Net wor k Wor ki ng Group J. Ronkey
Request for Comments: 1055 June 1988

A NONSTANDARD FCR TRANSM SSI ON OF | P DATAGRAMS OVER SERI AL LINES: SLIP
| NTRODUCTI ON

The TCP/IP protocol family runs over a variety of network nedia:

| EEE 802.3 (ethernet) and 802.5 (token ring) LAN s, X 25 lines,
satellite links, and serial lines. There are standard encapsul ati ons
for I P packets defined for nany of these networks, but there is no
standard for serial lines. SLIP, Serial Line IP, is a currently a de
facto standard, comonly used for point-to-point serial connections
running TCP/IP. It is not an Internet standard. Distribution of
this meno is unlimted.

H STORY
SLIP has its origins in the 3COM UNET TCP/I P inplenentation fromthe
early 1980's. It is nmerely a packet fram ng protocol: SLIP defines a
sequence of characters that frame | P packets on a serial line, and

not hing nore. It provides no addressing, packet type identification
error detection/correction or conpression nechani sms. Because the
protocol does so little, though, it is usually very easy to

i mpl enent .

Around 1984, Rick Adans inplenented SLIP for 4.2 Berkeley Unix and

Sun M crosystens workstations and released it to the world. It

qui ckly caught on as an easy reliable way to connect TCP/IP hosts and
routers with serial |ines.

SLIP is commonly used on dedicated serial links and sonetinmes for

di al up purposes, and is usually used with |line speeds between 1200bps
and 19.2Kbps. It is useful for allow ng m xes of hosts and routers

to comuni cate with one anot her (host-host, host-router and router-
router are all comon SLIP network configurations).

AVAI LABI LI TY

SLIP is available for nost Berkeley UN X-based systens. It is
included in the standard 4.3BSD rel ease from Berkeley. SLIP is
available for Utrix, Sun UNI X and nost other Berkel ey-derived UN X
systenms. Some terminal concentrators and | BM PC inpl enentations al so
support it.

SLIP for Berkeley UNI X is avail abl e via anonynmous FTP from

uunet.uu.net in pub/sl.shar.Z Be sure to transfer the file in
bi nary node and then run it through the UNI X unconpress program Take

Ronkey [Page 1]

RFC 1055 Serial Line |IP June 1988

the resulting file and use it as a shell script for the UNI X /bin/sh
(for instance, /bin/sh sl.shar).

PROTOCCL
The SLIP protocol defines two special characters: END and ESC. END i s

octal 300 (decimal 192) and ESC is octal 333 (decinmal 219) not to be
confused with the ASCI|I ESCape character; for the purposes of this

di scussion, ESC will indicate the SLIP ESC character. To send a
packet, a SLIP host sinply starts sending the data in the packet. |If
a data byte is the sanme code as END character, a two byte sequence of
ESC and octal 334 (decinmal 220) is sent instead. If it the sanme as

an ESC character, an two byte sequence of ESC and octal 335 (decinal
221) is sent instead. Wen the last byte in the packet has been
sent, an END character is then transmtted.

Phil Karn suggests a sinple change to the algorithm which is to
begin as well as end packets with an END character. This will flush
any erroneous bytes which have been caused by Iine noise. 1In the
normal case, the receiver will sinply see two back-to-back END
characters, which will generate a bad IP packet. |If the SLIP

i npl enent ati on does not throw away the zero-length I P packet, the IP
i npl ementation certainly will. [If there was line noise, the data
received due to it will be discarded without affecting the follow ng
packet .

Because there is no 'standard’ SLIP specification, there is no rea
defined maxi num packet size for SLIP. It is probably best to accept
t he maxi num packet size used by the Berkeley UNI X SLIP drivers: 1006
bytes including the IP and transport protocol headers (not including
the frami ng characters). Therefore any new SLIP inpl enentations
shoul d be prepared to accept 1006 byte datagrans and should not send
nore than 1006 bytes in a datagram

DEFI CI ENCI ES

There are several features that nany users would like SLIP to provide
which it doesn't. In all fairness, SLIP is just a very sinple
protocol designed quite a long tine ago when these probl ens were not
really inmportant issues. The follow ng are comonly perceived
shortconmngs in the existing SLIP protocol

- addressing:
both conputers in a SLIP link need to know each other’'s IP
addresses for routing purposes. Also, when using SLIP for

hosts to dial-up a router, the addressing schene may be quite
dynanmic and the router may need to informthe dialing host of

Ronkey [Page 2]

RFC 1055 Serial Line |IP June 1988

the host’s I P address. SLIP currently provides no nechani sm
for hosts to comunicate addressing information over a SLIP
connecti on.

- type identification:

SLIP has no type field. Thus, only one protocol can be run
over a SLIP connection, so in a configuration of two DEC
conmput ers running both TCP/I P and DECnet, there is no hope of
having TCP/|I P and DECnet share one serial |ine between them
while using SLIP. Wile SLIPis "Serial Line IP', if a serial
line connects two nulti-protocol conputers, those conputers
shoul d be able to use nore than one protocol over the I|ine.

- error detection/correction:

noi sy phone lines will corrupt packets in transit. Because the
line speed is probably quite low (likely 2400 baud),
retransmtting a packet is very expensive. FError detection is
not absolutely necessary at the SLIP | evel because any IP
application should detect danmaged packets (IP header and UDP
and TCP checksunms shoul d suffice), although some conmon
applications |like NFS usually ignore the checksum and depend on
the network nedia to detect damaged packets. Because it takes
so long to retransnit a packet which was corrupted by |ine
noise, it would be efficient if SLIP could provide sone sort of
sinmple error correction mechanismof its own.

- conpression:

because dial-in lines are so slow (usually 2400bps), packet
conpressi on woul d cause |large inprovenents in packet

t hroughput. Usually, streams of packets in a single TCP
connection have few changed fields in the I P and TCP headers,
so a sinple conpression algorithns m ght just send the changed
parts of the headers instead of the conplete headers.

Some work is being done by various groups to design and inplenent a
successor to SLIP which will address sone or all of these problens.

Ronkey [Page 3]

RFC 1055 Serial Line |IP June 1988

SLI P DRI VERS
The followi ng C |anguage functions send and receive SLIP packets.
They depend on two functions, send_char() and recv_char(), which send
and receive a single character over the serial |ine.

/* SLIP special character codes

*/

#defi ne END 0300 /* indicates end of packet */

#defi ne ESC 0333 /* indicates byte stuffing */

#defi ne ESC END 0334 /* ESC ESC_END neans END data byte */
#defi ne ESC ESC 0335 /* ESC ESC ESC neans ESC data byte */

/* SEND PACKET: sends a packet of length "len", starting at

* |ocation "p".

*/

voi d send_packet (p, |en)
char *p;
int len; {

/* send an initial END character to flush out any data that may
* have accunul ated in the receiver due to |line noise
* [

send_char (END) ;

/* for each byte in the packet, send the appropriate character
* sequence
*/
while(len--) {
switch(*p) {
/* if it’'s the same code as an END character, we send a
* special two character code so as not to nake the
* receiver think we sent an END
*/
case END:
send_char (ESC) ;
send_char (ESC_END) ;
br eak;

/[* if it’s the sane code as an ESC character,
* we send a special two character code so as not
* to make the receiver think we sent an ESC
* [
case ESC.
send_char (ESC) ;
send_char (ESC_ESC) ;
br eak;

Ronkey [Page 4]

RFC 1055 Serial Line |IP June 1988

/* otherwi se, we just send the character

*/
defaul t:
send_char (*p);
P+t
}
/* tell the receiver that we’'re done sending the packet
*/
send_char (END) ;
}
/* RECV_PACKET: receives a packet into the buffer located at "p"
* If nore than len bytes are received, the packet wll
* be truncated.
* Returns the nunber of bytes stored in the buffer
*/
int recv_packet(p, len)
char *p
int len; {
char c;

int received = 0;

/* sit in a loop reading bytes until we put together
* a whol e packet.
* Make sure not to copy theminto the packet if we
* run out of room

*/

while(1l) {
/* get a character to process
*/

¢ = recv_char();

/* handl e bytestuffing i f necessary
*/
switch(c) {

[* if it’s an END character then we're done with
* the packet

*/
case END:
/* a minor optimzation: if there is no
* data in the packet, ignore it. This is
* meant to avoid bothering IP with al
* the enpty packets generated by the
*

duplicate END characters which are in

Ronkey [Page 5]

RFC 1055 Serial Line |IP June 1988

* turn sent to try to detect |ine noise.
*/
i f(received)
return received,
el se
br eak;

/* if it’s the sane code as an ESC character, wait
* and get another character and then figure out
* what to store in the packet based on that.

*/
case ESC
¢ = recv_char();
/[* if "c¢" is not one of these two, then we
* have a protocol violation. The best bet
* seens to be to | eave the byte al one and
* just stuff it into the packet
*/
switch(c) {
case ESC _END:
c = END;
br eak;
case ESC _ESC
¢ = ESC
br eak;
}
/* here we fall into the default handl er and |et
* it store the character for us
*/
defaul t:

if(received < len)
p[received++] = c;
}

Ronkey [Page 6]

