Net wor k Wor ki ng Group M Crispin
Request for Comments: 1176 Washi ngt on
bsol etes: RFC 1064 August 1990

| NTERACTI VE MAI L ACCESS PROTOCOL - VERSI ON 2

Status of this Meno

This RFC suggests a nethod for personal conputers and workstations to
dynami cally access mail froma mail box server ("repository"). It
obosol etes RFC 1064. This RFC specifies an Experinental Protocol for
the Internet community. Discussion and suggestions for inprovenent
are requested. Please refer to the current edition of the "I AB
Oficial Protocol Standards" for the standardization state and status
of this protocol. Distribution of this neno is unlinited.

I nt roducti on

The intent of the Interactive Mail Access Protocol, Version 2 (I NMAP2)
is to allow a workstation, personal conputer, or simlar snal

machi ne to access electronic mail froma nmail box server. Since the
di stinction between personal conputers and workstations is blurring
over time, it is desirable to have a single solution that addresses
the need in a general fashion. |IMAP2 is the "glue" of a distributed
electronic mail systemconsisting of a famly of client and server

i npl enentations on a wide variety of platforns, fromsnall single-
taski ng personal conputing engines to conplex multi-user tinmesharing
syst emns.

Al t hough different in many ways fromthe Post Ofice Protocols (POP2
and POP3, hereafter referred to collectively as "POP') described in
RFC 937 and RFC 1081, | MAP2 may be thought of as a functiona
superset of these. RFC 937 was used as a nodel for this RFC. There
was a cogni zant reason for this; POP deals with a similar problem
albeit with a | ess conprehensive solution, and it was desirable to
of fer a basis for conparison

Li ke POP, | MAP2 specifies a nmeans of accessing stored nail and not of
posting mail; this function is handled by a nail transfer protocol
such as SMIP (RFC 821).

This protocol assunmes a reliable data stream such as provided by TCP

or any simlar protocol. Wen TCP is used, the | MAP2 server |istens
on port 143.

Crispin [ Page 1]



RFC 1176 I MAP2 August 1990

System Model and Phi |l osophy

El ectronic mail is a primary means of conmunication for the widely
spread Internet comunity. The advent of distributed persona
comput ers and workstations has forced a significant rethinking of the

mechani sns enpl oyed to nanage electronic mail. Wth nainframes, each
user tends to receive and process nmail at the conputer he uses nost
of the time, his "primary host". The first inclination of many users

when an independent workstation is placed in front of themis to
begin receiving mail at the workstation, and many vendors have

i npl enmented facilities to do this. However, this approach has
several disadvant ages:

(1) Personal conputers and nmany workstations have a software
design that gives full control of all aspects of the systemto the
user at the console. As a result, background tasks such as
receiving mail may not run for long periods of tine; either
because the user is asking to use all the machine’s resources, or
because the user has (perhaps accidentally) nanipul ated the
environnent in such a way that it prevents mail reception. In
many personal computers, the operating systemis single-tasking
and this is the only node of operation. Any of these conditions
could lead to repeated failed delivery attenpts by outside agents.

(2) The hardware failure of a single nachine can keep its user
"off the air" for a considerable time, since repair of individua
units rmay be delayed. G ven the growi ng nunber of persona

comput ers and workstations spread throughout office environnents,
qui ck repair of such systens is not assured. On the other hand, a
central mainframe is generally repaired soon after failure.

(3) Personal conputers and workstations are often not backed up
with as nuch diligence as a central mainfranme, if at all

(4) It is nore difficult to keep track of mailing addresses when
each person is associated with a distinct machine. Consider the
difficulty in keeping track of many postal addresses or phone
nunmbers, particularly if there was no single address or phone
nunber for an organi zation through which you could reach any
person in that organization. Traditionally, electronic mail on

t he ARPANET i nvol ved renenbering a nane and one of several "hosts"
(machi nes) whose nane reflected the organization in which the

i ndi vi dual worked. This was suitable at a tinme when nost

organi zations had only one central host. It is |less satisfactory
today unl ess the concept of a host is changed to refer to an
organi zational entity and not a particul ar nachine.

(5) It is difficult to keep a nultitude of heterogeneous nachi nes

Crispin [ Page 2]



RFC 1176 I MAP2 August 1990

wor ki ng properly with conplex mailing protocols, nmaking it
difficult to nove forward as progress is made in electronic
communi cati on and as new standards enmerge. Each system has to
worry about receiving incoming mail, routing and delivering
outgoing mail, formatting, storing, and providing for the
stability of nmilboxes over a variety of possible filing and
mai | i ng protocol s.

Consequently, while a personal conputer or workstation may be vi ewed
as an Internet host in the sense that it inplenments TCP/IP, it should
not be viewed as the entity that contains the user’s nail box.

Instead, a mail server machine ("server", sonetinmes called a
"repository") should hold the nail box, and the personal conputer or
wor kstation (hereafter referred to as a "client") should access the
mai | box via mail transactions.

Because the mail server machine is isolated fromdirect user
mani pul ation, it should achieve high software reliability easily,

and, as a shared resource, it should also achieve high hardware
reliability, perhaps through redundancy. The nail server nay be
accessed fromarbitrary locations, allowing users to read mail across
campus, town, or country using conmonly avail able clients.

Furt hernmore, the same user may access his mail box fromdifferent
clients at different times, and nultiple users nmay access the sane
mai | box sinul t aneously.

The mail server acts an an interface anong users, data storage, and
other mailers. A mmil access protocol retrieves nmessages, accesss
and changes properties of nessages, and ot herw se manages nail boxes.
This differs fromsone approaches (e.g., Unix mail via NFS) in that
the mail access protocol is used for all nessage mani pul ati ons,
isolating the user and the client fromall know edge of how t he data
storage is used. This nmeans that the nmail server can use the data
storage in whatever way is nost efficient to organize the mail in
that particul ar environnment, w thout having to worry about storage
representation conpatibility across different machines.

A mai|l access protocol further differs in that it transnits
informati on only on demand. A well-designed nail access protoco
requires considerably less network traffic than Unix mail via NFS
particularly when the mail file is large. The result is that a mai
access protocol can scale well to situations of |arge nail boxes or
networks with high latency or | ow speed.

In defining a mail access protocol, it is inportant to keep in nind
that the client and server forma macrosystem in which it should be
possible to exploit the strong points of both while conpensating for
each other’s weaknesses. Furthernore, it is desirable to allow for a

Crispin [ Page 3]



RFC 1176 I MAP2 August 1990

growt h path beyond the hoary text-only RFC 822 protocol, specifically
in the area of attachnents and nulti-nedia nail, to ease the eventua
transition to | SO sol utions.

Unl i ke POP, | MAP2 has extensive features for renote searching and
parsi ng of nessages on the server. A free text search (optionally
with other searching) can be nmade in the entire nail box by the server
and the results nmade available to the client without the client
having to transfer the entire mail box and searching itself. Since
renote parsing of a nessage into a structured (and standard format)
"envel ope” is available, a client can display envel ope information
and i npl enent comuands such as REPLY without having any understandi ng
of how to parse RFC 822, etc. headers. The effect of this is
twofold: it further inproves the ability to scale well in instances
where network traffic nmust be reduced, and it reduces the conplexity
of the client program

Additionally, I MAP2 offers several facilities for nanagi ng individua
message state and the mail box as a whol e beyond the sinple "del ete
message" functionality of POP. Another benefit of |IMAP2 is the use
of tagged responses to reduce the possibility of synchronization
errors and the concept of state on the client (a "local cache") that
the server may update w thout explicit request by the client. These
concepts and how they are used are expl ai ned under "I nplenentation
Di scussi on" bel ow.

In spite of this functional richness, IMAP2 is a small protocol

Al t hough servers should inplenent the full set of I MAP2 functions, a
simple client can be witten that uses I MAP2 in nuch the way as a POP
client.

A related protocol to POP and | MAP2 is the DMSP protocol of PCMAIL
(RFC 1056). |IMAP2 differs from DVMSP nore fundanentally, reflecting a
differing architecture fromPCVMAIL. PCMAIL is either an online
("interactive node"), or offline ("batch node") systemw th | ong-term
shared state. Sone POP based systens are also offline; in such
systens, since there is no long-termshared state POP is little nore
than a downl oad mechani smof the "mail file" to the client. | MAP2-
based software is primarily an online systemin which real-tinme and

si mul t aneous nmil access were considered inportant.

In PCMAIL, there is a long-termclient/server relationship in which
sonme nmil box state is preserved on the client. There is a
registration of clients used by a particular user, and the client
keeps a set of "descriptors" for each nessage that sumarize the
message. The server and client synchronize their states when the
DMSP connection starts up, and, if a client has not accessed the
server for a while, the client does a conplete reset (reload) of its

Crispin [ Page 4]



RFC 1176 I MAP2 August 1990

state fromthe server.

In | MAP2- based software, the client/server relationship lasts only
for the duration of the TCP connection. Al mailbox state is
mai nt ai ned on the server. There is no registration of clients. The
function of a descriptor is handled by a structured representation of
the nmessage "envel ope" as noted above. There is no client/server
synchroni zati on since the client does not renmenber state between

| MAP2 connections. This is not a problemsince in general the client
never needs the entire state of the mailbox in a single session
therefore there isn’'t nmuch overhead in fetching the state information
that is needed as it is needed.

There are also sone functional differences between | MAP2 and DVMSP
DVSP has functions for sending nmessages, printing nmessages, listing
mai | boxes, and changi ng passwords; these are done outside | MAP2

DMSP has 16 binary flags of which 8 are defined by the system | MAP2
has flag nanes; there are currently 5 defined systemflag nanes and a
facility for sonme nunber (30 in the current inplenentations) of user
flag names. | MAP2 has a sophisticated nessage search facility in the
server to identify interesting nmessages based on dates, addresses,
flag status, or textual contents w thout conpelling the client to
fetch this data for every nessage

It was felt that nmaintaining state on the client is advantageous only
in those cases where the client is only used by a single user, or if
there is some neans on the client to restrict access to another
user’s data. It can be a serious disadvantage in an environment in
which multiple users routinely use the sane client, the sane user
routinely uses different clients, and where there are no access
restrictions on the client. It was also observed that nost user mail
access is to a small set of "interesting" nessages, which were either
new mail or mail based on sonme user-selected criteria. Consequently,
| MAP2 was designed to easily identify those "interesting" nessages so
that the client could fetch the state of those nmessages and not those
that were not "interesting"

The Protoco

The |1 MAP2 protocol consists of a sequence of client commands and
server responses, with server data interspersed between the
responses. Unlike nost Internet protocols, commands and responses
are tagged. That is, a command begins with a unique identifier
(typically a short al phanuneric sequence such as a Lisp "gensyni
function woul d generate e.g., A0001, A0002, etc.), called a tag. The
response to this command is given the sanme tag fromthe server.
Additionally, the server may send an arbitrary amount of "unsolicited
data", which is identified by the special reserved tag of "*". There

Crispin [ Page 5]



RFC 1176 I MAP2 August 1990

i s another special reserved tag, "+", discussed bel ow

The server nust be listening for a connection. Wen a connection is
opened the server sends an unsolicited OK response as a greeting
message and then waits for commands.

The client opens a connection and waits for the greeting. The client
nmust not send any conmands until it has received the greeting from
t he server.

Once the greeting has been received, the client may begin sending
commands and is not under any obligation to wait for a server
response to this command before sendi ng another command, within the
constraints of TCP flow control. \When comands are received the
server acts on them and responds with comrand responses, often
interspersed with data. The effect of a command can not be

consi dered conplete until a command response with a tag matching the
command is received fromthe server

Al t hough all known | MAP2 servers at the tine of this witing process
commands to conpl etion before processing the next command, it is not
required that a server do so. However, many comrands can affect the
results of other commands, creating processing-order dependencies
(or, for SEARCH and FIND, anbiguities about which data is associ ated
with which command). All inplenmentations that operate in a non-

| ockst ep fashi on nust recogni ze such dependenci es and defer or
synchroni ze execution as necessary. |In general, such multi-
processing is limted to consecutive FETCH comands.

CGenerally, the first command fromthe client is a LOG@ N command with
user nane and password argunments to establish identity and access
aut hori zation, unless this has already been acconplished through

other neans, e.g. Kerberos. Until identity and access authorization
have been established, no operations other than LOG N or LOGOUT are
permtted.

Once identity and aut horization have been established, the client
must send a SELECT command to access the desired nail box; no nail box
is selected by default. SELECT' s argunent is inplenentation-
dependent; however the word "1 NBOX' nust be inplenented to nean the
primary or default rmailbox for this user, independent of any other
server semantics. On a successful SELECT, the server will send a
list of valid flags, nunber of nessages, and nunber of nessages
arrived since |ast access for this nmailbox as unsolicited data,

foll owed by an OK response. The client may terninate access to this
mai | box and access a different one with another SELECT conmand.

The client reads mmil box informati on with FETCH commands. The actua

Crispin [ Page 6]



RFC 1176 I MAP2 August 1990

data is transnitted via the unsolicited data nmechanism (that is,
FETCH shoul d be viewed as instructing the server to include the
desired data along with any other data it wishes to transnmit to the
client). There are three major categories of data that may be

f et ched.

The first category is data that is associated with a nessage as an
entity in the mailbox. There are now three such itens of data: the
"internal date", the "RFC 822 size", and the "flags". The interna
date is the date and tinme that the nessage was placed in the nail box.
The RFC 822 size is subject to deletion in the future; it is the size
in bytes of the nessage, expressed as an RFC 822 text string.

Current clients only use it as part of a status display line. The
flags are a list of status flags associated with the nessage (see
below). Al the first category data can be fetched by using the
macro-fetch word "FAST"; that is, "FAST" expands to "(FLAGS

| NTERNALDATE RFC822. Sl ZE) "

The second category is that data that describes the conposition and
delivery information of a nessage; that is, information such as the
nmessage sender, recipient lists, nessage-ID, subject, etc. This is
the information that is stored in the message header in RFC 822
format nmessage and is traditionally called the "envel ope". [ Note:
this should not be confused with the SMIP (RFC 821) envel ope, which
is strictly limted to delivery information.] |MAP2 defines a
structured and unanbi guous representation for the envel ope that is
particularly suited for Lisp-based parsers. A client can use the
envel ope for operations such as replying and not worry about RFC 822
at all. Envelopes are discussed in nore detail below. The first two
categories of data can be fetched together by using the nacro-fetch
word "ALL"; that is, "ALL" expands to "(FLAGS | NTERNALDATE
RFC822. SI ZE ENVELOPE) ".

The third category is that data that is intended for direct human
viewi ng. The present RFC 822 based | MAP2 defines three such itens:
RFCB822. HEADER, RFC822. TEXT, and RFC822 (the latter being the two
fornmer appended together in a single text string). RFC822.HEADER is
the "raw', unprocessed RFC 822 format header of the nessage.

Fet chi ng "RFC822" is equivalent to fetching the RFC 822
representation of the message as stored on the mail box w thout any
filtering or processing.

An intelligent client will "FETCH ALL" for sone (or all) of the
messages in the mailbox for use as a presentation nmenu, and when the
user wishes to read a particular nessage will "FETCH RFC822. TEXT" to

get the nessage body. A nore prinmtive client could, of course,
simply "FETCH RFCB822" a‘la POP-type functionality.

Crispin [ Page 7]



RFC 1176 I MAP2 August 1990

The client can alter certain data (currently only the flags) by a
STORE command. As an exanple, a nessage is deleted froma nail box by
a STORE conmand that includes the \DELETED flag as a flag being set.

O her client operations include copying a nessage to another mail box
(COPY conmmand), pernanently renoving del et ed nessages ( EXPUNGE
command), checking for new nessages (CHECK comand), and searching
for messages that match certain criteria (SEARCH comrand).

The client term nates the session with the LOGOUT command. The
server returns a "BYE' followed by an "OK".

A Typical Scenario

Cient Server
{vait for Connection}
{Open Connection} -->
<-- * OK | MAP2 Server Ready
{wait for commund}
AO01 LOG N Fred Secret -->
<-- A00O1 K User Fred logged in
{Vait for command}
A002 SELECT | NBOX -->
<-- * FLAGS (Meeting Notice \Answered
\ Fl agged \Del et ed \ Seen)
<-- * 19 EXI STS
<-- * 2 RECENT
<-- A0002 OK Sel ect conplete
{Wait for command}

A003 FETCH 1:19 ALL -->
<-- * 1 Fetch (...... )
<-- * 18 Fetch (...... )
<-- * 19 Fetch (...... )

<-- A003 K Fetch conplete
{Wait for command}
A004 FETCH 8 RFC822. TEXT -->
<-- * 8 Fetch (RFC822. TEXT {893}
...893 characters of text...

)
<-- A004 K Fetch conplete
{Wait for command}

Crispin [ Page 8]



RFC 1176 I MAP2 August 1990

A005 STORE 8 +Flags \Deleted -->
<-- * 8 Store (Flags (\Del eted
\ Seen))
<-- A00O5 K Store conplete
{Vait for command}
A006 EXPUNCE -->
<-- * 19 EXI STS
<-- * 8 EXPUNGE
<-- * 18 EXI STS
<-- A006 Expunge conplete
{Vait for command}
A007 LOGOUT -->
<-- * BYE | MAP2 server quitting
<-- A007 OK Logout conplete
{d ose Connecti on} --><-- {C ose connection}
{Go back to start}
Conventi ons

The following terns are used in a neta-sense in the syntax
speci fication bel ow

An ASCI | -STRING i s a sequence of arbitrary ASCI| characters.
An ATOM is a sequence of ASCI| characters delimted by SP or CRLF.

A CHARACTER i s any ASCI| character except """", "{", CR, LF, "%,
Or ll\ll.

A CRLF is an ASCI| carriage-return character followed i nmedi ately
by an ASCII |inefeed character.

A NUMBER i s a sequence of the ASCI| characters that represent
deci mal numerals ("0" through "9"), delimted by SP, CRLF, ",", or

A SP is the ASCI| space character.

A TEXT_LINE i s a hunan-readabl e sequence of ASCI| characters up to
but not including a term nating CRLF.

A common field in the I MAP2 protocol is a STRING which may be an
ATOM QUOTED- STRI NG (a sequence of CHARACTERs i nsi de doubl e-quotes),
or a LITERAL. A literal consists of an open brace ("{"), a nunber, a
close brace ("}"), a CRLF, and then an ASCl|-STRI NG of n characters,
where n is the value of the nunber inside the brace. |In general, a
string should be represented as an ATOM or QUOTED- STRING i f at all
possi ble. The semantics for QUOTED- STRI NG or LI TERAL are checked
before those for ATOM therefore an ATOM used in a STRI NG nmay only

Crispin [ Page 9]



RFC 1176 I MAP2 August 1990

contain CHARACTERs. Literals are npbst often sent fromthe server to
the client; in the rare case of a client to server literal there is a
speci al consideration (see the "+ text" response bel ow).

Anot her inportant field is the SEQUENCE, which identifies a set of
nmessages by consecutive nunbers from1l to n where n is the nunber of
messages in the nmail box. A sequence nmay consist of a single nunber,
a pair of nunbers delimted by colon (equivalent to all nunbers

bet ween those two nunbers), or a list of single nunbers or nunber
pairs. For exanple, the sequence 2,4:7,9,12:15 is equivalent to
2,4,5,6,7,9,12,13,14,15 and identifies all those nessages.

Definitions of Commands and Responses

Summary of Commands and Responses

Commrands Responses

tag NOOP tag OK text

tag LOG N user password tag NO text

tag LOGOUT tag BAD text
*

tag SELECT nail box nunber nessage_data

tag BBOARD bul | eti n_board * FLAGS flag_list
tag FIND MAI LBOXES pattern * SEARCH sequence
tag FI ND BBOARDS pattern * BBOARD string
tag CHECK * MAILBOX string
tag EXPUNGE * BYE text

tag COPY sequence rmmai | box * K text

tag FETCH sequence data * NO t ext

tag STORE sequence data val ue * BAD t ext

tag SEARCH search_program + text

Conmands
tag NOOP

The NOOP command returns an OK to the client. By itself, it does
not hi ng, but certain things nmay happen as side effects. For
exanpl e, server inplementations that inplicitly check the nmail box
for new mail may do so as a result of this conmand. The primary
use of this command is to for the client to see if the server is
still alive (and notify the server that the client is still alive,
for those servers that have inactivity autol ogout tinmers).

tag LOG N user password

The LOG N conmand identifies the user to the server and carries
the password authenticating this user. This information is used

Crispin [ Page 10]



RFC 1176 I MAP2 August 1990

by the server to control access to the nail boxes.

EXAMPLE: A001 LOG N SM TH SESAME
logs in as user SMTH with password SESAME.

tag LOGOUT

The LOGOUT conmand informs the server that the client is done with
the session. The server should send an unsolicited BYE response
before the (tagged) OK response, and then cl ose the network
connecti on.

tag SELECT nai | box

The SELECT comand sel ects a particular nail box. The server nust
check that the user is pernmitted read access to this nmail box.
Before returning an K to the client, the server nust send the
followi ng unsolicited data to the client:

FLAGS mai | box’ s defined flags

<n> EXI STS the nunber of nessages in the nail box

<n> RECENT the nunber of new nmessages in the mail box
in order to define the initial state of the mail box at the client.

Mul tipl e SELECT commands are permitted in a session, in which case
the previous mailbox is autonmatically desel ected when a new SELECT
i s made.

The default mail box for the SELECT command is I NBOX, which is a
speci al name reserved to nean "the primary mail box for this user
on this server". The fornat of other nail box nanes is operating
system dependent (as of this witing, it reflects the filenane
path of the mailbox file on the current servers).

It is customary, although not required, for the text of an K
response to the SELECT command to begin with either "[READ O\LY]'
or "[ READ-WRITE]" to show the nail box’s access status.

EXAMPLE: A002 SELECT | NBOX
sel ects the default nmail box.

tag BBOARD bul | eti n_board

The BBOARD command is equivalent to SELECT, and returns the sane
output. However, it differs from SELECT in that its argunment is a
shared nmail box (bulletin board) nane instead of an ordinary
mai | box. The format of a bulletin name is inplenentation
specific, although it is strongly encouraged to use sonething that
resenbles a nane in a generic sense and not a file or mail box nane

Crispin [ Page 11]



RFC 1176 I MAP2 August 1990

on the particular system There is no requirenent that a bulletin
board nane be a mail box name or a file name (in particular, Unix
netnews has a conpletely different namespace from mail box or file
nanes) .

Support for BBOARD i s optional
tag FI ND MAI LBOXES pattern

The FI ND MAI LBOXES command accepts as an argunent a pattern
(including wildcards) that specifies sone set of nmil box nanes
that are usable by the SELECT command. The format of nmil boxes is
i mpl enent ati on dependent. The special nail box nane | NBOX i s not

i ncluded in the output.

Two wildcard characters are defined; "*" specifies any nunber
(including zero) characters may nmatch at this position and "%
specifies a single character may match at this position. For
exanpl e, FOO*BAR wi || match FOOBAR, FOOD. ON. THE. BAR and FQO. BAR,
whereas FOOYBAR will match only FOO BAR  "*" will match al

mai | boxes.

The FIND MAI LBOXES command will return sone set of unsolicited
MAI LBOX replies that have as their value a single nailbox nane.

EXAMPLE: A002 FI ND MAI LBOXES *
* MAI LBOX FOOBAR
* MAI LBOX GENERAL
A002 FI ND conpl et ed

Al t hough the use of explicit file or path nanes for mail boxes is
di scouraged by this standard, it nmay be unavoidable. It is

i mportant that the value returned in the MAILBOX unsolicited reply
be usable in the SELECT command w t hout remenbering any path
specification that may have been used in the FI ND MAI LBOXES
pattern.

Support for FIND MAILBOXES is optional. |If a client’'s attenpt
returns BAD as a response then the client can make no assunptions
about what mail boxes exist on the server other than | NBOX

tag FI ND BBOARDS pattern
The FI ND BBOARDS conmand accepts as an argunment a pattern that
specifies some set of bulletin board nanmes that are usable by the
BBOARD command. W/ dcards are pernitted as in FI ND MAI LBOXES

The FI ND BBOARDS command will return sonme set of unsolicited

Crispin [ Page 12]



RFC 1176 I MAP2 August 1990

BBOARD replies that have as their value a single bulletin board
namne.

EXAVMPLE: A002 FI ND BBOARDS *
* BBOARD FOOBAR
* BBOARD CGENERAL
A002 FI ND conpl et ed

Support for FIND BBOARDS is optional. |If a client’s attenpt
returns BAD as a response then the client can nake no assunptions
about what bulletin boards exist on the server, or that they exist
at all.

tag CHECK

The CHECK command forces a check for new nessages and a rescan of
the mail box for internal change for those inplenentations that

all ow nul tiple sinultaneous read/ wite access to the sane nmil box.
It is recomend that periodic inplicit checks for new nmail be done
by servers as well. The server should send unsolicited EXI STS and
RECENT responses with the current status before returning an K to
the client.

tag EXPUNGE

The EXPUNGE conmand permanently renoves all nessages with the
\DELETED flag set in its flags fromthe mail box. Before returning
an K to the client, for each nessage that is renoved, an
unsol i cited EXPUNGE response is sent. The nessage nunmber for each
successive nessage in the nailbox is inmediately decrenented by 1
this means that if the last 5 nessages in a 9-nessage mail file
are expunged you will receive 5 unsolicited EXPUNCE responses for
message 5. To ensure mailbox integrity and server/client

synchroni zation, it is recomended that the server do an inplicit
check before commenci ng the expunge and agai n when the expunge is
conpleted. Furthernore, if the server allows nultiple

si nul t aneous access to the same nmail file the server nust |ock the
mail file for exclusive access while an expunge is taking place.

EXPUNGE is not allowed if the user does not have wite access to
this mail box.

tag COPY sequence nmai |l box
The COPY conmand copi es the specified nmessage(s) to the specified
destination mailbox. |If the destination nailbox does not exist,

the server should create it. Before returning an K to the
client, the server should return an unsolicited <n> COPY response

Crispin [ Page 13]



RFC 1176 I MAP2 August 1990

for each nmessage copied. A copy should set the \SEEN flag for al
messages that were successfully copied (provided, of course, that
the user has wite access to this mail box).

EXAMPLE: A003 COPY 2:4 MEETI NG
copi es nessages 2, 3, and 4 to nmil box "MEETI NG'

COPY is not allowed if the user does not have wite access to the
desti nati on mai |l box.

tag FETCH sequence data

The FETCH conmand retrieves data associated with a nessage in the
mai | box. The data itenms to be fetched may be either a single atom
or an S-expression list. The currently defined data itens that
can be fetched are:

ALL Macro equi val ent to:
( FLAGS | NTERNALDATE RFC822. SI ZE ENVELOPE)

ENVEL OPE The envel ope of the nmessage. The envel ope is
comput ed by the server by parsing the RFC 822
header into the conponent parts, defaulting
various fields as necessary.

FAST Macro equi val ent to:
(FLAGS | NTERNALDATE RFC822. Sl ZE)

FLAGS The flags that are set for this nessage
This may include the followi ng system fl ags:

\ RECENT Message arrived since the
previous tine this mail box
was read

\ SEEN Message has been read

\ ANSVERED Message has been answered

\ FLAGGED Message is "flagged" for
urgent/special attention

\ DELETED Message is "deleted" for
renoval by |ater EXPUNGE

| NTERNALDATE The date and tine the nmessage was witten to
t he mai | box.

Crispin [ Page 14]



RFC 1176 I MAP2 August 1990

RFC822 The message in RFC 822 format. The \ SEEN
flag is inplicitly set; if this causes the
flags to change they should be included as
part of the fetch results. This is the
concat enati on of RFC822. HEADER and RFC822. TEXT

RFC822. HEADER The "raw' RFC 822 fornmat header of the nessage
as stored on the server.

RFC822. SI ZE The nunber of characters in the nessage as
expressed in RFC 822 format.

RFCB822. TEXT The text body of the nessage, onmitting the

RFC 822 header. The \SEEN flag is inplicitly
set as with RFC822 above.

EXAMPLES:

A003 FETCH 2:4 ALL
fetches the flags, internal date, RFC 822 size, and envel ope
for messages 2, 3, and 4.

A004 FETCH 3 RFC822
fetches the RFC 822 representation for nessage 3.

A005 FETCH 4 (FLAGS RFC822. HEADER)
fetches the flags and RFC 822 fornmat header for nessage 4.

Note: An attenpt to FETCH already-transmtted data nmay have no
result. See the Inplenentation D scussion bel ow

tag STORE sequence data val ue

The STORE command alters data associated with a nessage in the
mai | box. The currently defined data itens that can be stored are:

FLAGS Repl ace the flags for the nessage with the
argument (in flag list format).

+FLAGS Add the flags in the argunent to the
message’s flag |ist.

- FLAGS Renmove the flags in the argunent fromthe
nmessage’'s flag list.

STORE is not allowed if the user does not have wite access to
this mail box.

Crispin [ Page 15]



RFC 1176 I MAP2 August 1990

EXAMPLE: A003 STORE 2: 4 +FLAGS (\ DELETED)
mar ks nessages 2, 3, and 4 for deletion.

tag SEARCH search_criteria

The SEARCH command searches the nail box for nmessages that natch
the given set of criteria. The unsolicited SEARCH <l1#nunber >
response fromthe server is a list of nessages that express the
intersection (AND function) of all the nessages which match that
criteria. For exanple,

A003 SEARCH DELETED FROM "SM TH' SI NCE 1- OCT- 87
returns the nessage nunbers for all deleted nessages from Snith
that were placed in the nail file since Cctober 1, 1987.

In all search criteria which use strings, a nessage matches the
criteria if the string is a case-independent substring of that
field. The currently defined criteria are:

ALL Al'l messages in the mail box; the default
initial criterion for ANDi ng.

ANSWERED Messages with the \ ANSWERED fl ag set.

BCC string Messages which contain the specified string
in the envel ope’s BCC fi el d.

BEFORE dat e Messages whose internal date is earlier than
the specified date.

BODY string Messages which contain the specified string
in the body of the nessage.

CC string Messages which contain the specified string
in the envel ope’s CC field.

DELETED Messages with the \DELETED fl ag set.

FLAGGED Messages with the \ FLAGCGED fl ag set.

FROM string Messages which contain the specified string

in the envelope’s FROM field
KEYWORD f 1 ag Messages with the specified flag set.
NEW Messages whi ch have the \RECENT flag set but

not the \SEEN flag. This is functionally
equi val ent to "RECENT UNSEEN'

Crispin [ Page 16]



RFC 1176 I MAP2 August 1990

ab Messages which do not have the \RECENT fl ag
set.
ON date Messages whose internal date is the same as

the specified date.

RECENT Messages whi ch have the \ RECENT flag set.
SEEN Messages whi ch have the \ SEEN fl ag set.
SI NCE date Messages whose internal date is later than

the specified date.

SUBJECT string Messages which contain the specified string
in the envel ope’s SUBJECT field.

TEXT string Messages which contain the specified string.

TO string Messages which contain the specified string in
the envel ope’s TO fi el d.

UNANSWERED Messages whi ch do not have the \ ANSWERED f I ag
set.

UNDELETED Messages whi ch do not have the \ DELETED fl ag
set.

UNFLAGGED Messages whi ch do not have the \ FLAGGED fl ag
set.

UNKEYWORD flag Messages whi ch do not have the specified flag
set.

UNSEEN Messages whi ch do not have the \ SEEN flag set.

Crispin [ Page 17]



RFC 1176 I MAP2 August 1990

Responses
tag OK text

This response identifies successful conmpletion of the command with
that tag. The text is a line of human-readable text that nay be
useful in a protocol telenetry |og for debuggi ng purposes.

tag NO text

This response identifies unsuccessful conpletion of the conmand
with that tag. The text is a line of human-readabl e text that
probably should be displayed to the user in an error report by the
client.

tag BAD text

This response identifies faulty protocol received fromthe client;
The text is a line of human-readabl e text that should be recorded
in any telenmetry as part of a bug report to the nmintainer of the
client.

* nunber nessage_data

This response occurs as a result of several different commands.
The nmessage data is one of the follow ng:

EXI STS The specified nunber of nessages exists in the nail box.

RECENT The specified nunber of nessages have arrived since the
previous tinme this nail box was read.

EXPUNGE The specified nessage nunber has been permanently
renoved fromthe mail box, and the next nessage in the
mai | box (if any) becomes that nmessage nunber

STORE dat a
bsol ete and functionally equivalent to FETCH

FETCH dat a
This is the principle nmeans by which data about a
message is returned to the client. The datais in a
Li sp-1i ke S-expression property list form The current
properties are:

ENVEL OPE An S-expression format list that describes the

envel ope of a nessage. The envel ope is conputed
by the server by parsing the RFC 822 header into

Crispin [ Page 18]



RFC 1176

Crispin

FLAGS

I MAP2 August 1990

the conponent parts, defaulting various fields
as necessary.

The fields of the envelope are in the foll ow ng
order: date, subject, from sender, reply-to, to,
cc, bcc, in-reply-to, and nessage-id. The date,
subject, in-reply-to, and nessage-id fields are
strings. The from sender, reply-to, to, cc,

and bcc fields are lists of addresses.

An address is an S-expression format |ist that
describes an electronic nmail address. The fields
of an address are in the follow ng order

personal nane, source-route (a.k.a. the
at-domain-list in SMIP), mailbox nanme, and

host nane.

Any field of an envel ope or address that is

not applicable is presented as the atom NI L.

Note that the server nust default the reply-to

and sender fields fromthe fromfield; a client is
not expected to know to do this.

An S-expression fornmat list of flags that are set
for this message. This nmay include the foll ow ng
system fl ags

\ RECENT Message arrived since the
previous tinme this mail box
was read

\ SEEN Message has been read

\ ANSVWERED Message has been answered

\ FLAGGED Message is "flagged" for
urgent/special attention

\ DELETED Message is "del eted" for

renoval by | ater EXPUNGE

| NTERNALDATE A string containing the date and tine the

RFC822

nmessage was witten to the mail box.

A string expressing the nessage in RFC 822
fornat .

RFC822. HEADER A string expressing the RFC 822 fornat

RFC822. SI ZE

header of the nmessage

A nunber indicating the nunber of
characters in the nessage as expressed

[ Page 19]



RFC 1176 I MAP2 August 1990

in RFC 822 formt.

RFC822. TEXT A string expressing the text body of the
message, onmitting the RFC 822 header.

* FLAGS flag |ist

Thi s response occurs as a result of a SELECT command. The fl ag
list are the list of flags (at a m ninmum the systemdefined
flags) that are applicable for this mailbox. Flags other than the
system flags are a function of the server inplenentation

* SEARCH nunber (s)

Thi s response occurs as a result of a SEARCH command. The
nunber (s) refer to those nessages that match the search criteria.
Each nunmber is delimted by a space, e.g., "SEARCH 2 3 6".

* BBOARD string

This response occurs as a result of a FIND BBOARDS conmand. The
string is a bulletin board name that matches the pattern in the
conmand.

* MAI LBOX string

This response occurs as a result of a FIND MAI LBOXES command. The
string is a mail box nane that nmatches the pattern in the conmand.

* BYE text

This response identifies that the server is about to close the
connection. The text is a line of human-readabl e text that should
be displayed to the user in a status report by the client. This
may be sent as part of a nornal |ogout sequence, or as a panic
shut down announcenent by the server. It is also used by sone
servers as an announcenent of an inactivity autol ogout.

* K text

This response identifies nornmal operation on the server. No
special action by the client is called for, however, the text
shoul d be displayed to the user in sone fashion. This is
currently only used by servers at startup as a greeting nessage to
show they are ready to accept the first comand.

Crispin [ Page 20]



RFC 1176 I MAP2 August 1990

* NO t ext

This response identifies a warning fromthe server that does not
affect the overall results of any particular request. The text is
a line of human-readabl e text that should be presented to the user
as a warning of inproper operation

* BAD text

This response identifies a serious error at the server; it may

al so indicate faulty protocol fromthe client in which a tag could
not be parsed. The text is a line of human-readabl e text that
shoul d be presented to the user as a serious or possibly fata
error. It should also be recorded in any telenetry as part of a
bug report to the nmaintainer of the client and server

+ text

This response identifies that the server is ready to accept the
text of aliteral fromthe client. Normally, a conmand fromthe
client is a single text line. |If the server detects an error in
the conmand, it can sinply discard the remainder of the line. It
cannot do this for commands that contain literals, since alitera
can be an arbitrarily long anount of text, and the server may not
even be expecting a literal. This nechanismis provided so the
client knows not to send a literal until the server expects it,
preserving client/server synchronization

In practice, this condition is rarely encountered. In the current
protocol, the only client conmand likely to contain a literal is
the LOG N command. Consider a server that validates the user

bef ore checking the password. |[If the password contains "funny"
characters and hence is sent as a literal, then if the user is
invalid an error would occur before the password is parsed.

No such synchroni zation protection is provided for literals sent
fromthe server to the client, for performance reasons. Any
synchroni zation problens in this direction would be caused by a
bug in the client or server

Crispin [ Page 21]



RFC 1176 I MAP2 August 1990

Sanpl e | MAP2 sessi on

The following is a transcript of an | MAP2 session. Server output is
identified by "S:" and client output by "U". 1In cases where |ines
are too long to fit within the boundaries of this docunent, the |line
is continued on the next Iline.

S: * OK SUMEX- Al M Stanford. EDU I nterimMil Access Protocol |l Service
6.1(349) at Thu, 9 Jun 88 14:58:30 PDT
a001 login crispin secret
a002 K User CRISPIN logged in at Thu, 9 Jun 88 14:58:42 PDT, job 76
a002 sel ect inbox
* FLAGS (Bugs SF Party Skating Meeting Flanes Request Al Question
Not e \ XXXX \ YYYY \ Answered \ Fl agged \ Del et ed \ Seen)
* 16 EXI STS
* 0 RECENT
a002 K Sel ect conplete
a003 fetch 16 all
* 16 Fetch (Flags (\Seen) Internal Date " 9-Jun-88 12:55: 44 PDT"
RFC822. Si ze 637 Envel ope ("Sat, 4 Jun 88 13:27:11 PDT"
"I NFO- MAC Mai |l Message" (("Larry Fagan" N L "FAGAN'
"SUMEX- Al M Stanford. EDU")) (("Larry Fagan" N L "FAGAN'
"SUMVEX- AIM Stanford. EDU")) (("Larry Fagan" N L "FAGAN'
"SUMEX- AIM Stanford. EDU')) ((NIL NIL "rindfl El SCH'
"SUMVEX- AIM Stanford. EDU')) NIL NIL NIL
"<12403828905. 13. FAGAN@BUVEX- Al M St anf or d. EDU>"))
a003 K Fetch conpl et ed
a004 fetch 16 rfc822
* 16 Fetch (RFC822 {637}
Mai | - From RI NDFLElI SCH created at 9-Jun-88 12:55:43
Mai | - From FAGAN created at 4-Jun-88 13:27:12
Date: Sat, 4 Jun 88 13:27:11 PDT
From Larry Fagan <FAGAN@GSUVEX- Al M St anf or d. EDU>
To: rindfl El SCHE&BUVEX- Al M St anf or d. EDU
Subj ect: | NFO- MAC Mai | Message
Message- | D: <12403828905. 13. FAGAN@UMEX- Al M St anf or d. EDU>
ReSent - Dat e: Thu, 9 Jun 88 12:55:43 PDT
ReSent-From TC Ri ndfl ei sch <Ri ndf | ei sch@UMEX- Al M St anf or d. EDU>
ReSent - To: Yeager @GSUVEX- Al M St anf or d. EDU,
Cri spi n@UVEX- Al M St anf or d. EDU
ReSent - Message- | D:
<12405133897. 80. Rl NDFLEI SCH@UMEX- Al M St anf or d. EDU>

WCLWLYw VwCcwc

The file is <info-nmac>usenetv4-55. arc
Larry

)
a004 K Fetch conpl eted

Crispin [ Page 22]



RFC 1176 I MAP2 August 1990

U a005 | ogout

S: * BYE DEC-20 | MAP || server term nating connection

S a005 OK SUMEX- Al M Stanford. EDU I nterim Mail Access Protocol
Service | ogout

Crispin [ Page 23]



RFC 1176 I MAP2 August 1990

| mpl enent ati on Di scussi on

There are several advantages to the schene of tags and unsolicited
responses. First, the infanmous synchronization problens of SMIP and
simlar protocols do not happen with tagged commands; a conmand is
not considered satisfied until a response with the sane tag is seen
Tagging allows an arbitrary anount of other responses ("unsolicited"
data) to be sent by the server with no possibility of the client

| osi ng synchroni zation. Conpare this with the problens that FTP or
SMIP clients have with continuation, partial conpletion, and
commentary reply codes

Anot her advantage is that a non-lockstep client inplenentation is
possible. The client could send a command, and entrust the handling
of the server responses to a different process that would signal the
client when the tagged response cones in. Under certain

circunst ances, the client nmay have nore than one conmand out st andi ng.

It was observed that synchroni zation problens can occur with literals
if the literal is not recognized as such. Fortunately, the cases in
whi ch this can happen are rare; a nechanism (the special "+" tag
response) was introduced to handl e those few cases. The proper way
to address this problemis probably to nove towards a record-oriented
architecture instead of the text stream nodel provided by TCP

An | MAP2 client nmust maintain a |ocal cache of data from the nail box.
This cache is an inconplete nodel of the nuail box, and at startup is
enpty. A listener processes all unsolicited data, and updates the
cache based on this data. |If a tagged response arrives, the |listener
unbl ocks the process that sent the tagged request.

Unsolicited data needs some discussion. Unlike nost protocols, in
whi ch the server nerely does the client’s bidding, an | MAP2 server
has a sem -aut ononous role. By sending "unsolicited data", the
server is in effect sending a command to the client -- to update or
extend the client’s cache with new information fromthe server. In
other words, a "fetch" conmand is nerely a request to the server to
ensure that the client’s cache has the nost up-to-date version of the
requested information. A server acknow edgenent to the "fetch" is a
statement that all the requested data has been sent.

Al t hough no current server does this, a server is not obliged by the
protocol to send data that it has already sent and is unchanged. An
exception to this is the actual nessage text fetching operations
(RFC822, RFC822. HEADER, and RFC822. TEXT), owing to the possibly
excessi ve resource consunption of maintaining this data in a cache.
It can not be assuned that a FETCH will transnmt any data; only that
an K to the FETCH neans that the client’s cache has the nobst up-to-

Crispin [ Page 24]



RFC 1176 I MAP2 August 1990

date i nformati on.

Wien a mail box is selected, the initial unsolicited data fromthe
server arrives. The first piece of data is the nunber of nessages.
By sending a new EXI STS unsolicited data nmessage the server causes
the client to resize its cache (this is hownewy arrived mail is
handled). |If the client attenpts to access information fromthe
cache, it will encounter enpty spots that will trigger "fetch"
requests. The request would be sent, sonme unsolicited data including
the answer to the fetch will flow back, and then the "fetch" response
wi |l unblock the client.

People fanmiliar with demand-paged virtual nenory operating system

design will recognize this nodel as being sinmlar to page-fault
handl i ng on a demand- paged system

Crispin [ Page 25]



RFC 1176

For mal Synt ax

I MAP2 August 1990

The foll owi ng syntax specification uses the augnented Backus- Naur

Form (BNF) notation as specified in RFC 822 with one exception

delimter used with

a conmea.

addr ess

addr _adl
addr _host
addr _rmmai | box
addr _nane
bboar d

check

copy

dat a

dat e

envel ope

env_bcc
env_cc
env_date

env_from

env_in-reply-to :

env_nessage-id

env_reply-to

Crispin

t he

the "#" construct is a single space (SP) and not

"(" addr_nanme SP addr_adl SP addr_nmil box SP

addr _host ")"
nil / string
nil / string
nil / string
nil / string

"BBOARD' SP string

n CHECKII

"COPY" SP sequence SP nail box

("FLAGS" SP flag list / "SEARCH' SP l1#number /
"BYE' SP text_line / "OK' SP text_line /

"NO' SP text _line / "BAD' SP text_line)

string in form"dd-mmyy hh:mm ss-zzz"

"(" env_date SP env_subject SP env_from SP
env_sender SP env_reply-to SP env_to SP

env_cc SP env_bcc SP env_in-reply-to SP
env_nessage-id ")"

nil / "(" 1*address ")"
nil / "(" 1*address ")"
string

nil / "(" 1*address ")"
nil / string

nil / string

nil / "(" 1*address ")"

[ Page 26]



RFC 1176

env_sender
env_subj ect
env_to
expunge

fetch

fetch att

find

find _option
flag_li st
literal

l ogin

| ogout
mai | box
nsg_copy

nsg_dat a

nmsg_exi sts
neg_expunge

nmsg_fetch

nmsg_recent

msg_num

Crispin

I MAP2 August

nil / "(" 1*address ")"
nil / string

nil / "(" 1*address ")"
" EXPUNGE"

"FETCH' SP sequence SP ("ALL" / "FAST" [/
fetch_att / "(" 1#fetch_att ")")

"ENVELOPE" / "FLAGS" / "I NTERNALDATE" /
"RFC822" |/ "RFCB822. HEADER' / "RFC822. S| ZE" /
"RFC822. TEXT"

"FIND' SP find_option SP string

"MAI LBOXES" / " BBOARDS"

ATOM / "(" 1#ATOM ")"

"{" NUMBER "}" CRLF ASCII - STRI NG

"LOG N' SP userid SP password

" LOGOUT"

"I NBOX" / string

" COPY"

(msg_exists / msg_recent / msg_expunge /
msg_fetch / nsg_copy)

"EXI STS"
" EXPUNGE"
("FETCH' / "STORE") SP "(" 1#("ENVELOPE"' SP

envel ope / "FLAGS' SP "(" 1#(recent_flag
flag_list) ")" [/ "INTERNALDATE" SP date /

1990

"RFC822" SP string / "RFC822. HEADER' SP string /

"RFC822. S| ZE" SP NUMBER / "RFCB822. TEXT* SP
string) ")"

" RECENT"

NUMBER

[ Page 27]



RFC 1176 I MAP2 August 1990

nil o= "NL”

noop D= " NOOP"

password i:=string

recent _flag ;o= "\ RECENT"

r eady i="+" SP text_line

request ::=tag SP (noop / login / logout / select / check /

expunge / copy / fetch / store / search / find /
bboard) CRLF

response :=tag SP ("OK" / "NO' / "BAD') SP text_line CRLF

sear ch ;= "SEARCH' SP 1#("ALL" / "ANSWERED' /
"BCC' SP string / "BEFORE" SP string /
"BODY" SP string / "CC'" SP string / "DELETED' /
"FLAGGED' / "KEYWORD' SP atom/ "NEW [/ "O.LD' /
"ON' SP string / "RECENT" / "SEEN' /
"SINCE" SP string / "TEXT" SP string /
"TO'" SP string / "UNANSWERED' / "UNDELETED' /
"UNFLAGGED' / "UNKEYWORD' / "UNSEEN'")

sel ect ;1= "SELECT" SP nuil box

sequence 1= NUMBER / (NUMBER "," sequence) / (NUMBER ":"
sequence)

store c.= "STORE" SP sequence SP store_att

store_att ::= ("+FLAGS" SP flag_list / "-FLAGS" SP flag_list /
"FLAGS' SP flag_ list)

string ;= atom/ """" 1*character """" [ literal

system fl ags ::= "VANSWERED' SP "\ FLAGGED' SP "\ DELETED' SP
"\ SEEN"

tag ;.= atom

unsolicited ;o= "*" SP (msg_num SP nsg_data / data) CRLF

userid c:=string

Crispin [ Page 28]



RFC 1176 I MAP2 August 1990

| mpl enent ati on Status

This information is current as of this witing.

The University of Washi ngton has devel oped an electronic mail client
library called the "C-dient". It provides conplete | MAP2, SMIP, and
| ocal nmil box (both /usr/spool/nail and nail.txt fornmats) services in
a well-defined way to a user interface main program Using the C
Cient, the University of Washington has created an operationa

client for BSD Unix and two operational clients (one basic, one
advanced) for the NeXT.

Stanford University/ SUMEX has devel oped operational |IMAP2 clients for
Xerox Lisp machi nes, Texas Instrunents Explorers, and the Apple
Maci nt osh.  The core of the Macintosh client is an early version of
the CGCient. SUMEX has al so devel oped | MAP2 servers for TOPS-20 and
BSD Uni x.

Al'l of the above software is in production use, with enthusiastic

| ocal user communities. Active devel opnent continues on the

Maci ntosh and C-dient based clients and the BSD Uni x server. This
software is freely available fromthe University of Wshi ngton and
SUMEX.

| MAP2 software exists for other platforns; for exanple N ppon

Tel ephone and Tel egraph (NTT) has devel oped an operational | MAP2
client for the NIT ELIS. Several organizations are working on a PC
client.

| MAP2 can be used to access mmil boxes at very renote sites, where
echo del ays and frequent outages nake TELNET and running a |ocal nail
reader intolerable. For exanple, froma desktop workstation on the
Uni versity of Washington |ocal network the author routinely uses

| MAP2 to read and nanage nmil boxes on various University of

Washi ngton | ocal servers, at two systems at Stanford University, at a
Mlnet site, and at a site in Tokyo, Japan.

This specification does not nmake any fornal definition of size
restrictions, but the DEC-20 server has the following limnitations:

I ength of a mailbox: 7,077,888 characters
maxi mum nunber of nessages: 18,432 nessages

I ength of a command line: 10,000 characters

I ength of the |local host nane: 64 characters
length of a "short" argunent: 39 characters
length of a "long" argunent: 491,520 characters
maxi mum amount of data output in a single fetch:
655, 360 characters

Crispin [ Page 29]



RFC 1176 I MAP2 August 1990

To date, nobody has run up agai nst any of these linitations, many of
whi ch are substantially |arger than nost current user nail reading
pr ogr ans.

Acknowl edgenent s

Bill Yeager and Rich Acuff both contributed inval uabl e suggestions in
the evolution of IMAP2 fromthe original | MAP. Janes Rice pointed
out several anbiguities in the previous | MAP2 specification and
otherwi se would not allow nme to | eave bad enough al ong. Laurence
Lundbl ade reviewed a draft of this version and nade several hel pfu
suggesti ons.

Many dedi cated individual s have worked on | MAP2 software, including:
Mark Crispin, Frank G lnurray, Christopher Lane, Hiroshi Ckuno
Chri stopher Schmidt, and Bill Yeager.
Any m stakes, flaws, or sins of omission in this | MAP2 protocol
specification are, however, strictly ny own; and the nention of any
nane above does not inply an endorsenent.
Security Considerations
Security issues are not discussed in this neno.
Aut hor’ s Address
Mark R Crispin
Panda Programi ng
6158 Lariat Loop NE
Bai nbri dge |sland, WA 98110-2020
Phone: (206) 842-2385

EMai | : nmr c@onvobi ki - Cho. CAC. Washi ngt on. EDU

Crispin [ Page 30]



