Net wor k Wor ki ng Group M Rose
Request for Comments: 1187 Per f ormance Systens International, Inc.
K. Mcd oghrie

Hughes LAN Systens

J. Davin

M T Laboratory for Conputer Science

Cct ober 1990

Bul k Table Retrieval with the SNW
1. Status of this Meno

This meno reports an interesting fanmily of algorithnms for bulk table
retrieval using the Sinple Network Managenent Protocol (SNMP). This
meno describes an Experinental Protocol for the Internet community,
and requests discussion and suggestions for inprovenents. This neno
does not specify a standard for the Internet community. Please refer
to the current edition of the "I AB Oficial Protocol Standards" for
the standardi zation state and status of this protocol. Distribution
of this memo is unlinted.

Tabl e of Contents

1. Status of this MenD 1
2. AbStract 1
3. Bulk Table Retrieval with the SNWP 2
4. The Pipelined Algorithm.............................. 3
4.1 The Maxi mum Nunber of Active Threads 4
4.2 Retransm SSiONS it e 4
4.3 Sone Definitions 4
4.4 Top-Level ... 5
4.5 Wit for Bvents 6
4.6 Finding the Median between two OADs 8
4.7 Experience with the Pipelined Algorithm............. 10
4.8 Dynami ¢ Range of Tinmeout Values 10
4.9 Incorrect Agent Inplenentations 10
5. The Parallel Algorithm....... 11
5.1 Experience with the Parallel Algorithm.............. 11
6. Acknow edgements 11
7. References 12
Security Considerations. 12
Authors’ Addresses. 12

2. Abstract

This meno reports an interesting fanmily of algorithns for bulk table
retrieval using the Sinple Network Managenent Protocol (RFC 1157) [1].

Rose, McCloghrie & Davin [Page 1]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

The reader is expected to be familiar with both the Sinple Network
Management Protocol and SNWMP' s powerful get-next operator. Please
send conments to: Marshall T. Rose <nrose@si.conp.
3. Bulk Table Retrieval with the SNW

Enpi rical evidence has shown that SNWMP' s powerful get-next operator is
effective for table traversal, particularly when the nmanagenent
station is interested in well-defined subsets of a particular table.
There has been some concern that bulk table retrieval can not be
efficiently acconplished using the powerful get-next operator. Recent
experi ence suggests otherw se.
In the sinplest case, using the powerful get-next operator, one can
traverse an entire table by retrieving one object at a time. For
exanple, to traverse the entire i pRoutingTabl e, the managenment station
starts wth:

get - next (i pRout eDest)
whi ch night return

i pRout eDest. 0.0.0.0

The managenent station then continues invoking the powerful get-next
operator, using the value provided by the previous response, e.g.,

get - next (i pRouteDest.0.0.0.0)

As this sequence continues, each colum of the ipRoutingTable can be
retrieved, e.g.,

get - next (i pRouteDest. 192.33.4.0)
whi ch m ght return
i pRout el fl ndex. 0.0.0.0
Eventual ly, a response is returned which is outside the table, e.qg.,
get - next (i pRout eMask. 192. 33.4.0)
whi ch night return
i pNet ToMedi al f I ndex. 192.33. 4.1

So, using this schenme, Qrows x columms) managenent operations are
required to retrieve the entire table.

Rose, McCloghrie & Davin [Page 2]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

Thi s approach is obviously sub-optinmal as the powerful get-next
operator can be given several operands. Thus, the first step is to
retrieve an entire row of the table with each operation, e.g.

get - next (i pRouteDest, ipRoutelflndex, ..., ipRouteMask)
whi ch night return

i pRout eDest. 0.0.0.0
i pRout el fl1 ndex. 0.0.0.0
i pRout eMask. 0.0.0.0

The managenent station can then continue invoking the powerful get-
next operator, using the results of the previous operation as the
operands to the next operation. Using this scheme O(rows) managenent
operations are required to retrieve the entire table.

Sonme have suggested that this is a weakness of the SNWP, in that
Q(rows) serial operations is tinme-expensive. The problemw th such
argunents however is that inplicit enphasis on the word "serial". In
fact, there is nothing to prevent a clever nmanagenent station from

i nvoki ng the powerful get-next operation several times, each with
different operands, in order to achieve parallelismand pipelining in
the network. Note that this approach requires no changes in the
SNMP, nor does it add any significant burden to the agent.

4. The Pipelined Al gorithm

Let us now consider an algorithmfor bulk table retrieval with the
SNMP. In the interests of brevity, the "pipelined algorithn wll
retrieve only a single colum fromthe table; w thout |oss of
generality, the pipelined algorithmcan be easily extended to
retrieve all colums

The al gorithm operates by adopting a nulti-threaded approach: each
thread generates its own stream of get-next requests and processes
the resulting stream of responses. For a given thread, a request
will correspond to a different rowin the table.

Overall retrieval efficiency is inproved by being able to keep
several transactions in transit, and by having the agent and
managenent station process transactions sinultaneously.

The algorithmw |l adapt itself to varying network conditions and
topol ogi es as well as varying | oads on the agent. It does this both
by varying the nunber of threads that are active (i.e., the nunber of
transactions that are being processed and in transit) and by varying
the retransm ssion tineout. These paraneters are varied based on the

Rose, McCloghrie & Davin [Page 3]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

transaction round-trip-time and on the loss/tinmeout of transactions.
4.1. The Maxi mum Nunber of Active Threads

One part of the pipelined algorithmwhich nust be dynamic to get best
results is the determ nation of how nany threads to have active at a
time. Wth only one thread active, the pipelined al gorithm
degenerates to the serial algorithmmentioned earlier. Wth nore
threads than necessary, there is a danger of overrunning the agent,
whose only recourse is to drop requests, which is wasteful. The

i deal nunber is just enough to have the next request arrive at the
agent, just as it finishes processing the previous request. This
obvi ously depends on the round-trip tine, which not only varies
dynani cal | y dependi ng on network topology and traffic-1oad, but can
also be different for different tables in the sane agent.

Wth too few threads active, the round-trip time barely increases
with each increase in the nunber of active threads; with too nmany,
the round-trip time increases by the anount of tinme taken by the
agent to process one request. The nunber is dynamically estinmated by
calculating the round-trip-time divided by the nunmber of active

t hreads; whenever this value takes on a new mni mumvalue, the limt
on the nunber of threads is adjusted to be the nunber of threads
active at the tinme the correspondi ng request was sent (plus one to
all ow for | oss of requests).

4.2. Retransm ssions

When there are no gateways between the manager and agent, the

i kelihood of in-order arrival of requests and responses is quite
high. At present, the decision to retransnit is based solely on the
timeout. One possible optinization is for the manager to renenber
the order in which requests are sent, and correlate this to incomning
responses. |If one thread receives a response before another thread
whi ch sent an earlier request, then | ossage could be assuned, and a
retransm ssi on nade i nmedi ately.

4.3. Some Definitions
To begin, let us define a "thread" as sone state information kept in
t he managenent station which corresponds to a portion of the table to
be retrieved. A thread has several bits of information associated
wWithit:

(1) the range of SNWP request-ids which this thread can use,
along with the I ast request-id used;

(2) last SNWP nessage sent, the nunber of tines it has been

Rose, McCloghrie & Davin [Page 4]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

(re)sent, the tine it was (re)sent;

(3) the inclusive | ower-bound and excl usive upper-bound of
the object-instance for the portion of the table that
this thread will retrieve, along with the current
obj ect-i nstance bei ng used;

(4) the nunber of threads which were active at the tine it
was | ast sent;

When a thread is created, it automatically sends a get-next nmessage
using its inclusive lower-bound OD. Further, it is placed at the
end of the "thread queue"

Let us also define an O D as a concrete representati on of an object
identifier which contains two parts:

(1) the nunber of sub-identifiers present, "nelenf;

(2) the sub-identifiers thenselves in an array, "elens",
i ndexed from1 up to (and including) "nelent.

4.4. Top-Level

The top-level consists of starting three threads, and then entering a
loop. As long as there are existing threads, the top-level waits for
events (described next), and then acts upon the incom ng nessages.

For each thread which received a response, a check is made to see if
the O D of the response is greater than or equal to the exclusive
upper - bound of the thread. |If so, the portion of the table
corresponding to the thread has been conpletely retrieved, so the
thread i s destroyed.

O herwi se, the variable bindings in the response are stored.
Following this, if a new thread should be created, then the portion
of the table corresponding to the thread is split accordingly.
Regar dl ess, anot her powerful get-next operator is issued on behalf of
t he thread.

The initial starting positions (colum, colum.127, and col um. 192),
were selected to formoptinmal partitions for tables which are indexed
by I P addresses. The algorithmcould easily be nodified to choose
other partitions; however, it nust be stressed that the current

choi ces work for any tabular object.

pi pel i ned_al gorithm (col um)

A D colunmm;

{

Rose, McCloghrie & Davin [Page 5]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

tinmeout ::= sone initial val ue;

start new thread for [colum, colum.127);
start new thread for [colum. 127, col um. 192);
start new thread for [colum. 192, colum+l);

whil e (threads exist) {
wait for events;
foreach (thread that has an inconing nessage
exam ned in order fromthe thread queue) {
ab a

if (nmessage’'s O D >= thread s upper-bound) {
destroy thread;
conti nue;

}

store vari abl e- bi ndi ngs from nessage;

i f (number of sinultaneous threads does NOT
exceed a maxi mum nunber
&& NOT backof f
&% (a ::= oid_nedian (nessage’s A D,
thread’ s
upper - bound))) {
start new thread for [a, thread s upper-bound);

thread’ s upper-bound ::= a;
pl ace thread at end of thread queue;
backoff ::= TRUE;

}

do anot her get-next for thread;

4.5, Wait for Events

Waiting for events consists of waiting a small amount of time or
until at |east one nessage is received.

Any nmessages encountered are then collated with the appropriate
thread. 1In addition, the largest round-trip tine for
request/responses is neasured, and the nmaxi mum nunber of active
threads is cal cul ated

Next, the tinmeout is adjusted: if no responses were received, then
the tineout is doubled; otherwi se, a tineout-adjustnent is calcul ated

Rose, McCloghrie & Davin [Page 6]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

as 1.5 tines the largest observed round-trip tinme. |f the tineout-
adjustnent is greater than the current tinmeout, the current tinmeout
is set to the timeout-adjustnent. Qherwi se, the current tinmeout is
averaged with the tinmeout-adjustnment.

Finally, if at least one thread did not receive a response, then the
thread is identified which has waited the longest. |f the el apsed
time (with noise factor) since the | ast request (or retransm ssion)
is greater than the current timeout value, another retransmission is
att enpt ed.

wait for events ()
{
backoff ::= TRUE, nmaxrtt ::= O;
find the thread which has been waiting the | ongest
for a response;
tinmedelta = tineout
- tine since request was sent for thread;
wait up to tinedelta seconds or until sone nmessages arrive

if (least one nessage arrived) {
di scard any nessages which aren’t responses;
foreach (response which corresponds to a thread) {
if (the response is a duplicate)
drop it and conti nue;

if (this response is for a nessage that was
not retransmtted) {
if (the round-trip time is larger than maxrtt)
set naxrtt to the new round-trip tine;
if (round-trip tinme / nunber of active threads
< mni num previous round-trip time / nunber
of active threads) {
set new mininumround-trip time per nunber of
active threads
set new maxi mum nunber of threads

backof f ::= FALSE;

}

}
i f (backoff)

doubl e ti neout;
elsif (maxrtt > 0) {

tinmeadjust ::= maxrtt * 3/ 2;
if (timeadjust > timeout)
timeout ::= tineadjust; backoff ::= TRUE
el se

Rose, McCloghrie & Davin [Page 7]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

tinmeout ::= (tinmeout + tinmeadjust) / 2;
}
if (timeout exceeds sone threshol d)
set tinmeout to that threshol d;
elsif (tineout is smaller than sone threshol d)
set tineout to that threshold;

if (at least one thread didn't receive a response) {

find the thread which has been waiting the | ongest
for a response,
and determ ne the el apsed tinme since a nmessage
was sent;

if (the elapsed tine with noise is greater than tineout) {
if (the number of retransnissions for this thread

exceeds a threshol d)
abort the algorithm

retransmt the request;
backoff ::= TRUE;

4.6. Finding the Median between two O Ds

The object identifier space is neither uniformnor continuous. As
such, it is not always possible to choose an object identifier which
i s |l exicographically-between two arbitrary object identifiers. In
view of this, the pipelined algorithmmkes a best-effort attenpt.

Starting fromthe beginning, each sub-identifier of the two ODs is
scanned until a difference is encountered. At this point there are
several possible conditions:

(1) The upper O D has run out of sub-identifiers. 1In this
case, either the two O Ds are are identical or the |ower
O Dis greater than the upper O D (an interface error),
so no O D is returned.

(2) The lower O D has run out of sub-identifiers. 1In this
case, the first subsequent non-zero sub-identifier from
the upper ODis located. If no such sub-identifier is

found, then no O D exists between the | ower and upper
O Ds, and no ODis returned. Oherw se, a copy of the
upper O D is made, but truncated at this non-zero
sub-identifier, which is subsequently halved, and the
resulting ODis returned.

(3) Oherwise, a copy of the lower ODis made, but truncated

Rose, McCloghrie & Davin [Page 8]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

at the point of difference. This last sub-identifier is
then set to the arithnetic nmean of the difference. In
the case where the difference is only 1 (so the I|ast
sub-identifier remains the same) then a new sub-
identifier is added, taking care to be larger than a
possi bl e sub-identifier present in the lower QD

Regardl ess, the resulting ODis returned

oi d_nedi an (| ower, upper)
ab | owner,

upper;
{

for (i ::=1; i < upper:nelem i++) {
if (i >1lower:nelem {
while (upper:elens[i] == 0)
if (++i > upper:nelem
return NULL;

medi an ::= copy of upper;
nmedi an: nelem:: = i;
nmedi an: el ens[i] ::= upper:elems[i] / 2;

return nedi an;

}
if (lower:elens[i] == upper:elens[i])
conti nue;
medi an ::= copy of |ower;
medi an: nelem :: =i
medi an: el ens[i] ::= (lower:elens[i]+upper:elens[i])/2;
if (nedian:elens[i] == lower:elens[i]) {
nedi an:nelem::= (i + 1);
if (lower:nelem< i)
medi an: el ens[nedi an: nel en] ::= 127,
elsif ((x ::=lower:elems[i + 1]) >= 16383)
medi an: el ens[nedi an: nelen] ::= x + 16383;
el sif (x >= 4095)
medi an: el ens[medi an: nelem ::= x + 4095;
el sif (x >= 1023)
medi an: el ens[nedi an: nelenm] ::= x + 1023;
el sif (x >= 255)
medi an: el ens[nedi an: nelenm] ::= x + 255;
el se nedi an: el ens[nedi an: nelem ::=
(x / 2) + 128;
}

return nedi an;

Rose, McCloghrie & Davin [Page 9]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

return NULL;
}

4.7. Experience with the Pipelined Al gorithm

Thi s pipelined algorithmhas been i npl enmented and sone

experinentation has been perforned. It would be premature to provide
extensive performance figures at this tinme, as the pipelined
algorithmis still being tuned, and is inplenented only in a
prototype setting. However, on tables of size (Q2500), perfornmance
of 121 entries/second has been observed. |In contrast, the seria

al gorithm has perfornmance of roughly 56 entries/second for the sanme
tabl e.

4.8. Dynanmi c Range of Tineout Val ues

It should be noted that the pipelined algorithmtakes a sinplistic
approach with the tineout value: it does not maintain a history of
the val ue and act accordingly.

For exanple, if the timeout reaches the nmaxi numtinmeout linit, and
then latches for sone period of time, this indicates a resource
(either the network or the agent) is saturated. Unfortunately, a
solution is difficult: an el egant approach would be to conbine two
threads (but it is quite possible that no two consecutive threads
exi st when this determination is nmade). Another approach mght be to
delay the transnission for threads which are ready to issue a new
get - next operation.

Simlarly, if the timeout drops to the nmininumval ue and subsequently
| at ches, nore threads should be started.

4.9. Incorrect Agent Inplenmentations

An interesting result is that many agents do not properly inplenent
the powerful get-next operator. |In particular, when a get-next
request contains an operand with an arbitrarily-generated suffix,
sone agent inplenmentations will handle this inproperly, and
ultimately return a result which is I exicographically less than the
oper and!

A typical cause of this is when the instance-identifier for a

col ummar object is forned by a MAC or | P address, so each octet of
the address forms a sub-identifier of the instance-identifier. In
such circumnstances, the incorrect agent inplenentations conpare
against only the |l east significant octet of the sub-identifiers in
the operand, instead of the full value of the sub-identifiers.

Rose, McCloghrie & Davin [Page 10]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

5.

6.

Upon encountering such an interaction, the pipelined algorithm
i mpl ement ati on declares the thread dead (noting a possible gap in the
tabl e), and conti nues.

The Parallel Algorithm

One interesting optinmzation is to viewthe problemin two steps: in
the first step, one colum of the table is traversed to deternmine the
full range of instances identifiers nmeaningful in the table.

(I ndeed, although as described above, the pipelined al gorithm
retrieves a single columm, the prototype inplenentation can retrieve
multiple colums). In the second step, additional columms can be
retrieved using the SNMP get operation, since the instance
identifiers are already known. Further, the nmanager can dynanically
det erm ne how many vari abl es can be placed in a single SNV get
operation in order to mnimze the nunber of requests. O course,
since the agent’s execution of the get operation is often |ess
expensi ve than execution of the powerful get-next operation, when
mul tiple colums are request, this two-step process requires |ess
execution time on the agent.

A second al gorithm can be devel oped, the "parallel algorithnm. At
present, each thread is mapped onto a single SNMP operation. A
powerful insight is to suggest nmappi ng several threads onto a single
SNMP operation: the nmanager nust dynamically determ ne how nany

vari abl es can be placed in a single powerful get-next operation

This has the advantage of reducing traffic, at the expense of
requiring the agent to utilize nore resources for each request.

Earlier it was noted that the serial retrieval of objects could be
viewed as a degenerate case of the pipelined algorithm in which the
number of active threads was one. Sinilarly, the pipelined algorithm
is a special case of the parallel algorithm in which the nunber of

t hreads per SNWVP operation is one.

1. Experience with the Parallel Al gorithm

The parallel algorithmhas been inplenented and sone experimentation
has been perforned. It would be premature to provi de extensive
performance figures at this time, as the algorithmis still being
tuned, and is inplenented only in a prototype setting. However, on
tabl es of size ((2500), perfornmance of 320 entries/second has been
observed, a perfornmance i nprovenent of 571% over the serial

al gorithm

Acknowl edgenent s

A lot of the ideas on pipelining are notivated by Van Jacobson’s work

Rose, McCloghrie & Davin [Page 11]

RFC 1187 Bul k Table Retrieval with the SNW Cct ober 1990

on adaptive tiners in TCP. The parallelization nodifications were
originally suggested by Jeffrey D. Case.

Finally, the comments of the follow ng individual is acknow edged:
Frank Kastenhol z, Racal -Interlan
7. References

[1] Case, J., Fedor, M, Schoffstall, M, and J. Davin, Sinple
Net wor k Management Protocol (SNWP), RFC 1157, SNMP Resear ch,
Performance Systens |International, Performance Systens
International, MT Laboratory for Conputer Science, My 1990.

Security Considerations
Security issues are not discussed in this nmeno.
Aut hors’ Addresses

Marshall T. Rose

PSI, Inc.

PSI California Ofice
P. 0. Box 391776

Mount ai n Vi ew, CA 94039

Phone: (415) 961-3380
EMai | : nrose@Sl . COM

Keith McC oghri e

Hughes LAN Systens

1225 Charl eston Road
Mountain Vi ew, CA 94043

Phone: (415) 966- 7934
EMai | : KZM@LS. COM

James R Davin

M T Laboratory for Conputer Science, NE43-507
545 Technol ogy Square

Canbri dge, MA 02139

Phone: (617) 253-6020
EMail: jrd@tt.lcs.mt.edu

Rose, McCloghrie & Davin [Page 12]

