orders of magnitude, to do so would
 make implementation more difficult, and on some systems
 excessively expensive.

 The wraparound time for TCP timestamps, at least 24 days, causes
 no problem for transactions.

 The PAWS mechanism uses TCP timestamps to protect against old
 duplicate non-SYN segments from the same incarnation [RFC-1323].
 It can also be used to protect against old duplicate data segments
 from earlier incarnations (and therefore allow shortening of
 TIME-WAIT state) if we can ensure that the timestamp clock ticks
 at least once between the end of one incarnation and the beginning
 of the next. This can be achieved by setting U = 2 seconds, i.e.,
 to twice the maximum timestamp clock period. This value in
 formula [2] leads to an upper bound TRmax = 32K Tps between a host
 pair. However, as pointed out above, old duplicate SYN detection
 using timestamps leads to a smaller transaction rate bound, 1 Tps,
 which is unacceptable. In addition, the timestamp approach is
 imperfect; it allows old ACK segments to enter the new connection
 where they can cause a disconnect. This happens because old
 duplicate ACKs that arrive during TIME-WAIT state generate new
 ACKs with the current timestamp [RFC-1337].

 We therefore conclude that timestamps are not adequate as the
 monotonic space M; see Table I. However, they may still be useful
 to effectively extend some other monotonic number space, just as
 they are used in PAWS to extend the TCP sequence number space.
 This is discussed below.

Braden [Page 17]

RFC 1379 Transaction TCP -- Concepts November 1992

 5.2 Current TCP Sequence Numbers

 It is useful to understand why the existing 32-bit TCP sequence
 numbers do not form an appropriate monotonic space for
 transactions.

 The sequence number sent in an initial SYN is called the Initial
 Sequence Number or ISN. According to the TCP specification, an
 ISN is to be selected using:

 [3] ISN = (R*T) mod 2**32

 where T is the real time in seconds (from an arbitrary origin,
 fixed when the system is started) and R is a constant, currently
 250 KBps. These ISN values form a monotonic time sequence that
 wraps in 4.55 hours = 16380 seconds and has a granularity of 4
 usecs. For transaction rates up to roughly 250K Tps, the ISN
 value calculated by formula [3] will be monotonic and could be
 used for bypassing the 3-way handshake.

 However, TCP sequence numbers (alone) could not be used to shorten
 TIME-WAIT state, because there are several ways that overlap of
 the sequence space of successive incarnations can occur (as
 described in Appendix to [RFC-1185]). One way is a "fast
 connection", with a transfer rate greater than R; another is a
 "long" connection, with a duration of approximately 4.55 hours.
 TIME-WAIT delay is necessary to protect against these cases. With
 the official delay of 240 seconds, formula [1] implies a upper
 bound (as RTT -> 0) of TRmax = 268 Tps; with our target MSL of
 2000 sec, TRmax = 32 Tps. These values are unacceptably low.

 To improve this transaction rate, we could use TCP timestamps to
 effectively extend the range of the TCP sequence numbers.
 Timestamps would guard against sequence number wrap-around and
 thereby allow us to increase R in [3] to exceed the maximum
 possible transfer rate. Then sequence numbers for successive
 incarnations could not overlap. Timestamps would also provide
 safety with an MSL as large as 24 days. We could then set U = 0
 in the TIME-WAIT delay calculation [2]. For example, R = 10**9
 Bps leads to TRmax <= 10**9 Tps. See 2(b) in Table I. These
 values would more than satisfy our objectives.

 We should make clear how this proposal, sequence numbers plus
 timestamps, differs from the timestamps alone discussed (and
 rejected) in the previous section. The difference lies in what is
 cached and tested for TAO; the proposal here is to cache and test
 BOTH the latest TCP sequence number and the latest TCP timestamp.
 In effect, we are proposing to use timestamps to logically extend

Braden [Page 18]

RFC 1379 Transaction TCP -- Concepts November 1992

 the sequence space to 64 bits. Another alternative, presented in
 the next section, is to directly expand the TCP sequence space to
 64 bits.

 Unfortunately, the proposed solution (TCP sequence numbers plus
 timestamps) based on equation [3] would be difficult or impossible
 to implement on many systems, which base their TCP implementation
 upon a very low granularity software clock, typically O(1 sec).
 To adapt the procedure to a system with a low granularity software
 clock, suppose that we calculate the ISN as:

 [4] ISN = (R*Ts*floor(T/Ts) + q*CC) mod 2**32

 where Ts is the time per tick of the software clock, CC is the
 connection count, and q is a constant. That is, the ISN is
 incremented by the constant R*Ts once every clock tick and by the
 constant q for every new connection. We need to choose q to
 obtain the required monotonicity.

 For monotonicity of the ISN’s themselves, q=1 suffices. However,
 monotonicity during the entire connection requires q = R*Ts. This
 value of q can be deduced as follows. Let S(T, CC, n) be the
 sequence number for byte offset n in a connection with number CC
 at time T:

 S(T, CC, n) = (R*Ts*floor(T/Ts) + q*CC + n) mod 2**32.

 For any T1 > T2, we require that: S(T2, CC+1, 0) - S(T1, CC, n) >
 0 for all n. Since R is assumed to be an upper bound on the
 transfer rate, we can write down:

 R > n/(T2 - T1), or T2/Ts - T1/Ts > n/(R*Ts)

 Using the relationship: floor(x)-floor(y) > x-y-1 and a little
 algebra leads to the conclusion that using q = R*Ts creates the
 required monotonic number sequence. Therefore, we consider:

 [5] ISN = R*Ts*(floor(T/Ts) + CC) mod 2**32

 (which is the algorithm used for ISN selection by BSD TCP).

 For error-free operation, the sequence numbers generated by [5]
 must not wrap the sign bit in less than MSL seconds. Since CC
 cannot increase faster than TRmax, the safe condition is:

 R* (1 + Ts*TRmax) * MSL < 2**31.

 We are interested in the case: Ts*TRmax >> 1, so this relationship

Braden [Page 19]

RFC 1379 Transaction TCP -- Concepts November 1992

 reduces to:

 [6] R * Ts * TRmax * MSL < 2**31.

 This shows a direct trade-off among the maximum effective
 bandwidth R, the maximum transaction rate TRmax, and the maximum
 segment lifetime MSL. For reasonable limiting values of R, Ts,
 and MSL, formula [6] leads to a very low value of TRmax. For
 example, with MSL= 2000 secs, R=10**9 Bps, and Ts = 0.5 sec, TRmax
 < 2*10**-3 Tps.

 To ease the situation, we could supplement sequence numbers with
 timestamps. This would allow an effective MSL of 2 seconds in
 [6], since longer times would be protected by differing
 timestamps. Then TRmax < 2**30/(R*Ts). The actual enforced MSL
 would be increased to 24 days. Unfortunately, TRmax would still
 be too small, since we want to support transfer rates up to R ˜
 10**9 Bps. Ts = 0.5 sec would imply TRmax ˜ 2 Tps. On many
 systems, it appears infeasible to decrease Ts enough to obtain an
 acceptable TRmax using this approach.

 5.3 64-bit TCP Sequence Numbers

 Another possibility would be to simply increase the TCP sequence
 space to 64 bits as suggested in [RFC-1263]. We would also
 increase the R value for clock-driven ISN selection, beyond the
 fastest transfer rate of which the host is capable. A reasonable
 upper limit might be R = 10**9 Bps. As noted above, in a
 practical implementation we would use:

 ISN = R*Ts*(floor(T/Ts) + CC) mod 2**64

 leading to:

 R*(1 + Ts * TRmax) * MSL < 2**63

 For example, suppose that R = 10**9 Bps, Ts = 0.5, and MSL = 16K
 secs (4.4 hrs); then this result implies that TRmax < 10**6 Tps.
 We see that adding 32 bits to the sequence space has provided
 feasible values for transaction processing.

 5.4 Connection Counts

 The Connection Count CC is well suited to be the monotonic
 sequence M, since it "ticks" exactly once for each new connection
 incarnation and is constant within a single incarnation. Thus, it
 perfectly separates segments from different incarnations of the
 same connection and would allow U = 0 in the TIME-WAIT state delay

Braden [Page 20]

RFC 1379 Transaction TCP -- Concepts November 1992

 formula [2]. (Strictly, U cannot be reduced below 1/R = 4 usec,
 as noted in Section 4. However, this is of little practical
 consequence until the ultimate limits on TRmax are approached).

 Assume that CC is a 32-bit number. To prevent wrap-around in the
 sign bit of CC in less than MSL seconds requires that:

 TRmax * MSL < 2**31

 For example, if MSL = 2000 seconds then TRmax < 10**6 Tp. These
 are acceptable limits for transaction processing. However, if
 they are not, we could augment CC with TCP timestamps to obtain
 very far-out limits, as discussed below.

 It would be an implementation choice at the client whether CC is
 global for all destinations or private to each destination host
 (and maintained in the per-host cache). In the latter case, the
 last CC value assigned for each remote host could also be
 maintained in the per-host cache. Since there is not typically a
 large amount of parallelism in the network connection of a host,
 there should be little difference in the performance of these two
 different approaches, and the single global CC value is certainly
 simpler.

 To augment CC with TCP timestamps, we would bypass a 3-way
 handshake if both SEG.CC > cache.CC[A] and SEG.TSval >=
 cache.TS[A]. The timestamp check would detect a SYN older than 2
 seconds, so that the effective wrap-around requirement would be:

 TRmax * 2 < 2**31

 i.e., TRmax < 10**9 Tps. The required MSL would be raised to 24
 days. Using timestamps in this way, we could reduce the size of
 CC. For example, suppose CC were 16 bits. Then the wrap-around
 condition TRmax * 2 < 2**15 implies that TRmax is 16K.

 Finally, note that using CC to delete old duplicates from earlier
 incarnations would not obviate the need for the time-stamp-based
 PAWS mechanism to prevent errors within a single incarnation due
 to wrapping the 32-bit TCP sequence space at very high transfer
 rates.

 5.5 Conclusions

 The alternatives for monotonic sequence are summarized in Table I.
 We see that there are two feasible choices for the monotonic
 space: the connection count and 64-bit sequence numbers. Of these
 two, we believe that the simpler is the connection count.

Braden [Page 21]

RFC 1379 Transaction TCP -- Concepts November 1992

 Implementation of 64-bit sequence numbers would require
 negotiation of a new header format and expansion of all variables
 and calculations on the sequence space. CC can be carried in an
 option and need be examined only once per packet.

 We propose to use a simple 32-bit connection count CC, without
 augmentation with timestamps, for the transaction extension. This
 choice has the advantages of simplicity and directness. Its
 drawback is that it adds a third sequence-like space (in addition
 to the TCP sequence number and the TCP timestamp) to each TCP
 header and to the main line of packet processing. However, the
 additional code is in fact very modest.

 We now have a general outline of the proposed TCP extensions for
 transactions.

 o A host maintains a 32-bit global connection counter variable CC.

 o The sender’s current CC value is carried in an option in every
 TCP segment.

 o CC values are cached per host, and the TAO mechanism is used to
 bypass the 3-way handshake when possible.

 o In non-SYN segments, the CC value is used to reject duplicates
 from earlier incarnations. This allows TIME-WAIT state delay to
 be reduced to K*RTO (i.e., U=0 in Eq. [2]).

Braden [Page 22]

RFC 1379 Transaction TCP -- Concepts November 1992

 TABLE I: Summary of Monotonic Sequences

 APPROACH TRmax (Tps) Required MSL COMMENTS
 __

 1. Timestamp & PAWS 1 24 days TRmax is
 too small
 __

 2. Current TCP Sequence Numbers

 (a) clock-driven
 ISN: eq. [3] 268 240 secs TRmax & MSL
 too small

 (b) Timestamps& clock-
 driven ISN [3] & 10**9 24 days Hard to
 R=10**9 implement

 (c) Timestamps & c-dr
 ISN: eq. [4] 2**30/(R*Ts) 24 days TRmax too
 small.
 __

 3. 64-bit TCP Sequence Numbers

 2**63/(MSL*R*Ts) MSL Significant
 TCP change
 e.g., R=10**9 Bps,
 MSL = 4.4 hrs,
 Ts = 0.5 sec=>
 TRmax = 10**6
 __

 4. Connection Counts

 (a) no timestamps 2**31/MSL MSL 3rd sequence
 e.g., MSL=2000 sec space
 TRmax = 10**6

 (b) with timestamps 2**30 24 days (ditto)
 and PAWS
 __

Braden [Page 23]

RFC 1379 Transaction TCP -- Concepts November 1992

6. CONNECTION STATES

 TCP has always allowed a connection to be half-closed. TAO makes a
 significant addition to TCP semantics by allowing a connection to be
 half-synchronized, i.e., to be open for data transfer in one
 direction before the other direction has been opened. Thus, the
 passive end of a connection (which receives an initial SYN) can
 accept data and even a FIN bit before its own SYN has been
 acknowledged. This SYN, data, and FIN may arrive on a single segment
 (as in Figure 4), or on multiple segments; packetization makes no
 difference to the logic of the finite-state machine (FSM) defining
 transitions among connection states.

 Half-synchronized connections have several consequences.

 (a) The passive end must provide an implied initial data window in
 order to accept data. The minimum size of this implied window
 is a parameter in the specification; we suggest 4K bytes.

 (b) New connection states and transitions are introduced into the
 TCP FSM at both ends of the connection. At the active end, new
 states are required to piggy-back the FIN on the initial SYN
 segment. At the passive end, new states are required for a
 half-synchronized connection.

 This section develops the resulting FSM description of a TCP
 connection as a conventional state/transition diagram. To develop a
 complete FSM, we take a constructive approach, as follows: (1) write
 down all possible events; (2) write down the precedence rules that
 govern the order in which events may occur; (3) construct the
 resulting FSM; and (4) augment it to support TAO. In principle, we
 do this separately for the active and passive ends; however, the
 symmetry of TCP results in the two FSMs being almost entirely
 coincident.

 Figure 8 lists all possible state transitions for a TCP connection in
 the absence of TAO, as elementary events and corresponding actions.
 Each transition is labeled with a letter. Transitions a-g are used
 by the active side, and c-i are used by the passive side. Without
 TAO, transition "c" (event "rcv ACK(SYN)") synchronizes the
 connection, allowing data to be accepted for the user.

 By definition, the first transition for an active (or passive) side
 must be "a" (or "i", respectively). During a single instance of a
 connection, the active side will progress through some permutation of
 the complete sequence of transitions {a b c d e f } or the sequence
 {a b c d e f g}. The set of possible permutations is determined by
 precedence rules governing the order in which transitions can occur.

Braden [Page 24]

RFC 1379 Transaction TCP -- Concepts November 1992

 Label Event / Action
 _____ ________________________
 a OPEN / snd SYN

 b rcv SYN [No TAO]/ snd ACK(SYN)

 c rcv ACK(SYN) /

 d CLOSE / snd FIN

 e rcv FIN / snd ACK(FIN)

 f rcv ACK(FIN) /

 g timeout=2MSL / delete TCB

 h passive OPEN / create TCB

 i rcv SYN [No TAO]/ snd SYN, ACK(SYN)

 Figure 8. Basic TCP Connection Transitions

 Using the notation "<." to mean "must precede", the precedence rules
 are:

 (1) Logical ordering: must open connection before closing it:

 b <. e

 (2) Causality -- cannot receive ACK(x) before x has been sent:

 a <. c and i <. c and d <. f

 (3) Acknowledgments are cumulative

 c <. f

 (4) First packet in each direction must contain a SYN.

 b <. c and b <. f

 (5) TIME-WAIT state

 Whenever d precedes e in the sequence, g must be the last
 transition.

Braden [Page 25]

RFC 1379 Transaction TCP -- Concepts November 1992

 Applying these rules, we can enumerate all possible permutations of
 the events and summarize them in a state transition diagram. Figure
 9 shows the result, with boxes representing the states and directed
 arcs representing the transitions.

 ________ ________
 | | h | |
 | CLOSED |--------->| LISTEN |
 |________| |________|
 | |
 | a | i
 ____V____ ____V___ ________
 | | b | | e | |
 | |--------->| |-------------->| |
 |________| |________| |________|
 / / | / |
 / / | c d / | c
 / / __V_____ | ____V___
 / / | | e | | |
 d | d / | |------------>| |
 | | |________| | |________|
 | | | | |
 | | | ___V____ |
 | | | | | |
 | | | | | |
 | | | |________| |
 | | | | |
 ____V___ ______V_ | ________ | |
 | | b | | e | | | | |
 | |------->| |--------->| | | |
 |________| |________| | |________| | |
 | / | | |
 c | / d c | c | d |
 | / | | |
 _V___V__ ____V___ V_____V_
 | | e | | | |
 | |---->| | | |
 |________| |________| |________|
 | | |
 | f | f | f
 ____V___ ____V___ ___V____
 | | e | TIME- | g | |
 | |---->| WAIT |-->| CLOSED |
 |________| |________| |________|

 Figure 9: Basic State Diagram

Braden [Page 26]

RFC 1379 Transaction TCP -- Concepts November 1992

 Although Figure 9 gives a correct representation of the possible
 event sequences, it is not quite correct for the actions, which do
 not compose as shown. In particular, once a control bit X has been
 sent, it must continue to be sent until ACK(X) is received. This
 requires new transitions with modified actions, shown in the
 following list. We use the labeling convention that transitions with
 the same event part all have the same letter, with different numbers
 of primes to indicate different actions.

 Label Event / Action
 _____ _______________________________________
 b’ (=i) rcv SYN [No TAO] / snd SYN,ACK(SYN)
 b’’ rcv SYN [No TAO] / snd SYN,FIN,ACK(SYN)
 d’ CLOSE / snd SYN,FIN
 e’ rcv FIN / snd FIN,ACK(FIN)
 e’’ rcv FIN / snd SYN,FIN,ACK(FIN)

 Figure 10 shows the state diagram of Figure 9, with the modified
 transitions and with the states used by standard TCP [STD-007]
 identified. Those states that do not occur in standard TCP are
 numbered 1-5.

 Standard TCP has another implied restriction: a FIN bit cannot be
 recognized before the connection has been synchronized, i.e., c <. e.
 This eliminates from standard TCP the states 1, 2, and 5 shown in
 Figure 10. States 3 and 4 are needed if a FIN is to be piggy-backed
 on a SYN segment (note that the states shown in Figure 1 are actually
 wrong; the states shown as SYN-SENT and ESTABLISHED are really states
 3 and 4). In the absence of piggybacking the FIN bit, Figure 10
 reduces to the standard TCP state diagram [STD-007].

 The FSM described in Figure 10 is intended to be applied
 cumulatively; that is, parsing a single packet header may lead to
 more than one transition. For example, the standard TCP state
 diagram includes a direct transition from SYN-SENT to ESTABLISHED:

 rcv SYN,ACK(SYN) / snd ACK(SYN).

 This is transition b followed immediately by c.

Braden [Page 27]

RFC 1379 Transaction TCP -- Concepts November 1992

 ________ ________
 | | h | |
 | CLOSED |--------->| LISTEN |
 |________| |________|
 | |
 | a | i
 ____V____ ____V___ ________
 | SYN- | b’ | SYN- | e’ | |
 | SENT |--------->|RECEIVED|-------------->| 1 |
 |________| |________| |________|
 / / | | |
 d’/ d’/ | c d’ | c |
 / / __V_____ | _V______
 / / |ESTAB- | e | | CLOSE- |
 | / | LISHED|------------|-->| WAIT | |
 | | |________| | |________|
 | | | | |
 | | | _____V__ |
 | | | | | |
 | | | | 2 | |
 | | | |________| |
 | | | | |
 ____V___ ______V_ | ________ | |
 | | b’’ | |e’’’ | | | | |
 | 3 |------->| 4 |--------->| 5 | | |
 |________| |________| | |________| | |
 | / | | |
 c | / d c | c | d |
 | / | | |
 _V___V__ ____V___ V_____V_
 | FIN- | e’’ | | | LAST- |
 | WAIT-1|---->|CLOSING | | ACK |
 |________| |________| |________|
 | | |
 | f | f | f
 ____V___ ____V___ ___V____
 | FIN- | e | TIME- | g | |
 | WAIT-2|---->| WAIT |-->| CLOSED |
 |________| |________| |________|

 Figure 10: Basic State Diagram -- Correct Actions

 Next we introduce TAO. If the TAO test succeeds, the connection
 becomes half-synchronized. This requires a new set of states,
 mirroring the states of Figure 10, beginning with acceptance of a SYN
 (transition "b" or "i"), and ending when ACK(SYN) arrives (transition

Braden [Page 28]

RFC 1379 Transaction TCP -- Concepts November 1992

 "c"). Figure 11 shows the result of augmenting Figure 10 with the
 additional states for TAO. The transitions are defined in the
 following table:

 Key for Figure 11: Complete State Diagram with TAO

 Label Event / Action
 _____ ________________________

 a OPEN / create TCB, snd SYN
 b’ rcv SYN [no TAO]/ snd SYN,ACK(SYN)
 b’’ rcv SYN [no TAO]/ snd SYN,FIN,ACK(SYN)
 c rcv ACK(SYN) /
 d CLOSE / snd FIN
 d’ CLOSE / snd SYN,FIN
 e rcv FIN / snd ACK(FIN)
 e’ rcv FIN / snd SYN,ACK(FIN)
 e’’ rcv FIN / snd FIN,ACK(FIN)
 e’’’ rcv FIN / snd SYN,FIN,ACK(FIN)
 f rcv ACK(FIN) /
 g timeout=2MSL / delete TCB
 h passive OPEN / create TCB
 i (= b’) rcv SYN [no TAO]/ snd SYN,ACK(SYN)
 j rcv SYN [TAO OK] / snd SYN,ACK(SYN)
 k rcv SYN [TAO OK] / snd SYN,FIN,ACK(SYN)

 Each new state in Figure 11 bears a very simple relationship to a
 standard TCP state. We indicate this by naming the new state with
 the standard state name followed by a star. States SYN-SENT* and
 SYN-RECEIVED* differ from the corresponding unstarred states in
 recording the fact that a FIN has been sent. The other new states
 with starred names differ from the corresponding unstarred states in
 being half-synchronized (hence, a SYN bit needs to be transmitted).

 The state diagram of Figure 11 is more general than required for
 transaction processing. In particular, it handles simultaneous
 connection synchronization from both sides, allowing one or both
 sides to bypass the 3-way handshake. It includes other transitions
 that are unlikely in normal transaction processing, for example, the
 server sending a FIN before it receives a FIN from the client
 (ESTABLISHED* -> FIN-WAIT-1* in Figure 11).

Braden [Page 29]

RFC 1379 Transaction TCP -- Concepts November 1992

 ________ ________
	h	
CLOSED	--------------->	LISTEN
________		________
 | / |
 a| / i | j
 | / |
 | / _V______ ________
 | j | |ESTAB- | e’ | CLOSE- |
 | /---------|----->| LISHED*|------------>| WAIT*|
 | / | |________| |________|
 | / | | | | |
 | / | |d’ | c d’ | | c
 ____V___ / ______V_ | _V______ | _V______
SYN-	b’	SYN-	c		ESTAB-	e		CLOSE-
SENT	------>	RECEIVED	-----	-->	LISHED	----------	->	WAIT
________		________			________			________
 | | | | | |
 | | | | ___V____ |
 | | | | | LAST- | |
 | d’ | d’ | d’ | d | ACK* | |
 | | | | |________| |
 | | | | | |
 | | ______V_ | ________ |c |d
 | k | | FIN- | | e’’’ | | | |
 | /------|-->| WAIT-1*|---|------>|CLOSING*| | |
 | / | |________| | |________| | |
 | / | | | | | |
 | / | | c | | c | |
 ____V___ / ____V___ V_____V_ ____V___ V____V__
SYN-	b’’	SYN-	c	FIN-	e’’			LAST-
SENT*	----->	RECEIVD*	---->	WAIT-1	---->	CLOSING		ACK
________		________		________		________		________
 | | |
 | f | f | f
 ___V____ ____V___ ___V____
 | FIN- | e |TIME- | g | |
 | WAIT-2 |---->| WAIT |-->| CLOSED |
 |________| |________| |________|

 Figure 11: Complete State Diagram with TAO

 The relationship between starred and unstarred states is very
 regular. As a result, the state extensions can be implemented very
 simply using the standard TCP FSM with the addition of two "hidden"
 boolean flags, as described in the functional specification memo

Braden [Page 30]

RFC 1379 Transaction TCP -- Concepts November 1992

 [TTCP-FS].

 As an example of the application of Figure 11, consider the minimal
 transaction shown in Figure 12.

 TCP A (Client) TCP B (Server)
 _______________ ______________

 CLOSED LISTEN

 1. SYN-SENT* --> <SYN,data1,FIN,CC=x1> --> CLOSE-WAIT*
 (TAO test OK=>
 data1->user_B)

 LAST-ACK*
 <-- <SYN,ACK(FIN),data2,FIN,CC=y1,CC.ECHO=x1> <--
 2. TIME-WAIT
 (TAO test OK,
 data2->user_A)

 3. TIME-WAIT --> <ACK(FIN),CC=x2> --> CLOSED

 (timeout)
 CLOSED

 Figure 12: Minimal Transaction Sequence

 Sending segment #1 leaves the client end in SYN-SENT* state, which
 differs from SYN-SENT state in recording the fact that a FIN has been
 sent. At the server end, passing the TAO test enters ESTABLISHED*
 state, which passes the data to the user as in ESTABLISHED state and
 also records the fact that the connection is half synchronized. Then
 the server processes the FIN bit of segment #1, moving to CLOSE-WAIT*
 state.

 Moving to CLOSE-WAIT* state should cause the server to send a segment
 containing SYN and ACK(FIN). However, transmission of this segment
 is deferred so the server can piggyback the response data and FIN on
 the same segment, unless a timeout occurs first. When the server
 does send segment #2 containing the response data2 and a FIN, the
 connection advances from CLOSE-WAIT* to LAST-ACK* state; the
 connection is still half-synchronized from B’s viewpoint.

 Processing segment #2 at the client again results in multiple
 transitions:

Braden [Page 31]

RFC 1379 Transaction TCP -- Concepts November 1992

 SYN-SENT* -> FIN-WAIT-1* -> CLOSING* -> CLOSING -> TIME-WAIT

 These correspond respectively to receiving a SYN, a FIN, an ACK for
 A’s SYN, and an ACK for A’s FIN.

 Figure 13 shows a slightly more complex example, a transaction
 sequence in which request and response data each require two
 segments. This figure assumes that both client and server TCP are
 well-behaved, so that e.g., the client sends the single segment #5 to
 acknowledge both data segments #3 and #4. SEG.CC values are omitted
 for clarity.

 _ T_C_P__A _ T_C_P__B

 1. SYN-SENT* --> <SYN,data1> --> ESTABLISHED*
 (TAO OK,
 data1-> user)

 2. SYN-SENT* --> <data2,FIN> --> CLOSE-WAIT*
 (data2-> user)

 3. FIN-WAIT-2 <-- <SYN,ACK(FIN),data3> <-- CLOSE-WAIT*
 (data3->user)

 4. TIME_WAIT <-- <ACK(FIN),data4,FIN> <-- LAST-ACK*
 (data4->user)

 5. TIME-WAIT --> <ACK(FIN)> --> CLOSED

 Figure 13. Multi-Packet Request/Response Transaction

7. CONCLUSIONS AND ACKNOWLEDGMENTS

 TCP was designed to be a highly symmetric protocol. This symmetry is
 evident in the piggy-backing of acknowledgments on data and in the
 common header format for data segments and acknowledgments. On the
 other hand, the examples and discussion in this memo are in general
 highly unsymmetrical; the actions of a "client" are clearly
 distinguished from those of a "server". To explain this apparent
 discrepancy, we note the following. Even when TCP is used for
 virtual circuit service, the data transfer phase is symmetrical but
 the open and close phases are not. A minimal transaction, consisting
 of one segment in each direction, compresses the open, data transfer,
 and close phases together, and making the asymmetry of the open and

Braden [Page 32]

RFC 1379 Transaction TCP -- Concepts November 1992

 close phases dominant. As request and response messages increase in
 size, the virtual circuit model becomes increasingly relevant, and
 symmetry again dominates.

 TCP’s 3-way handshake precludes any performance gain from including
 data on a SYN segment, while TCP’s full-duplex data-conserving close
 sequence ties up communication resources to the detriment of high-
 speed transactions. Merely loading more control bits onto TCP data
 segments does not provide efficient transaction service. To use TCP
 as an effective transaction transport protocol requires bypassing the
 3-way handshake and shortening the TIME-WAIT delay. This memo has
 proposed a backwards-compatible TCP extension to accomplish both
 goals. It is our hope that by building upon the current version of
 TCP, we can give a boost to community acceptance of the new
 facilities. Furthermore, the resulting protocol implementations will
 retain the algorithms that have been developed for flow and
 congestion control in TCP [Jacobson88].

 O’Malley and Peterson have recently recommended against backwards-
 compatible extensions to TCP, and suggested instead a mechanism to
 allow easy installation of alternative versions of a protocol [RFC-
 1263]. While this is an interesting long-term approach, in the
 shorter term we suggest that incremental extension of the current TCP
 may be a more effective route.

 Besides the backward-compatible extension proposed here, there are
 two other possible approaches to making efficient transaction
 processing widely available in the Internet: (1) a new version of TCP
 or (2) a new protocol specifically adapted to transactions. Since
 current TCP "almost" supports transactions, we favor (1) over (2). A
 new version of TCP that retained the semantics of STD-007 but used 64
 bit sequence numbers with the procedures and states described in
 Sections 3, 4, and 6 of this memo would support transactions as well
 as virtual circuits in a clean, coherent manner.

 A potential application of transaction-mode TCP might be SMTP. If
 commands and responses are batched, in favorable cases complete SMTP
 delivery operations on short messages could be performed with a
 single minimal transaction; on the other hand, the body of a message
 may be arbitrarily large. Using a TCP extended as in this memo could
 significantly reduce the load on large mail hosts.

 This work began as an elaboration of the concept of TAO, due to Dave
 Clark. I am grateful to him and to Van Jacobson, John Wroclawski,
 Dave Borman, and other members of the End-to-End Research group for
 helpful ideas and critiques during the long development of this work.
 I also thank Liming Wei, who tested the initial implementation in Sun
 OS.

Braden [Page 33]

RFC 1379 Transaction TCP -- Concepts November 1992

APPENDIX A -- TIME-WAIT STATE AND THE 2-PACKET EXCHANGE

 This appendix considers the implications of reducing TIME-WAIT state
 delay below that given in formula [2].

 An immediate consequence of this would be the requirement for the
 server host to accept an initial SYN for a connection in LAST-ACK
 state. Without the transaction extensions, the arrival of a new
 <SYN> in LAST-ACK state looks to TCP like a half-open connection, and
 TCP’s rules are designed to restore correspondence by destroying the
 state (through sending a RST segment) at one end or the other. We
 would need to thwart this action in the case of transactions.

 There are two different possible ways to further reduce TIME-WAIT
 delay.

 (1) Explicit Truncation of TIME-WAIT state

 TIME-WAIT state could be explicitly truncated by accepting a new
 sendto() request for a connection in TIME-WAIT state.

 This would allow the ACK(FIN) segment to be delayed and sent
 only if a timeout occurs before a new request arrives. This
 allows an ideal 2-segment exchange for closely-spaced
 transactions, which would restore some symmetry to the
 transaction exchange. However, explicit truncation would
 represent a significant change in many implementations.

 It might be supposed that even greater symmetry would result if
 the new request segment were a <SYN,ACK> that explicitly
 acknowledges the previous reply, rather than a <SYN> that is
 only an implicit acknowledgment. However, the new request
 segment might arrive at B to find the server side in either
 LAST-ACK or CLOSED state, depending upon whether the ACK(FIN)
 had arrived. In CLOSED state, a <SYN,ACK> would not be
 acceptable. Hence, if the client sent an initial <SYN,ACK>
 instead of a <SYN> segment, there would be a race condition at
 the server.

 (2) No TIME-WAIT delay

 TIME-WAIT delay could be removed entirely. This would imply
 that the ACK(FIN) would always be sent (which does not of course
 guarantee that it will be received). As a result, the arrival
 of a new SYN in LAST-ACK state would be rare.

 This choice is much simpler to implement. Its drawback is that
 the server will get a false failure report if the ACK(FIN) is

Braden [Page 34]

RFC 1379 Transaction TCP -- Concepts November 1992

 lost. This may not matter in practice, but it does represent a
 significant change of TCP semantics. It should be noted that
 reliable delivery of the reply is not an issue. The client
 enter TIME-WAIT state only after the entire reply, including the
 FIN bit, has been received successfully.

 The server host B must be certain that a new request received in
 LAST-ACK state is indeed a new SYN and not an old duplicate;
 otherwise, B could falsely acknowledge a previous response that has
 not in fact been delivered to A. If the TAO comparison succeeds, the
 SYN must be new; however, the server has a dilemma if the TAO test
 fails.

 In Figure A.1, for example, the reply segment from the first
 transaction has been lost; since it has not been acknowledged, it is
 still in B’s retransmission queue. An old duplicate request, segment
 #3, arrives at B and its TAO test fails. B is in the position of
 having old state it cannot discard (the retransmission queue) and
 needing to build new state to pursue a 3-way handshake to validate
 the new SYN. If the 3-way handshake failed, it would need to restore
 the earlier LAST-ACK* state. (Compare with Figure 15 "Old Duplicate
 SYN Initiates a Reset on Two Passive Sockets" in STD-007). This
 would be complex and difficult to accomplish in many implementations.

 TCP A (Client) TCP B (Server)
 _______________ ______________

 CLOSED LISTEN

 1. SYN-SENT* --> <SYN,data1,FIN> --> CLOSE-WAIT*
 (TAO test OK;
 data1->server)

 2. (lost) X<-- <SYN,ACK(FIN),data2,FIN> <-- LAST-ACK*

 (old duplicate)
 3. ... <SYN,data3,FIN> --> LAST-ACK*
 (TAO test fail;
 3-way handshake?)

 Figure A.1: The Server’s Dilemma

 The only practical action A can taken when the TAO test fails on a
 new SYN received in LAST-ACK state is to ignore the SYN, assuming it
 is really an old duplicate. We must pursue the possible consequences

Braden [Page 35]

RFC 1379 Transaction TCP -- Concepts November 1992

 of this action.

 Section 3.1 listed four possible reasons for failure of the TAO test
 on a legitimate SYN segment: (1) no cached state, (2) out-of-order
 delivery of SYNs, (3) wraparound of CCgen relative to the cached
 value, or (4) the M values advance too slowly. We are assuming that
 there is a cached CC value at B (otherwise, the SYN cannot be
 acceptable in LAST-ACK state). Wrapping the CC space is very
 unlikely and probably impossible; it is difficult to imagine
 circumstances which would allow the new SYN to be delivered but not
 the ACK(FIN), especially given the long wraparound time of CCgen.

 This leaves the problem of out-of-order delivery of two nearly-
 concurrent SYNs for different ports. The second to be delivered may
 have a lower CC option and thus be locked out. This can be solved by
 using a new CCgen value for every retransmission of an initial SYN.

 Truncation of TIME-WAIT state and acceptance of a SYN in LAST-ACK
 state should take place only if there is a cached CC value for the
 remote host. Otherwise, a SYN arriving in LAST-ACK state is to be
 processed by normal TCP rules, which will result in a RST segment
 from either A or B.

 This discussion leads to a paradigm for rejecting old duplicate
 segments that is different from TAO. This alternative scheme is
 based upon the following:

 (a) Each retransmission of an initial SYN will have a new value of
 CC, as described above.

 This provision takes care of reordered SYNs.

 (b) A host maintains a distinct CCgen value for each remote host.
 This value could easily be maintained in the same cache used for
 the received CC values, e.g., as cache.CCgen[].

 Once the caches are primed, it should always be true that
 cache.CCgen[B] on host A is equal to cache.CC[A] on host B, and
 the next transaction from A will carry a CC value exactly 1
 greater. Thus, there is no problem of wraparound of the CC
 value.

 (c) A new SYN is acceptable if its SEG.CC > cache.CC[client],
 otherwise the SYN is ignored as an old duplicate.

 This alternative paradigm was not adopted because it would be a
 somewhat greater perturbation of TCP rules, because it may not have
 the robustness of TAO, and because all of its consequences may not be

Braden [Page 36]

RFC 1379 Transaction TCP -- Concepts November 1992

 understood.

REFERENCES

 [Birrell84] Birrell, A. and B. Nelson, "Implementing Remote
 Procedure Calls", ACM TOCS, Vo. 2, No. 1, February 1984.

 [Clark88] Clark, D., "The Design Philosophy of the Internet
 Protocols", ACM SIGCOMM ’88, Stanford, CA, August 1988.

 [Clark89] Clark, D., Private communication, 1989.

 [Garlick77] Garlick, L., R. Rom, and J. Postel, "Issues in Reliable
 Host-to-Host Protocols", Proc. Second Berkeley Workshop on
 Distributed Data Management and Computer Networks, May 1977.

 [HR-COMM] Braden, R., Ed., "Requirements for Internet Hosts --
 Communication Layers", STD-003, RFC-1122, October 1989.

 [Jacobson88] Jacobson, V., "Congestion Avoidance and Control",
 SIGCOMM ’88, Stanford, CA., August 1988.

 [Jacobson90] Jacobson, V., private communication, 1990.

 [Liskov90] Liskov, B., Shrira, L., and J. Wroclawski, "Efficient
 At-Most-Once Messages Based on Synchronized Clocks", ACM SIGCOMM
 ’90, Philadelphia, PA, September 1990.

 [RFC-955] Braden, R., "Towards a Transport Service Transaction
 Protocol", RFC-955, September 1985.

 [RFC-1185] Jacobson, V., Braden, R., and Zhang, L., "TCP Extension
 for High-Speed Paths", RFC-1185, October 1990.

 [RFC-1263] O’Malley, S. and L. Peterson, "TCP Extensions Considered
 Harmful", RFC-1263, University of Arizona, October 1991.

 [RFC-1323] Jacobson, V., Braden, R., and Borman, D., "TCP
 Extensions for High Performance, RFC-1323, February 1991.

 [RFC-1337] Braden, R., "TIME-WAIT Assassination Hazards in TCP",
 RFC-1337, May 1992.

 [STD-007] Postel, J., "Transmission Control Protocol - DARPA
 Internet Program Protocol Specification", STD-007, RFC-793,
 September 1981.

Braden [Page 37]

RFC 1379 Transaction TCP -- Concepts November 1992

 [TTCP-FS] Braden, R., "Transaction TCP -- Functional
 Specification", Work in Progress, September 1992.

 [Watson81] Watson, R., "Timer-based Mechanisms in Reliable
 Transport Protocol Connection Management", Computer Networks, Vol.
 5, 1981.

Security Considerations

 Security issues are not discussed in this memo.

Author’s Address

 Bob Braden
 University of Southern California
 Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292

 Phone: (310) 822-1511
 EMail: Braden@ISI.EDU

Braden [Page 38]

