
Network Working Group D. Mills
Request for Comments: 1059 University of Delaware
 July 1988

 Network Time Protocol (Version 1)
 Specification and Implementation

Status of this Memo

 This memo describes the Network Time Protocol (NTP), specifies its
 formal structure and summarizes information useful for its
 implementation. NTP provides the mechanisms to synchronize time and
 coordinate time distribution in a large, diverse internet operating
 at rates from mundane to lightwave. It uses a returnable-time design
 in which a distributed subnet of time servers operating in a self-
 organizing, hierarchical master-slave configuration synchronizes
 logical clocks within the subnet and to national time standards via
 wire or radio. The servers can also redistribute reference time via
 local routing algorithms and time daemons.

 The NTP architectures, algorithms and protocols which have evolved
 over several years of implementation and refinement are described in
 this document. The prototype system, which has been in regular
 operation in the Internet for the last two years, is described in an
 Appendix along with performance data which shows that timekeeping
 accuracy throughout most portions of the Internet can be ordinarily
 maintained to within a few tens of milliseconds, even in cases of
 failure or disruption of clocks, time servers or nets. This is a
 Draft Standard for an Elective protocol. Distribution of this memo
 is unlimited.

 Table of Contents

 1. Introduction 3
 1.1. Related Technology 4
 2. System Architecture 6
 2.1. Implementation Model 7
 2.2. Network Configurations 9
 2.3. Time Scales 10
 3. Network Time Protocol 12
 3.1. Data Formats 12
 3.2. State Variables and Parameters 13
 3.2.1. Common Variables 15
 3.2.2. System Variables 17
 3.2.3. Peer Variables 18
 3.2.4. Packet Variables 19
 3.2.5. Clock Filter Variables 19
 3.2.6. Parameters 20

Mills [Page 1]

RFC 1059 Network Time Protocol July 1988

 3.3. Modes of Operation 21
 3.4. Event Processing 22
 3.4.1. Timeout Procedure 23
 3.4.2. Receive Procedure 24
 3.4.3. Update Procedure 27
 3.4.4. Initialization Procedures 29
 4. Filtering and Selection Algorithms 29
 4.1. Clock Filter Algorithm 29
 4.2 Clock Selection Algorithm 30
 4.3. Variable-Rate Polling 32
 5. Logical Clocks 33
 5.1. Uniform Phase Adjustments 35
 5.2. Nonuniform Phase Adjustments 36
 5.3. Maintaining Date and Time 37
 5.4. Calculating Estimates 37
 6. References 40

 Appendices
 Appendix A. UDP Header Format 43
 Appendix B. NTP Data Format 44
 Appendix C. Timeteller Experiments 47
 Appendix D. Evaluation of Filtering Algorithms 49
 Appendix E. NTP Synchronization Networks 56

 List of Figures
 Figure 2.1. Implementation Model 8
 Figure 3.1. Calculating Delay and Offset 26
 Figure 5.1. Clock Registers 34
 Figure D.1. Calculating Delay and Offset 50
 Figure E.1. Primary Service Network 57

 List of Tables
 Table 2.1. Dates of Leap-Second Insertion 11
 Table 3.1. System Variables 14
 Table 3.2. Peer Variables 14
 Table 3.3. Packet Variables 15
 Table 3.4. Parameters 15
 Table 4.1. Outlyer Selection Procedure 32
 Table 5.1. Clock Parameters 35
 Table C.1. Distribution Functions 47
 Table D.1. Delay and Offset Measurements (UMD) 52
 Table D.2.a Delay and Offset Measurements (UDEL) 52
 Table D.2.b Offset Measurements (UDEL) 53
 Table D.3. Minimum Filter (UMD - NCAR) 54
 Table D.4. Median Filter (UMD - NCAR) 54
 Table D.5. Minimum Filter (UDEL - NCAR) 55
 Table E.1. Primary Servers 56

Mills [Page 2]

RFC 1059 Network Time Protocol July 1988

1. Introduction

 This document describes the Network Time Protocol (NTP), including
 the architectures, algorithms and protocols to synchronize local
 clocks in a set of distributed clients and servers. The protocol was
 first described in RFC-958 [24], but has evolved in significant ways
 since publication of that document. NTP is built on the Internet
 Protocol (IP) [10] and User Datagram Protocol (UDP) [6], which
 provide a connectionless transport mechanism; however, it is readily
 adaptable to other protocol suites. It is evolved from the Time
 Protocol [13] and the ICMP Timestamp message [11], but is
 specifically designed to maintain accuracy and robustness, even when
 used over typical Internet paths involving multiple gateways and
 unreliable nets.

 The service environment consists of the implementation model, service
 model and time scale described in Section 2. The implementation
 model is based on a multiple-process operating system architecture,
 although other architectures could be used as well. The service
 model is based on a returnable-time design which depends only on
 measured offsets, or skews, but does not require reliable message
 delivery. The subnet is a self-organizing, hierarchical master-slave
 configuration, with synchronization paths determined by a minimum-
 weight spanning tree. While multiple masters (primary servers) may
 exist, there is no requirement for an election protocol.

 NTP itself is described in Section 3. It provides the protocol
 mechanisms to synchronize time in principle to precisions in the
 order of nanoseconds while preserving a non-ambiguous date well into
 the next century. The protocol includes provisions to specify the
 characteristics and estimate the error of the local clock and the
 time server to which it may be synchronized. It also includes
 provisions for operation with a number of mutually suspicious,
 hierarchically distributed primary reference sources such as radio
 clocks.

 Section 4 describes algorithms useful for deglitching and smoothing
 clock-offset samples collected on a continuous basis. These
 algorithms began with those suggested in [22], were refined as the
 results of experiments described in [23] and further evolved under
 typical operating conditions over the last two years. In addition,
 as the result of experience in operating multiple-server nets
 including radio-synchronized clocks at several sites in the US and
 with clients in the US and Europe, reliable algorithms for selecting
 good clocks from a population possibly including broken ones have
 been developed and are described in Section 4.

 The accuracies achievable by NTP depend strongly on the precision of

Mills [Page 3]

RFC 1059 Network Time Protocol July 1988

 the local clock hardware and stringent control of device and process
 latencies. Provisions must be included to adjust the software
 logical clock time and frequency in response to corrections produced
 by NTP. Section 5 describes a logical clock design evolved from the
 Fuzzball implementation described in [15]. This design includes
 offset-slewing, drift-compensation and deglitching mechanisms capable
 of accuracies in order of a millisecond, even after extended periods
 when synchronization to primary reference sources has been lost.

 The UDP and NTP packet formats are shown in Appendices A and B.
 Appendix C presents the results of a survey of about 5500 Internet
 hosts showing how their clocks compare with primary reference sources
 using three different time protocols, including NTP. Appendix D
 presents experimental results using several different deglitching and
 smoothing algorithms. Appendix E describes the prototype NTP primary
 service net, as well as proposed rules of engagement for its use.

1.1. Related Technology

 Other mechanisms have been specified in the Internet protocol suite
 to record and transmit the time at which an event takes place,
 including the Daytime protocol [12], Time Protocol [13], ICMP
 Timestamp message [11] and IP Timestamp option [9]. Experimental
 results on measured times and roundtrip delays in the Internet are
 discussed in [14], [23] and [31]. Other synchronization protocols
 are discussed in [7], [17], [20] and [28]. NTP uses techniques
 evolved from both linear and nonlinear synchronization methodology.
 Linear methods used for digital telephone network synchronization are
 summarized in [3], while nonlinear methods used for process
 synchronization are summarized in [27].

 The Fuzzball routing protocol [15], sometimes called Hellospeak,
 incorporates time synchronization directly into the routing protocol
 design. One or more processes synchronize to an external reference
 source, such as a radio clock or NTP daemon, and the routing
 algorithm constructs a minimum-weight spanning tree rooted on these
 processes. The clock offsets are then distributed along the arcs of
 the spanning tree to all processes in the system and the various
 process clocks corrected using the procedure described in Section 5
 of this document. While it can be seen that the design of Hellospeak
 strongly influenced the design of NTP, Hellospeak itself is not an
 Internet protocol and is unsuited for use outside its local-net
 environment.

 The Unix 4.3bsd model [20] uses a single master time daemon to
 measure offsets of a number of slave hosts and send periodic
 corrections to them. In this model the master is determined using an
 election algorithm [25] designed to avoid situations where either no

Mills [Page 4]

RFC 1059 Network Time Protocol July 1988

 master is elected or more than one master is elected. The election
 process requires a broadcast capability, which is not a ubiquitous
 feature of the Internet. While this model has been extended to
 support hierarchical configurations in which a slave on one network
 serves as a master on the other [28], the model requires handcrafted
 configuration tables in order to establish the hierarchy and avoid
 loops. In addition to the burdensome, but presumably infrequent,
 overheads of the election process, the offset measurement/correction
 process requires twice as many messages as NTP per update.

 A good deal of research has gone into the issue of maintaining
 accurate time in a community where some clocks cannot be trusted. A
 truechimer is a clock that maintains timekeeping accuracy to a
 previously published (and trusted) standard, while a falseticker is a
 clock that does not. Determining whether a particular clock is a
 truechimer or falseticker is an interesting abstract problem which
 can be attacked using methods summarized in [19] and [27].

 A convergence function operates upon the offsets between the clocks
 in a system to increase the accuracy by reducing or eliminating
 errors caused by falsetickers. There are two classes of convergence
 functions, those involving interactive convergence algorithms and
 those involving interactive consistency algorithms. Interactive
 convergence algorithms use statistical clustering techniques such as
 the fault-tolerant average algorithm of [17], the CNV algorithm of
 [19], the majority-subset algorithm of [22], the egocentric algorithm
 of [27] and the algorithms in Section 4 of this document.

 Interactive consistency algorithms are designed to detect faulty
 clock processes which might indicate grossly inconsistent offsets in
 successive readings or to different readers. These algorithms use an
 agreement protocol involving successive rounds of readings, possibly
 relayed and possibly augmented by digital signatures. Examples
 include the fireworks algorithm of [17] and the optimum algorithm of
 [30]. However, these algorithms require large numbers of messages,
 especially when large numbers of clocks are involved, and are
 designed to detect faults that have rarely been found in the Internet
 experience. For these reasons they are not considered further in
 this document.

 In practice it is not possible to determine the truechimers from the
 falsetickers on other than a statistical basis, especially with
 hierarchical configurations and a statistically noisy Internet.
 Thus, the approach taken in this document and its predecessors
 involves mutually coupled oscillators and maximum-likelihood
 estimation and selection procedures. From the analytical point of
 view, the system of distributed NTP peers operates as a set of
 coupled phase-locked oscillators, with the update algorithm

Mills [Page 5]

RFC 1059 Network Time Protocol July 1988

 functioning as a phase detector and the logical clock as a voltage-
 controlled oscillator. This similarity is not accidental, since
 systems like this have been studied extensively [3], [4] and [5].

 The particular choice of offset measurement and computation procedure
 described in Section 3 is a variant of the returnable-time system
 used in some digital telephone networks [3]. The clock filter and
 selection algorithms are designed so that the clock synchronization
 subnet self-organizes into a hierarchical master-slave configuration
 [5]. What makes the NTP model unique is the adaptive configuration,
 polling, filtering and selection functions which tailor the dynamics
 of the system to fit the ubiquitous Internet environment.

2. System Architecture

 The purpose of NTP is to connect a number of primary reference
 sources, synchronized to national standards by wire or radio, to
 widely accessible resources such as backbone gateways. These
 gateways, acting as primary time servers, use NTP between them to
 cross-check the clocks and mitigate errors due to equipment or
 propagation failures. Some number of local-net hosts or gateways,
 acting as secondary time servers, run NTP with one or more of the
 primary servers. In order to reduce the protocol overhead the
 secondary servers distribute time via NTP to the remaining local-net
 hosts. In the interest of reliability, selected hosts can be
 equipped with less accurate but less expensive radio clocks and used
 for backup in case of failure of the primary and/or secondary servers
 or communication paths between them.

 There is no provision for peer discovery, acquisition, or
 authentication in NTP. Data integrity is provided by the IP and UDP
 checksums. No circuit-management, duplicate-detection or
 retransmission facilities are provided or necessary. The service can
 operate in a symmetric mode, in which servers and clients are
 indistinguishable, yet maintain a small amount of state information,
 or in client/server mode, in which servers need maintain no state
 other than that contained in the client request. A lightweight
 association-management capability, including dynamic reachability and
 variable polling rate mechanisms, is included only to manage the
 state information and reduce resource requirements. Since only a
 single NTP message format is used, the protocol is easily implemented
 and can be used in a variety of solicited or unsolicited polling
 mechanisms.

 It should be recognized that clock synchronization requires by its
 nature long periods and multiple comparisons in order to maintain
 accurate timekeeping. While only a few measurements are usually
 adequate to reliably determine local time to within a second or so,

Mills [Page 6]

RFC 1059 Network Time Protocol July 1988

 periods of many hours and dozens of measurements are required to
 resolve oscillator drift and maintain local time to the order of a
 millisecond. Thus, the accuracy achieved is directly dependent on
 the time taken to achieve it. Fortunately, the frequency of
 measurements can be quite low and almost always non-intrusive to
 normal net operations.

2.1. Implementation Model

 In what may be the most common client/server model a client sends an
 NTP message to one or more servers and processes the replies as
 received. The server interchanges addresses and ports, overwrites
 certain fields in the message, recalculates the checksum and returns
 the message immediately. Information included in the NTP message
 allows the client to determine the server time with respect to local
 time and adjust the logical clock accordingly. In addition, the
 message includes information to calculate the expected timekeeping
 accuracy and reliability, thus select the best from possibly several
 servers.

 While the client/server model may suffice for use on local nets
 involving a public server and perhaps many workstation clients, the
 full generality of NTP requires distributed participation of a number
 of client/servers or peers arranged in a dynamically reconfigurable,
 hierarchically distributed configuration. It also requires
 sophisticated algorithms for association management, data
 manipulation and logical clock control. Figure 2.1 shows a possible
 implementation model including four processes sharing a partitioned
 data base, with a partition dedicated to each peer and interconnected
 by a message-passing system.

Mills [Page 7]

RFC 1059 Network Time Protocol July 1988

 +---------+
 | Update |
 +--------->| +----------+
 | |Algorithm| |
 | +----+----+ |
 | | |
 | V V
 +----+----+ +---------+ +---------+
 | | | Local | | |
 | Receive | | +---->| Timeout |
 | | | Clock | | |
 +---------+ +---------+ +-+-----+-+
 A A | |
 | | V V
 ===
 Peers Network Peers

 Figure 2.1. Implementation Model

 The timeout process, driven by independent timers for each peer,
 collects information in the data base and sends NTP messages to other
 peers in the net. Each message contains the local time the message
 is sent, together with previously received information and other
 information necessary to compute the estimated error and manage the
 association. The message transmission rate is determined by the
 accuracy expected of the local system, as well as its peers.

 The receive process receives NTP messages and perhaps messages in
 other protocols as well, including ICMP, other UDP or TCP time
 protocols, local-net protocols and directly connected radio clocks.
 When an NTP message is received the offset between the sender clock
 and the local clock is computed and incorporated into the data base
 along with other information useful for error estimation and clock
 selection.

 The update algorithm is initiated upon receipt of a message and at
 other times. It processes the offset data from each peer and selects
 the best peer using algorithms such as those described in Section 4.
 This may involve many observations of a few clocks or a few
 observations of many clocks, depending on the accuracies required.

 The local clock process operates upon the offset data produced by the
 update algorithm and adjusts the phase and frequency of the logical
 clock using mechanisms such as described in Section 5. This may
 result in either a step change or a gradual slew adjustment of the
 logical clock to reduce the offset to zero. The logical clock
 provides a stable source of time information to other users of the
 system and for subsequent reference by NTP itself.

Mills [Page 8]

RFC 1059 Network Time Protocol July 1988

2.2. Network Configurations

 A primary time server is connected to a primary reference source,
 usually a radio clock synchronized to national standard time. A
 secondary time server derives time synchronization, possibly via
 other secondary servers, from a primary server. Under normal
 circumstances it is intended that a subnet of primary and secondary
 servers assumes a hierarchical master-slave configuration with the
 more accurate servers near the top and the less accurate below.

 Following conventions established by the telephone industry, the
 accuracy of each server is defined by a number called its stratum,
 with the stratum of a primary server assigned as one and each level
 downwards in the hierarchy assigned as one greater than the preceding
 level. With current technology and available receiving equipment,
 single-sample accuracies in the order of a millisecond can be
 achieved at the radio clock interface and in the order of a few
 milliseconds at the packet interface to the net. Accuracies of this
 order require special care in the design and implementation of the
 operating system, such as described in [15], and the logical clock
 mechanism, such as described in Section 5.

 As the stratum increases from one, the single-sample accuracies
 achievable will degrade depending on the communication paths and
 local clock stabilities. In order to avoid the tedious calculations
 [4] necessary to estimate errors in each specific configuration, it
 is useful to assume the errors accumulate approximately in proportion
 to the minimum total roundtrip path delay between each server and the
 primary reference source to which it is synchronized. This is called
 the synchronization distance.

 Again drawing from the experience of the telephone industry, who
 learned such lessons at considerable cost, the synchronization paths
 should be organized to produce the highest accuracies, but must never
 be allowed to form a loop. The clock filter and selection algorithms
 used in NTP accomplish this by using a variant of the Bellman-Ford
 distributed routing algorithm [29] to compute the minimum-weight
 spanning trees rooted on the primary servers. This results in each
 server operating at the lowest stratum and, in case of multiple peers
 at the same stratum, at the lowest synchronization distance.

 As a result of the above design, the subnet reconfigures
 automatically in a hierarchical master-slave configuration to produce
 the most accurate time, even when one or more primary or secondary
 servers or the communication paths between them fail. This includes
 the case where all normal primary servers (e.g., backbone WWVB
 clocks) on a possibly partitioned subnet fail, but one or more backup
 primary servers (e.g., local WWV clocks) continue operation.

Mills [Page 9]

RFC 1059 Network Time Protocol July 1988

 However, should all primary servers throughout the subnet fail, the
 remaining secondary servers will synchronize among themselves for
 some time and then gradually drop off the subnet and coast using
 their last offset and frequency computations. Since these
 computations are expected to be very precise, especially in
 frequency, even extend outage periods of a day or more should result
 in timekeeping errors of not over a few tens of milliseconds.

 In the case of multiple primary servers, the spanning-tree
 computation will usually select the server at minimum synchronization
 distance. However, when these servers are at approximately the same
 distance, the computation may result in random selections among them
 as the result of normal dispersive delays. Ordinarily this does not
 degrade accuracy as long as any discrepancy between the primary
 servers is small compared to the synchronization distance. If not,
 the filter and selection algorithms will select the best of the
 available servers and cast out outlyers as intended.

2.3. Time Scales

 Since 1972 the various national time scales have been based on
 International Atomic Time (TA), which is currently maintained using
 multiple cesium-beam clocks to an accuracy of a few parts in 10^12.
 The Bureau International de l’Heure (BIH) uses astronomical
 observations provided by the US Naval Observatory and other
 observatories to determine corrections for small changes in the mean
 rotation period of the Earth. This results in Universal Coordinated
 Time (UTC), which is presently decreasing from TA at a fraction of a
 second per year. When the magnitude of the correction approaches 0.7
 second, a leap second is inserted or deleted in the UTC time scale on
 the last day of June or December. Further information on time scales
 can be found in [26].

 For the most precise coordination and timestamping of events since
 1972 it is necessary to know when leap seconds were inserted or
 deleted in UTC and how the seconds are numbered. A leap second is
 inserted following second 23:59:59 on the last day of June or
 December and becomes second 23:59:60 of that day. A leap second
 would be deleted by omitting second 23:59:59 on one of these days,
 although this has never happened. Leap seconds were inserted on the
 following fourteen occasions prior to January 1988 (courtesy US Naval
 Observatory):

Mills [Page 10]

RFC 1059 Network Time Protocol July 1988

 1 June 1972 8 December 1978
 2 December 1972 9 December 1979
 3 December 1973 10 June 1981
 4 December 1974 11 June 1982
 5 December 1975 12 June 1983
 6 December 1976 13 June 1985
 7 December 1977 14 December 1987

 Table 2.1. Dates of Leap-Second Insertion

 Like UTC, NTP operates with an abstract oscillator synchronized in
 frequency to the TA time scale. At 0000 hours on 1 January 1972 the
 NTP time scale was set to 2,272,060,800, representing the number of
 TA seconds since 0000 hours on 1 January 1900. The insertion of leap
 seconds in UTC does not affect the oscillator itself, only the
 translation between TA and UTC, or conventional civil time. However,
 since the only institutional memory assumed by NTP is the UTC radio
 broadcast service, the NTP time scale is in effect reset to UTC as
 each offset estimate is computed. When a leap second is inserted in
 UTC and subsequently in NTP, knowledge of all previous leap seconds
 is lost. Thus, if a clock synchronized to NTP in early 1988 was used
 to establish the time of an event that occured in early 1972, it
 would be fourteen seconds early.

 When NTP is used to measure intervals between events that straddle a
 leap second, special considerations apply. When it is necessary to
 determine the elapsed time between events, such as the half life of a
 proton, NTP timestamps of these events can be used directly. When it
 is necessary to establish the order of events relative to UTC, such
 as the order of funds transfers, NTP timestamps can also be used
 directly; however, if it is necessary to establish the elapsed time
 between events relative to UTC, such as the intervals between
 payments on a mortgage, NTP timestamps must be converted to UTC using
 the above table and its successors.

 The current formats used by NBS radio broadcast services [2] do not
 include provisions for advance notice of leap seconds, so this
 information must be determined from other sources. NTP includes
 provisions to distribute advance warnings of leap seconds using the
 Leap Indicator bits described in Section 3. The protocol is designed
 so that these bits can be set manually at the primary clocks and then
 automatically distributed throughout the system for delivery to all
 logical clocks and then effected as described in Section 5.

Mills [Page 11]

RFC 1059 Network Time Protocol July 1988

3. Network Time Protocol

 This section consists of a formal definition of the Network Time
 Protocol, including its data formats, entities, state variables,
 events and event-processing procedures. The specification model is
 based on the implementation model illustrated in Figure 2.1, but it
 is not intended that this model is the only one upon which a
 specification can be based. In particular, the specification is
 intended to illustrate and clarify the intrinsic operations of NTP
 and serve as a foundation for a more rigorous, comprehensive and
 verifiable specification.

3.1. Data Formats

 All mathematical operations expressed or implied herein are in
 two’s-complement arithmetic. Data are specified as integer or
 fixed-point quantities. Since various implementations would be
 expected to scale externally derived quantities for internal use,
 neither the precision nor decimal-point placement for fixed-point
 quantities is specified. Unless specified otherwise, all quantities
 are unsigned and may occupy the full field width, if designated, with
 an implied zero preceding the most significant (leftmost) bit.
 Hardware and software packages designed to work with signed
 quantities will thus yield surprising results when the most
 significant (sign) bit is set. It is suggested that externally
 derived, unsigned fixed-point quantities such as timestamps be
 shifted right one bit for internal use, since the precision
 represented by the full field width is seldom justified.

 Since NTP timestamps are cherished data and, in fact, represent the
 main product of the protocol, a special timestamp format has been
 established. NTP timestamps are represented as a 64-bit unsigned
 fixed-point number, in seconds relative to 0000 UT on 1 January 1900.
 The integer part is in the first 32 bits and the fraction part in the
 last 32 bits, as shown in the following diagram.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Integer Part |
 +-+
 | Fraction Part |
 +-+

 This format allows convenient multiple-precision arithmetic and
 conversion to Time Protocol representation (seconds), but does
 complicate the conversion to ICMP Timestamp message representation
 (milliseconds). The precision of this representation is about 0.2

Mills [Page 12]

RFC 1059 Network Time Protocol July 1988

 nanosecond, which should be adequate for even the most exotic
 requirements.

 Timestamps are determined by copying the current value of the logical
 clock to a timestamp variable when some significant event, such as
 the arrival of a message, occurs. In order to maintain the highest
 accuracy, it is important that this be done as close to the hardware
 or software driver associated with the event as possible. In
 particular, departure timestamps should be redetermined for each
 link-level retransmission. In some cases a particular timestamp may
 not be available, such as when the host is rebooted or the protocol
 first starts up. In these cases the 64-bit field is set to zero,
 indicating the value is invalid or undefined.

 Note that since some time in 1968 the most significant bit (bit 0 of
 the Integer Part) has been set and that the 64-bit field will
 overflow some time in 2036. Should NTP be in use in 2036, some
 external means will be necessary to qualify time relative to 1900 and
 time relative to 2036 (and other multiples of 136 years).
 Timestamped data requiring such qualification will be so precious
 that appropriate means should be readily available. There will exist
 an 0.2-nanosecond interval, henceforth ignored, every 136 years when
 the 64-bit field will be zero and thus considered invalid.

3.2. State Variables and Parameters

 Following is a tabular summary of the various state variables and
 parameters used by the protocol. They are separated into classes of
 system variables, which relate to the operating system environment
 and logical clock mechanism; peer variables, which are specific to
 each peer operating in symmetric mode or client mode; packet
 variables, which represent the contents of the NTP message; and
 parameters, which are fixed in all implementations of the current
 version. For each class the description of the variable is followed
 by its name and the procedure or value which controls it. Note that
 variables are in lower case, while parameters are in upper case.

Mills [Page 13]

RFC 1059 Network Time Protocol July 1988

 System Variables Name Control

 Logical Clock sys.clock update
 Clock Source sys.peer selection
 algorithm
 Leap Indicator sys.leap update
 Stratum sys.stratum update
 Precision sys.precision system
 Synchronizing Distance sys.distance update
 Estimated Drift Rate sys.drift system
 Reference Clock Identifier sys.refid update
 Reference Timestamp sys.reftime update

 Table 3.1. System Variables

 Peer Variables Name Control

 Peer Address peer.srcadr system
 Peer Port peer.srcport system
 Local Address peer.dstadr system
 Local Port peer.dstport system
 Peer State peer.state receive,
 transmit
 Reachability Register peer.reach receive,
 transmit
 Peer Timer peer.timer system
 Timer Threshold peer.threshold system
 Leap Indicator peer.leap receive
 Stratum peer.stratum receive
 Peer Poll Interval peer.ppoll receive
 Host Poll Interval peer.hpoll receive,
 transmit
 Precision peer.precision receive
 Synchronizing Distance peer.distance receive
 Estimated Drift Rate peer.drift receive
 Reference Clock Identifier peer.refid receive
 Reference Timestamp peer.reftime receive
 Originate Timestamp peer.org receive
 Receive Timestamp peer.rec receive
 Filter Register peer.filter filter
 algorithm
 Delay Estimate peer.delay filter
 algorithm
 Offset Estimate peer.offset filter
 algorithm
 Dispersion Estimate peer.dispersion filter

 Table 3.2. Peer Variables

Mills [Page 14]

RFC 1059 Network Time Protocol July 1988

 Packet Variables Name Control

 Peer Address pkt.srcadr transmit
 Peer Port pkt.srcport transmit
 Local Address pkt.dstadr transmit
 Local Port pkt.dstport transmit
 Leap Indicator pkt.leap transmit
 Version Number pkt.version transmit
 Stratum pkt.stratum transmit
 Poll pkt.poll transmit
 Precision pkt.precision transmit
 Synchronizing Distance pkt.distance transmit
 Estimated Drift Rate pkt.drift transmit
 Reference Clock Identifier pkt.refid transmit
 Reference Timestamp pkt.reftime transmit
 Originate Timestamp pkt.org transmit
 Receive Timestamp pkt.rec transmit
 Transmit Timestamp pkt.xmt transmit

 Table 3.3. Packet Variables

 Parameters Name Value

 NTP Version NTP.VERSION 1
 NTP Port NTP.PORT 123
 Minimum Polling Interval NTP.MINPOLL 6 (64 sec)
 Maximum Polling Interval NTP.MAXPOLL 10 (1024
 sec)
 Maximum Dispersion NTP.MAXDISP 65535 ms
 Reachability Register Size PEER.WINDOW 8
 Shift Register Size PEER.SHIFT 4/8
 Dispersion Threshold PEER.THRESHOLD 500 ms
 Filter Weight PEER.FILTER .5
 Select Weight PEER.SELECT .75

 Table 3.4. Parameters

 Following is a description of the various variables used in the
 protocol. Additional details on formats and use are presented in
 later sections and appendices.

3.2.1. Common Variables

 The following variables are common to the system, peer and packet
 classes.

 Peer Address (peer.srcadr, pkt.srcadr) Peer Port (peer.srcport,
 pkt.srcport)

Mills [Page 15]

RFC 1059 Network Time Protocol July 1988

 These are the 32-bit Internet address and 16-bit port number of
 the remote host.

 Local Address (peer.dstadr, pkt.dstadr) Local Port (peer.dstport,
 pkt.dstport)

 These are the 32-bit Internet address and 16-bit port number of
 the local host. They are included among the state variables to
 support multi-homing.

 Leap Indicator (sys.leap, peer.leap, pkt.leap)

 This is a two-bit code warning of an impending leap second to be
 inserted in the NTP time scale. The bits are set before 23:59 on
 the day of insertion and reset after 00:01 on the following day.
 This causes the number of seconds (rollover interval) in the day
 of insertion to be increased or decreased by one. In the case of
 primary servers the bits are set by operator intervention, while
 in the case of secondary servers the bits are set by the protocol.
 The two bits are coded as follows:

 00 no warning (day has 86400 seconds)
 01 +1 second (day has 86401 seconds)
 seconds)
 10 -1 second (day has 86399 seconds)
 seconds)
 11 alarm condition (clock not synchronized)

 In all except the alarm condition (11) NTP itself does nothing
 with these bits, except pass them on to the time-conversion
 routines that are not part of NTP. The alarm condition occurs
 when, for whatever reason, the logical clock is not synchronized,
 such as when first coming up or after an extended period when no
 outside reference source is available.

 Stratum (sys.stratum, peer.stratum, pkt.stratum)

 This is an integer indicating the stratum of the logical clock. A
 value of zero is interpreted as unspecified, one as a primary
 clock (synchronized by outside means) and remaining values as the
 stratum level (synchronized by NTP). For comparison purposes a
 value of zero is considered greater than any other value.

 Peer Poll Interval (peer.ppoll, pkt.poll)

 This is a signed integer used only in symmetric mode and
 indicating the minimum interval between messages sent to the peer,
 in seconds as a power of two. For instance, a value of six

Mills [Page 16]

RFC 1059 Network Time Protocol July 1988

 indicates a minimum interval of 64 seconds. The value of this
 variable must not be less than NTP.MINPOLL and must not be greater
 than NTP.MAXPOLL.

 Precision (sys.precision, peer.precision, pkt.precision)

 This is a signed integer indicating the precision of the logical
 clock, in seconds to the nearest power of two. For instance, a
 60-Hz line-frequency clock would be assigned the value -6, while a
 1000-Hz crystal-derived clock would be assigned the value -10.

 Synchronizing Distance (sys.distance, peer.distance, pkt.distance)

 This is a fixed-point number indicating the estimated roundtrip
 delay to the primary clock, in seconds.

 Estimated Drift Rate (sys.drift, peer.drift, pkt.drift)

 This is a fixed-point number indicating the estimated drift rate
 of the local clock, in dimensionless units.

 Reference Clock Identifier (sys.refid, peer.refid, pkt.refid)

 This is a code identifying the particular reference clock or
 server. The interpretation of the value depends on the stratum.
 For stratum values of zero (unspecified) or one (primary clock),
 the value is an ASCII string identifying the reason or clock,
 respectively. For stratum values greater than one (synchronized
 by NTP), the value is the 32-bit Internet address of the reference
 server.

 Reference Timestamp (sys.reftime, peer.reftime, pkt.reftime)

 This is the local time, in timestamp format, when the logical
 clock was last updated. If the logical clock has never been
 synchronized, the value is zero.

3.2.2. System Variables

 The following variables are used by the operating system in order to
 synchronize the logical clock.

 Logical Clock (sys.clock)

 This is the current local time, in timestamp format. Local time
 is derived from the hardware clock of the particular machine and
 increments at intervals depending on the design used. An

Mills [Page 17]

RFC 1059 Network Time Protocol July 1988

 appropriate design, including slewing and drift-compensation
 mechanisms, is described in Section 5.

 Clock Source (sys.peer)

 This is a selector identifying the current clock source. Usually
 this will be a pointer to a structure containing the peer
 variables.

3.2.3. Peer Variables

 Following is a list of state variables used by the peer management
 and measurement functions. There is one set of these variables for
 every peer operating in client mode or symmetric mode.

 Peer State (peer.state)

 This is a bit-encoded quantity used for various control functions.

 Host Poll Interval (peer.hpoll)

 This is a signed integer used only in symmetric mode and
 indicating the minimum interval between messages expected from the
 peer, in seconds as a power of two. For instance, a value of six
 indicates a minimum interval of 64 seconds. The value of this
 variable must not be less than NTP.MINPOLL and must not be greater
 than NTP.MAXPOLL.

 Reachability Register (peer.reach)

 This is a code used to determine the reachability status of the
 peer. It is used as a shift register, with bits entering from the
 least significant (rightmost) end. The size of this register is
 specified as PEER.SHIFT bits.

 Peer Timer (peer.timer)

 This is an integer counter used to control the interval between
 transmitted NTP messages.

 Timer Threshold (peer.threshold)

 This is the timer value which, when reached, causes the timeout
 procedure to be executed.

 Originate Timestamp (peer.org, pkt.org)

 This is the local time, in timestamp format, at the peer when its

Mills [Page 18]

RFC 1059 Network Time Protocol July 1988

 latest NTP message was sent. If the peer becomes unreachable the
 value is set to zero.

 Receive Timestamp (peer.rec, pkt.rec)

 This is the local time, in timestamp format, when the latest NTP
 message from the peer arrived. If the peer becomes unreachable
 the value is set to zero.

3.2.4. Packet Variables

 Following is a list of variables used in NTP messages in addition to
 the common variables above.

 Version Number (pkt.version)

 This is an integer indicating the version number of the sender.
 NTP messages will always be sent with the current version number
 NTP.VERSION and will always be accepted if the version number
 matches NTP.VERSION. Exceptions may be advised on a case-by-case
 basis at times when the version number is changed.

 Transmit Timestamp (pkt.xmt)

 This is the local time, in timestamp format, at which the NTP
 message departed the sender.

3.2.5. Clock Filter Variables

 When the filter and selection algorithms suggested in Section 4 are
 used, the following state variables are defined. There is one set of
 these variables for every peer operating in client mode or symmetric
 mode.

 Filter Register (peer.filter)

 This is a shift register of PEER.WINDOW bits, where each stage is
 a tuple consisting of the measured delay concatenated with the
 measured offset associated with a single observation.
 Delay/offset observations enter from the least significant
 (rightmost) right and are shifted towards the most significant
 (leftmost) end and eventually discarded as new observations
 arrive. The register is cleared to zeros when (a) the peer
 becomes unreachable or (b) the logical clock has just been reset
 so as to cause a significant discontinuity in local time.

Mills [Page 19]

RFC 1059 Network Time Protocol July 1988

 Delay Estimate (peer.delay)

 This is a signed, fixed-point number indicating the latest delay
 estimate output from the filter, in seconds. While the number is
 signed, only those values greater than zero represent valid delay
 estimates.

 Offset Estimate (peer.offset)

 This is a signed, fixed-point number indicating the latest offset
 estimate output from the filter, in seconds.

 Dispersion Estimate (peer.dispersion)

 This is a fixed-point number indicating the latest dispersion
 estimate output from the filter, in scrambled units.

3.2.6. Parameters

 Following is a list of parameters assumed for all implementations
 operating in the Internet system. It is necessary to agree on the
 values for these parameters in order to avoid unnecessary network
 overheads and stable peer associations.

 Version Number (NTP.VERSION)

 This is the NTP version number, currently one (1).

 NTP Port (NTP.PORT)

 This is the port number (123) assigned by the Internet Number Czar
 to NTP.

 Minimum Polling Interval (NTP.MINPOLL)

 This is the minimum polling interval allowed by any peer of the
 Internet system, currently set to 6 (64 seconds).

 Maximum Polling Interval (NTP.MAXPOLL)

 This is the maximum polling interval allowed by any peer of the
 Internet system, currently set to 10 (1024 seconds).

 Maximum Dispersion (NTP.MAXDISP)

 This is the maximum dispersion assumed by the filter algorithms,
 currently set to 65535 milliseconds.

Mills [Page 20]

RFC 1059 Network Time Protocol July 1988

 Reachability Register Size (PEER.WINDOW)

 This is the size of the Reachability Register (peer.reach),
 currently set to eight (8) bits.

 Shift Register Size (PEER.SHIFT)

 When the filter and selection algorithms suggested in Section 4
 are used, this is the size of the Clock Filter (peer.filter) shift
 register, in bits. For crystal-stabilized oscillators a value of
 eight (8) is suggested, while for mains-frequency oscillators a
 value of four (4) is suggested. Additional considerations are
 given in Section 5.

 Dispersion Threshold (PEER.THRESHOLD)

 When the filter and selection algorithms suggested in Section 4
 are used, this is the threshold used to discard noisy data. While
 a value of 500 milliseconds is suggested, the value may be changed
 to suit local conditions on particular peer paths.

 Filter Weight (PEER.FILTER)

 When the filter algorithm suggested in Section 4 is used, this is
 the filter weight used to discard noisy data. While a value of
 0.5 is suggested, the value may be changed to suit local
 conditions on particular peer paths.

 Select Weight (PEER.SELECT)

 When the selection algorithm suggested in Section 4 is used, this
 is the select weight used to discard outlyers. data. While a
 value of 0.75 is suggested, the value may be changed to suit local
 conditions on particular peer paths.

3.3. Modes of Operation

 An NTP host can operate in three modes: client, server and
 symmetric. The mode of operation is determined by whether the source
 port (peer.srcport) or destination port (peer.dstport) peer variables
 contain the assigned NTP service port number NTP.PORT (123) as shown
 in the following table.

Mills [Page 21]

RFC 1059 Network Time Protocol July 1988

 peer.srcport peer.dstport Mode

 not NTP.PORT not NTP.PORT not possible
 not NTP.PORT NTP.PORT server
 NTP.PORT not NTP.PORT client
 NTP.PORT NTP.PORT symmetric

 A host operating in client mode occasionally sends an NTP message to
 a host operating in server mode. The server responds by simply
 interchanging addresses and ports, filling in the required
 information and returning the message to the client. Servers then
 need retain no state information between client requests. Clients
 are free to manage the intervals between sending NTP messages to suit
 local conditions.

 In symmetric mode the client/server distinction disappears. Each
 host maintains a table with as many entries as active peers. Each
 entry includes a code uniquely identifying the peer (e.g., Internet
 address and port), together with status information and a copy of the
 timestamps last received. A host operating in symmetric mode
 periodically sends NTP messages to each peer including the latest
 copy of the timestamps. The intervals between sending NTP messages
 are managed jointly by the host and each peer using the polling
 variables peer.ppoll and peer.hpoll.

 When a pair of peers operating in symmetric mode exchange NTP
 messages and each determines that the other is reachable, an
 association is formed. One or both peers must be in active state;
 that is, sending messages to the other regardless of reachability
 status. A peer not in active state is in passive state. If a peer
 operating in passive state discovers that the other peer is no longer
 reachable, it ceases sending messages and reclaims the storage and
 timer resources used by the association. A peer operating in client
 mode is always in active state, while a peer operating in server mode
 is always in passive state.

3.4. Event Processing

 The significant events of interest in NTP occur upon expiration of
 the peer timer, one of which is dedicated to each peer operating in
 symmetric or client modes, and upon arrival of an NTP message from
 the various peers. An event can also occur as the result of an
 operator command or detected system fault, such as a primary clock
 failure. This section describes the procedures invoked when these
 events occur.

Mills [Page 22]

RFC 1059 Network Time Protocol July 1988

3.4.1. Timeout Procedure

 The timeout procedure is called in client and symmetric modes when
 the peer timer (peer.timer) reaches the value of the timer threshold
 (peer.threshold) variable. First, the reachability register
 (peer.reach) is shifted one position to the left and a zero replaces
 the vacated bit. Then an NTP message is constructed and sent to the
 peer. If operating in active state or in passive state and
 peer.reach is nonzero (reachable), the peer.timer is reinitialized
 (resumes counting from zero) and the value of peer.threshold is set
 to:

 peer.threshold <- max(min(peer.ppoll, peer.hpoll,
 NTP.MAXPOLL), NTP.MINPOLL) .

 If operating in active state and peer.reach is zero (unreachable),
 the peer variables are updated as follows:

 peer.hpoll <- NTP.MINPOLL
 peer.disp <- NTP.MAXDISP
 peer.filter <- 0 (cleared)
 peer.org <- 0
 peer.rec <- 0

 Then the clock selection algorithm is called, which may result in a
 new clock source (sys.peer). In other cases the protocol ceases
 operation and the storage and timer resources are reclaimed for
 subsequent use.

 An NTP message is constructed as follows (see Appendices A and B for
 formats). First, the IP and UDP packet variables are copied from the
 peer variables (note the interchange of source and destination
 addresses and ports):

 pkt.srcadr <- peer.dstadr pkt.srcport <- peer.dstport
 pkt.dstadr <- peer.srcadr pkt.dstport <- peer.srcport

 Next, the NTP packet variables are copied (rescaled as necessary)
 from the system and peer variables:

 pkt.leap <- sys.leap pkt.distance <- sys.distance
 pkt.version <- NTP.VERSION pkt.drift <- sys.drift
 pkt.stratum <- sys.stratum pkt.refid <- sys.refid
 pkt.poll <- peer.hpoll pkt.reftime <- sys.reftime
 pkt.precision <- sys.precision

 Finally, the NTP packet timestamp variables are copied, depending on
 whether the peer is operating in symmetric mode and reachable, in

Mills [Page 23]

RFC 1059 Network Time Protocol July 1988

 symmetric mode and not reachable (but active) or in client mode:

 Symmetric Reachable Symmetric Active Client
 - ------------------- ------------------- -------------------
 pkt.org <- peer.org pkt.org <- 0 pkt.org <- sys.clock
 pkt.rec <- peer.rec pkt.rec <- 0 pkt.rec <- sys.clock
 pkt.xmt <- sys.clock pkt.xmt <- sys.clock pkt.xmt <- sys.clock

 Note that the order of copying should be designed so that the time to
 perform the copy operations themselves does not degrade the
 measurement accuracy, which implies that the sys.clock values should
 be copied last. The reason for the choice of zeros to fill the
 pkt.org and pkt.rec packet variables in the symmetric unreachable
 case is to avoid the use of old data after a possibly extensive
 period of unreachability. The reason for the choice of sys.clock to
 fill these variables in the client case is that, if for some reason
 the NTP message is returned by the recipient unaltered, as when
 testing with an Internet-echo server, this convention still allows at
 least the roundtrip time to be accurately determined without special
 handling.

3.4.2. Receive Procedure

 The receive procedure is executed upon arrival of an NTP message. If
 the version number of the message (pkt.version) does not match the
 current version number (NTP.VERSION), the message is discarded;
 however, exceptions may be advised on a case-by-case basis at times
 when the version number is changed.

 If the clock of the sender is unsynchronized (pkt.leap = 11), or the
 receiver is in server mode or the receiver is in symmetric mode and
 the stratum of the sender is greater than the stratum of the receiver
 (pkt.stratum > sys.stratum), the message is simply returned to the
 sender along with the timestamps. In this case the addresses and
 ports are interchanged in the IP and UDP headers:

 pkt.srcadr <-> pkt.dstadr pkt.srcport <-> pkt.dstport

 The following packet variables are updated from the system variables:

 pkt.leap <- sys.leap pkt.distance <- sys.distance
 pkt.version <- NTP.VERSION pkt.drift <- sys.drift
 pkt.stratum <- sys.stratum pkt.refid <- sys.refid
 pkt.precision <- sys.precision pkt.reftime <- sys.reftime

 Note that the pkt.poll packet variable is unchanged. The timestamps
 are updated in the order shown:

Mills [Page 24]

RFC 1059 Network Time Protocol July 1988

 pkt.org <- pkt.xmt
 pkt.rec <- sys.clock
 pkt.xmt <- sys.clock

 Finally, the message is forwarded to the sender and the server
 receive procedure terminated at this point.

 If the above is not the case, the source and destination Internet
 addresses and ports in the IP and UDP headers are matched to the
 correct peer. If there is a match, processing continues at the next
 step below. If there is no match and symmetric mode is not indicated
 (either pkt.srcport or pkt.dstport not equal to NTP.PORT), the
 message must be a reply to a previously sent message from a client
 which is no longer in operation. In this case the message is dropped
 and the receive procedure terminated at this point.

 If there is no match and symmetric mode is indicated, (both
 pkt.srcport and pkt.dstport equal to NTP.PORT), an implementation-
 specific instantiation procedure is called to create and initialize a
 new set of peer variables and start the peer timer. The following
 peer variables are set from the IP and UDP headers:

 peer.srcadr <- pkt.srcadr peer.srcport <- pkt.srcport
 peer.dstadr <- pkt.dstadr peer.dstport <- pkt.dstport

 The following peer variables are initialized:

 peer.state <- symmetric (passive)
 peer.timer <- 0 (enabled)
 peer.hpoll <- NTP.MINPOLL
 peer.disp <- NTP.MAXDISP

 The remaining peer variables are undefined and set to zero.

 Assuming that instantiation is complete and that match occurs, the
 least significant bit of the reachability register (peer.reach) is
 set, indicating the peer is now reachable. The following peer
 variables are copied (rescaled as necessary) from the NTP packet
 variables and system variables:

Mills [Page 25]

RFC 1059 Network Time Protocol July 1988

 peer.leap <- pkt.leap peer.distance <- pkt.distance
 peer.stratum <- pkt.stratum peer.drift <- pkt.drift
 peer.ppoll <- pkt.poll peer.refid <- pkt.refid
 peer.precision <- pkt.precision peer.reftime <- pkt.reftime
 peer.org <- pkt.xmt peer.rec <- sys.clock
 peer.threshold <- max(min(peer.ppoll, peer.hpoll,
 NTP.MAXPOLL), NTP.MINPOLL)

 If either or both the pkt.org or pkt.rec packet variables are zero,
 the sender did not have reliable values for them, so the receive
 procedure is terminated at this point. If both of these variables
 are nonzero, the roundtrip delay and clock offset relative to the
 peer are calculated as follows. Number the times of sending and
 receiving NTP messages as shown in Figure 3.1 and let i be an even
 integer. Then t(i-3), t(i-2) and t(i-1) and t(i) are the contents of
 the pkt.org, pkt.rec, pkt.xmt and peer.rec variables respectively.

 | |
 t(1) |------------------->| t(2)
 | |
 t(4) |<-------------------| t(3)
 | |
 t(5) |------------------->| t(6)
 | |
 t(8) |<-------------------| t(7)
 | |
 ...
 Figure 3.1. Calculating Delay and Offset

 The roundtrip delay d and clock offset c of the receiving peer
 relative to the sending peer is:

 d = (t(i) - t(i-3)) - (t(i-1) - t(i-2))
 c = [(t(i-2) - t(i-3)) + (t(i-1) - t(i))]/2 .

 This method amounts to a continuously sampled, returnable-time
 system, which is used in some digital telephone networks. Among the
 advantages are that the order and timing of the messages is
 unimportant and that reliable delivery is not required. Obviously,
 the accuracies achievable depend upon the statistical properties of
 the outbound and inbound net paths. Further analysis and
 experimental results bearing on this issue can be found in
 Appendix D.

 The c and d values are then input to the clock filter algorithm to
 produce the delay estimate (peer.delay) and offset estimate
 (peer.offset) for the peer involved. If d becomes nonpositive due to
 low delays, long polling intervals and high drift rates, it should be

Mills [Page 26]

RFC 1059 Network Time Protocol July 1988

 considered invalid; however, even under these conditions it may
 still be useful to update the local clock and reduce the drift rate
 to the point that d becomes positive again. Specification of the
 clock filter algorithm is not an integral part of the NTP
 specification; however, one found to work well in the Internet
 environment is described in Section 4.

 When a primary clock is connected to the host, it is convenient to
 incorporate its information into the data base as if the clock were
 represented by an ordinary peer. The clocks are usually polled once
 or twice a minute and the returned timecheck used to produce a new
 update for the logical clock. The update procedure is then called
 with the following assumed peer variables:

 peer.offset <- timecheck - sys.clock
 peer.delay <- as determined
 peer.dispersion <- 0
 peer.leap <- selected by operator, ordinarily 00
 peer.stratum <- 0
 peer.distance <- 0
 peer.refid <- ASCII identifier
 peer.reftime <- timecheck

 In this case the peer.delay and peer.refid can be constants
 reflecting the type and accuracy of the clock. By convention, the
 value for peer.delay is ten times the expected mean error of the
 clock, for instance, 10 milliseconds for a WWVB clock and 1000
 milliseconds for a less accurate WWV clock, but with a floor of 100
 milliseconds. Other peer variables such as the peer timer and
 reachability register can be used to control the polling interval and
 to confirm the clock is operating correctly. In this way the clock
 filter and selection algorithms operate in the usual way and can be
 used to mitigate the clock itself, should it appear to be operating
 correctly, yet deliver bogus time.

3.4.3. Update Procedure

 The update procedure is called when a new delay/offset estimate is
 available. First, the clock selection algorithm determines the best
 peer on the basis of estimated accuracy and reliability, which may
 result in a new clock source (sys.peer). If sys.peer points to the
 peer data structure with the just-updated estimates, the state
 variables of that peer are used to update the system state variables

Mills [Page 27]

RFC 1059 Network Time Protocol July 1988

 as follows:

 sys.leap <- peer.leap
 sys.stratum <- peer.stratum + 1
 sys.distance <- peer.distance + peer.delay
 sys.refid <- peer.srcadr
 sys.reftime <- peer.rec

 Finally, the logical clock procedure is called with peer.offset as
 argument to update the logical clock (sys.clock) and recompute the
 estimated drift rate (sys.drift). It may happen that the logical
 clock may be reset, rather than slewed to its final value. In this
 case the peer variables of all reachable peers are are updated as
 follows:

 peer.hpoll <- NTP.MINPOLL
 peer.disp <- NTP.MAXDISP
 peer.filter <- 0 (cleared)
 peer.org <- 0
 peer.rec <- 0

 and the clock selection algorithm is called again, which results in a
 null clock source (sys.peer = 0). A new selection will occur when
 the filters fill up again and the dispersion settles down.

 Specification of the clock selection algorithm and logical clock
 procedure is not an integral part of the NTP specification. A clock
 selection algorithm found to work well in the Internet environment is
 described in Section 4, while a logical clock procedure is described
 in Section 5. The clock selection algorithm described in Section 4
 usually picks the server at the highest stratum and minimum delay
 among all those available, unless that server appears to be a
 falseticker. The result is that the algorithms all work to build a
 minimum-weight spanning tree relative to the primary servers and thus
 a hierarchical master-slave system similar to those used by some
 digital telephone networks.

Mills [Page 28]

RFC 1059 Network Time Protocol July 1988

3.4.4. Initialization Procedures

 Upon reboot the NTP host initializes all system variables as follows:

 sys.clock <- best available estimate
 sys.leap <- 11 (unsynchronized)
 sys.stratum <- 0 (undefined)
 sys.precision <- as required
 sys.distance <- 0 (undefined)
 sys.drift <- as determined
 sys.refid <- 0 (undefined)
 sys.reftime <- 0 (undefined)

 The logical clock sys.clock is presumably undefined at reboot;
 however, in some designs such as the Fuzzball an estimate is
 available from the reboot environment. The sys.precision variable is
 determined by the intrinsic architecture of the local hardware clock.
 The sys.drift variable is determined as a side effect of subsequent
 logical clock updates, from whatever source.

 Next, an implementation-specific instantiation procedure is called
 repeatedly to establish the set of client peers or symmetric (active)
 peers which will actively probe other servers during regular
 operation. The mode and addresses of these peers is determined using
 information read during the reboot procedure or as the result of
 operator commands.

4. Filtering Algorithms

 A very important factor affecting the accuracy and reliability of
 time distribution is the complex of algorithms used to deglitch and
 smooth the offset estimates and to cast out outlyers due to failure
 of the primary reference sources or propagation media. The
 algorithms suggested in this section were developed and refined over
 several years of operation in the Internet under widely varying net
 configurations and utilizations. While these algorithms are believed
 the best available at the present time, they are not an integral part
 of the NTP specification.

 There are two algorithms described in the following, the clock filter
 algorithm, which is used to select the best offset samples from a
 given clock, and the clock selection algorithm, which is used to
 select the best clock among a hierarchical set of clocks.

4.1. Clock Filter Algorithm

 The clock filter algorithm is executed upon arrival of each NTP
 message that results in new delay/offset sample pairs. New sample

Mills [Page 29]

RFC 1059 Network Time Protocol July 1988

 pairs are shifted into the filter register (peer.filter) from the
 left end, causing first zeros then old sample pairs to shift off the
 right end. Then those sample pairs in peer.filter with nonzero delay
 are inserted on a temporary list and sorted in order of increasing
 delay. The delay estimate (peer.delay) and offset estimate
 (peer.offset) are chosen as the delay/offset values corresponding to
 the minimum-delay sample. In case of ties an arbitrary choice is
 made.

 The dispersion estimate (peer.dispersion) is then computed as the
 weighted sum of the offsets in the list. Assume the list has
 PEER.SHIFT entries, the first m of which contain valid samples in
 order of increasing delay. If X(i) (0 =< i < PEER.SHIFT) is the
 offset of the ith sample, then,

 d(i) = |X(i) - X(0)| if i < m and |X(i) - X(0)| < 2^15
 d(i) = 2^15 - 1 otherwise

 peer.dispersion = Sum(d(i)*w^i) ,
 (0 =< i < PEER.SHIFT)

 where w < 1 is a weighting factor experimentally adjusted to match
 typical offset distributions. The peer.dispersion variable is
 intended for use as a quality indicator, with increasing values
 associated with decreasing quality. The intent is that samples with
 a peer.dispersion exceeding a configuration threshold will not be
 used in subsequent processing. The prototype implementation uses a
 weighting factor w = 0.5, also called PEER.FILTER, and a threshold
 PEER.THRESHOLD of 500 ms, which insures that all stages of
 peer.filter are filled and contain offsets within a few seconds of
 each other.

4.2. Clock Selection Algorithm

 The clock selection algorithm uses the values of peer.delay,
 peer.offset and peer.dispersion calculated by the clock filter
 algorithm and is called when these values change or when the
 reachability status changes. It constructs a list of candidate
 estimates according to a set of criteria designed to maximize
 accuracy and reliability, then sorts the list in order of estimated
 precision. Finally, it repeatedly casts out outlyers on the basis of
 dispersion until only a single candidate is left.

 The selection process operates on each peer in turn and inspects the
 various data captured from the last received NTP message header, as
 well as the latest clock filter estimates. It selects only those
 peers for which the following criteria are satisfied:

Mills [Page 30]

RFC 1059 Network Time Protocol July 1988

 1. The peer must be reachable and operating in client or symmetric
 modes.

 2. The peer logical clock must be synchronized, as indicated by the
 Leap Indicator bits being other than 11.

 3. If the peer is operating at stratum two or greater, it must not
 be synchronized to this host, which means its reference clock
 identifier (peer.refid) must not match the Internet address of
 this host. This is analogous to the split-horizon rule used in
 some variants of the Bellman-Ford routing algorithm.

 4. The sum of the peer synchronizing distance (peer.distance) plus
 peer.delay must be less than 2^13 (8192) milliseconds. Also, the
 peer stratum (peer.stratum) must be less than eight and
 peer.dispersion must be less than a configured threshold
 PEER.THRESHOLD (currently 500 ms). These range checks were
 established through experience with the prototype implementation,
 but may be changed in future.

 For each peer which satisfies the above criteria, a sixteen-bit
 keyword is constructed, with the low-order thirteen bits the sum of
 peer.distance plus peer.delay and the high-order three bits the
 peer.stratum reduced by one and truncated to three bits (thus mapping
 zero to seven). The keyword together with a pointer to the peer data
 structure are inserted according to increasing keyword values and
 truncated at a maximum of eight entries. The resulting list
 represents the order in which peers should be chosen according to the
 estimated precision of measurement. If no keywords are found, the
 clock source variable (sys.peer) is set to zero and the algorithm
 terminates.

 The final procedure is designed to detect falsetickers or other
 conditions which might result in gross errors. Let m be the number
 of samples remaining in the list. For each i (0 =< i < m) compute
 the dispersion d(i) of the list relative to i:

 d(i) = Sum(|X(j) - X(i)|*w^j) ,
 (0 =< j < m)

 where w < 1 is a weighting factor experimentally adjusted for the
 desired characteristic (see below). Then cast out the entry with
 maximum d(i) or, in case of ties, the maximum i, and repeat the
 procedure. When only a single entry remains in the list, sys.peer is
 set as its peer data structure pointer and the peer.hpoll variable in
 that structure is set to NTP.MINPOLL as required by the logical clock
 mechanism described in Section 5.

Mills [Page 31]

RFC 1059 Network Time Protocol July 1988

 This procedure is designed to favor those peers near the head of the
 list, which are at the highest stratum and lowest delay and
 presumably can provide the most precise time. With proper selection
 of weighting factor w, also called PEER.SELECT, entries will be
 trimmed from the tail of the list, unless a few outlyers disagree
 significantly with respect to the remaining entries, in which case
 the outlyers are discarded first.

 In order to see how this procedure works to select outlyers, consider
 the case of three entries and assume that one or more of the offsets
 are clustered about zero and others are clustered about one. For w =
 0.75 as used in the prototype implementations and multiplying by 16
 for convenience, the first entry has weight w^0 = 16, the second w^1
 = 12 and the third w^2 = 9. Table X shows for all combinations of
 peer offsets the calculated dispersion about each of the three
 entries, along with the results of the procedure.

 Peer 0 1 2 Dispersion Cast Result
 Weight 16 12 9 0 1 2 Out
 --
 0 0 0 0 0 0 2 0 0
 0 0 1 9 9 28 2 0 0
 0 1 0 12 25 12 1 0 0
 0 1 1 21 16 16 0 1 1
 1 0 0 21 16 16 0 0 0
 1 0 1 12 25 12 1 1 1
 1 1 0 9 9 28 2 1 1
 1 1 1 0 0 0 2 1 1

 Table 4.1. Outlyer Selection Procedure

 In the four cases where peer 0 and peer 1 disagree, the outcome is
 determined by peer 2. Similar outcomes occur in the case of four
 peers. While these outcomes depend on judicious choice of w, the
 behavior of the algorithm is substantially the same for values of w
 between 0.5 and 1.0.

4.3. Variable-Rate Polling

 As NTP service matures in the Internet, the resulting network traffic
 can become burdensome, especially in the primary service net. In
 this expectation, it is useful to explore variable-rate polling, in
 which the intervals between NTP messages can be adjusted to fit
 prevailing network conditions of delay dispersion and loss rate. The
 prototype NTP implementation uses this technique to reduce the
 network overheads to one-sixteenth the maximum rate, depending on
 observed dispersion and loss.

Mills [Page 32]

RFC 1059 Network Time Protocol July 1988

 The prototype implementation adjusts the polling interval peer.hpoll
 in response to the reachability register (peer.reach) variable along
 with the dispersion (peer.dispersion) variable. So long as the clock
 source variable (sys.peer) does not point to the peer data structure,
 peer.reach is nonzero (reachable) and peer.dispersion is less than
 the PEER.THRESHOLD parameter, the value of peer.hpoll is increased by
 one for each call on the update procedure, subject to a maximum of
 NTP.MAXPOLL. Following the timeout procedure, if peer.reach
 indicates messages have not been received for the preceding two
 polling intervals (low-order two bits are zero), the value of
 peer.hpoll is decreased by one, subject to a minimum of NTP.MINPOLL.
 If peer.reach becomes zero (unreachable), the value of peer.hpoll is
 set to NTP.MINPOLL.

 The result of the above mechanism is that the polling intervals for
 peers not selected for synchronization and in symmetric mode creep
 upwards once the filter register (peer.filter) has filled and the
 peer.dispersion has settled down, but decrease again in case
 peer.dispersion increases or the loss rate increases or the peer
 becomes unreachable.

5. Logical Clocks

 In order to implement a logical clock, the host must be equipped with
 a hardware clock consisting of an oscillator and interface and
 capable of the required precision and stability. The logical clock
 is adjusted by means of periodic offset corrections computed by NTP
 or some other time-synchronization protocol such as Hellospeak [15]
 or the Unix 4.3bsd TSP [20]. Following is a description of the
 Fuzzball logical clock, which includes provisions for precise time
 and frequency adjustment and can maintain time to within a
 millisecond and frequency to within a day per millisecond.

 The logical clock is implemented using a 48-bit Clock Register, which
 increments at 1000-Hz (at the decimal point), a 32-bit Clock-Adjust
 Register, which is used to slew the Clock Register in response to
 offset corrections, and a Drift-Compensation Register, which is used
 to trim the oscillator frequency. In some interface designs such as
 the DEC KWV11, an additional hardware register, the Counter Register,
 is used as an auxiliary counter. The configuration and decimal point
 of these registers are shown in Figure 5.1.

Mills [Page 33]

RFC 1059 Network Time Protocol July 1988

 Clock Register

 0 16 32
 +---------------+---------------+---------------+
 | | | |
 +---------------+---------------+---------------+
 A
 decimal point

 Clock-Adjust Register

 0 16
 +---------------+---------------+
 | | |
 +---------------+---------------+
 A
 decimal point

 Drift-Compensation Register

 0 16
 +---------------+
 | |
 +---------------+
 A
 decimal point

 Counter Register

 0 16
 +---------------+
 | |
 +---------------+
 A
 decimal point

 Figure 5.1. Clock Registers

 The Clock Register, Clock-Adjust Register and Drift-Compensation
 Register are implemented in memory. In typical clock interface
 designs such as the DEC KWV11, the Counter Register is implemented as
 a buffered counter driven by a crystal oscillator. A counter
 overflow is signalled by an interrupt, which results in an increment
 of the Clock Register at bit 15 and the propagation of carries as
 required. The time of day is determined by reading the Counter
 Register, which does not disturb the counting process, and adding its
 value to that of the Clock Register with decimal points aligned.

Mills [Page 34]

RFC 1059 Network Time Protocol July 1988

 In other interface designs such as the LSI-11 event-line mechanism,
 each tick of the clock is signalled by an interrupt at intervals of
 16-2/3 or 20 ms, depending on interface and mains frequency. When
 this occurs the appropriate increment in milliseconds, expressed to
 32 bits in precision, is added to the Clock Register with decimal
 points aligned.

5.1. Uniform Phase Adjustments

 Left uncorrected, the logical clock runs at the rate of its intrinsic
 oscillator. A correction is introduced as a signed 32-bit integer in
 milliseconds, which is added to the Drift-Compensation Register and
 also replaces bits 0-15 of the Clock-Adjust Register, with bits 16-31
 set to zero. At adjustment intervals of CLOCK.ADJ a correction
 consisting of two components is computed. The first (phase)
 component consists of the Clock-Adjust Register shifted right
 CLOCK.PHASE bits, which is then subtracted from the Clock-Adjust
 Register. The second (frequency) component consists of the Drift-
 Compensation Register shifted right CLOCK.FREQ bits. The sum of the
 phase and frequency components is the correction, which is then added
 to the Clock Register. Operation continues in this way until a new
 correction is introduced.

 Care is required in the implementation to insure monotonicity of the
 Clock Register and to preserve the highest precision while minimizing
 the propagation of roundoff errors. This can be done by buffering
 the corrections and adding them to the increment at the time the
 Clock Register is next updated. Monotonicity is insured with the
 parameters shown in Table 5.1, as long as the increment is at least 2
 ms. This table shows the above parameters and others discussed below
 for both a crystal-stabilized oscillator and a mains-frequency
 oscillator.

 Parameter Name Crystal Mains

 Update Interval CLOCK.ADJ 4 sec 1 sec
 Phase Shift CLOCK.PHASE -8 -9
 Frequency Shift CLOCK.FREQ -16 -16
 Maximum Aperture CLOCK.MAX +-128 ms +-256 ms
 Shift Register Size PEER.SHIFT 8 4
 Host Poll Interval peer.hpoll NTP.MINPOLL NTP.MINPOLL
 (64 sec) (64 sec)

 Table 5.1. Clock Parameters

 The above design constitutes a second-order phase-lock loop which
 adjusts the logical clock phase and frequency to compensate for the
 intrinsic oscillator jitter, wander and drift. Simulation of a loop

Mills [Page 35]

RFC 1059 Network Time Protocol July 1988

 with parameters chosen from Table 5.1 for a crystal-stabilized
 oscillator and the clock filter described in Section 4 results in the
 following transient response: For a phase correction of 100 ms the
 loop reaches zero error in 34 minutes, overshoots 7 ms in 76 minutes
 and settles to less than 1 ms in about four hours. The maximum
 frequency error is about 6 ppm at 40 minutes and returns to less than
 1 ppm in about eight hours. For a frequency correction of 10 ppm the
 loop settles to within 1 ppm in about nine hours and to within 0.1
 ppm in about a day. These characteristics are appropriate for
 typical computing equipment using board-mounted crystals without oven
 temperature control.

 In those cases where mains-frequency oscillators must be used, the
 loop parameters must be adapted for the relatively high jitter and
 wander characteristics of the national power grid, in which diurnal
 peak-to-peak phase excursions can exceed four seconds. Simulation of
 a loop with parameters chosen from Table 5.1 for a mains-frequency
 oscillator and the clock filter described in Section 4 results in a
 transient response similar to the crystal-stabilized case, but with
 time constants only one-fourth those in that case. When presented
 with actual phase-offset data for typical Summer days when the jitter
 and wander are the largest, the loop errors are in the order of a few
 tens of milliseconds, but not greater than 150 ms.

 The above simulations assume the clock filter algorithm operates to
 select the oldest sample in the shift register at each step; that
 is, the filter operates as a delay line with delay equal to the
 polling interval times the number of stages. This is a worst-case
 scenario, since the larger the overall delay the harder it is to
 maintain low loop errors together with good transient response. The
 parameters in Table 5.1 were experimentally determined with this
 scenario and the constraint that the polling interval could not be
 reduced below 64 seconds. With these parameters it is not possible
 to increase the polling interval above 64 seconds without significant
 increase in loop error or degradation of transient response. Thus,
 when a clock is selected according to the algorithms of Section 4,
 the polling interval peer.hpoll is always set at NTP.MINPOLL.

5.2. Nonuniform Phase Adjustments

 When the magnitude of a correction exceeds a maximum aperture
 CLOCK.MAX, the possibility exists that the clock is so far out of
 synchronization with the reference source that the best action is an
 immediate and wholesale replacement of Clock Register contents,
 rather than a graduated slewing as described above. In practice the
 necessity to do this is rare and occurs when the local host or
 reference source is rebooted, for example. This is fortunate, since
 step changes in the clock can result in the clock apparently running

Mills [Page 36]

RFC 1059 Network Time Protocol July 1988

 backward, as well as incorrect delay and offset measurements of the
 synchronization mechanism itself.

 Considerable experience with the Internet environment suggests the
 values of CLOCK.MAX tabulated in Table 5.1 as appropriate. In
 practice, these values are exceeded with a single time-server source
 only under conditions of the most extreme congestion or when multiple
 failures of nodes or links have occured. The most common case when
 the maximum is exceeded is when the time-server source is changed and
 the time indicated by the new and old sources exceeds the maximum due
 to systematic errors in the primary reference source or large
 differences in the synchronizing path delays.

5.3. Maintaining Date and Time

 Conversion from NTP format to the common date and time formats used
 by application programs is simplified if the internal local-clock
 format uses separate date and time registers. The time register is
 designed to roll over at 24 hours, give or take a leap second as
 determined by the Leap Indicator bits, with its overflows
 (underflows) incrementing (decrementing) the date register. The date
 and time registers then indicate the number of days and seconds since
 some previous reference time, but uncorrected for leap seconds.

 On the day prior to the insertion of a leap second the Leap Indicator
 bits are set at the primary servers, presumably by manual means.
 Subsequently, these bits show up at the local host and are passed to
 the logical clock procedure. This causes the modulus of the time
 register, which is the length of the current day, to be increased or
 decreased by one second as appropriate. On the day following
 insertion the bits are turned off at the primary servers. While it
 is possible to turn the bits off automatically, the procedure
 suggested here insures that all clocks have rolled over and will not
 be reset incorrectly to the previous day as the result of possible
 corrections near the instant of rollover.

5.4. Estimating Errors

 After an NTP message is received and until the next one is received,
 the accuracy of the local clock can be expected to degrade somewhat.
 The magnitude of this degradation depends on the error at the last
 update time together with the drift of the local oscillator with
 respect to time. It is possible to estimate both the error and drift
 rate from data collected during regular operation. These data can be
 used to determine the rate at which NTP neighbors should exchange NTP
 messages and thus control net overheads.

 NTP messages include the local-clock precision of the sender, as well

Mills [Page 37]

RFC 1059 Network Time Protocol July 1988

 as the reference time, estimated drift and a quantity called the
 synchronizing distance. The precision of the local clock, together
 with its peer clocks, establishes the short-term jitter
 characteristics of the offset estimates. The reference time and
 estimated drift of the sender provide an error estimate at the time
 the latest update was received. The synchronizing distance provides
 an estimate of error relative to the primary reference source and is
 used by the filtering algorithms to improve the quality and
 reliability of the offset estimates.

 Estimates of error and drift rate are not essential for the correct
 functioning of the clock algorithms, but do improve the accuracy and
 adjustment with respect to net overheads. The estimated error allows
 the recipient to compute the rate at which independent samples are
 required in order to maintain a specified estimated error. The
 estimated drift rate allows the recipient to estimate the optimum
 polling interval.

 It is possible to compute the estimated drift rate of the local clock
 to a high degree of precision by simply adding the n offsets received
 during an interval T to an accumulator. If X1 and X2 are the values
 of the accumulator at the beginning and end of T, then the estimated
 drift rate r is:

 X2 - X1 n
 r = ------- --- .
 n T

 The intrinsic (uncorrected) drift rate of typical crystal oscillators
 under room-temperature conditions is in the order of from a few parts
 per million (ppm) to as much as 100 ppm, or up to a few seconds per
 day. For most purposes the drift of a particular crystal oscillator
 is constant to within perhaps one ppm. Assuming T can be estimated
 to within 100 ms, for example, it would take about a day of
 accumulation to estimate r to an uncertainty in the order of one ppm.

 Some idea of the estimated error of the local clock can be derived
 from the variance of the offsets about the mean per unit time. This
 can be computed by adding the n offset squares received during T to
 an accumulator. If Y1 and Y2 are the values of the accumulator at
 the beginning and end of T, then the estimated error s is:

 Y2 - Y1 (X2 - X1)^2 n
 s = (------- - -----------) --- .
 n n * n T

 The quantities r and s have direct utility to the peer as noted
 above. However, they also have indirect utility to the recipient of

Mills [Page 38]

RFC 1059 Network Time Protocol July 1988

 an NTP message sent by that peer, since they can be used as weights
 in such algorithms as described in [22], as well as to improve the
 estimates during periods when offsets are not available. It is most
 useful if the latest estimate of these quantities are available in
 each NTP message sent; however, considerable latitude remains in the
 details of computation and storage.

 The above formulae for r and s imply equal weighting for offsets
 received throughout the accumulation interval T. One way to do this
 is using a software shift register implemented as a circular buffer.
 A single pointer points to the active entry in the buffer and
 advances around one entry as each new offset is stored. There are
 two accumulators, one for the offset and the other for its squares.
 When a new offset arrives, a quantity equal to the new offset minus
 the old (active) entry is added to the first accumulator and the
 square of this quantity is added to the second. Finally, the offset
 is stored in the circular buffer.

 The size of the circular buffer depends on the accumulation interval
 T and the rate offsets are produced. In many reachability and
 routing algorithms, such as GGP, EGP and local-net control
 algorithms, peers exchange messages on the order of once or twice a
 minute. If NTP peers exchanged messages at a rate of one per minute
 and if T were one day, the circular buffer would have to be 1440
 words long; however, a less costly design might aggregate the data
 in something like half-hour segments, which would reduce the length
 of the buffer to 48 words while not significantly affecting the
 quality of the data.

Mills [Page 39]

RFC 1059 Network Time Protocol July 1988

6. References

 1. Lamport, L., "Time, Clocks and the Ordering of Events in a
 Distributed System", Communications of the ACM, Vol. 21, No. 7,
 pgs. 558-565, July 1978.

 2. "Time and Frequency Dissemination Services", NBS Special
 Publication No. 432, US Department of Commerce, 1979.

 3. Lindsay, W., and A. Kantak, "Network Synchronization of Random
 Signals", IEEE Trans. Comm., COM-28, No. 8, pgs. 1260-1266,
 August 1980.

 4. Braun, W., "Short Term Frequency Effects in Networks of Coupled
 Oscillators", IEEE Trans. Comm., COM-28, No. 8, pgs. 1269-1275,
 August 1980.

 5. Mitra, D., "Network Synchronization: Analysis of a Hybrid of
 Master-Slave and Mutual Synchronization", IEEE Trans. Comm.
 COM-28, No. 8, pgs. 1245-1259, August 1980.

 6. Postel, J., "User Datagram Protocol", RFC-768, USC/Information
 Sciences Institute, August 1980.

 7. Mills, D., "Time Synchronization in DCNET Hosts", IEN-173, COMSAT
 Laboratories, February 1981.

 8. Mills, D., "DCNET Internet Clock Service", RFC-778, COMSAT
 Laboratories, April 1981.

 9. Su, Z., "A Specification of the Internet Protocol (IP) Timestamp
 Option", RFC-781, SRI International, May 1981.

 10. Defense Advanced Research Projects Agency, "Internet Protocol",
 RFC-791, USC/Information Sciences Institute, September 1981.

 11. Defense Advanced Research Projects Agency, "Internet Control
 Message Protocol", RFC-792, USC/Information Sciences Institute,
 September 1981.

 12. Postel, J., "Daytime Protocol", RFC-867, USC/Information Sciences
 Institute, May 1983.

 13. Postel, J., "Time Protocol", RFC-868, USC/Information Sciences
 Institute, May 1983.

 14. Mills, D., "Internet Delay Experiments", RFC-889, M/A-COM
 Linkabit, December 1983.

Mills [Page 40]

RFC 1059 Network Time Protocol July 1988

 15. Mills, D., "DCN Local-Network Protocols", RFC-891, M/A-COM
 Linkabit, December 1983.

 16. Gusella, R., and S. Zatti, "TEMPO - A Network Time Controller for
 a Distributed Berkeley UNIX System", IEEE Distributed Processing
 Technical Committee Newsletter 6, No. SI-2, pgs. 7-15, June 1984.
 Also in: Proc. Summer 1984 USENIX, Salt Lake City, June 1984.

 17. Halpern, J., Simons, B., Strong, R., and D. Dolly, "Fault-
 Tolerant Clock Synchronization", Proc. Third Annual ACM Symposium
 on Principles of Distributed Computing, pgs. 89-102, August 1984.

 18. Lundelius, J., and N. Lynch, "A New Fault-Tolerant Algorithm for
 Clock Synchronization:, Proc. Third Annual ACM Symposium on
 Principles of Distributed Computing, pgs. 75-88, August 1984.

 19. Lamport, L., and P. Melliar-Smith "Synchronizing Clocks in the
 Presence of Faults", JACM 32, No. 1, pgs. 52-78, January 1985.

 20. Gusella, R., and S. Zatti, "The Berkeley UNIX 4.3BSD Time
 Synchronization Protocol: Protocol Specification", Technical
 Report UCB/CSD 85/250, University of California, Berkeley, June
 1985.

 21. Marzullo, K., and S. Owicki, "Maintaining the Time in a
 Distributed System", ACM Operating Systems Review 19, No. 3, pgs.
 44-54, July 1985.

 22. Mills, D., "Algorithms for Synchronizing Network Clocks", RFC-
 956, M/A-COM Linkabit, September 1985.

 23. Mills, D., "Experiments in Network Clock Synchronization", RFC-
 957, M/A-COM Linkabit, September 1985.

 24. Mills, D., "Network Time Protocol (NTP)", RFC-958, M/A-COM
 Linkabit, September 1985.

 25. Gusella, R., and S. Zatti, "An Election Algorithm for a
 Distributed Clock Synchronization Program", Technical Report
 UCB/CSD 86/275, University of California, Berkeley, December
 1985.

 26. Sams, H., "Reference Data for Engineers: Radio, Electronics,
 Computer and Communications (Seventh Edition)", Indianapolis,
 1985.

 27. Schneider, F., "A Paradigm for Reliable Clock Synchronization",
 Technical Report TR 86-735, Cornell University, February 1986.

Mills [Page 41]

RFC 1059 Network Time Protocol July 1988

 28. Tripathi, S., and S. Chang, "ETempo: A Clock Synchronization
 Algorithm for Hierarchical LANs - Implementation and
 Measurements", Systems Research Center Technical Report TR-86-48,
 University of Maryland, 1986.

 29. Bertsekas, D., and R. Gallager, "Data Networks", Prentice-Hall,
 Englewood Cliffs, NJ, 1987.

 30. Srikanth, T., and S. Toueg. "Optimal Clock Synchronization", JACM
 34, No. 3, pgs. 626-645, July 1987.

 31. Rickert, N., "Non Byzantine Clock Synchronization - A Programming
 Experiment", ACM Operating Systems Review 22, No. 1, pgs. 73-78,
 January 1988.

Mills [Page 42]

RFC 1059 Network Time Protocol July 1988

Appendix A. UDP Header Format

 An NTP packet consists of the UDP header followed by the NTP data
 portion. The format of the UDP header and the interpretation of its
 fields are described in [6] and are not part of the NTP
 specification. They are shown below for completeness.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Length | Checksum |
 +-+

 Source Port

 UDP source port number. In the case of a client request this
 field is assigned by the client host, while for a server reply
 it is copied from the Destination Port field of the client
 request. In the case of symmetric mode, both the Source Port
 and Destination Port fields are assigned the NTP service-port
 number 123.

 Destination Port

 UDP destination port number. In the case of a client request
 this field is assigned the NTP service-port number 123, while
 for a server reply it is copied from the Source Port field of
 the client request. In the case of symmetric mode, both the
 Source Port and Destination Port fields are assigned the NTP
 service-port number 123.

 Length

 Length of the request or reply, including UDP header, in
 octets

 Checksum

 Standard UDP checksum

Mills [Page 43]

RFC 1059 Network Time Protocol July 1988

Appendix B. NTP Data Format - Version 1

 The format of the NTP data portion, which immediately follows the UDP
 header, is shown below along with a description of its fields.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |LI | VN |0 0 0| Stratum | Poll | Precision |
 +-+
 | Synchronizing Distance |
 +-+
 | Estimated Drift Rate |
 +-+
 | Reference Clock Identifier |
 +-+
 | |
 | Reference Timestamp (64 bits) |
 | |
 +-+
 | |
 | Originate Timestamp (64 bits) |
 | |
 +-+
 | |
 | Receive Timestamp (64 bits) |
 | |
 +-+
 | |
 | Transmit Timestamp (64 bits) |
 | |
 +-+

 Leap Indicator (LI)

 Two-bit code warning of impending leap-second to be inserted
 at the end of the last day of the current month. Bits are
 coded as follows:

 00 no warning
 01 +1 second (following minute has 61 seconds)
 10 -1 second (following minute has 59 seconds)
 11 alarm condition (clock not synchronized)

Mills [Page 44]

RFC 1059 Network Time Protocol July 1988

 Version Number (VN)

 Three-bit code indicating the version number, currently one
 (1).

 Reserved

 Three-bit field consisting of all zeros and reserved for
 future use.

 Stratum

 Integer identifying stratum level of local clock. Values are
 defined as follows:

 0 unspecified
 1 primary reference (e.g., radio clock)
 2...n secondary reference (via NTP)

 Poll

 Signed integer indicating the maximum interval between
 successive messages, in seconds to the nearest power of two.

 Precision

 Signed integer indicating the precision of the local clock, in
 seconds to the nearest power of two.

 Synchronizing Distance

 Fixed-point number indicating the estimated roundtrip delay to
 the primary synchronizing source, in seconds with fraction
 point between bits 15 and 16.

 Estimated Drift Rate

 Fixed-point number indicating the estimated drift rate of the
 local clock, in dimensionless units with fraction point to the
 left of the most significant bit.

 Reference Clock Identifier

 Code identifying the particular reference clock. In the case
 of type 0 (unspecified) or type 1 (primary reference), this is
 a left-justified, zero-filled ASCII string, for example:

Mills [Page 45]

RFC 1059 Network Time Protocol July 1988

 Type Code Meaning

 0 DCN Determined by DCN routing algorithm
 1 WWVB WWVB radio clock (60 kHz)
 1 GOES GOES satellite clock (468 MHz)
 1 WWV WWV radio clock (5/10/15 MHz)
 (and others as necessary)

 In the case of type 2 and greater (secondary reference), this
 is the 32-bit Internet address of the reference host.

 Reference Timestamp

 Local time at which the local clock was last set or corrected.

 Originate Timestamp

 Local time at which the request departed the client host for
 the service host.

 Receive Timestamp

 Local time at which the request arrived at the service host.

 Transmit Timestamp

 Local time at which the reply departed the service host for
 the client host.

Mills [Page 46]

RFC 1059 Network Time Protocol July 1988

Appendix C. Timeteller Experiments

 In order to update data collected in June 1985 and reported in RFC-
 957, a glorious three-day experiment was carried out in January 1988
 with all the hosts and gateways listed in the NIC data base. Four
 packets were sent at five-second intervals to each host and gateway
 using UDP/NTP, UDP/TIME and ICMP/TIMESTAMP protocols and the clock
 offsets (in milliseconds) for each protocol averaged with respect to
 local time, which is synchronized via NTP to a radio-clock host.
 While the ICMP/TIMESTAMP protocol has much finer granularity
 (milliseconds) than UDP/TIME (seconds), it has no provisions for the
 date, so is not suitable as a time-synchronization protocol;
 however, it was included in the experiments both as a sanity check
 and in order to assess the precision of measurement.

 In the latest survey of 5498 hosts and 224 gateways, 46 responded to
 UDP/NTP requests, 1158 to UDP/TIME and 1963 to ICMP/TIMESTAMP. By
 contrast, in the 1985 survey of 1775 hosts and 110 gateways, 163
 responded to UDP/TIME requests and 504 to ICMP/TIMESTAMP. At that
 time there were no UDP/NTP implementations. There are many more
 hosts and gateways listed in the rapidly growing domain-name system,
 but not listed in the NIC data base, and therefore not surveyed. The
 results of the survey are given in Table C.1, which shows for each of
 the three protocols the error X for which the distribution function
 P[x =< X] has the value shown.

 P[x=<X] UDP/NTP UDP/TIME ICMP/TIMESTAMP
 --
 .1 11 4632 5698
 .2 37 18238 27965
 .3 66 38842 68596
 .4 177 68213 127367
 .5 364 126232 201908
 .6 567 195950 285092
 .7 3466 267119 525509
 .8 20149 422129 2.91426E+06
 .9 434634 807135 5.02336E+07
 1 1.17971E+09 1.59524E+09 2.11591E+09

 Table C.1. Distribution Functions

 It can be seen that ten percent of the UDP/NTP responses show errors
 of 11 milliseconds or less and that ten percent of the UDP/TIME
 responses show errors greater than 807135 milliseconds (about 13
 minutes). Fifty percent of the UDP/NTP timetellers are within 364
 milliseconds, while fifty percent of the UDP/TIME tellers are within
 126232 milliseconds (just over two minutes). Surprisingly,
 ICMP/TIMESTAMP responses show errors even larger than UDP/TIME.

Mills [Page 47]

RFC 1059 Network Time Protocol July 1988

 However, the maximum error shown in all three protocols exceeded the
 range that could be recorded, in this case about 12 days. Clearly,
 there are good timetellers and bad.

Mills [Page 48]

RFC 1059 Network Time Protocol July 1988

Appendix D. Evaluation of Filtering Algorithms

 A number of algorithms for deglitching and filtering time-offset data
 were described in RFC-956. These fall in two classes: majority-
 subset algorithms, which attempt to separate good subsets from bad by
 comparing their means, and clustering algorithms, which attempt to
 improve the estimate by repeatedly casting out outlyers. The former
 class was suggested as a technique to select the best (i.e. the most
 reliable) clocks from a population, while the latter class was
 suggested as a technique to improve the offset estimate for a single
 clock given a series of observations.

 Following publication of RFC-956 and after further development and
 experimentation using typical Internet paths, a better algorithm was
 found for casting out outlyers from a continuous stream of offset
 observations spaced at intervals in the order of minutes. The
 algorithm is described as a variant of a median filter, in which a
 window consisting of the last n sample offsets is continuously
 updated and the median sample selected as the estimate. However, in
 the modified algorithm the outlyer (sample furthest from the median)
 is then discarded and the entire process repeated until only a single
 sample offset is left, which is then selected as the estimate.

 The modified algorithm was found to be more resistant to glitches and
 to provide a more accurate estimate than the unmodified one. It has
 been implemented in the NTP daemons developed for the Fuzzball and
 Unix operating systems and been in regular operation for about two
 years. However, recent experiments have shown there is an even
 better one which provides comparable accuracy together with a much
 lower computational burden. The key to the new algorithm became
 evident through an examination of scatter diagrams plotting sample
 offset versus roundtrip delay.

 To see how a scatter diagram is constructed, it will be useful to
 consider how offsets and delays are computed. Number the times of
 sending and receiving NTP messages as shown in Figure D.1 and let i
 be an even integer. Then the timestamps t(i-3), t(i-2) and t(i-1)
 and t(i) are sufficient to calculate the offset and delay of each
 peer relative to the other.

Mills [Page 49]

RFC 1059 Network Time Protocol July 1988

 Peer 1 Peer 2
 | |
 t(1) |------------------->| t(2)
 | |
 t(4) |<-------------------| t(3)
 | |
 t(5) |------------------->| t(6)
 | |
 t(8) |<-------------------| t(7)
 | |
 ...

 Figure D.1. Calculating Delay and Offset

 The roundtrip delay d and clock offset c of the receiving peer
 relative to the sending peer are:

 d = (t(i) - t(i-3)) - (t(i-1) - t(i-2))
 c = [(t(i-2) - t(i-3)) + (t(i-1) - t(i))]/2 .

 Two implicit assumptions in the above are that the delay distribution
 is independent of direction and that the intrinsic drift rates of the
 client and server clocks are small and close to the same value. If
 this is the case the scatter diagram would show the samples
 concentrated about a horizontal line extending from the point (d,c)
 to the right. However, this is not generally the case. The typical
 diagram shows the samples dispersed in a wedge with apex (d,c) and
 opening to the right. The limits of the wedge are determined by
 lines extending from (d,c) with slopes +0.5 and -0.5, which
 correspond to the locus of points as the delay in one direction
 increases while the delay in the other direction does not. In some
 cases the points are concentrated along these two extrema lines, with
 relatively few points remaining within the opening of the wedge,
 which would correspond to increased delays on both directions.

 Upon reflection, the reason for the particular dispersion shown in
 the scatter diagram is obvious. Packet-switching nets are most often
 operated with relatively small mean queue lengths in the order of
 one, which means the queues are often idle for relatively long
 periods. In addition, the routing algorithm most often operates to
 minimize the number of packet-switch hops and thus the number of
 queues. Thus, not only is the probability that an arriving NTP
 packet finds a busy queue in one direction reasonably low, but the
 probability of it finding a busy queue in both directions is even
 lower.

 From the above discussion one would expect that, at low utilizations

Mills [Page 50]

RFC 1059 Network Time Protocol July 1988

 and hop counts the points should be concentrated about the apex of
 the wedge and begin to extend rightward along the extrema lines as
 the utilizations and hop counts increase. As the utilizations and
 hop counts continue to increase, the points should begin to fill in
 the wedge as it expands even further rightward. This behavior is in
 fact what is observed on typical Internet paths involving ARPANET,
 NSFNET and other nets.

 These observations cast doubt on the median-filter approach as a good
 way to cast out offset outlyers and suggests another approach which
 might be called a minimum filter. From the scatter diagrams it is
 obvious that the best offset samples occur at the lower delays.
 Therefore, an appropriate technique would be simply to select from
 the n most recent samples the sample with lowest delay and use its
 associated offset as the estimate. An experiment was designed to
 test this technique using measurements between selected hosts
 equipped with radio clocks, so that delays and offsets could be
 determined independent of the measurement procedure itself.

 The raw delays and offsets were measured by NTP from hosts at U
 Maryland (UMD) and U Delaware (UDEL) via net paths to each other and
 other hosts at Ford Research (FORD), Information Sciences Institute
 (ISI) and National Center for Atmospheric Research (NCAR). For the
 purposes here, all hosts can be assumed synchronized to within a few
 milliseconds to NBS time, so that the delays and offsets reflect only
 the net paths themselves.

 The results of the measurements are given in Table D.1 (UMD) and
 Table D.2 (UDEL), which show for each of the paths the error X for
 which the distribution function P[x =< X] has the value shown. Note
 that the values of the distribution function are shown by intervals
 of decreasing size as the function increases, so that its behavior in
 the interesting regime of low error probability can be more
 accurately determined.

Mills [Page 51]

RFC 1059 Network Time Protocol July 1988

 UMD FORD ISI NCAR UMD FORD ISI NCAR
 Delay 1525 2174 1423 Offset 1525 2174 1423
 --------------------------- ---------------------------
 .1 493 688 176 .1 2 17 1
 .2 494 748 179 .2 4 33 2
 .3 495 815 187 .3 9 62 3
 .4 495 931 205 .4 18 96 8
 .5 497 1013 224 .5 183 127 13
 .6 503 1098 243 .6 4.88E+8 151 20
 .7 551 1259 265 .7 4.88E+8 195 26
 .8 725 1658 293 .8 4.88E+8 347 35
 .9 968 2523 335 .9 4.88E+8 775 53
 .99 1409 6983 472 .99 4.88E+8 2785 114
 .999 14800 11464 22731 .999 4.88E+8 5188 11279
 1 18395 15892 25647 1 4.88E+8 6111 12733

 Table D.1. Delay and Offset Measurements (UMD)

 UDEL FORD UMD ISI NCAR
 Delay 2986 3442 3215 2756

 .1 650 222 411 476
 .2 666 231 436 512
 .3 692 242 471 554
 .4 736 256 529 594
 .5 787 272 618 648
 .6 873 298 681 710
 .7 1013 355 735 815
 .8 1216 532 845 1011
 .9 1836 1455 1019 1992
 .99 4690 3920 1562 4334
 .999 15371 6132 2387 11234
 1 21984 8942 4483 21427

 Table D.2.a Delay Measurements (UDEL)

Mills [Page 52]

RFC 1059 Network Time Protocol July 1988

 UDEL FORD UMD ISI NCAR
 Offset 2986 3442 3215 2756

 .1 83 2 16 12
 .2 96 5 27 24
 .3 108 9 36 36
 .4 133 13 48 51
 .5 173 20 67 69
 .6 254 30 93 93
 .7 429 51 130 133
 .8 1824 133 165 215
 .9 4.88E+8 582 221 589
 .99 4.88E+8 1757 539 1640
 .999 4.88E+8 2945 929 5278
 1 5.63E+8 4374 1263 10425

 Table D.2.b Offset Measurements (UDEL)

 The results suggest that accuracies less than a few seconds can
 usually be achieved for all but one percent of the measurements, but
 that accuracies degrade drastically when the remaining measurements
 are included. Note that in the case of the UMD measurements to FORD
 almost half the measurements showed gross errors, which was due to
 equipment failure at that site. These data were intentionally left
 in the sample set to see how well the algorithms dealt with the
 problem.

 The next two tables compare the results of minimum filters (Table
 D.3) and median filters (Table D.4) for various n when presented with
 the UMD - - NCAR raw sample data. The results show consistently
 lower errors for the minimum filter when compared with the median
 filter of nearest value of n. Perhaps the most dramatic result of
 both filters is the greatly reduced error at the upper end of the
 range. In fact, using either filter with n at least three results in
 no errors greater than 100 milliseconds.

Mills [Page 53]

RFC 1059 Network Time Protocol July 1988

 Filter Samples
 1 2 4 8 16
 P[x=<X] 1423 1422 1422 1420 1416
 - --
 .1 1 1 1 0 0
 .2 2 1 1 1 1
 .3 3 2 1 1 1
 .4 8 2 2 1 1
 .5 13 5 2 2 1
 .6 20 10 3 2 2
 .7 26 15 6 2 2
 .8 35 23 11 4 2
 .9 53 33 20 9 3
 .99 114 62 43 28 23
 .999 11279 82 57 37 23
 1 12733 108 59 37 23

 Table D.3. Minimum Filter
 (UMD - NCAR)

 Filter Samples
 3 7 15
 P[x=<X] 1423 1423 1423

 .1 2 2 2
 .2 2 4 5
 .3 5 8 8
 .4 10 11 11
 .5 13 14 14
 .6 18 17 16
 .7 23 21 19
 .8 28 25 23
 .9 36 30 27
 .99 64 46 35
 .999 82 53 44
 1 82 60 44

 Table D.4. Median Filter
 (UMD - NCAR)

 While the UMD - NCAR data above represented a path across the NSFNET
 Backbone, which normally involves only a few hops via Ethernets and
 56-Kbps links, the UDEL - NCAR path involves additional ARPANET hops,
 which can contribute substantial additional delay dispersion. The
 following Table D.5. shows the results of a minimum filter for
 various n when presented with the UDEL - NCAR raw sample data. The
 range of error is markedly greater than the UMD - NCAR path above,
 especially near the upper end of the distribution function.

Mills [Page 54]

RFC 1059 Network Time Protocol July 1988

 Filter Samples
 1 2 4 8 16
 P[x=<X] 2756 2755 2755 2753 2749
 --
 .1 12 9 8 7 6
 .2 24 19 16 14 14
 .3 36 27 22 20 19
 .4 51 36 29 25 23
 .5 69 47 36 30 27
 .6 93 61 44 35 32
 .7 133 80 56 43 35
 .8 215 112 75 53 43
 .9 589 199 111 76 63
 .99 1640 1002 604 729 315
 .999 5278 1524 884 815 815
 1 10425 5325 991 835 815

 Table D.5. Minimum Filter (UDEL - NCAR)

 Based on these data, the minimum filter was selected as the standard
 algorithm. Since its performance did not seem to much improve for
 values of n above eight, this value was chosen as the standard.
 Network Time Protocol (Version 1): Specification and Implementation.

Mills [Page 55]

RFC 1059 Network Time Protocol July 1988

Appendix E. NTP Synchronization Networks

 This section discusses net configuration issues for implementing a
 ubiquitous NTP service in the Internet system. Section E.1 describes
 the NTP primary service net now in operation, including an analysis
 of failure scenarios. Section E.2 suggests how secondary service
 nets, which obtain wholesale time from the primary service net, can
 be configured to deliver accurate and reliable retail time to the
 general host population.

E.1. Primary Service Network

 The primary service net consists of five primary servers, each of
 which is synchronized via radio or satellite to a national time
 standard and thus operates at stratum one. Each server consists of
 an LSI-11 Fuzzball, a WWVB or GOES radio clock and one or more net
 interfaces. Some servers provide switching and gateway services as
 well. Table E.1 shows the name, Internet address, type of clock,
 operating institution and identifying code.

Name Address Clock Operating Institution and (Code)
--
DCN5.ARPA 128.4.0.5 WWVB U Delaware, Newark, DE (UDEL)
FORD1.ARPA 128.5.0.1 GOES Ford Research, Dearborn, MI
 (FORD)
NCAR.NSF.NET 128.116.64.3 WWVB National Center for Atmospheric
 Research, Boulder, CO (NCAR)
UMD1.UMD.EDU 128.8.10.1 WWVB U Maryland, College Park, MD
 (UMD)
WWVB.ISI.EDU 128.9.2.129 WWVB USC Information Sciences
 Institute, Marina del Rey, CA
 (ISI)

 Table E.1. Primary Servers

 Figure E.1 shows how the five primary servers are interconnected as
 NTP peers. Note that each server actively probes two other servers
 (along the direction of the arrows), which means these probes will
 continue even if one or both of the two probed servers are down. On
 the other hand, each server is probed by two other servers, so that
 the result, assuming all servers are up, is that every server peers
 with every other server.

Mills [Page 56]

RFC 1059 Network Time Protocol July 1988

 +--+
 V |
 +--------+ +--------+ +--------+
 | |<-------------| |<-------------| |
 | NCAR | | ISI | | FORD |
 | |----+ +--| |<--+ +---->| |
 +--------+ | | +--------+ | | +--------+
 | | | | | A
 | +---|------|---------------|----+ | |
 | | | | | |
 | | +------|---------------|---------+ |
 | | | | | |
 | | | | V |
 | +--------+ | | +--------+ |
 | | |<--+ +--| | |
 +-->| UMD | | UDEL |---+
 | |--------------------->| |
 +--------+ +--------+

 Figure E.1. Primary Service Network

 All of the five primary servers shown are directly connected to a
 radio clock and thus normally operate at stratum one. However, if
 the radio clock itself becomes disabled or the propagation path to
 its synchronizing source fails, then the server drops to stratum two
 and synchronizes via NTP with its neighbor at the smallest
 synchronizing distance. If a radio clock appears to operate
 correctly but delivers incorrect time (falseticker), the server may
 remain synchronized to the clock. However, gross discrepancies will
 become apparent via the NTP peer paths, which will ordinarily result
 in an operator alarm.

 Assume that, if a radio clock appears up, it is a truechimer;
 otherwise, the clock appears down. Then the above configuration will
 continue to provide correct time at all primary servers as long as at
 least one radio clock is up, all servers are up and the servers
 remain connected to each other through the net. The fact that the
 graph and all of its subgraphs are completely connected lends an
 incredible resilience to the configuration.

 If some radio clocks appear up but are in fact falsetickers, the
 primary servers connected to those clocks will not provide correct
 time. However, as the consequents of the voting procedure and
 complete connectivity of the graph and its subgraphs, any combination
 of two falsetickers or of one falseticker and one down server will be
 detected by their truechimer neighbors.

Mills [Page 57]

RFC 1059 Network Time Protocol July 1988

E.2. Secondary Service Networks

 A secondary server operating at stratum n > 1 ordinarily obtains
 synchronization using at least three peer paths, two with servers at
 stratum n-1 and one or more with servers at stratum n. In the most
 robust configurations a set of servers agree to provide backup
 service for each other, so distribute some of their peer paths over
 stratum-(n-1) servers and others over stratum-n servers in the same
 set. For instance, in the case of a stratum-2 service net with two
 secondary servers and the primary service net of Figure E.1, there
 are five possible configurations where each stratum-1 path ends on a
 different primary server. Such configurations can survive the loss
 of three out of the four stratum-1 servers or net paths and will
 reject a single falseticker on one of the two stratum-1 paths for
 each server.

 Ordinary hosts can obtain retail time from primary or secondary
 service net using NTP in client/server mode, which does not require
 dedicated server resources as does symmetric mode. It is anticipated
 that ordinary hosts will be quite close to a secondary server,
 perhaps on the same cable or local net, so that the frequency of NTP
 request messages need only be high enough, perhaps one per hour or
 two, to trim the drift from the local clock.

Mills [Page 58]

