
Network Working Group M. Crispin
Request for Comments: 1064 SUMEX-AIM
 July 1988

 INTERACTIVE MAIL ACCESS PROTOCOL - VERSION 2

Status of this Memo

 This RFC suggests a method for workstations to dynamically access
 mail from a mailbox server ("repository"). This RFC specifies a
 standard for the SUMEX-AIM community and a proposed experimental
 protocol for the Internet community. Discussion and suggestions for
 improvement are requested. Distribution of this memo is unlimited.

Introduction

 The intent of the Interactive Mail Access Protocol, Version 2 (IMAP2)
 is to allow a workstation or similar small machine to access
 electronic mail from a mailbox server. IMAP2 is the protocol used by
 the SUMEX-AIM MM-D (MM Distributed) mail system.

 Although different in many ways from POP2 (RFC 937), IMAP2 may be
 thought of as a functional superset of POP2, and the POP2 RFC was
 used as a model for this RFC. There was a cognizant reason for this;
 RFC 937 deals with an identical problem and it was desirable to offer
 a basis for comparison.

 Like POP2, IMAP2 specifies a means of accessing stored mail and not
 of posting mail; this function is handled by a mail transfer protocol
 such as SMTP (RFC 821). A comparison with the DMSP protocol of
 PCMAIL can be found at the end of "System Model and Philosophy"
 section.

 This protocol assumes a reliable data stream such as provided by TCP
 or any similar protocol. When TCP is used, the IMAP2 server listens
 on port 143.

System Model and Philosophy

 Electronic mail is a primary means of communication for the widely
 spread SUMEX-AIM community. The advent of distributed workstations
 is forcing a significant rethinking of the mechanisms employed to
 manage such mail. With mainframes, each user tends to receive and
 process mail at the computer he used most of the time, his "primary
 host". The first inclination of many users when an independent
 workstation is placed in front of them is to begin receiving mail at
 the workstation, and, in fact, many vendors have implemented

Crispin [Page 1]

RFC 1064 IMAP2 July 1988

 facilities to do this. However, this approach has several
 disadvantages:

 (1) Workstations (especially Lisp workstations) have a software
 design that gives full control of all aspects of the system to the
 user at the console. As a result, background tasks, like
 receiving mail, could well be kept from running for long periods
 of time either because the user is asking to use all of the
 machine’s resources, or because, in the course of working, the
 user has (perhaps accidentally) manipulated the environment in
 such a way as to prevent mail reception. This could lead to
 repeated failed delivery attempts by outside agents.

 (2) The hardware failure of a single workstation could keep its
 user "off the air" for a considerable time, since repair of
 individual workstation units might be delayed. Given the growing
 number of workstations spread throughout office environments,
 quick repair would not be assured, whereas a centralized mainframe
 is generally repaired very soon after failure.

 (3) It is more difficult to keep track of mailing addresses when
 each person is associated with a distinct machine. Consider the
 difficulty in keeping track of a large number of postal addresses
 or phone numbers, particularly if there was no single address or
 phone number for an organization through which you could reach any
 person in that organization. Traditionally, electronic mail on
 the ARPANET involved remembering a name and one of several "hosts"
 (machines) whose name reflected the organization in which the
 individual worked. This was suitable at a time when most
 organizations had only one central host. It is less satisfactory
 today unless the concept of a host is changed to refer to an
 organizational entity and not a particular machine.

 (4) It is very difficult to keep a multitude of heterogeneous
 workstations working properly with complex mailing protocols,
 making it difficult to move forward as progress is made in
 electronic communication and as new standards emerge. Each system
 has to worry about receiving incoming mail, routing and delivering
 outgoing mail, formatting, storing, and providing for the
 stability of mailboxes over a variety of possible filing and
 mailing protocols.

 Consequently, while the workstation may be viewed as an Internet host
 in the sense that it implements IP, it should not be viewed as the
 entity which contains the user’s mailbox. Rather, a mail server
 machine (sometimes called a "repository") should hold the mailbox,
 and the workstation (hereafter referred to as a "client") should
 access the mailbox via mail transactions. Because the mail server

Crispin [Page 2]

RFC 1064 IMAP2 July 1988

 machine would be isolated from direct user manipulation, it could
 achieve high software reliability easily, and, as a shared resource,
 it could achieve high hardware reliability, perhaps through
 redundancy. The mail server could be used from arbitrary locations,
 allowing users to read mail across campus, town, or country using
 more and more commonly available clients. Furthermore, the same user
 may access his mailbox from different clients at different times, and
 multiple users may access the same mailbox simultaneously.

 The mail server acts an an interface among users, data storage, and
 other mailers. The mail access protocol is used to retrieve
 messages, access and change properties of messages, and manage
 mailboxes. This differs from some approaches (e.g., Unix mail via
 NFS) in that the mail access protocol is used for all message
 manipulations, isolating the user and the client from all knowledge
 of how the data storage is used. This means that the mail server can
 utilize the data storage in whatever way is most efficient to
 organize the mail in that particular environment, without having to
 worry about storage representation compatibility across different
 machines.

 In defining a mail access protocol, it is important to keep in mind
 that the client and server form a macrosystem, in which it should be
 possible to exploit the strong points of both while compensating for
 each other’s weaknesses. Furthermore, it’s desirable to allow for a
 growth path beyond the hoary text-only RFC 822 protocol. Unlike
 POP2, IMAP2 has extensive features for remote searching and parsing
 of messages on the server. For example, a free text search
 (optionally in conjunction with other searching) can be made
 throughout the entire mailbox by the server and the results made
 available to the client without the client having to transfer the
 entire mailbox and searching itself. Since remote parsing of a
 message into a structured (and standard format) "envelope" is
 available, a client can display envelope information and implement
 commands such as REPLY without having any understanding of how to
 parse RFC 822, etc. headers.

 Additionally, IMAP2 offers several facilities for managing a mailbox
 beyond the simple "delete message" functionality of POP2.

 In spite of this, IMAP2 is a relatively simple protocol. Although
 servers should implement the full set of IMAP2 functions, a simple
 client can be written which uses IMAP2 in much the way as a POP2
 client.

 IMAP2 differs from the DMSP protocol of PCMAIL (RFC 1056) in a more
 fundamental manner, reflecting the differing architectures of MM-D
 and PCMAIL. PCMAIL is either an online ("interactive mode"), or

Crispin [Page 3]

RFC 1064 IMAP2 July 1988

 offline ("batch mode") system. MM-D is primarily an online system in
 which real-time and simultaneous mail access were considered
 important.

 In PCMAIL, there is a long-term client/server relationship in which
 some mailbox state is preserved on the client. There is a
 registration of clients used by a particular user, and the client
 keeps a set of "descriptors" for each message which summarize the
 message. The server and client synchronize their states when the
 DMSP connection starts up, and, if a client has not accessed the
 server for a while, the client does a complete reset (reload) of its
 state from the server.

 In MM-D, the client/server relationship lasts only for the duration
 of the IMAP2 connection. All mailbox state is maintained on the
 server. There is no registration of clients. The function of a
 descriptor is handled by a structured representation of the message
 "envelope". This structure makes it unnecessary for a client to know
 anything about RFC 822 parsing. There is no synchronization since
 the client does not remember state between IMAP2 connections. This
 is not a problem since in general the client never needs the entire
 state of the mailbox in a single session, therefore there isn’t much
 overhead in fetching the state information that is needed as it is
 needed.

 There are also some functional differences between IMAP2 and DMSP.
 DMSP has explicit support for bulletin boards which are only handled
 implicitly in IMAP2. DMSP has functions for sending messages,
 printing messages, listing mailboxes, and changing passwords, all of
 which are done outside of IMAP2. DMSP has 16 binary flags of which 8
 are defined by the system. IMAP has flag names; there are currently
 5 defined system flag names and a facility for some number (30 in the
 current implementations) of user flag names. IMAP2 has a
 sophisticated message search facility in the server to identify
 interesting messages based on dates, addresses, flag status, or
 textual contents without compelling the client to fetch this data for
 every message.

 It was felt that maintaining state on the client is advantageous only
 in those cases where the client is only used by a single user, or if
 there is some means on the client to restrict access to another
 user’s data. It can be a serious disadvantage in an environment in
 which multiple users routinely use the same client, the same user
 routinely uses different clients, and where there are no access
 restrictions on the client. It was also observed that most user mail
 access is to a relatively small set of "interesting" messages, which
 were either "new" mail or mail based upon some user-selected
 criteria. Consequently, IMAP2 was designed to easily identify those

Crispin [Page 4]

RFC 1064 IMAP2 July 1988

 "interesting" messages so that the client could fetch the state of
 those messages and not those that were not "interesting".

The Protocol

 The IMAP2 protocol consists of a sequence of client commands and
 server responses, with server data interspersed between the
 responses. Unlike most Internet protocols, commands and responses
 are tagged. That is, a command begins with a unique identifier
 (typically a short alphanumeric sequence such as a Lisp "gensym"
 function would generate e.g., A0001, A0002, etc.), called a tag. The
 response to this command is given the same tag from the server.
 Additionally, the server may send an arbitrary amount of "unsolicited
 data", which is identified by the special reserved tag of "*". There
 is another special reserved tag, "+", discussed below.

 The server must be listening for a connection. When a connection is
 opened the server sends an unsolicited OK response as a greeting
 message and then waits for commands. When commands are received the
 server acts on them and responds with responses, often interspersed
 with data.

 The client opens a connection, waits for the greeting, then sends a
 LOGIN command with user name and password arguments to establish
 authorization. Following an OK response from the server, the client
 then sends a SELECT command to access the desired mailbox. The
 user’s default mailbox has a special reserved name of "INBOX" which
 is independent of the operating system that the server is implemented
 on. The server will generally send a list of valid flags, number of
 messages, and number of messages arrived since last access for this
 mailbox as unsolicited data, followed by an OK response. The client
 may terminate access to this mailbox and access a different one with
 another SELECT command.

 The client reads mailbox information by means of FETCH commands. The
 actual data is transmitted via the unsolicited data mechanism (that
 is, FETCH should be viewed as poking the server to include the
 desired data along with any other data it wishes to transmit to the
 client). There are three major categories of data which may be
 fetched.

 The first category is that data which is associated with a message as
 an entity in the mailbox. There are presently three such items of
 data: the "internal date", the "RFC 822 size", and the "flags". The
 internal date is the date and time that the message was placed in the
 mailbox. The RFC 822 size is subject to deletion in the future; it
 is the size in bytes of the message, expressed as an RFC 822 text
 string. Current clients only use it as part of a status display

Crispin [Page 5]

RFC 1064 IMAP2 July 1988

 line. The flags are a list of status flags associated with the
 message (see below). All of the first category data can be fetched
 by using the macro-fetch word "FAST"; that is, "FAST" expands to
 "(FLAGS INTERNALDATE RFC822.SIZE)".

 The second category is that data which describes the composition and
 delivery information of a message; that is, information such as the
 message sender, recipient lists, message-ID, subject, etc. This is
 the information which is stored in the message header in RFC 822
 format message and is traditionally called the "envelope". [Note:
 this should not be confused with the SMTP (RFC 821) envelope, which
 is strictly limited to delivery information.] IMAP2 defines a
 structured and unambiguous representation for the envelope which is
 particularly nice for Lisp-based parsers. A client can use the
 envelope for operations such as replying and not worry about RFC 822
 at all. Envelopes are discussed in more detail below. The first and
 second category data can be fetched together by using the macro-fetch
 word "ALL"; that is, "ALL" expands to "(FLAGS INTERNALDATE
 RFC822.SIZE ENVELOPE)".

 The third category is that data which is intended for direct human
 viewing. The present RFC 822 based IMAP2 defines three such items:
 RFC822.HEADER, RFC822.TEXT, and RFC822 (the latter being the two
 former appended together in a single text string). Fetching "RFC822"
 is equivalent to typing the RFC 822 representation of the message as
 stored on the mailbox without any filtering or processing.

 Typically, a client will "FETCH ALL" for some or all of the messages
 in the mailbox for use as a presentation menu, and when the user
 wishes to read a particular message will "FETCH RFC822.TEXT" to get
 the message body. A more primitive client could, of course, simply
 "FETCH RFC822" a la POP2-type functionality.

 The client can alter certain data (presently only the flags) by means
 of a STORE command. As an example, a message is deleted from a
 mailbox by a STORE command which includes the \DELETED flag as one of
 the flags being set.

 Other client operations include copying a message to another mailbox
 (COPY command), permanently removing deleted messages (EXPUNGE
 command), checking for new messages (CHECK command), and searching
 for messages which match certain criteria (SEARCH command).

 The client terminates the session with the LOGOUT command. The
 server returns a "BYE" followed by an "OK".

Crispin [Page 6]

RFC 1064 IMAP2 July 1988

 A Typical Scenario

 Client Server
 ------ ------
 {Wait for Connection}
 {Open Connection} -->
 <-- * OK IMAP2 Server Ready
 {Wait for command}
 A001 LOGIN Fred Secret -->
 <-- A001 OK User Fred logged in
 {Wait for command}
 A002 SELECT INBOX -->
 <-- * FLAGS (Meeting Notice \Answered
 \Flagged \Deleted \Seen)
 <-- * 19 EXISTS
 <-- * 2 RECENT
 <-- A0002 OK Select complete
 {Wait for command}
 A003 FETCH 1:19 ALL -->
 <-- * 1 Fetch (......)
 ...
 <-- * 18 Fetch (......)
 <-- * 19 Fetch (......)
 <-- A003 OK Fetch complete
 {Wait for command}
 A004 FETCH 8 RFC822.TEXT -->
 <-- * 8 Fetch (RFC822.TEXT {893}
 ...893 characters of text...
 <--)
 <-- A004 OK Fetch complete
 {Wait for command}

 A005 STORE 8 +Flags \Deleted -->
 <-- * 8 Store (Flags (\Deleted
 \Seen))
 <-- A005 OK Store complete
 {Wait for command}
 A006 EXPUNGE -->
 <-- * 19 EXISTS
 <-- * 8 EXPUNGE
 <-- * 18 EXISTS
 <-- A006 Expunge complete
 {Wait for command}
 A007 LOGOUT -->
 <-- * BYE IMAP2 server quitting
 <-- A007 OK Logout complete
 {Close Connection} --><-- {Close connection}
 {Go back to start}

Crispin [Page 7]

RFC 1064 IMAP2 July 1988

Conventions

 The following terms are used in a meta-sense in the syntax
 specification below:

 An ASCII-STRING is a sequence of arbitrary ASCII characters.

 An ATOM is a sequence of ASCII characters delimited by SP or CRLF.

 A CHARACTER is any ASCII character except """", "{", CR, LF, "%",
 or "\".

 A CRLF is an ASCII carriage-return character followed immediately
 by an ASCII linefeed character.

 A NUMBER is a sequence of the ASCII characters which represent
 decimal numerals ("0" through "9"), delimited by SP, CRLF, ",", or
 ":".

 A SP is the ASCII space character.

 A TEXT_LINE is a human-readable sequence of ASCII characters up to
 but not including a terminating CRLF.

 One of the most common fields in the IMAP2 protocol is a STRING,
 which may be an ATOM, QUOTED-STRING (a sequence of CHARACTERs inside
 double-quotes), or a LITERAL. A literal consists of an open brace
 ("{"), a number, a close brace ("}"), a CRLF, and then an ASCII-
 STRING of n characters, where n is the value of the number inside the
 brace. In general, a string should be represented as an ATOM or
 QUOTED-STRING if at all possible. The semantics for QUOTED-STRING or
 LITERAL are checked before those for ATOM; therefore an ATOM used in
 a STRING may only contain CHARACTERs. Literals are most often sent
 from the server to the client; in the rare case of a client to server
 literal there is a special consideration (see the "+ text" response
 below).

 Another important field is the SEQUENCE, which identifies a set of
 messages by consecutive numbers from 1 to n where n is the number of
 messages in the mailbox. A sequence may consist of a single number,
 a pair of numbers delimited by colon indicating all numbers between
 those two numbers, or a list of single numbers and/or number pairs.
 For example, the sequence 2,4:7,9,12:15 is equivalent to
 2,4,5,6,7,9,12,13,14,15 and identifies all of those messages.

Crispin [Page 8]

RFC 1064 IMAP2 July 1988

Definitions of Commands and Responses

 Summary of Commands and Responses

 Commands || Responses
 -------- || -------
 tag NOOP || tag OK text
 tag LOGIN user password || tag NO text
 tag LOGOUT || tag BAD text
 tag SELECT mailbox || * message_number data
 tag CHECK || * FLAGS flag_list
 tag EXPUNGE || * SEARCH sequence
 tag COPY sequence mailbox || * BYE text
 tag FETCH sequence data || * OK text
 tag STORE sequence data value || * NO text
 tag SEARCH search_program || * BAD text
 || + text

Commands

 tag NOOP

 The NOOP command returns an OK to the client. By itself, it does
 nothing, but certain things may happen as side effects. For
 example, server implementations which implicitly check the mailbox
 for new mail may do so as a result of this command. The primary
 use of this command is to for the client to see if the server is
 still alive (and notify the server that the client is still alive,
 for those servers which have inactivity autologout timers).

 tag LOGIN user password

 The LOGIN command identifies the user to the server and carries
 the password authenticating this user. This information is used
 by the server to control access to the mailboxes.

 EXAMPLE: A001 LOGIN SMITH SESAME logs in as user SMITH with
 password SESAME.

 tag LOGOUT

 The LOGOUT command indicates the client is done with the session.
 The server sends an unsolicited BYE response before the (tagged)
 OK response, and then closes the connection.

 tag SELECT mailbox

 The SELECT command selects a particular mailbox. The server must

Crispin [Page 9]

RFC 1064 IMAP2 July 1988

 check that the user is permitted read access to this mailbox.
 Prior to returning an OK to the client, the server must send an
 unsolicited FLAGS and <n> EXISTS response to the client giving the
 flags list for this mailbox (simply the system flags if this
 mailbox doesn’t have any special flags) and the number of messages
 in the mailbox. It is also recommended that the server send a <n>
 RECENT unsolicited response to the client for the benefit of
 clients which make use of the number of new messages in a mailbox.

 Multiple SELECT commands are permitted in a session, in which case
 the prior mailbox is deselected first.

 The default mailbox for the SELECT command is INBOX, which is a
 special name reserved to mean "the primary mailbox for this user
 on this server". The format of other mailbox names is operating
 system dependent (as of this writing, it reflects the filename
 path of the mailbox file on the current servers).

 EXAMPLE: A002 SELECT INBOX selects the default mailbox.

 tag CHECK

 The CHECK command forces a check for new messages and a rescan of
 the mailbox for internal change for those implementations which
 allow multiple simultaneous read/write access to the same mailbox
 (e.g., TOPS-20). It is recommend that periodic implicit checks
 for new mail be done by servers as well. The server should send
 an unsolicited <n> EXISTS response prior to returning an OK to the
 client.

 tag EXPUNGE

 The EXPUNGE command permanently removes all messages with the
 \DELETED flag set in its flags from the mailbox. Prior to
 returning an OK to the client, for each message which is removed,
 an unsolicited <n> EXPUNGE response is sent indicating which
 message was removed. The message number of each subsequent
 message in the mailbox is immediately decremented by 1; this means
 that if the last 5 messages in a 9-message mail file are expunged
 you will receive 5 "* 5 EXPUNGE" responses. To ensure mailbox
 integrity and server/client synchronization, it is recommended
 that the server do an implicit check prior to commencing the
 expunge and again when the expunge is completed. Furthermore, if
 the server allows multiple simultaneous access to the same mail
 file the server must lock the mail file for exclusive access while
 an expunge is taking place.

Crispin [Page 10]

RFC 1064 IMAP2 July 1988

 EXPUNGE is not allowed if the user does not have write access to
 this mailbox.

 tag COPY sequence mailbox

 The COPY command copies the specified message(s) to the specified
 destination mailbox. If the destination mailbox does not exist,
 the server should create it. Prior to returning an OK to the
 client, the server should return an unsolicited <n> COPY response
 for each message copied. A copy should set the \SEEN flag for all
 messages which were successfully copied (provided, of course, that
 the user has write access to this mailbox).

 EXAMPLE: A003 COPY 2:4 MEETING copies messages 2, 3, and 4 to
 mailbox "MEETING".

 COPY is not allowed if the user does not have write access to the
 destination mailbox.

 tag FETCH sequence data

 The FETCH command retrieves data associated with a message in the
 mailbox. The data items to be fetched may be either a single atom
 or an S-expression list. The currently defined data items that
 can be fetched are:

 ALL Macro equivalent to:
 (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE)

 ENVELOPE The envelope of the message. The envelope is
 computed by the server by parsing the RFC 822
 header into the component parts, defaulting
 various fields as necessary.

 FAST Macro equivalent to:
 (FLAGS INTERNALDATE RFC822.SIZE)

Crispin [Page 11]

RFC 1064 IMAP2 July 1988

 FLAGS The flags which are set for this message.
 This may include the following system flags:

 \RECENT Message arrived since
 last read of this mail
 file
 \SEEN Message has been read
 \ANSWERED Message has been answered
 \FLAGGED Message is "flagged" for
 urgent/special attention
 \DELETED Message is "deleted" for
 removal by later EXPUNGE

 INTERNALDATE The date and time the message was written to
 the mailbox.

 RFC822 The message in RFC 822 format.

 RFC822.HEADER The RFC 822 format header of the message.

 RFC822.SIZE The number of characters in the message as
 expressed in RFC 822 format.

 RFC822.TEXT The text body of the message, omitting the
 RFC 822 header.

 EXAMPLES:

 A003 FETCH 2:4 ALL
 fetches the flags, internal date, RFC 822 size, and envelope
 for messages 2, 3, and 4.

 A004 FETCH 3 RFC822
 fetches the RFC 822 representation for message 3.

 A005 FETCH 4 (FLAGS RFC822.HEADER)
 fetches the flags and RFC 822 format header for message 4.

 tag STORE sequence data value

 The STORE command alters data associated with a message in the
 mailbox. The currently defined data items that can be stored are:

 FLAGS Replace the flags for the message with the
 argument (in flag list format).

 +FLAGS Add the flags in the argument to the
 message’s flag list.

Crispin [Page 12]

RFC 1064 IMAP2 July 1988

 -FLAGS Remove the flags in the argument from the
 message’s flag list.

 STORE is not allowed if the user does not have write access to
 this mailbox.

 EXAMPLE: A003 STORE 2:4 +FLAGS (\DELETED)
 marks messages 2, 3, and 4 for deletion.

 tag SEARCH search_criteria

 The SEARCH command searches the mailbox for messages which match
 the given set of criteria. The unsolicited SEARCH <1#number>
 response from the server is a list of messages which express the
 intersection (AND function) of all the messages. The currently
 defined criteria are:

 ALL All messages in the mailbox; the default
 initial criterion for ANDing.

 ANSWERED Messages with the \ANSWERED flag set.

 BCC string Messages which contain the specified string
 in the envelope’s BCC field.

 BEFORE date Messages whose internal date is earlier than
 the specified date.

 BODY string Messages which contain the specified string
 in the body of the message.

 CC string Messages which contain the specified string
 in the envelope’s CC field.

 DELETED Messages with the \DELETED flag set.

 FLAGGED Messages with the \FLAGGED flag set.

 KEYWORD flag Messages with the specified flag set.

 NEW Messages which have the \RECENT flag set but
 not the \SEEN flag. This is functionally
 equivalent to "RECENT UNSEEN".

 OLD Messages which do not have the \RECENT flag
 set.

Crispin [Page 13]

RFC 1064 IMAP2 July 1988

 ON date Messages whose internal date is the same as
 the specified date.

 RECENT Messages which have the \RECENT flag set.

 SEEN Messages which have the \SEEN flag set.

 SINCE date Messages whose internal date is later than
 the specified date.

 SUBJECT string Messages which contain the specified string
 in the envelope’s SUBJECT field.

 TEXT string Messages which contain the specified string.

 TO string Messages which contain the specified string in
 the envelope’s TO field.

 UNANSWERED Messages which do not have the \ANSWERED flag
 set.

 UNDELETED Messages which do not have the \DELETED flag
 set.

 UNFLAGGED Messages which do not have the \FLAGGED flag
 set.

 UNKEYWORD flag Messages which do not have the specified flag
 set.

 UNSEEN Messages which do not have the \SEEN flag set.

 EXAMPLE: A003 SEARCH DELETED FROM "SMITH" SINCE 1-OCT-87
 returns the message numbers for all deleted messages from Smith
 that were placed in the mail file since October 1, 1987.

Crispin [Page 14]

RFC 1064 IMAP2 July 1988

Responses

 tag OK text

 This response identifies successful completion of the command with
 the indicated tag. The text is a line of human-readable text
 which may be useful in a protocol telemetry log for debugging
 purposes.

 tag NO text

 This response identifies unsuccessful completion of the command
 with the indicated tag. The text is a line of human-readable text
 which probably should be displayed to the user in an error report
 by the client.

 tag BAD text

 This response indicates faulty protocol received from the client
 and indicates a bug in the client. The text is a line of human-
 readable text which should be recorded in any telemetry as part of
 a bug report to the maintainer of the client.

 * number message_data

 This response occurs as a result of several different commands.
 The message_data is one of the following:

 EXISTS The specified number of messages exists in the mailbox.

 RECENT The specified number of messages have arrived since the
 last time this mailbox was read.

 EXPUNGE The specified message number has been permanently
 removed from the mailbox, and the next message in the
 mailbox (if any) becomes that message number.

 STORE data
 Functionally equivalent to FETCH, only it happens as a
 result of a STORE command.

 FETCH data
 This is the principle means by which data about a
 message is returned to the client. The data is in a
 Lisp-like S-expression property list form. The current
 properties are:

 ENVELOPE An S-expression format list which describes the

Crispin [Page 15]

RFC 1064 IMAP2 July 1988

 envelope of a message. The envelope is computed
 by the server by parsing the RFC 822 header into
 the component parts, defaulting various fields
 as necessary.

 The fields of the envelope are in the following
 order: date, subject, from, sender, reply-to, to,
 cc, bcc, in-reply-to, and message-id. The date,
 subject, in-reply-to, and message-id fields are
 strings. The from, sender, reply-to, to, cc,
 and bcc fields are lists of addresses.

 An address is an S-expression format list which
 describes an electronic mail address. The fields
 of an address are in the following order:
 personal name, source-route (a.k.a. the
 at-domain-list in SMTP), mailbox name, and
 host name.

 Any field of an envelope or address which is
 not applicable is presented as the atom NIL.
 Note that the server must default the reply-to
 and sender fields from the from field; a client is
 not expected to know to do this.

 FLAGS An S-expression format list of flags which are set
 for this message. This may include the following
 system flags:

 \RECENT Message arrived since last
 read of this mail file
 \SEEN Message has been read
 \ANSWERED Message has been answered
 \FLAGGED Message is "flagged" for
 urgent/special attention
 \DELETED Message is "deleted" for
 removal by later EXPUNGE

 INTERNALDATE A string containing the date and time the
 message was written to the mailbox.

 RFC822 A string expressing the message in RFC 822
 format.

 RFC822.HEADER A string expressing the RFC 822 format
 header of the message

 RFC822.SIZE A number indicating the number of

Crispin [Page 16]

RFC 1064 IMAP2 July 1988

 characters in the message as expressed
 in RFC 822 format.

 RFC822.TEXT A string expressing the text body of the
 message, omitting the RFC 822 header.

 * FLAGS flag_list

 This response occurs as a result of a SELECT command. The flag
 list are the list of flags (at a minimum, the system-defined
 flags) which are applicable for this mailbox. Flags other than
 the system flags are a function of the server implementation.

 * SEARCH number(s)

 This response occurs as a result of a SEARCH command. The
 number(s) refer those messages which match the search criteria.
 Each number is delimited by a space, e.g., "SEARCH 2 3 6".

 * BYE text

 This response indicates that the server is about to close the
 connection. The text is a line of human-readable text which
 should be displayed to the user in a status report by the client.
 This may be sent as part of a normal logout sequence, or as a
 panic shutdown announcement by the server. It is also used by
 some servers as an announcement of an inactivity autologout.

 * OK text

 This response indicates that the server is alive. No special
 action on the part of the client is called for. This is presently
 only used by servers at startup as a greeting message indicating
 that they are ready to accept the first command. The text is a
 line of human-readable text which may be logged in protocol
 telemetry.

 * NO text

 This response indicates some operational error at the server which
 cannot be traced to any protocol command. The text is a line of
 human-readable text which should be logged in protocol telemetry
 for the maintainer of the server and/or the client. No known
 server currently outputs such a response.

 * BAD text

 This response indicates some protocol error at the server which

Crispin [Page 17]

RFC 1064 IMAP2 July 1988

 cannot be traced to any protocol command. The text is a line of
 human-readable text which should be logged in protocol telemetry
 for the maintainer of the server and/or the client. This
 generally indicates a protocol synchronization problem on the part
 of the client, and examination of the protocol telemetry is
 advised to determine the cause of the problem.

 + text

 This response indicates that the server is ready to accept the
 text of a literal from the client. Normally, a command from the
 client is a single text line. If the server detects an error in
 the command, it can simply discard the remainder of the line. It
 cannot do this in the case of commands which contain literals,
 since a literal can be an arbitrarily long amount of text, and the
 server may not even be expecting a literal. This mechanism is
 provided so the client knows not to send a literal until the
 server definitely expects it, preserving client/server
 synchronization.

 In actual practice, this situation is rarely encountered. In the
 current protocol, the only client command likely to contain a
 literal is the LOGIN command. Consider a situation in which a
 server validates the user before checking the password. If the
 password contains "funny" characters and hence is sent as a
 literal, then if the user is invalid an error would occur before
 the password is parsed.

 No such synchronization protection is provided for literals sent
 from the server to the client, for performance reasons. Any
 synchronization problems in this direction would be due to a bug
 in the client or server and not for some operational problem.

Crispin [Page 18]

RFC 1064 IMAP2 July 1988

Sample IMAP2 session

 The following is a transcript of an actual IMAP2 session. Server
 output is identified by "S:" and client output by "U:". In cases
 where lines were too long to fit within the boundaries of this
 document, the line was continued on the next line preceded by a tab.

 S: * OK SUMEX-AIM.Stanford.EDU Interim Mail Access Protocol II
 Service 6.1(349) at Thu, 9 Jun 88 14:58:30 PDT
 U: a001 login crispin secret
 S: a002 OK User CRISPIN logged in at Thu, 9 Jun 88 14:58:42 PDT,
 job 76
 U: a002 select inbox
 S: * FLAGS (Bugs SF Party Skating Meeting Flames Request AI
 Question Note \XXXX \YYYY \Answered \Flagged \Deleted
 \Seen)
 S: * 16 EXISTS
 S: * 0 RECENT
 S: a002 OK Select complete
 U: a003 fetch 16 all
 S: * 16 Fetch (Flags (\Seen) InternalDate " 9-Jun-88 12:55:
 RFC822.Size 637 Envelope ("Sat, 4 Jun 88 13:27:11 PDT"
 "INFO-MAC Mail Message" (("Larry Fagan" NIL "FAGAN"
 "SUMEX-AIM.Stanford.EDU")) (("Larry Fagan" NIL "FAGAN"
 "SUMEX-AIM.Stanford.EDU")) (("Larry Fagan" NIL "FAGAN"
 "SUMEX-AIM.Stanford.EDU")) ((NIL NIL "rindflEISCH"
 "SUMEX-AIM.Stanford.EDU")) NIL NIL NIL
 "<12403828905.13.FAGAN@SUMEX-AIM.Stanford.EDU>"))
 S: a003 OK Fetch completed
 U: a004 fetch 16 rfc822
 S: * 16 Fetch (RFC822 {637}
 S: Mail-From: RINDFLEISCH created at 9-Jun-88 12:55:43
 S: Mail-From: FAGAN created at 4-Jun-88 13:27:12
 S: Date: Sat, 4 Jun 88 13:27:11 PDT
 S: From: Larry Fagan <FAGAN@SUMEX-AIM.Stanford.EDU>
 S: To: rindflEISCH@SUMEX-AIM.Stanford.EDU
 S: Subject: INFO-MAC Mail Message
 S: Message-ID: <12403828905.13.FAGAN@SUMEX-AIM.Stanford.EDU>
 S: ReSent-Date: Thu, 9 Jun 88 12:55:43 PDT
 S: ReSent-From: TC Rindfleisch <Rindfleisch@SUMEX-AIM.Stanford.EDU>
 S: ReSent-To: Yeager@SUMEX-AIM.Stanford.EDU,
 Crispin@SUMEX-AIM.Stanford.EDU
 S: ReSent-Message-ID:
 <12405133897.80.RINDFLEISCH@SUMEX-AIM.Stanford.EDU>
 S:
 S: The file is <info-mac>usenetv4-55.arc ...
 S: Larry
 S: -------

Crispin [Page 19]

RFC 1064 IMAP2 July 1988

 S:)
 S: pa004 OK Fetch completed
 U: a005 logout
 S: * BYE DEC-20 IMAP II server terminating connection
 S: a005 OK SUMEX-AIM.Stanford.EDU Interim Mail Access Protocol
 Service logout

Crispin [Page 20]

RFC 1064 IMAP2 July 1988

Implementation Discussion

 As of this writing, SUMEX has completed an IMAP2 client for Xerox
 Lisp machines written in hybrid Interlisp/CommonLisp and is beta-
 testing a client for TI Explorers written entirely in CommonLisp.
 SUMEX has also completed a portable IMAP2 client protocol library
 module written in C. This library, with the addition of a small main
 program (primarily user interface) and a TCP/IP driver, became a
 rudimentary remote system mail-reading program under Unix. The first
 production use of this library will be as a part of a MacII client
 which is under development.

 As of this writing, SUMEX has completed IMAP2 servers for TOPS-20
 written in DEC-20 assembly language and 4.2/3 BSD Unix written in C.
 The TOPS-20 server is fully compatible with MM-20, the standard
 TOPS-20 mailsystem, and requires no special action or setup on the
 part of the user. The INBOX under TOPS-20 is the user’s MAIL.TXT.
 The TOPS-20 server also supports multiple simultaneous access to the
 same mailbox, including simultaneous access between the IMAP2 server
 and MM-20. The 4.2/3 BSD Unix server requires that the user use
 mail.txt format which is compatible only with SRI MM-32 or Columbia
 MM-C. The 4.2/3 BSD Unix server only allows simultaneous read
 access; write access must be exclusive.

 The Xerox Lisp client and DEC-20 server have been in production use
 for over a year; the Unix server was put into production use a few
 months ago. IMAP2 has been used to access mailboxes at remote sites
 from a local workstation via the Internet. For example, from the
 Stanford local network the author has read his mailbox at a Milnet
 site.

 This specification does not make any formal definition of size
 restrictions, but the DEC-20 server has the following limitations:

 . length of a mailbox: 7,077,888 characters
 . maximum number of messages: 18,432 messages
 . length of a command line: 10,000 characters
 . length of the local host name: 64 characters
 . length of a "short" argument: 39 characters
 . length of a "long" argument: 491,520 characters
 . maximum amount of data output in a single fetch:
 655,360 characters

 To date, nobody has run up against any of these limitations, many of
 which are substantially larger than most current user mail reading
 programs.

 There are several advantages to the scheme of tags and unsolicited

Crispin [Page 21]

RFC 1064 IMAP2 July 1988

 responses. First, the infamous synchronization problems of SMTP and
 similar protocols do not happen with tagged commands; a command is
 not considered satisfied until a response with the same tag is seen.
 Tagging allows an arbitrary amount of other responses ("unsolicited"
 data) to be sent by the server with no possibility of the client
 losing synchronization. Compare this with the problems that FTP or
 SMTP clients have with continuation, partial completion, and
 commentary reply codes.

 Another advantage is that a non-lockstep client implementation is
 possible. The client could send a command, and entrust the handling
 of the server responses to a different process which would signal the
 client when the tagged response comes in. Under certain
 circumstances, the client could even have more than one command
 outstanding.

 It was observed that synchronization problems can occur with literals
 if the literal is not recognized as such. Fortunately, the cases in
 which this can happen are relatively rare; a mechanism (the special
 "+" tag response) was introduced to handle those few cases which
 could happen. The proper way to address this problem in all cases is
 probably to move towards a record-oriented architecture instead of
 the text stream model provided by TCP.

 Unsolicited data needs some discussion. Unlike most protocols, in
 which the server merely does the client’s bidding, an IMAP2 server
 has a semi-autonomous role. By means of sending "unsolicited data",
 the server is in effect sending a command to the client -- to update
 and/or extend its (incomplete) model of the mailbox with new
 information from the server. In this viewpoint, a "fetch" command is
 merely a request to the server to include the desired data in any
 other "unsolicited" data the server may send, and a server
 acknowledgement to the "fetch" is a statement that all the requested
 data has been sent.

 In terms of implementation, the client may have a local cache of data
 from the mailbox. This cache is incomplete, and at startup is empty.
 A listener processes all unsolicited data, and updates the cache
 based on this data. If a tagged response arrives, the listener
 unblocks the process which sent the tagged request.

 Perhaps as a result of opening a mailbox, unsolicited data from the
 server arrives. The first piece of data is the number of messages.
 This is used to size the cache; note that by sending a new "number of
 messages" unsolicited data message the cache would be re-sized (this
 is how newly arrived mail is handled). If the client attempts to
 access information from the cache, it will encounter empty spots
 which will trigger "fetch" requests. The request would be sent, some

Crispin [Page 22]

RFC 1064 IMAP2 July 1988

 unsolicited data including the answer to the fetch will flow back,
 and then the "fetch" response will unblock the client.

 People familiar with demand-paged virtual memory operating system
 design will recognize this model as being very similar to page-fault
 handling on a demand-paged system.

Crispin [Page 23]

RFC 1064 IMAP2 July 1988

Formal Syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) notation as specified in RFC 822 with one exception; the
 delimiter used with the "#" construct is a single space (SP) and not
 a comma.

 address ::= "(" addr_name SP addr_adl SP addr_mailbox SP
 addr_host ")"

 addr_adl ::= nil / string

 addr_host ::= nil / string

 addr_mailbox ::= nil / string

 addr_name ::= nil / string

 check ::= "CHECK"

 copy ::= "COPY" SP sequence SP mailbox

 data ::= ("FLAGS" SP flag_list / "SEARCH" SP 1#number /
 "BYE" SP text_line / "OK" SP text_line /
 "NO" SP text_line / "BAD" SP text_line)

 date ::= string in form "dd-mmm-yy hh:mm:ss-zzz"

 envelope ::= "(" env_date SP env_subject SP env_from SP
 env_sender SP env_reply-to SP env_to SP
 env_cc SP env_bcc SP env_in-reply-to SP
 env_message-id ")"

 env_bcc ::= nil / "(" 1*address ")"

 env_cc ::= nil / "(" 1*address ")"

 env_date ::= string

 env_from ::= nil / "(" 1*address ")"

 env_in-reply-to ::= nil / string

 env_message-id ::= nil / string

 env_reply-to ::= nil / "(" 1*address ")"

 env_sender ::= nil / "(" 1*address ")"

Crispin [Page 24]

RFC 1064 IMAP2 July 1988

 env_subject ::= nil / string

 env_to ::= nil / "(" 1*address ")"

 expunge ::= "EXPUNGE"

 fetch ::= "FETCH" SP sequence SP ("ALL" / "FAST" /
 fetch_att / "(" 1#fetch_att ")")

 fetch_att ::= "ENVELOPE" / "FLAGS" / "INTERNALDATE" /
 "RFC822" / "RFC822.HEADER" / "RFC822.SIZE" /
 "RFC822.TEXT"

 flag_list ::= ATOM / "(" 1#ATOM ")"

 literal ::= "{" NUMBER "}" CRLF ASCII-STRING

 login ::= "LOGIN" SP userid SP password

 logout ::= "LOGOUT"

 mailbox ::= "INBOX" / string

 msg_copy ::= "COPY"

 msg_data ::= (msg_exists / msg_recent / msg_expunge /
 msg_fetch / msg_copy)

 msg_exists ::= "EXISTS"

 msg_expunge ::= "EXPUNGE"

 msg_fetch ::= ("FETCH" / "STORE") SP "(" 1#("ENVELOPE" SP
 envelope / "FLAGS" SP "(" 1#(recent_flag
 flag_list) ")" / "INTERNALDATE" SP date /
 "RFC822" SP string / "RFC822.HEADER" SP string /
 "RFC822.SIZE" SP NUMBER / "RFC822.TEXT" SP
 string) ")"

 msg_recent ::= "RECENT"

 msg_num ::= NUMBER

 nil ::= "NIL"

 noop ::= "NOOP"

 password ::= string

Crispin [Page 25]

RFC 1064 IMAP2 July 1988

 recent_flag ::= "\RECENT"

 ready ::= "+" SP text_line

 request ::= tag SP (noop / login / logout / select / check /
 expunge / copy / fetch / store / search) CRLF

 response ::= tag SP ("OK" / "NO" / "BAD") SP text_line CRLF

 search ::= "SEARCH" SP 1#("ALL" / "ANSWERED" /
 "BCC" SP string / "BEFORE" SP string /
 "BODY" SP string / "CC" SP string / "DELETED" /
 "FLAGGED" / "KEYWORD" SP atom / "NEW" / "OLD" /
 "ON" SP string / "RECENT" / "SEEN" /
 "SINCE" SP string / "TEXT" SP string /
 "TO" SP string / "UNANSWERED" / "UNDELETED" /
 "UNFLAGGED" / "UNKEYWORD" / "UNSEEN")

 select ::= "SELECT" SP mailbox

 sequence ::= NUMBER / (NUMBER "," sequence) / (NUMBER ":"
 sequence)

 store ::= "STORE" SP sequence SP store_att

 store_att ::= ("+FLAGS" SP flag_list / "-FLAGS" SP flag_list /
 "FLAGS" SP flag_list)

 string ::= atom / """" 1*character """" / literal

 system_flags ::= "\ANSWERED" SP "\FLAGGED" SP "\DELETED" SP
 "\SEEN"

 tag ::= atom

 unsolicited ::= "*" SP (msg_num SP msg_data / data) CRLF

 userid ::= string

Acknowledgements

 Bill Yeager and Rich Acuff both contributed invaluable suggestions in
 the evolution of IMAP2 from the original IMAP. The SUMEX IMAP2
 software was written by Mark Crispin (DEC-20 server, Xerox Lisp
 client, C client), Frank Gilmurray (Common Lisp client), Christopher
 Lane (Xerox Lisp client), and Bill Yeager (Unix server). Any
 mistakes or flaws in this IMAP2 protocol specification are, however,
 strictly my own.

Crispin [Page 26]

