
Network Working Group A. DeSchon
Request for Comments: 1068 R. Braden
 ISI
 August 1988

 Background File Transfer Program (BFTP)

Status of This Memo

 This memo describes an Internet background file transfer service that
 is built upon the third-party transfer model of FTP. No new
 protocols are involved. The purpose of this memo is to stimulate
 discussion on new Internet service modes. Distribution of this memo
 is unlimited.

1. Introduction

 For a variety of reasons, file transfer in the Internet has generally
 been implemented as an interactive or "foreground" service. That is,
 a user runs the appropriate local FTP user interface program as an
 interactive command and requests a file transfer to occur in real
 time. If the transfer should fail to complete for any reason, the
 user must reissue the transfer request. Foreground file transfer is
 relatively simple to implement -- no subtleties of queuing or stable
 storage -- and in the early days of networking it provided excellent
 service, because the Internet/ARPANET was lightly loaded and
 reasonably reliable.

 More recently, the Internet has become increasingly subject to
 congestion and long delays, particularly during times of peak usage.
 In addition, as more of the world becomes interconnected, planned and
 unplanned outages of hosts, gateways, and networks sometimes make it
 difficult for users to successfully transfer files in foreground.

 Performing file transfer asynchronously (i.e., in "background"),
 provides a solution to some of these problems, by eliminating the
 requirement for a human user to be directly involved at the time that
 a file transfer takes place. A background file transfer service
 requires two components: a user interface program to collect the
 parameters describing the required transfer(s), and a file transfer
 control (FTC) daemon to carry them out.

DeSchon & Braden [Page 1]

RFC 1068 August 1988

 Background file transfer has a number of potential advantages for a
 user:

 o No Waiting

 The user can request a large transfer and ignore it until a
 notification message arrives through some common channel (e.g.,
 electronic mail).

 o End-to-end Reliability

 The FTC daemon can try a transfer repeatedly until it either
 succeeds or fails permanently. This provides reliable end-to-
 end delivery of a file, in spite of the source or destination
 host being down or poor Internet connectivity during some time
 period.

 o Multiple File Delivery

 In order for background file transfer to be accepted in the
 Internet, it may have to include some "value-added" services.
 One such service would be an implementation of a multiple file
 transfer capability for all hosts. Such a facility is suggested
 in RFC-959 (see the description of "NLST") and implemented in
 some User-FTP programs.

 o Deferred Delivery

 The user may wish to defer a large transfer until an off-peak
 period. This may become important when parts of the Internet
 adopt accounting and traffic-based cost-recovery mechanisms.

 There is a serious human-engineering problem with background file
 transfer: if the user makes a mistake in entering parameters, this
 mistake may not become apparent until much later. This can be the
 cause of severe user frustration. To avoid this problem, the user
 interface program ought to verify the correctness of as many of the
 parameters as possible when they are entered. Of course, such
 foreground verification of parameters is not possible if the remote
 host to which the parameters apply is currently unreachable.

 To explore the usefulness of background file transfer in the present
 Internet, we have implemented a file-mover service which we call the
 Background File Transfer Program or BFTP.

 Section 2 describes BFTP and Section 3 presents our experience and
 conclusions. The appendices contain detailed information about the

DeSchon & Braden [Page 2]

RFC 1068 August 1988

 user interface language for BFTP, a description of the program
 organization, and sample execution scripts.

2. Background File Transfer Program

 2.1 General Model

 In the present BFTP design, its user interface program and its FTC
 daemon program must execute on the same host, which we call the
 BFTP control host.

 Through the user interface program, a BFTP user will supply all of
 the parameters needed to transfer a file from source host S to
 destination host D, where S and D may be different from the BFTP
 control host. These parameters include:

 o S and D host names,

 o login names and passwords on S and D hosts, and

 o S and D file names (and optionally, directories).

 The user may also specify a number of optional control parameters:

 * Source file disposition -- Copy, move (i.e., copy and
 delete), or simply delete the source file. The default is
 copy.

 * Destination file operation -- Create/Replace, append to, or
 create a unique destination file. The default is
 create/replace ("STOR").

 * FTP Parameters -- Explicitly set any of the FTP type, mode,
 or structure parameters at S and D hosts.

 * Multiple Transfers -- Enable "wildcard" matching to perform
 multiple transfers.

 * Start Time -- Set the time of day for the first attempt of
 the transfer. The default is "now" (i.e., make the first
 attempt as soon as the request has been queued for the FTC
 daemon).

 Finally, the user specifies a mailbox to which a completion
 notification message will be sent, and "submits" the request to
 the FTC daemon queue. The user can then exit the BFTP user

DeSchon & Braden [Page 3]

RFC 1068 August 1988

 interface program.

 If the transfer should fail permanently, the FTC daemon will send
 a notification message to the user’s mailbox. In the event of a
 temporary failure (e.g., a broken TCP connection), the FTC daemon
 will log the failure and retry the transfer after some timeout
 period. The retry cycles will be repeated until the transfer
 succeeds or until some maximum number of tries specified has been
 reached. In either case, a notification message will then be sent
 to the user’s mailbox.

 The user can check on the progress of the transfer by reentering
 the BFTP user interface program, supplying a key that was defined
 with the request, and displaying the current status of the
 request. The user may then cancel the request or leave it in the
 queue.

 The BFTP program includes a server-Telnet module, so it can be
 executed as a remotely-accessible service that can be reached via
 a Telnet connection to the BFTP well-known port (152). This
 allows a user on any Internet host to perform background file
 transfers without running BFTP locally, but instead opening a
 Telnet connection to port 152 on a BFTP service host. Of course,
 a user can also run the local BFTP user interface program directly
 on any host that supports it and for which the user has login
 privileges.

 The next section discusses how BFTP uses standard FTP servers to
 perform the transfers, while the following section covers the user
 interface of BFTP.

 2.2 File Transfer Mechanics for BFTP

 The BFTP makes use of the "third party" or "Server-Server" model
 incorporated in the Internet File Transfer Protocol [RFC-959].
 Thus, the FTC daemon opens FTP control connections to the existing
 FTP servers on source host S and destination host D and instructs
 them to transfer the desired file(s) from S to D. The S and D
 hosts may be any two Internet hosts supporting FTP servers (but at
 least one of them must support the FTP "PASV" command). This
 approach allows the implementation of a background file transfer
 capability for the entire Internet at a very low cost.

 Figure 1 illustrates the BFTP model of operation. Note that the
 BFTP control host is not necessarily the same as S or D. Figure 2
 illustrates the FTP command interchange used in a typical Server-
 Server file transfer operation; this may be compared with the
 User-Server FTP scenario illustrated in Section 7 of RFC-959.

DeSchon & Braden [Page 4]

RFC 1068 August 1988

 Since BFTP may be asked to transfer files between any two hosts in
 the Internet, it must support all the file types and transfer
 modes that are defined in RFC-959, not just a subset implemented
 by particular hosts.

 BFTP supports the transfer of a set of files in a single request,
 using the standard technique:

 (1) Send an NLST command to the source host S, specifying a
 pathname containing "wildcard" characters. The reply will
 contain a list of matching source file names.

 (2) Execute a separate transfer operation for each file in this
 list. The destination file name in each case is assumed to
 be the same as the source file name; this requires that these
 names be compatible with the naming conventions of D.

 It will typically be necessary to specify working directories for
 the transfers at S and D, so the file names will be simple,
 unstructured names on each system.

 This approach depends upon the wildcard matching capability of the
 source host S. A more general implementation would acquire a
 complete list of the file names from the source host and do the
 matching in the FTC daemon, for example using a regular-expression
 matcher. Another useful extension would be a general pattern-
 matching file name transformation capability (e.g., like the one
 included in the 4.3BSD version of FTP) to generate appropriate
 destination pathnames for multiple requests.

DeSchon & Braden [Page 5]

RFC 1068 August 1988

 Figure 1 -- BFTP Model of Operation

 --------- Remote
 | BFTP | (telnet) o User
 Local | Network | <---------------- -|-
 User o | Server | / \
 -|- ---------
 / \ | |
 | |
 | |
 v v
 ----------- (Submit +---+
 | BFTP User | request) |---| Request
 | Interface | ---------> |---| Queue
 ----------- |---|
 . +---+
 . /
 . /
 (foreground . / (try/retry
 request-- . / request)
 see 2.3) v v
 -------- +---+
 | FTC | -------------> | | User
 | Daemon | Notify | | Mailbox
 -------- Message +---+
 / \
 / FTP \
 / Control \
 / Connections \
 HOST S v v HOST D
 -------- --------
 | FTP | ===========> | FTP |
 | Server | file | Server |
 -------- transfer --------

DeSchon & Braden [Page 6]

RFC 1068 August 1988

 Figure 2 -- Server-Server File Transfer

 Server FTP BFTP Daemon Server FTP
 HOST S HOST C HOST D
 ---------- ----------- ----------

 <-------- Open TCP Ctrl conn
 Open TCP Ctrl conn -------->

 <-------- (log in)
 (login confirm.) -------->
 (log in) -------->
 <-------- (login confirm.)

 <-------- TYPE, STRU, MODE, CWD
 (confirmations) -------->
 TYPE, STRU, MODE, CWD -------->
 <-------- (confirmations)

 <-------- PASV command
 PASV confirm -------->
 PORT command -------->
 <-------- PORT confirm

 RETR file -------->
 <-------- STOR file
 <------------------------------ Open TCP Data conn
 <------------------------------ Send file
 <------------------------------ Close Data conn
 <-------- RETR confirm
 STOR confirm -------->

 <-------- QUIT command
 QUIT command -------->
 Close Ctrl conn -------->

 <-------- Close Ctrl conn

DeSchon & Braden [Page 7]

RFC 1068 August 1988

 BFTP currently utilizes the following Server-FTP commands [RFC-
 959]: USER, PASS, ACCT, PASV, PORT, RETR, STOR, STOU, CWD, NLST,
 MODE, STRU, TYPE, and QUIT.

 The FTC daemon attempts to work around FTP servers that fail to
 support certain commands. For example, if a server does not
 support the optional command "CWD", the FTC daemon will attempt to
 construct a complete path name using the source directory name and
 the source file name. However, it is necessary that at least one
 of the two hosts support the FTP passive (PASV) command. While
 many FTP server implementations support do this command, some (in
 particular, the 4.2BSD FTP) do not. The PASV command was
 officially listed as being optional in RFC-959.

 2.3 Reliable Delivery

 The reliable delivery function of BFTP is analogous to reliable
 delivery in a transport protocol like TCP. Both depend upon
 repeated delivery attempts until success is achieved, and in both
 cases the choice of the retry interval requires some care to
 balance overhead against unresponsiveness.

 Humans are impatient, but even their impatience has a limit. If
 the file cannot be transferred "soon", a human will turn to
 another project; typically, there is a tendency for the transfer
 to become less urgent the longer the wait. The FTC daemon of BFTP
 therefore starts each transfer request with a very short retry
 interval -- e.g., 10 minutes -- and then doubles this interval for
 successive retries, until a maximum interval -- e.g., 4 hours --
 is reached. This is essentially the exponential backoff algorithm
 of the Ethernet, which is also used by transport protocols such as
 TCP, although BFTP and TCP have quite different rationales for the
 algorithm.

 We must also define the meaning of reliable transmission for a
 multiple-transfer request. For example, the set of files selected
 by wildcard characters in a pathname is not well defined; the set
 may change while the request is pending, as files are created and
 deleted. Furthermore, it is unreasonable to regard the entire
 multiple transfer as a single atomic operation. Suppose that
 transferring a set of files fails part way through; for an atomic
 operation, the files which had been successfully transferred would
 have to be deleted pending the next retry of the entire set. This
 would be ridiculously inefficient and may be impossible (since the
 communication path may be broken when it is time to issue the
 deletion requests).

DeSchon & Braden [Page 8]

RFC 1068 August 1988

 BFTP addresses these issues in the following manner:

 * For a multiple file operation, the FTC daemon saves the file
 name list returned by the first successful NLST command in
 the request queue entry. This name list determines the set
 of source files for the transfer; there can be no later
 additions to the set.

 * The FTC daemon maintains a transfer status pointer. On each
 retry cycle, it tries to transfer only those files that have
 not already been successfully transferred.

 * The request is complete when all the individual file
 transfers have been successful, a permanent failure has
 occured, or when the retry limit is reached.

 * The notification message to the user lists the status of each
 of the multiple files.

 2.4 BFTP User Interface

 The purpose of BFTP is to simplify the file transfer process and
 to place the burden of reliability on the BFTP control host. We
 have attempted to provide a "user friendly" command interface to
 BFTP, similar in flavor to the user interface of the TOPS-20
 operating system. This interface provides extensive prompting,
 defaulting, and help facilities for every command.

 For a list of all BFTP commands, the user may enter "?<Return>" at
 the main BFTP prompt ("BFTP>"). Entering "help<Return>" and
 "explain<Return>" will provide increasing levels of explanatory
 material. To obtain information on a particular command, "help
 <command name><Return>" may be entered. The ’quit’ or ’exit’
 command will exit from BFTP. Command and subcommand names may be
 abbreviated to the shortest unique sequence for that context;
 alternatively, a partial name can be automatically completed by
 typing <Return>.

 The normal procedure for a BFTP user is to set up a set of
 parameters defining the desired transfer and then submit the
 request to the FTC daemon. To give the user the maximum
 flexibility, BFTP supports three modes of submission:

 o Background Operation

 To request a reliable background file transfer, the user will
 issue the BFTP ’submit’ command to the FTC daemon.

DeSchon & Braden [Page 9]

RFC 1068 August 1988

 o Foreground Verification, Background Operation

 The BFTP ’verify’ command may be used to ascertain that file
 transfer parameters are valid. It causes BFTP to connect to
 the FTP servers on both the source and the destination hosts
 (if possible), log into both, verify the FTP parameters, and
 verify that the specified source file is present.

 Once the ’verify’ command has successfully completed, the
 user can issue the ’submit’ command to schedule the actual
 file transfer.

 o Foreground Operation

 The BFTP ’transfer’ command will perform the specified
 third-party transfer in foreground mode. This is illustrated
 by the dotted path bypassing the queue in Figure 1.

 The easiest way to set up the parameters is to issue the ’prompt’
 command, which will prompt the user for all of the basic
 parameters required for most transfers. Certain unusual
 parameters must be set with the ’set’ command (see Appendix B for
 details).

 When entering any parameter, the following control characters may
 be used:

 ? will display help text for the parameter, indicating its
 meaning, the choices, and the default, and then reprompt for
 the parameter.

 <ESC> will display the default value (or the last value set) for
 this parameter. The user can accept this default by entering
 <Return>, or else erase it with Control-W and enter a
 different value for the parameter, followed by <Return> to
 accept the entered value.

 <Control-W>
 will erase the value typed or displayed for current
 parameter.

 <Return>
 will accept the value displayed for this parameter, and
 continue to the next parameter, if any. If the user has not
 typed a value or used <ESC> to display the default, <Return>
 will display the default and then accept it.

DeSchon & Braden [Page 10]

RFC 1068 August 1988

 It is important to provide a means for a user to obtain status
 information about an earlier request or even to cancel an earlier
 request. However, these functions, especially cancellation, must
 be controlled by some user authentication. We did not want to
 build a user authentication database with each BFTP instance or
 require login to BFTP itself, and there is no Internet-wide user
 authentication mechanism. We adopted the following weak
 authentication mechanism as a compromise:

 * When the ’submit’ command is issued, it prompts the user for
 a character string called a "keyword", which recorded with
 the request.

 * This keyword can be entered later as the argument to a ’find’
 command, which will display the status of all requests with
 matching keywords.

 * Similarly, the keyword may be used to cancel the
 corresponding request.

 If two different users happen to choose the same keywords, of
 course, this scheme will not protect each other’s requests from
 accidental or malicious cancellation. However, a notification
 message will be sent at the time that a cancellation occurs.

 To make a series of similar requests, the user needs only to
 change the individual parameters that differ from the preceding
 request and then issue a new ’submit’ command, for each request.
 There are commands for individually setting each of the parameters
 that ’prompt’ sets -- and ’time’ -- to provide a shortcut for BFTP
 experts. A simpler but lengthier procedure is to use the ’prompt’
 command to run through the current set of parameters, reentering
 the parameters that must change and using the sequence
 <ESC><return> to retain the previous value for each of the others.
 The same procedures may be used to correct a mistake made in
 entering a particular parameter.

 The current settings of all the BFTP parameters can be displayed
 at any time with the ’status’ command, while the ’clear’ command
 will return all parameters to their initial values. Finally, the
 ’request’ command allows the user to save the current set of
 parameters in a file or to restore the parameters from a
 previously-saved file.

 There is also a window-based BFTP user interface for use on a Sun
 Workstation, described in Appendix A. The complete list of BFTP
 commands is presented in Appendix B.

DeSchon & Braden [Page 11]

RFC 1068 August 1988

3. Experience and Conclusions

 BFTP has been available to users at ISI for some months. Users have
 reported a number of advantages of using BFTP:

 (a) Some users prefer the prompting style of BFTP to the user
 interface of the foreground FTP they normally use.

 (b) The BFTP "verify" command allows the user to verify that host
 names, passwords, and filenames are correct without having to
 wait for the entire transfer to take place.

 (c) Since results are returned through the mail system, a transfer
 can occur without tying up a terminal line, a phone line, or
 even a window.

 BFTP must be able to communicate with a variety of Server-FTP
 implementations, and we have observed much variation in the commands
 supported, error handling, and the timing in these servers. Some of
 the problems we have encountered are:

 (1) Some systems (e.g., 4.2BSD) do not support the PASV command.

 (2) 4.2/3BSD systems return a non-standard response to the NLST
 command. Instead of returning a list of complete path-names,
 they use an ad hoc format consisting of a directory name
 followed by a list of files.

 (3) 4.2/3BSD systems may return a "permanent negative completion
 reply" (a 5xx FTP reply code) as a result of a communications
 failure such as a broken TCP connection. According to RFC-959,
 the appropriate response is a "transient negative completion
 reply" (a 4xx FTP reply code), which would inform the BFTP that
 the transfer should be retried.

 (4) A number of servers return badly formatted responses. An
 example of this is the 4.2/3BSD response to an NLST command for
 a non-existent file name: an error string which is not preceded
 by a numerical response code.

 To diagnose problems that do occur, we have found it very useful to
 have a complete record of the interchange between the FTC daemon and
 the two FTP servers. This record is saved and is currently always
 included in the notification message mailed to the user (see Appendix
 D for an example). As we get more experience with this program, some
 of the details of the transfer may be omitted from this log.

DeSchon & Braden [Page 12]

RFC 1068 August 1988

 The use of library routines shared between modules makes it
 relatively easy to implement additional user interface programs. We
 are currently experimenting with a window version of BFTP, the
 "bftptool", which runs in the SunView environment, and is described
 in Appendix A. Some additional interfaces that might be useful are:

 o A command line interface for use in shell scripts and
 "Makefiles".

 o A more general library interface which would make it easy to
 invoke BFTP from a variety of programs.

 o Additional full-screen form based interfaces, for example a tool
 running in X-Window system environment.

 Lastly, BFTP would benefit from the resolution of the following open
 protocol issues:

 o There currently exist no provisions for Internet-wide user
 authentication. In the BFTP context, this means that passwords
 required for a file transfer must be present in BFTP request
 files. The security of these passwords is subject to the
 limitations of the file system security on the BFTP control
 host. Anonymous file transfer provides a partial solution, but
 a more general, long term solution is needed.

 o Better mechanisms are needed to cope with the diversity of real
 file systems in the Internet.

 For example, an extension could be made to the FTP protocol to
 allow the daemon to learn the delimiter conventions of each host
 file system. This could allow a more flexible and powerful
 multiple-file facility in BFTP. This could include the
 automatic transfer of directory subtrees, for example.

4. References

 [RFC-959] Postel, J., and J. Reynolds, "File Transfer Protocol
 (FTP)", RFC-959, USC/Information Sciences Institute,
 October 1985.

DeSchon & Braden [Page 13]

RFC 1068 August 1988

Appendix A -- BFTP Implementation Structure

 BFTP has been implemented on both a Sun workstation running Sun OS
 3.4 (based on 4.2BSD) and a VAX running 4.3BSD. The program modules
 are: the local user interface programs "bftp", the Internet server
 program "bftpd", and the FTC daemon "fts". BFTP makes use of the
 "at" command, a UNIX batch job facility, to submit requests and
 execute the daemon. An additional user interface program, the
 "bftptool", is available for Sun OS 3.4, and runs in the SunView
 environment.

 BFTP keeps its state in a set of control files: request files,
 command files, and message files. These files are stored in the home
 directory specified for the environment of the process running
 "bftp". If a user is running "bftp" directly, this will typically be
 the user’s home directory. In the case where a user has made a
 Telnet connection to the well-known port 152 on a BFTP service host,
 "bftp" is started by "bftpd" (or "inetd", indirectly). As a result,
 the control files will be owned by the user-id under which "inetd"
 was started, normally "root", and stored in the top level directory
 "/". Note, however, that under BFTP all user files are written by
 the FTP servers, which are presumed to enforce the operating systems’
 access control conventions. Hence, BFTP does not constitute a system
 integrity exposure.

 A.1 User Interface Program

 The BFTP user interface program "bftp" may be run directly via a
 UNIX shell. Once the program has been started, the prompt "BFTP>"
 will appear and commands may be entered. These commands are
 described in detail in Appendix B.

 A.2 Tool-Style User Interface Program

 The BFTP user interface program "bftptool" may be started from a
 shell window in the SunView environment on a Sun workstation. The
 BFTP commands may be selected via the left mouse button. The
 various file transfer parameters appear in a form-style interface;
 defaults and multiple-choice style parameter values can be filled
 in via menus. An advantage of this form-style interface program
 is that it is possible to view all of the file transfer parameters
 simultaneously, providing the user with a sense for which
 parameter values might be mutually exclusive.

 Help information can be displayed in a text subwindow by
 positioning the on-screen mouse pointer over a command or a
 parameter, and clicking the center mouse button. (No standard
 mechanism for displaying help information is currently included in

DeSchon & Braden [Page 14]

RFC 1068 August 1988

 the SunView package.)

 The commands used in the "bftptool" are for the most part very
 similar to the commands described in Appendix B. Request
 submittal and the execution of the FTC daemon are identical for
 the "bftp" and the "bftptool" interface programs.

 A.3 Internet Server

 The Internet server program "bftpd" can be invoked by opening a
 Telnet connection to a well-known port, and does not require
 login. The "bftpd" program runs under "inetd", the standard
 BSD4.x well-known port dispatcher. When a SYN arrives for the
 BFTP well-known port, "bftpd" opens the TCP connection and
 performs Telnet negotiations. It then passes control to the user
 interface "bftp" which allows the user to enter file transfer
 requests.

 A.4 BFTP Server Daemon

 The BFTP file transfer control daemon program is named "fts" (for
 "File Transfer Service"). This module contains code to actually
 cause a single file transfer operation using the FTP server-server
 model as shown in Figures 1 and 2. It is invoked with the command
 "fts <request-file>". The <request-file> contains the necessary
 parameters for the file transfer, in ASCII format, separated by
 linefeeds. Such a request file may be created by the user
 interface program, "bftp".

 As a byproduct of the development of BFTP, "fts" represents a
 server-server FTP driver that can be run independent of the "bftp"
 program. Parameters used in the file transfer are read from a
 request file, which is created and accessed via library routines
 which can be shared between modules. This could be used to
 perform FTP’s under program control.

DeSchon & Braden [Page 15]

RFC 1068 August 1988

Appendix B: BFTP Command Summary

 B.1 Special Editing Characters

 In the "bftp" program, the special editing characters for command
 words, subcommands, and parameter fields are as follows:

 <return> Accept current command/field.
 <escape> Complete current command/field, or display default.
 <space> Complete and delimit current command.
 <delete> Erase last character.
 control-L Refresh screen.
 control-R Refresh line.
 control-U Erase line.
 control-W Erase current token.
 ? List legal options.

 B.2 BFTP Commands

 The remainder of Appendix B consists of a list of the BFTP
 commands. Each command should be followed by a carriage-return.
 In the description of the syntax for each command, square brackets
 "[]" are used to indicate a ssubcommand, or a list of possible
 subcommands, which are separated by the "|" character. Angle
 brackets "<>" are used to indicate a description of a parameter
 where the choices would be too numerous to list, for example
 "<host name/number>".

 B.2.1 Clear Command

 Return all parameters to their default values.

 clear

 B.2.2 Destination Commands

 Set the destination directory.

 ddir <directory name>

 Set the destination file name.

 dfile <file name>

 Set the destination host, user, and password.

 dhost <host name/number> <login> <password>

DeSchon & Braden [Page 16]

RFC 1068 August 1988

 B.2.3 Explain Command

 Display a short explanation of how to use BFTP.

 explain

 B.2.4 Find Command

 Find and display a previous request.

 find

 BFTP will prompt for the request id, which is printed when the
 request is first submitted. An example of a request id is
 "bftp583101774". BFTP also prompts for the request keyword, which
 was determined by the user when the request was first submitted.
 If no keyword was specified, a <CR> should be typed. If no
 request id is entered, BFTP will display all requests which
 contain a matching keyword.

 RequestID (optional): <bftp-request-id>
 RequestKeyword: <keyword>

 After BFTP has displayed a summary of a matching request, it asks
 whether the request is to be changed, or canceled.

 Do you wish to change this request? [yes | no]
 Do you wish to cancel this request? [yes | no]

 If the user indicates that the request is to be changed, BFTP will
 read in the parameters and cancel the existing request. At this
 point the user may make any desired changes and use the "submit"
 command to requeue the request. At this point a new request id
 will be assigned and displayed.

DeSchon & Braden [Page 17]

RFC 1068 August 1988

 Although this may happen extremely rarely, if at all, it is
 possible that a system crash (or the interruption of the BFTP
 program) at a particularly inopportune moment may leave a request
 which is not queued. When the "find" command locates such a
 request, it displays the warning:

 Your request is NOT currently queued.

 If this happens, the request may be read in and resubmitted using
 the following procedure:

 Your request is NOT currently queued.
 Do you wish to change this request? yes

 (BFTP displays the parameters that have been read in.)

 Previous request canceled.
 Use the ’submit’ command to submit a new request.

 B.2.5 Help Command

 Print local help information.

 help
 help <command>

 B.2.6 Quit Command

 Clear parameters and exit the BFTP program.

 quit

 B.2.7 Prompt Command

 Prompt for commonly-used parameters.

 prompt

DeSchon & Braden [Page 18]

RFC 1068 August 1988

 The following are the parameters that BFTP prompts for:

 copy/move/delete: [copy | move | delete]
 ascii/ebcdic/image/local:
 [ascii|ebcdic] [nonprint|telnet|carriage-control]
 or
 [image]
 or
 [local] <byte size>
 (see "set type" for additional information)

 Source --
 Host: <host name/number>
 User: <login>
 Password: <password>
 Dir: <directory including a delimiter, e.g., "/" or ">">
 (either an absolute path, or relative to the login)
 File: <file name>

 Destination --
 Host: <host name/number>
 User: <login>
 Password: <password>
 Dir: <directory>
 File: <file name>

 Once the prompting has been completed, the current values of all
 parameters will be displayed. Parameters not mentioned in the
 prompting will be initialized with default values, and may be
 changed via the "set" commands.

DeSchon & Braden [Page 19]

RFC 1068 August 1988

 B.2.8 Request Commands

 The request commands enable the user to save a set of BFTP
 parameters in a "request-file" for future use. Subcommands are
 provided to to list all available request-files, or to read,
 write, or delete a request-file. All request-files are stored in
 the user’s home directory. Therefore, this facility is not
 available when the user is accessing BFTP by telneting to port
 152.

 Delete request file "bftp-save.name".

 request delete <name>

 List all bftp-save files.

 request list

 Read a request file in as the current request.

 request load <name>

 Save the current request in a file named "bftp-save.name".

 request store <name>

 B.2.9 Set Commands

 The "set" commands have complex subcommand structures and are used
 to set many of the less commonly used FTP parameters. The
 subcommands of "set" are as follows:

 Set the account for the source/destination login.

 set account [source | destination] <account string>

 Set to true to append to destination file.

 set append [true | false]

 The source file will be copied to the destination file name.

 set copy

 The source file will be deleted after the file has been moved or
 copied.

 set delete

DeSchon & Braden [Page 20]

RFC 1068 August 1988

 Set the mailbox to which the results will be returned. The
 mailbox should be in standard internet format, for example:
 "deschon@isi.edu".

 set mailbox <mailbox string>

 Set the FTP transfer mode.

 set mode [stream | block | compress]

 The source file will be deleted after it has been copied.

 set move

 Set to true to transfer multiple files.

 set multiple [true | false]

 Set the port for the source/destination FTP connection.

 set port [source | destination] <port number>

 Set the FTP structure.

 set structure [file | record | page]

 Set the FTP type and format / byte size parameters. Note that a
 normal text file is usually "ascii", and a "binary" file is often
 the same as an "image" file.

 set type [ascii|ebcdic] [nonprint|telnet|carriage-control]
 or
 set type [image]
 or
 set type [local] <byte size>

 Set to true if the STOU command is to be used. If the STOU
 command is supported by the destination host, the file will be
 stored into a file having a unique file name.

 set unique [true | false]

 Set to true to display full FTP conversations for "verify" and
 "transfer" commands.

 set verbose [true | false]

DeSchon & Braden [Page 21]

RFC 1068 August 1988

 B.2.10 Source Commands

 Set the source directory.

 sdir <directory name>

 Set the source file name.

 sfile <file name>

 Set the source host, user, and password.

 shost <host name/number> <login> <password>

 B.2.11 Status Command

 Display the current parameter values.

 status

 B.2.12 Submit Command

 Submit the current request for background FTP.

 submit

 BFTP prompts for the following information:

 StartTime: <date and/or time>
 ReturnMailbox: <internet mailbox>
 RequestKeyword: <made-up keyword>

 B.2.13 Time Command

 Set the start time, the starting retry interval, and the maximum
 number of tries.

 time <date and/or time> <minutes between tries>
 <maximum number of tries>

 B.2.14 Transfer Command

 Perform the current request in the foreground.

 transfer

DeSchon & Braden [Page 22]

RFC 1068 August 1988

 B.2.15 Verify Command

 Make the connections now to check parameters.

 verify

DeSchon & Braden [Page 23]

RFC 1068 August 1988

Appendix C: Example BFTP User Script

 deschon.isi.edu 1% telnet hobgoblin.isi.edu 152
 Trying 128.9.0.42 ...
 Connected to hobgoblin.isi.edu.
 Escape character is ’^]’.

 BFTP Server (hobgoblin.isi.edu)

 Background File Transfer: For help, type ’?’, ’help’, or ’explain’.

 BFTP> prompt

 Copy/Move/Delete: copy

 Source --
 Host: deschon.isi.edu
 User: deschon
 Password:
 Dir: ./
 File: foo*

 Destination --
 Host: venera.isi.edu
 User: deschon
 Password:
 Dir: ./temp/
 File: foo*

 StartTime: Tue Oct 6 10:14:43 1987 (interval) 60 (tries) 5
 ReturnMailbox: deschon@isi.edu
 RequestPassword:

 BFTP> set multiple true
 BFTP> status
 Request type: COPY

 Source --
 Host: ’deschon.isi.edu’
 User: ’deschon’
 Pass: SET
 Acct: ’’
 Dir: ’./’
 File: ’foo*’
 Port: 21

 Destination --
 Host: ’venera.isi.edu’

DeSchon & Braden [Page 24]

RFC 1068 August 1988

 User: ’deschon’
 Pass: SET
 Acct: ’’
 Dir: ’./temp/’
 File:’foo*’
 Port: 21

 Structure: file, Mode: stream, Type: ascii, Format: nonprint
 Multiple matching: TRUE
 Return mailbox: ’deschon@isi.edu’, Password: SET
 Remaining tries: 5, Retry interval: 60 minutes

 Start after Tue Oct 6 10:14:43 1987.

 BFTP> submit
 Checking parameters...

 Request bftp560538880 submitted to run at 10:14 Oct 6.

 BFTP> quit
 bye
 Connection closed by foreign host.
 deschon.isi.edu 2%

DeSchon & Braden [Page 25]

RFC 1068 August 1988

Appendix D: Sample BFTP Notification Message

 Received-Date: Tue, 6 Oct 87 10:15:52 PDT
 Date: Tue, 6 Oct 87 10:15:47 PDT
 From: root (Operator)
 Posted-Date: Tue, 6 Oct 87 10:15:47 PDT
 To: deschon
 Subject: BFTP Results: bftp560538880

 Request bftp560538880 submitted to run at 10:14 Oct 6.

 Tue Oct 6 10:15:22 1987: starting...

 Request type: COPY
 Source: deschon.isi.edu-deschon-XXX--21-./-foo*
 Destination: venera.isi.edu-deschon-XXX--21-./temp/-
 Stru: F, Mode: S, Type: A N, Creation: STOR
 Multiple matching: TRUE
 Return mailbox: ’deschon@isi.edu’, Password: SET
 Remaining tries: 5, Retry interval: 60 minutes

 Connect to: deschon.isi.edu, 21
 deschon.isi.edu ==> 220 deschon.isi.edu FTP server (Version 4.7
 Sun Sep 14 12:44:57 PDT 1986) ready.
 Connect to: venera.isi.edu, 21
 venera.isi.edu ==> 220 venera.isi.edu FTP server (Version 4.107
 Thu Mar 19 20:54:37 PST 1987) ready.
 deschon.isi.edu <== USER deschon
 deschon.isi.edu ==> 331 Password required for deschon.
 deschon.isi.edu <== PASS XXX
 deschon.isi.edu ==> 230 User deschon logged in.
 venera.isi.edu <== USER deschon
 venera.isi.edu ==> 331 Password required for deschon.
 venera.isi.edu <== PASS XXX
 venera.isi.edu ==> 230 User deschon logged in.
 deschon.isi.edu <== CWD ./
 deschon.isi.edu ==> 200 CWD command okay.
 venera.isi.edu <== CWD ./temp/
 venera.isi.edu ==> 250 CWD command successful.
 deschon.isi.edu <== PORT 128,9,1,56,4,106
 deschon.isi.edu ==> 200 PORT command okay.
 deschon.isi.edu <== NLST foo*
 deschon.isi.edu ==> 150 Opening data connection for /bin/ls
 (128.9.1.56,1130) (0 bytes).
 deschon.isi.edu ==> 226 Transfer complete.
 deschon.isi.edu <== PASV
 deschon.isi.edu ==> 502 PASV command not implemented.
 venera.isi.edu <== PASV

DeSchon & Braden [Page 26]

RFC 1068 August 1988

 venera.isi.edu ==> 227 Entering Passive Mode (128,9,0,32,6,200)
 deschon.isi.edu <== PORT 128,9,0,32,6,200
 deschon.isi.edu ==> 200 PORT command okay.
 deschon.isi.edu <== RETR foo
 venera.isi.edu <== STOR foo
 deschon.isi.edu ==> 150 Opening data connection for foo
 (128.9.0.32,1736) (0 bytes).
 deschon.isi.edu ==> 226 Transfer complete.
 venera.isi.edu ==> 150 Openning data connection for foo
 (128.9.1.56,20).
 venera.isi.edu ==> 226 Transfer complete.
 venera.isi.edu <== PASV
 venera.isi.edu ==> 227 Entering Passive Mode (128,9,0,32,6,201)
 deschon.isi.edu <== PORT 128,9,0,32,6,201
 deschon.isi.edu ==> 200 PORT command okay.
 deschon.isi.edu <== RETR foo1
 venera.isi.edu <== STOR foo1
 deschon.isi.edu ==> 150 Opening data connection for foo1
 (128.9.0.32,1737) (4 bytes).
 deschon.isi.edu ==> 226 Transfer complete.
 venera.isi.edu ==> 150 Openning data connection for foo1
 (128.9.1.56,20).
 venera.isi.edu ==> 226 Transfer complete.
 deschon.isi.edu <== QUIT
 venera.isi.edu <== QUIT

 Tue Oct 6 10:15:39 1987: completed successfully.

DeSchon & Braden [Page 27]

