
Network Working Group L. Steinberg
Request for Comments: 1224 IBM Corporation
 May 1991

 Techniques for Managing Asynchronously Generated Alerts

Status of this Memo

 This memo defines common mechanisms for managing asynchronously
 produced alerts in a manner consistent with current network
 management protocols.

 This memo specifies an Experimental Protocol for the Internet
 community. Discussion and suggestions for improvement are requested.
 Please refer to the current edition of the "IAB Official Protocol
 Standards" for the standardization state and status of this protocol.
 Distribution of this memo is unlimited.

Abstract

 This RFC explores mechanisms to prevent a remotely managed entity
 from burdening a manager or network with an unexpected amount of
 network management information, and to ensure delivery of "important"
 information. The focus is on controlling the flow of asynchronously
 generated information, and not how the information is generated.

Table of Contents

 1. Introduction... 2
 2. Problem Definition... 3
 2.1 Polling Advantages.. 3
 (a) Reliable detection of failures............................... 3
 (b) Reduced protocol complexity on managed entity................ 3
 (c) Reduced performance impact on managed entity................. 3
 (d) Reduced configuration requirements to manage remote entity... 4
 2.2 Polling Disadvantages... 4
 (a) Response time for problem detection.......................... 4
 (b) Volume of network management traffic generated............... 4
 2.3 Alert Advantages.. 5
 (a) Real-time knowledge of problems.............................. 5
 (b) Minimal amount of network management traffic................. 5
 2.4 Alert Disadvantages... 5
 (a) Potential loss of critical information....................... 5
 (b) Potential to over-inform a manager........................... 5
 3. Specific Goals of this Memo.................................... 6
 4. Compatibility with Existing Network Management Protocols....... 6

Steinberg [Page 1]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 5. Closed Loop "Feedback" Alert Reporting with a "Pin" Sliding
 Window Limit... 6
 5.1 Use of Feedback... 7
 5.1.1 Example... 8
 5.2 Notes on Feedback/Pin usage................................... 8
 6. Polled, Logged Alerts.. 9
 6.1 Use of Polled, Logged Alerts.................................. 10
 6.1.1 Example... 12
 6.2 Notes on Polled, Logged Alerts................................ 12
 7. Compatibility with SNMP and CMOT 14
 7.1 Closed Loop Feedback Alert Reporting.......................... 14
 7.1.1 Use of Feedback with SNMP................................... 14
 7.1.2 Use of Feedback with CMOT................................... 14
 7.2 Polled, Logged Alerts... 14
 7.2.1 Use of Polled, Logged Alerts with SNMP...................... 14
 7.2.2 Use of Polled, Logged Alerts with CMOT...................... 15
 8. Notes on Multiple Manager Environments......................... 15
 9. Summary.. 16
 10. References.. 16
 11. Acknowledgements.. 17
 Appendix A. Example of polling costs............................. 17
 Appendix B. MIB object definitions............................... 19
 Security Considerations... 22
 Author’s Address.. 22

1. Introduction

 This memo defines mechanisms to prevent a remotely managed entity
 from burdening a manager or network with an unexpected amount of
 network management information, and to ensure delivery of "important"
 information. The focus is on controlling the flow of asynchronously
 generated information, and not how the information is generated.
 Mechanisms for generating and controlling the generation of
 asynchronous information may involve protocol specific issues.

 There are two understood mechanisms for transferring network
 management information from a managed entity to a manager: request-
 response driven polling, and the unsolicited sending of "alerts".
 Alerts are defined as any management information delivered to a
 manager that is not the result of a specific query. Advantages and
 disadvantages exist within each method. They are detailed in section
 2 below.

 Alerts in a failing system can be generated so rapidly that they
 adversely impact functioning resources. They may also fail to be
 delivered, and critical information maybe lost. Methods are needed
 both to limit the volume of alert transmission and to assist in
 delivering a minimum amount of information to a manager.

Steinberg [Page 2]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 It is our belief that managed agents capable of asynchronously
 generating alerts should attempt to adopt mechanisms that fill both
 of these needs. For reasons shown in section 2.4, it is necessary to
 fulfill both alert-management requirements. A complete alert-driven
 system must ensure that alerts are delivered or their loss detected
 with a means to recreate the lost information, AND it must not allow
 itself to overburden its manager with an unreasonable amount of
 information.

2. Problem Definition

 The following discusses the relative advantages and disadvantages of
 polled vs. alert driven management.

2.1 Polling Advantages

 (a) Reliable detection of failures.

 A manager that polls for all of its information can
 more readily determine machine and network failures;
 a lack of a response to a query indicates problems
 with the machine or network. A manager relying on
 notification of problems might assume that a faulty
 system is good, should the alert be unable to reach
 its destination, or the managed system be unable to
 correctly generate the alert. Examples of this
 include network failures (in which an isolated network
 cannot deliver the alert), and power failures (in which
 a failing machine cannot generate an alert). More
 subtle forms of failure in the managed entity might
 produce an incorrectly generated alert, or no alert at
 all.

 (b) Reduced protocol complexity on managed entity

 The use of a request-response based system is based on
 conservative assumptions about the underlying transport
 protocol. Timeouts and retransmits (re-requests) can
 be built into the manager. In addition, this allows
 the manager to affect the amount of network management
 information flowing across the network directly.

 (c) Reduced performance impact on managed entity

 In a purely polled system, there is no danger of having
 to often test for an alert condition. This testing
 takes CPU cycles away from the real mission of the
 managed entity. Clearly, testing a threshold on each

Steinberg [Page 3]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 packet received could have unwanted performance effects
 on machines such as gateways. Those who wish to use
 thresholds and alerts must choose the parameters to be
 tested with great care, and should be strongly
 discouraged from updating statistics and checking values
 frequently.

 (d) Reduced Configuration Requirements to manage remote
 entity

 Remote, managed entities need not be configured
 with one or more destinations for reporting information.
 Instead, the entity merely responds to whomever
 makes a specific request. When changing the network
 configuration, there is never a need to reconfigure
 all remote manageable systems. In addition, any number
 of "authorized" managers (i.e., those passing any
 authentication tests imposed by the network management
 protocol) may obtain information from any managed entity.
 This occurs without reconfiguring the entity and
 without reaching an entity-imposed limit on the maximum
 number of potential managers.

2.2 Polling Disadvantages

 (a) Response time for problem detection

 Having to poll many MIB [2] variables per machine on
 a large number of machines is itself a real
 problem. The ability of a manager to monitor
 such a system is limited; should a system fail
 shortly after being polled there may be a significant
 delay before it is polled again. During this time,
 the manager must assume that a failing system is
 acceptable. See Appendix A for a hypothetical
 example of such a system.

 It is worthwhile to note that while improving the mean
 time to detect failures might not greatly improve the
 time to correct the failure, the problem will generally
 not be repaired until it is detected. In addition,
 most network managers would prefer to at least detect
 faults before network users start phoning in.

 (b) Volume of network management traffic

 Polling many objects (MIB variables) on many machines
 greatly increases the amount of network management

Steinberg [Page 4]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 traffic flowing across the network (see Appendix A).
 While it is possible to minimize this through the use
 of hierarchies (polling a machine for a general status
 of all the machines it polls), this aggravates the
 response time problem previously discussed.

2.3 Alert Advantages

 (a) Real-time Knowledge of Problems

 Allowing the manager to be notified of problems
 eliminates the delay imposed by polling many objects/
 systems in a loop.

 (b) Minimal amount of Network Management Traffic

 Alerts are transmitted only due to detected errors.
 By removing the need to transfer large amounts of status
 information that merely demonstrate a healthy system,
 network and system (machine processor) resources may be
 freed to accomplish their primary mission.

2.4 Alert Disadvantages

 (a) Potential Loss of Critical Information

 Alerts are most likely not to be delivered when the
 managed entity fails (power supply fails) or the
 network experiences problems (saturated or isolated).
 It is important to remember that failing machines and
 networks cannot be trusted to inform a manager that
 they are failing.

 (b) Potential to Over-inform the Manager

 An "open loop" system in which the flow of alerts to
 a manager is fully asynchronous can result in an excess
 of alerts being delivered (e.g., link up/down messages
 when lines vacillate). This information places an extra
 burden on a strained network, and could prevent the
 manager from disabling the mechanism generating the
 alerts; all available network bandwidth into the manager
 could be saturated with incoming alerts.

 Most major network management systems strive to use an optimal
 combination of alerts and polling. Doing so preserves the advantages
 of each while eliminating the disadvantages of pure polling.

Steinberg [Page 5]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

3. Specific Goals of this Memo

 This memo suggests mechanisms to minimize the disadvantages of alert
 usage. An optimal system recognizes the potential problems
 associated with sending too many alerts in which a manager becomes
 ineffective at managing, and not adequately using alerts (especially
 given the volumes of data that must be actively monitored with poor
 scaling). It is the author’s belief that this is best done by
 allowing alert mechanisms that "close down" automatically when over-
 delivering asynchronous (unexpected) alerts, and that also allow a
 flow of synchronous alert information through a polled log. The use
 of "feedback" (with a sliding window "pin") discussed in section 5
 addresses the former need, while the discussion in section 6 on
 "polled, logged alerts" does the latter.

 This memo does not attempt to define mechanisms for controlling the
 asynchronous generation of alerts, as such matters deal with
 specifics of the management protocol. In addition, no attempt is
 made to define what the content of an alert should be. The feedback
 mechanism does require the addition of a single alert type, but this
 is not meant to impact or influence the techniques for generating any
 other alert (and can itself be generated from a MIB object or the
 management protocol). To make any effective use of the alert
 mechanisms described in this memo, implementation of several MIB
 objects is required in the relevant managed systems. The location of
 these objects in the MIB is under an experimental subtree delegated
 to the Alert-Man working group of the Internet Engineering Task Force
 (IETF) and published in the "Assigned Numbers" RFC [5]. Currently,
 this subtree is defined as

 alertMan ::= { experimental 24 }.

4. Compatibility With Existing Network Management Protocols

 It is the intent of this document to suggest mechanisms that violate
 neither the letter nor the spirit of the protocols expressed in CMOT
 [3] and SNMP [4]. To achieve this goal, each mechanism described
 will give an example of its conformant use with both SNMP and CMOT.

5. Closed Loop "Feedback" Alert Reporting with a "Pin" Sliding
 Window Limit

 One technique for preventing an excess of alerts from being delivered
 involves required feedback to the managed agent. The name "feedback"
 describes a required positive response from a potentially "over-
 reported" manager, before a remote agent may continue transmitting
 alerts at a high rate. A sliding window "pin" threshold (so named
 for the metal on the end of a meter) is established as a part of a

Steinberg [Page 6]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 user-defined SNMP trap, or as a managed CMOT event. This threshold
 defines the maximum allowable number of alerts ("maxAlertsPerTime")
 that may be transmitted by the agent, and the "windowTime" in seconds
 that alerts are tested against. Note that "maxAlertsPerTime"
 represents the sum total of all alerts generated by the agent, and is
 not duplicated for each type of alert that an agent might generate.
 Both "maxAlertsPerTime" and "windowTime" are required MIB objects of
 SMI [1] type INTEGER, must be readable, and may be writable should
 the implementation permit it.

 Two other items are required for the feedback technique. The first
 is a Boolean MIB object (SMI type is INTEGER, but it is treated as a
 Boolean whose only value is zero, i.e., "FALSE") named
 "alertsEnabled", which must have read and write access. The second
 is a user defined alert named "alertsDisabled". Please see Appendix
 B for their complete definitions.

5.1 Use of Feedback

 When an excess of alerts is being generated, as determined by the
 total number of alerts exceeding "maxAlertsPerTime" within
 "windowTime" seconds, the agent sets the Boolean value of
 "alertsEnabled" to "FALSE" and sends a single alert of type
 "alertsDisabled".

 Again, the pin mechanism operates on the sum total of all alerts
 generated by the remote system. Feedback is implemented once per
 agent and not separately for each type of alert in each agent. While
 it is also possible to implement the Feedback/Pin technique on a per
 alert-type basis, such a discussion belongs in a document dealing
 with controlling the generation of individual alerts.

 The typical use of feedback is detailed in the following steps:

 (a) Upon initialization of the agent, the value of
 "alertsEnabled" is set to "TRUE".

 (b) Each time an alert is generated, the value of
 "alertsEnabled" is tested. Should the value be "FALSE",
 no alert is sent. If the value is "TRUE", the alert is
 sent and the current time is stored locally.

 (c) If at least "maxAlertsPerTime" have been generated, the
 agent calculates the difference of time stored for the
 new alert from the time associated with alert generated
 "maxAlertsPerTime" previously. Should this amount be
 less than "windowTime", a single alert of the type
 "alertsDisabled" is sent to the manager and the value of

Steinberg [Page 7]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 "alertsEnabled" is then set to "FALSE".

 (d) When a manager receives an alert of the type "Alerts-
 Disabled", it is expected to set "alertsEnabled" back
 to "TRUE" to continue to receive alert reports.

5.1.1 Example

 In a sample system, the maximum number of alerts any single managed
 entity may send the manager is 10 in any 3 second interval. A
 circular buffer with a maximum depth of 10 time of day elements is
 defined to accommodate statistics keeping.

 After the first 10 alerts have been sent, the managed entity tests
 the time difference between its oldest and newest alerts. By testing
 the time for a fixed number of alerts, the system will never disable
 itself merely because a few alerts were transmitted back to back.

 The mechanism will disable reporting only after at least 10 alerts
 have been sent, and the only if the last 10 all occurred within a 3
 second interval. As alerts are sent over time, the list maintains
 data on the last 10 alerts only.

5.2 Notes on Feedback/Pin Usage

 A manager may periodically poll "alertsEnabled" in case an
 "alertsDisabled" alert is not delivered by the network. Some
 implementers may also choose to add COUNTER MIB objects to show the
 total number of alerts transmitted and dropped by "alertsEnabled"
 being FALSE. While these may yield some indication of the number of
 lost alerts, the use of "Polled, Logged Alerts" offers a superset of
 this function.

 Testing the alert frequency need not begin until a minimum number of
 alerts have been sent (the circular buffer is full). Even then, the
 actual test is the elapsed time to get a fixed number of alerts and
 not the number of alerts in a given time period. This eliminates the
 need for complex averaging schemes (keeping current alerts per second
 as a frequency and redetermining the current value based on the
 previous value and the time of a new alert). Also eliminated is the
 problem of two back to back alerts; they may indeed appear to be a
 large number of alerts per second, but the fact remains that there
 are only two alerts. This situation is unlikely to cause a problem
 for any manager, and should not trigger the mechanism.

 Since alerts are supposed to be generated infrequently, maintaining
 the pin and testing the threshold should not impact normal
 performance of the agent (managed entity). While repeated testing

Steinberg [Page 8]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 may affect performance when an excess of alerts are being
 transmitted, this effect would be minor compared to the cost of
 generating and sending so many alerts. Long before the cost of
 testing (in CPU cycles) becomes relatively high, the feedback
 mechanism should disable alert sending and affect savings both in
 alert sending and its own testing (note that the list maintenance and
 testing mechanisms disable themselves when they disable alert
 reporting). In addition, testing the value of "alertsEnabled" can
 limit the CPU burden of building alerts that do not need to be sent.

 It is advised that the implementer consider allowing write access to
 both the window size and the number of alerts allowed in a window’s
 time. In doing so, a management station has the option of varying
 these parameters remotely before setting "alertsEnabled" to "TRUE".
 Should either of these objects be set to 0, a conformant system will
 disable the pin and feedback mechanisms and allow the agent to send
 all of the alerts it generates.

 While the feedback mechanism is not high in CPU utilization costs,
 those implementing alerts of any kind are again cautioned to exercise
 care that the alerts tested do not occur so frequently as to impact
 the performance of the agent’s primary function.

 The user may prefer to send alerts via TCP to help ensure delivery of
 the "alerts disabled" message, if available.

 The feedback technique is effective for preventing the over-reporting
 of alerts to a manager. It does not assist with the problem of
 "under-reporting" (see "polled, logged alerts" for this).

 It is possible to lose alerts while "alertsEnabled" is "FALSE".
 Ideally, the threshold of "maxAlertsPerTime" should be set
 sufficiently high that "alertsEnabled" is only set to "FALSE" during
 "over-reporting" situations. To help prevent alerts from possibly
 being lost when the threshold is exceeded, this method can be
 combined with "polled, logged alerts" (see below).

6. Polled, Logged Alerts

 A simple system that combines the request-response advantages of
 polling while minimizing the disadvantages is "Polled, Logged
 Alerts". Through the addition of several MIB objects, one gains a
 system that minimizes network management traffic, lends itself to
 scaling, eliminates the reliance on delivery, and imposes no
 potential over-reporting problems inherent in pure alert driven
 architectures. Minimizing network management traffic is affected by
 reducing multiple requests to a single request. This technique does
 not eliminate the need for polling, but reduces the amount of data

Steinberg [Page 9]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 transferred and ensures the manager either alert delivery or
 notification of an unreachable node. Note again, the goal is to
 address the needs of information (alert) flow and not to control the
 local generation of alerts.

6.1 Use of Polled, Logged Alerts

 As alerts are generated by a remote managed entity, they are logged
 locally in a table. The manager may then poll a single MIB object to
 determine if any number of alerts have been generated. Each poll
 request returns a copy of an "unacknowledged" alert from the alert
 log, or an indication that the table is empty. Upon receipt, the
 manager might "acknowledge" any alert to remove it from the log.
 Entries in the table must be readable, and can optionally allow the
 user to remove them by writing to or deleting them.

 This technique requires several additional MIB objects. The
 alert_log is a SEQUENCE OF logTable entries that must be readable,
 and can optionally have a mechanism to remove entries (e.g., SNMP set
 or CMOT delete). An optional read-only MIB object of type INTEGER,
 "maxLogTableEntries" gives the maximum number of log entries the
 system will support. Please see Appendix B for their complete
 definitions.

 The typical use of Polled, Logged Alerts is detailed below.

 (a) Upon initialization, the agent builds a pointer to a log
 table. The table is empty (a sequence of zero entries).

 (b) Each time a local alert is generated, a logTable entry
 is built with the following information:

 SEQUENCE {
 alertId INTEGER,
 alertData OPAQUE
 }

 (1) alertId number of type INTEGER, set to 1 greater
 than the previously generated alertId. If this is
 the first alert generated, the value is initialized
 to 1. This value should wrap (reset) to 1 when it
 reaches 2**32. Note that the maximum log depth
 cannot exceed (2**32)-1 entries.

 (2) a copy of the alert encapsulated in an OPAQUE.

 (c) The new log element is added to the table. Should
 addition of the element exceed the defined maximum log

Steinberg [Page 10]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 table size, the oldest element in the table (having the
 lowest alertId) is replaced by the new element.

 (d) A manager may poll the managed agent for either the next
 alert in the alert_table, or for a copy of the alert
 associated with a specific alertId. A poll request must
 indicate a specific alertId. The mechanism for obtaining
 this information from a table is protocol specific, and
 might use an SNMP GET or GET NEXT (with GET NEXT
 following an instance of zero returning the first table
 entry’s alert) or CMOT’s GET with scoping and filtering
 to get alertData entries associated with alertId’s
 greater or less than a given instance.

 (e) An alertData GET request from a manager must always be
 responded to with a reply of the entire OPAQUE alert
 (SNMP TRAP, CMOT EVENT, etc.) or a protocol specific
 reply indicating that the get request failed.

 Note that the actual contents of the alert string, and
 the format of those contents, are protocol specific.

 (f) Once an alert is logged in the local log, it is up to
 the individual architecture and implementation whether
 or not to also send a copy asynchronously to the
 manager. Doing so could be used to redirect the focus
 of the polling (rather than waiting an average of 1/2
 the poll cycle to learn of a problem), but does not
 result in significant problems should the alert fail to
 be delivered.

 (g) Should a manager request an alert with alertId of 0,
 the reply shall be the appropriate protocol specific
 error response.

 (h) If a manager requests the alert immediately following
 the alert with alertId equal to 0, the reply will be the
 first alert (or alerts, depending on the protocol used)
 in the alert log.

 (i) A manager may remove a specific alert from the alert log
 by naming the alertId of that alert and issuing a
 protocol specific command (SET or DELETE). If no such
 alert exists, the operation is said to have failed and
 such failure is reported to the manager in a protocol
 specific manner.

Steinberg [Page 11]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

6.1.1 Example

 In a sample system (based on the example in Appendix A), a manager
 must monitor 40 remote agents, each having between 2 and 15
 parameters which indicate the relative health of the agent and the
 network. During normal monitoring, the manager is concerned only
 with fault detection. With an average poll request-response time of
 5 seconds, the manager polls one MIB variable on each node. This
 involves one request and one reply packet of the format specified in
 the XYZ network management protocol. Each packet requires 120 bytes
 "on the wire" (requesting a single object, ASN.1 encoded, IP and UDP
 enveloped, and placed in an ethernet packet). This results in a
 serial poll cycle time of 3.3 minutes (40 nodes at 5 seconds each is
 200 seconds), and a mean time to detect alert of slightly over 1.5
 minutes. The total amount of data transferred during a 3.3 minute
 poll cycle is 9600 bytes (120 requests and 120 replies for each of 40
 nodes). With such a small amount of network management traffic per
 minute, the poll rate might reasonably be doubled (assuming the
 network performance permits it). The result is 19200 bytes
 transferred per cycle, and a mean time to detect failure of under 1
 minute. Parallel polling obviously yields similar improvements.

 Should an alert be returned by a remote agent’s log, the manager
 notifies the operator and removes the element from the alert log by
 setting it with SNMP or deleting it with CMOT. Normal alert
 detection procedures are then followed. Those SNMP implementers who
 prefer to not use SNMP SET for table entry deletes may always define
 their log as "read only". The fact that the manager made a single
 query (to the log) and was able to determine which, if any, objects
 merited special attention essentially means that the status of all
 alert capable objects was monitored with a single request.

 Continuing the above example, should a remote entity fail to respond
 to two successive poll attempts, the operator is notified that the
 agent is not reachable. The operator may then choose (if so
 equipped) to contact the agent through an alternate path (such as
 serial line IP over a dial up modem). Upon establishing such a
 connection, the manager may then retrieve the contents of the alert
 log for a chronological map of the failure’s alerts. Alerts
 undelivered because of conditions that may no longer be present are
 still available for analysis.

6.2 Notes on Polled, Logged Alerts

 Polled, logged alert techniques allow the tracking of many alerts
 while actually monitoring only a single MIB object. This
 dramatically decreases the amount of network management data that
 must flow across the network to determine the status. By reducing

Steinberg [Page 12]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 the number of requests needed to track multiple objects (to one), the
 poll cycle time is greatly improved. This allows a faster poll cycle
 (mean time to detect alert) with less overhead than would be caused
 by pure polling.

 In addition, this technique scales well to large networks, as the
 concept of polling a single object to learn the status of many lends
 itself well to hierarchies. A proxy manager may be polled to learn
 if he has found any alerts in the logs of the agents he polls. Of
 course, this scaling does not save on the mean time to learn of an
 alert (the cycle times of the manager and the proxy manager must be
 considered), but the amount of network management polling traffic is
 concentrated at lower levels. Only a small amount of such traffic
 need be passed over the network’s "backbone"; that is the traffic
 generated by the request-response from the manager to the proxy
 managers.

 Note that it is best to return the oldest logged alert as the first
 table entry. This is the object most likely to be overwritten, and
 every attempt should be made ensure that the manager has seen it. In
 a system where log entries may be removed by the manager, the manager
 will probably wish to attempt to keep all remote alert logs empty to
 reduce the number of alerts dropped or overwritten. In any case, the
 order in which table entries are returned is a function of the table
 mechanism, and is implementation and/or protocol specific.

 "Polled, logged alerts" offers all of the advantages inherent in
 polling (reliable detection of failures, reduced agent complexity
 with UDP, etc.), while minimizing the typical polling problems
 (potentially shorter poll cycle time and reduced network management
 traffic).

 Finally, alerts are not lost when an agent is isolated from its
 manager. When a connection is reestablished, a history of conditions
 that may no longer be in effect is available to the manager. While
 not a part of this document, it is worthwhile to note that this same
 log architecture can be employed to archive alert and other
 information on remote hosts. However, such non-local storage is not
 sufficient to meet the reliability requirements of "polled, logged
 alerts".

Steinberg [Page 13]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

7. Compatibility with SNMP [4] and CMOT [3]

7.1 Closed Loop (Feedback) Alert Reporting

7.1.1 Use of Feedback with SNMP

 At configuration time, an SNMP agent supporting Feedback/Pin is
 loaded with default values of "windowTime" and "maxAlerts-PerTime",
 and "alertsEnabled" is set to TRUE. The manager issues an SNMP GET
 to determine "maxAlertsPerTime" and "windowTime", and to verify the
 state of "alertsEnabled". Should the agent support setting Pin
 objects, the manager may choose to alter these values (via an SNMP
 SET). The new values are calculated based upon known network
 resource limitations (e.g., the amount of packets the manager’s
 gateway can support) and the number of agents potentially reporting
 to this manager.

 Upon receipt of an "alertsDisabled" trap, a manager whose state and
 network are not overutilized immediately issues an SNMP SET to make
 "alertsEnabled" TRUE. Should an excessive number of "alertsDisabled"
 traps regularly occur, the manager might revisit the values chosen
 for implementing the Pin mechanism. Note that an overutilized system
 expects its manager to delay the resetting of "alertsEnabled".

 As a part of each regular polling cycle, the manager includes a GET
 REQUEST for the value of "alertsEnabled". If this value is FALSE, it
 is SET to TRUE, and the potential loss of traps (while it was FALSE)
 is noted.

7.1.2 Use of Feedback with CMOT

 The use of CMOT in implementing Feedback/Pin is essentially identical
 to the use of SNMP. CMOT GET, SET, and EVENT replace their SNMP
 counterparts.

7.2 Polled, Logged Alerts

7.2.1 Use of Polled, Logged alerts with SNMP

 As a part of regular polling, an SNMP manager using Polled, logged
 alerts may issue a GET_NEXT Request naming
 { alertLog logTableEntry(1) alertId(1) 0 }. Returned is either the
 alertId of the first table entry or, if the table is empty, an SNMP
 reply whose object is the "lexicographical successor" to the alert
 log.

 Should an "alertId" be returned, the manager issues an SNMP GET
 naming { alertLog logTableEntry(1) alertData(2) value } where "value"

Steinberg [Page 14]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 is the alertId integer obtained from the previously described GET
 NEXT. This returns the SNMP TRAP encapsulated within an OPAQUE.

 If the agent supports the deletion of table entries through SNMP
 SETS, the manager may then issue a SET of { alertLog logTableEntry(1)
 alertId(1) value } to remove the entry from the log. Otherwise, the
 next GET NEXT poll of this agent should request the first "alertId"
 following the instance of "value" rather than an instance of "0".

7.2.2 Use of Polled, Logged Alerts with CMOT

 Using polled, logged alerts with CMOT is similar to using them with
 SNMP. In order to test for table entries, one uses a CMOT GET and
 specifies scoping to the alertLog. The request is for all table
 entries that have an alertId value greater than the last known
 alertId, or greater than zero if the table is normally kept empty by
 the manager. Should the agent support it, entries are removed with a
 CMOT DELETE, an object of alertLog.entry, and a distinguishing
 attribute of the alertId to remove.

8. Multiple Manager Environments

 The conflicts between multiple managers with overlapping
 administrative domains (generally found in larger networks) tend to
 be resolved in protocol specific manners. This document has not
 addressed them. However, real world demands require alert management
 techniques to function in such environments.

 Complex agents can clearly respond to different managers (or managers
 in different "communities") with different reply values. This allows
 feedback and polled, logged alerts to appear completely independent
 to differing autonomous regions (each region sees its own value).
 Differing feedback thresholds might exist, and feedback can be
 actively blocking alerts to one manager even after another manager
 has reenabled its own alert reporting. All of this is transparent to
 an SNMP user if based on communities, or each manager can work with a
 different copy of the relevant MIB objects. Those implementing CMOT
 might view these as multiple instances of the same feedback objects
 (and allow one manager to query the state of another’s feedback
 mechanism).

 The same holds true for polled, logged alerts. One manager (or
 manager in a single community/region) can delete an alert from its
 view without affecting the view of another region’s managers.

 Those preferring less complex agents will recognize the opportunity
 to instrument proxy management. Alerts might be distributed from a
 manager based alert exploder which effectively implements feedback

Steinberg [Page 15]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 and polled, logged alerts for its subscribers. Feedback parameters
 are set on each agent to the highest rate of any subscriber, and
 limited by the distributor. Logged alerts are deleted from the view
 at the proxy manager, and truly deleted at the agent only when all
 subscribers have so requested, or immediately deleted at the agent
 with the first proxy request, and maintained as virtual entries by
 the proxy manager for the benefit of other subscribers.

9. Summary

 While "polled, logged alerts" may be useful, they still have a
 limitation: the mean time to detect failures and alerts increases
 linearly as networks grow in size (hierarchies offer shorten
 individual poll cycle times, but the mean detection time is the sum
 of 1/2 of each cycle time). For this reason, it may be necessary to
 supplement asynchronous generation of alerts (and "polled, logged
 alerts") with unrequested transmission of the alerts on very large
 networks.

 Whenever systems generate and asynchronously transmit alerts, the
 potential to overburden (over-inform) a management station exists.
 Mechanisms to protect a manager, such as the "Feedback/Pin"
 technique, risk losing potentially important information. Failure to
 implement asynchronous alerts increases the time for the manager to
 detect and react to a problem. Over-reporting may appear less
 critical (and likely) a problem than under-informing, but the
 potential for harm exists with unbounded alert generation.

 An ideal management system will generate alerts to notify its
 management station (or stations) of error conditions. However, these
 alerts must be self limiting with required positive feedback. In
 addition, the manager should periodically poll to ensure connectivity
 to remote stations, and to retrieve copies of any alerts that were
 not delivered by the network.

10. References

 [1] Rose, M., and K. McCloghrie, "Structure and Identification of
 Management Information for TCP/IP-based Internets", RFC 1155,
 Performance Systems International and Hughes LAN Systems, May
 1990.

 [2] McCloghrie, K., and M. Rose, "Management Information Base for
 Network Management of TCP/IP-based internets", RFC 1213, Hughes
 LAN Systems, Inc., Performance Systems International, March 1991.

 [3] Warrier, U., Besaw, L., LaBarre, L., and B. Handspicker, "Common
 Management Information Services and Protocols for the Internet

Steinberg [Page 16]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 (CMOT) and (CMIP)", RFC 1189, Netlabs, Hewlett-Packard, The Mitre
 Corporation, Digital Equipment Corporation, October 1990.

 [4] Case, J., Fedor, M., Schoffstall, M., and C. Davin, "Simple
 Network Management Protocol" RFC 1157, SNMP Research, Performance
 Systems International, Performance Systems International, MIT
 Laboratory for Computer Science, May 1990.

 [5] Reynolds, J., and J. Postel, "Assigned Numbers", RFC 1060,
 USC/Information Sciences Institute, March 1990.

11. Acknowledgements

 This memo is the product of work by the members of the IETF Alert-Man
 Working Group and other interested parties, whose efforts are
 gratefully acknowledged here:

 Amatzia Ben-Artzi Synoptics Communications
 Neal Bierbaum Vitalink Corp.
 Jeff Case University of Tennessee at Knoxville
 John Cook Chipcom Corp.
 James Davin MIT
 Mark Fedor Performance Systems International, Inc.
 Steven Hunter Lawrence Livermore National Labs
 Frank Kastenholz Clearpoint Research
 Lee LaBarre Mitre Corp.
 Bruce Laird BBN, Inc
 Gary Malkin FTP Software, Inc.
 Keith McCloghrie Hughes Lan Systems
 David Niemi Contel Federal Systems
 Lee Oattes University of Toronto
 Joel Replogle NCSA
 Jim Sheridan IBM Corp.
 Steve Waldbusser Carnegie-Mellon University
 Dan Wintringham Ohio Supercomputer Center
 Rich Woundy IBM Corp.

Appendix A

 Example of polling costs

 The following example is completely hypothetical, and arbitrary.
 It assumes that a network manager has made decisions as to which
 systems, and which objects on each system, must be continuously
 monitored to determine the operational state of a network. It
 does not attempt to discuss how such decisions are made, and
 assumes that they were arrived at with the full understanding that
 the costs of polling many objects must be weighed against the

Steinberg [Page 17]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 level of information required.

 Consider a manager that must monitor 40 gateways and hosts on a
 single network. Further assume that the average managed entity
 has 10 MIB objects that must be watched to determine the device’s
 and network’s overall "health". Under the XYZ network management
 protocol, the manager may get the values of up to 4 MIB objects
 with a single request (so that 3 requests must be made to
 determine the status of a single entity). An average response
 time of 5 seconds is assumed, and a lack of response within 30
 seconds is considered no reply. Two such "no replies" are needed
 to declare the managed entity "unreachable", as a single packet
 may occasionally be dropped in a UDP system (those preferring to
 use TCP for automated retransmits should assume a longer timeout
 value before declaring the entity "unreachable" which we will
 define as 60 seconds).

 We begin with the case of "sequential polling". This is defined
 as awaiting a response to an outstanding request before issuing
 any further requests. In this example, the average XYZ network
 management protocol packet size is 300 bytes "on the wire"
 (requesting multiple objects, ASN.1 encoded, IP and UDP enveloped,
 and placed in an ethernet packet). 120 request packets are sent
 each cycle (3 for each of 40 nodes), and 120 response packets are
 expected. 72000 bytes (240 packets at 300 bytes each) must be
 transferred during each poll cycle, merely to determine that the
 network is fine.

 At five seconds per transaction, it could take up to 10 minutes to
 determine the state of a failing machine (40 systems x 3 requests
 each x 5 seconds per request). The mean time to detect a system
 with errors is 1/2 of the poll cycle time, or 5 minutes. In a
 failing network, dropped packets (that must be timed out and
 resent) greatly increase the mean and worst case times to detect
 problems.

 Note that the traffic costs could be substantially reduced by
 combining each set of three request/response packets in a single
 request/response transaction (see section 6.1.1 "Example").

 While the bandwidth use is spread over 10 minutes (giving a usage
 of 120 bytes/second), this rapidly deteriorates should the manager
 decrease his poll cycle time to accommodate more machines or
 improve his mean time to fault detection. Conversely, increasing
 his delay between polls reduces traffic flow, but does so at the
 expense of time to detect problems.

 Many network managers allow multiple poll requests to be "pending"

Steinberg [Page 18]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 at any given time. It is assumed that such managers would not
 normally poll every machine without any delays. Allowing
 "parallel polling" and initiating a new request immediately
 following any response would tend to generate larger amounts of
 traffic; "parallel polling" here produces 40 times the amount of
 network traffic generated in the simplistic case of "sequential
 polling" (40 packets are sent and 40 replies received every 5
 seconds, giving 80 packets x 300 bytes each per 5 seconds, or 4800
 bytes/second). Mean time to detect errors drops, but at the cost
 of increased bandwidth. This does not improve the timeout value
 of over 2 minutes to detect that a node is not responding.

 Even with parallel polling, increasing the device count (systems
 to manage) not only results in more traffic, but can degrade
 performance. On large networks the manager becomes bounded by the
 number of queries that can be built, tracked, responses parsed,
 and reacted to per second. The continuous volume requires the
 timeout value to be increased to accommodate responses that are
 still in transit or have been received and are queued awaiting
 processing. The only alternative is to reduce the poll cycle.
 Either of these actions increase both mean time to detect failure
 and worst case time to detect problems.

 If alerts are sent in place of polling, mean time to fault
 detection drops from over a minute to as little as 2.5 seconds
 (1/2 the time for a single request-response transaction). This
 time may be increased slightly, depending on the nature of the
 problem. Typical network utilization is zero (assuming a
 "typical" case of a non-failing system).

Appendix B

 All defined MIB objects used in this document reside
 under the mib subtree:

 alertMan ::= { iso(1) org(3) dod(6) internet(1)
 experimental(3) alertMan(24) ver1(1) }

 as defined in the Internet SMI [1] and the latest "Assigned
 Numbers" RFC [5]. Objects under this branch are assigned
 as follows:

 RFC 1224-MIB DEFINITIONS ::= BEGIN

 alertMan OBJECT IDENTIFIER ::= { experimental 24 }

 ver1 OBJECT IDENTIFIER ::= { alertMan 1 }

Steinberg [Page 19]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 feedback OBJECT IDENTIFIER ::= { ver1 1 }
 polledLogged OBJECT IDENTIFIER ::= { ver1 2 }

 END

 1) Feedback Objects

 OBJECT:

 maxAlertsPerTime { feedback 1 }

 Syntax:
 Integer

 Access:
 read-write

 Status:
 mandatory

 OBJECT:

 windowTime { feedback 2 }

 Syntax:
 Integer

 Access:
 read-write

 Status:
 mandatory

 OBJECT:

 alertsEnabled { feedback 3 }

 Syntax:
 Integer

 Access:
 read-write

 Status:

Steinberg [Page 20]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 mandatory

 2) Polled, Logged Objects

 OBJECT:

 alertLog { polledLogged 1 }

 Syntax:
 SEQUENCE OF logTableEntry

 Access:
 read-write

 Status:
 mandatory

 OBJECT:

 logTableEntry { alertLog 1 }

 Syntax:

 logTableEntry ::= SEQUENCE {

 alertId
 INTEGER,
 alertData
 OPAQUE
 }

 Access:
 read-write

 Status:
 mandatory

 OBJECT:

 alertId { logTableEntry 1 }

 Syntax:
 Integer

Steinberg [Page 21]

RFC 1224 Managing Asynchronously Generated Alerts May 1991

 Access:
 read-write

 Status:
 mandatory

 OBJECT:

 alertData { logTableEntry 2 }

 Syntax:
 Opaque

 Access:
 read-only

 Status:
 mandatory

 OBJECT:

 maxLogTableEntries { polledLogged 2 }

 Syntax:
 Integer

 Access:
 read-only

 Status:
 optional

Security Considerations

 Security issues are not discussed in this memo.

Author’s Address

 Lou Steinberg
 IBM NSFNET Software Development
 472 Wheelers Farms Rd, m/s 91
 Milford, Ct. 06460

 Phone: 203-783-7175
 EMail: LOUISS@IBM.COM

Steinberg [Page 22]

