
Network Working Group W. Prue
Request for Comments: 1046 J. Postel
 ISI
 February 1988

 A Queuing Algorithm to Provide Type-of-Service for IP Links

Status of this Memo

 This memo is intended to explore how Type-of-Service might be
 implemented in the Internet. The proposal describes a method of
 queuing which can provide the different classes of service. The
 technique also prohibits one class of service from consuming
 excessive resources or excluding other classes of service. This is
 an "idea paper" and discussion is strongly encouraged. Distribution
 of this memo is unlimited.

Introduction

 The Type-of-Service (TOS) field in IP headers allows one to chose
 from none to all the following service types; low delay, high
 throughput, and high reliability. It also has a portion allowing a
 priority selection from 0-7. To date, there is nothing describing
 what should be done with these parameters. This discussion proposes
 an approach to providing the different classes of service and
 priorities requestable in the TOS field.

Desired Attributes

 We should first consider how we want these services to perform. We
 must first assume that there is a demand for service that exceeds
 current capabilities. If not, significant queues do not form and
 queuing algorithms become superfluous.

 The low delay class of service should have the ability to pass data
 through the net faster than regular data. If a request is for low
 delay class of service only, not high throughput or high reliability,
 the Internet should provide low delay for relatively less throughput,
 with less than high reliability. The requester is more concerned
 with promptness of delivery than guaranteed delivery. The Internet
 should provide a Maximum Guaranteed Delay (MGD) per node, or better,
 if the datagram successfully traverses the Internet. In the worst
 case, a datagram’s arrival will be MGD times the number of nodes
 traversed. A node is any packet switching element, including IP
 gateways and ARPANET IMP’s. The MGD bound will not be affected by
 the amount of traffic in the net. During non-busy hours, the delay
 provided should be better than the guarantee. If the delay a

Prue & Postel [Page 1]

RFC 1046 Type-of-Service Queuing February 1988

 satellite link introduces is less than the MGD, that link should be
 considered in the route. If however, the MGD is less than the
 satellite link can provide, it should not be used. For this
 discussion it is assumed that delay for individual links are low
 enough that a sending node can provide the MGD service.

 Low delay class of service is not the same as low Round Trip Time
 (RTT). Class of service is unidirectional. The datagrams responding
 to low delay traffic (i.e., Acking the data) might be sent with a
 high reliability class of service, but not low delay.

 The performance of TCP might be significantly improved with an
 accurate estimate of the round trip time and the retransmission
 timeout. The TCP retransmission timeout could be set to the maximum
 delay for the current route (if the current route could be
 determined). The timeout value would have to be redetermined when
 the number of hops in the route changes.

 High throughput class of service should get a large volume of data
 through the Internet. Requesters of this class are less concerned
 with the delay the datagrams have crossing the Internet and the
 reliability of their delivery. This type of traffic might be served
 well by a satellite link, especially if the bandwidth is high.
 Another attribute this class might have is consistent one way
 traversal time for a given burst of datagrams. This class of service
 will have its traversal times affected by the amount of Internet
 load. As the Internet load goes up, the throughput for each source
 will go down.

 High reliability class of service should see most of its datagrams
 delivered if the Internet is not too heavily loaded. Source Quenches
 (SQ) should not be sent only when datagrams are discarded. SQs
 should be sent well before the queues become full, to advise the
 sender of the rate that can be currently supported.

 Priority service should allow data that has a higher priority to be
 queued ahead of other lower priority data. It is important to limit
 the amount of priority data. The amount of preemption a lower
 priority datagram suffers must also be limited.

 It is assumed that a queuing algorithm provides these classes of
 service. For one facility to be used over another, that is, making
 different routing decisions based upon the TOS, requires a more
 sophisticated routing algorithm and larger routing database. These
 issues are not discussed in this document.

Prue & Postel [Page 2]

RFC 1046 Type-of-Service Queuing February 1988

Applications for Class of Service

 The following are examples of how classes of service might be used.
 They do not necessarily represent the best choices, but are presented
 only to illustrate how the different classes of service might be used
 to advantage.

 Interactive timesharing access using a line-at-a-time or character-
 at-a-time terminal (TTY) type of access is typically low volume
 typing speed input with low or high volume output. Some Internet
 applications use echoplex or character by character echoing of user
 input by the destination host. PC devices also have local files that
 may be uploaded to remote hosts in a streaming mode. Supporting such
 traffic can require several types of service. User keyboard input
 should be forwarded with low delay. If echoplex is used, all user
 characters sent and echoed should be low delay to minimize the
 echoing delay. The computer responses should be regular or high
 throughput depending upon the volume of data sent and the speed of
 the output device. If the computer response is a single datagram of
 data, the user should get low delay for the response, to minimize the
 human/computer interaction time. If however the output takes a while
 to read and digest, low delay computer responses are a waste of
 Internet resources. When streaming input is being sent the data
 should be sent requesting high throughput or regular class of
 service.

 The IBM 3270 class of terminals typically have traffic volumes
 greater than TTY access. Echoplex is not needed. The output devices
 usually handle higher speed output streams and most sites do not have
 the ability to stream input. Input is typically a screen at a time,
 but some PC implementations of 3270 use a variation of the protocol
 to effectively stream in volumes of data. Low delay for low volume
 input and output is appropriate. High throughput is appropriate for
 the higher volume traffic.

 Applications that transfer high volumes of data are typically
 streaming in one direction only, with acks for the data, on the
 return path. The data transfer should be high throughput and the
 acks should probably be regular class of service. Transfer
 initiation and termination might be served best with low delay class
 of service.

 Requests to, and responses from a time service might use low delay
 class of service effectively.

 These suggestions for class of service usage implies that the
 application sets the service based on the knowledge it has during the
 session. Thus, the application should have control of this setting

Prue & Postel [Page 3]

RFC 1046 Type-of-Service Queuing February 1988

 dynamically for each send data request, not just on a per
 session/conversation/transaction basis. It would be possible for the
 transport level protocol to guess (i.e., TCP), but it would be sub-
 optimal.

Algorithm

 When we provide class of service queuing, one class may be more
 desirable than the others. We must limit the amount of resources
 each class consumes when there is contention, so the other classes
 may also operate effectively. To be fair, the algorithm provides the
 requested service by reducing the other service attributes. A
 request for multiple classes of service is an OR type of request not
 an AND request. For example, one can not get low delay and high
 throughput unless there is no contention for the available resources.

Low Delay Queuing

 To support low delay, use a limited queue so requests will not wait
 longer than the MGD on the queue. The low delay queue should be
 serviced at a lower rate than other classes of service, so low delay
 requests will not consume excessive resources. If the number of low
 delay datagrams exceeds the queue limit, discard the datagrams. The
 service rate should be low enough so that other data can still get
 through. (See discussion of service rates below.) Make the queue
 limit small enough so that, if the datagram is queued, it will have a
 guaranteed transit time (MGD). It seems unlikely that Source Quench
 flow control mechanisms will be an effective method of flow control
 because of the small size of the queue. It should not be done for
 this class of service. Instead, datagrams should just be discarded
 as required. If the bandwidth or percentage allocated to low delay
 is such that a large queue is possible (see formula below), SQs
 should be reconsidered.

 The maximum delay a datagram with low delay class of service will
 experience (MGD), can be determined with the following information:

 N = Queue size for low delay queue
 P = Percentage of link resources allocated to low delay
 R = Link rate (in datagrams/sec.)
 N
 Max Delay = -----
 P * R

 If Max Delay is held fixed, then as P and R go up, so does N. It is
 probable that low delay service datagrams will prove to be, on the
 average, smaller than other traffic. This means that the number of
 datagrams that can be sent in the allocated bandwidth can be larger.

Prue & Postel [Page 4]

RFC 1046 Type-of-Service Queuing February 1988

High Reliability Queuing

 To support high reliability class of service, use a queue that is
 longer than normal (longer queue means higher potential delay). Send
 SQ earlier (smaller percentage of max queue length) and don’t discard
 datagrams until the queue is full. This queue should have a lower
 service rate than high throughput class of service.

 Users of this class of service should specify a Time-to-Live (TTL)
 which is made appropriately longer so that it will survive longer
 queueing times for this class of service.

 This queuing procedure will only be effective for Internet
 unreliability due to congestion. Other Internet unreliability
 problems such as high error rate links or reliability features such
 as forward error correcting modems must be dealt with by more
 sophisticated routing algorithms.

High Throughput Queuing

 To support high throughput class of service have a queue that is
 treated like current IP queuing. It should have the highest service
 rate. It will experience higher average through node delay than low
 delay because of the larger queue size.

 Another thing that might be done, is to keep datagrams of the same
 burst together when possible. This must be done in a way that will
 not block other traffic. The idea is to deliver all the data to the
 other end in a contiguous burst. This could be an advantage by
 allowing piggybacking acks for the whole burst at one time. This
 makes some assumptions about the overlying protocol which may be
 inappropriate.

Regular Service Queuing

 For datagrams which request none of the three classes of service,
 queue the datagrams on the queue representing the least delay between
 the two queues, the high throughput queue or the high reliability
 queue. If one queue becomes full, queue on the other. If both
 queues are full, follow the source quench procedure for regular class
 of service (see RFC-1016), not the procedure for the queue the
 datagram failed to attain.

 In the discussion of service rates described below, it is proposed
 that the high throughput queue get service three times for every two
 times for the high reliability queue. Therefore, the queue length of
 the high reliability queue should be increased by 50% (in this
 example) to compare the lengths of the two queues more accurately. A

Prue & Postel [Page 5]

RFC 1046 Type-of-Service Queuing February 1988

 simplification to this method is to just queue new data on the queue
 that is the shortest. The slower service rate queue will quickly
 exceed the size of the faster service rate queue and new data will go
 on the proper queue. This however, would lead to more packet
 reordering than the first method.

Service Rates

 In this discussion, a higher service rate means that a queue, when
 non-empty, will consume a larger percentage of the available
 bandwidth than a lower service rate queue. It will not block a lower
 service rate queue even if it is always full.

 For example, the service pattern could be; send low delay 17% of the
 time, high throughput 50% of the time, and high reliability 33% of
 the time. Throughput requires the most bandwidth and high
 reliability requires medium bandwidth. One could achieve this split
 using a pattern of L, R,R, T,T,T, where low delay is "L", high
 reliability is "R", and high throughput is "T’. We want to keep the
 high throughput datagrams together. We therefore send all of the
 high throughput data at one time, that is, not interspersed with the
 other classes of service. By keeping all of the high throughput data
 together, we may help higher level protocols, such as TCP, as
 described above. This would still be done in a way to not exceed the
 allowed service rate of the available bandwidth.

 These service rates are suggestions. Some simplifications can be
 considered, such as having only two routing classes; low delay, and
 other.

Priority

 There is the ability to select 8 levels of priority 0-7, in addition
 to the class of service selected. To provide this without blocking
 the least priority requests, we must give preempted datagrams
 frustration points every time a higher priority request cuts in line
 in front of it. Thus if a datagram with low priority waits, it will
 always get through even when competing against the highest priority
 requests. This assumes the TTL (Time-to-Live) field does not expire.

 When a datagram with priority arrives at a node, the node will queue
 the datagram on the appropriate queue ahead of all datagrams with
 lower priority. Each datagram that was preempted gets its priority
 raised (locally). The priority data will not bump a lower priority
 datagram off its queue, discarding the data. If the queue is full,
 the newest data (priority or not) will be discarded. The priority
 preemption will preempt only within the class of service queue to

Prue & Postel [Page 6]

RFC 1046 Type-of-Service Queuing February 1988

 which the priority data is targeted. A request specifying regular
 class of service, will contend on the queue where it is placed, high
 throughput or high reliability.

 An implementation strategy is to multiply the requested priority by 2
 or 4, then store the value in a buffer overhead area. Each time the
 datagram is preempted, increment the value by one. Looking at an
 example, assume we use a multiplier of 2. A priority 6 buffer will
 have an initial local value of 12. A new priority 7 datagram would
 have a local value of 14. If 2 priority 7 datagrams arrive,
 preempting the priority 6 datagram, its local value is incremented to
 14. It can no longer be preempted. After that, it has the same
 local value as a priority 7 datagram and will no longer be preempted
 within this node. In our example, this means that a priority 0
 datagram can be preempted by no more than 14 higher priority
 datagrams. The priority is raised only locally in the node. The
 datagram could again be preempted in the next node on the route.

 Priority queuing changes the effects we were obtaining with the low
 delay queuing described above. Once a buffer was queued, the delay
 that a datagram would see could be determined. When we accepted low
 delay data, we could guarantee a certain maximum delay. With this
 addition, if the datagram requesting low delay does not also request
 high priority, the guaranteed delay can vary a lot more. It could be
 1 up to 28 times as much as without priority queuing.

Discussion and Details

 If a low delay queue is for a satellite link (or any high delay
 link), the max queue size should be reduced by the number of
 datagrams that can be forwarded from the queue during the one way
 delay for the link. That is, if the service rate for the low delay
 queue is L datagrams per second, the delay added by the high delay
 link is D seconds and M is the max delay per node allowed (MGD) in
 seconds, then the maximum queue size should be:

 Max Queue Size = L (M - D), M > D
 = 0 , M <= D

 If the result is negative (M is less than the delay introduced by the
 link), then the maximum queue size should be zero because the link
 could never provide a delay less than the guaranteed M value. If the
 bandwidth is high (as in T1 links), the delay introduced by a
 terrestrial link and the terminating equipment could be significant
 and greater than the average service time for a single datagram on
 the low delay queue. If so, this formula should be used to reduce
 the queue size as well. Note that this is reducing the queue size
 and is not the same as the allocated bandwidth. Even though the

Prue & Postel [Page 7]

RFC 1046 Type-of-Service Queuing February 1988

 queue size is reduced, the chit scheme described below will give low
 delay requesters a chance to use the allocated bandwidth.

 If a datagram requests multiple classes of service, only one class
 can be provided. For example, when both low delay and high
 reliability classes are requested, and if the low delay queue is
 full, queue the data on the high reliability queue instead. If we
 are able to queue the data on the low delay queue, then the datagram
 gets part of the high reliability service it also requested, because,
 once data is queued, data will not be discarded. However, the
 datagram will be routed as a low delay request. The same scheme is
 used for any other combinations of service requested. The order of
 selection for classes of service when more than one is requested
 would be low delay, high throughput, then high reliability. If a
 block of datagrams request multiple classes of service, it is quite
 possible that datagram reordering will occur. If one queue is full
 causing the other queue to be used for some of the data, data will be
 forwarded at different service rates. Requesting multiple classes of
 service gives the data a better chance of making it through the net
 because they have multiple chances of getting on a service queue.
 However, the datagrams pay the penalty of possible reordering and
 more variability in the one way transmission times.

 Besides total buffer consumption, individual class of service queue
 sizes should be used to SQ those asking for service except as noted
 above.

 A request for regular class of service is handled by queuing to the
 high reliability or high throughput queues evenly (proportional to
 the service rates of queue). The low delay queue should only receive
 data with the low delay service type. Its queue is too small to
 accept other traffic.

 Because of the small queue size for low delay suggested above, it is
 difficult for low delay service requests to consume the bandwidth
 allocated. To do so, low delay users must keep the small queue
 continuously non-empty. This is hard to do with a small queue.
 Traffic flow has been shown to be bursty in nature. In order for the
 low delay queue to be able to consume the allocated bandwidth, a
 count of the various types being forwarded should be kept. The
 service rate should increase if the actual percentage falls too low
 for the low delay queue. The measure of service rates would have to
 be smoothed over time.

 While this does sound complicated, a reasonably efficient way can be
 described. Every Q seconds, where Q is less than or equal to the
 MGD, each class gets N M P chits proportional to their allowed
 percentage. Send data for the low delay queue up to the number of

Prue & Postel [Page 8]

RFC 1046 Type-of-Service Queuing February 1988

 chits it receives decrementing the chits as datagrams are sent. Next
 send from the high reliability queue as many as it has chits for.
 Finally, send from the high throughput queue. At this point, each
 queue gets N M P chits again. If the low delay queue does not
 consume all of its chits, when a low delay datagram arrives, before
 chit replenishment, send from the low delay queue immediately. This
 provides some smoothing of the actual bandwidth made available for
 low delay traffic. If operational experience shows that low delay
 requests are experiencing excessive congestion loss but still not
 consuming the classes allocated bandwidth, adjustments should be
 made. The service rates should be made larger and the queue sizes
 adjusted accordingly. This is more important on lower speed links
 where the above formula makes the queue small.

 What we should see during the Q seconds is that low delay data will
 be sent as soon as possible (as long as the volume is below the
 allowed percentage). Also, the tendency will be to send all the high
 throughput datagrams contiguously. This will give a more regular
 measured round trip time for bursts of datagrams. Classes of service
 will tend to be grouped together at each intermediate node in the
 route. If all of the queues with datagrams have consumed all of
 their allocated chits, but one or more classes with empty queues have
 unused chits then a percentage of these left over chits should be
 carried over. Divide the remaining chit counts by two (with round
 down), then add in the refresh chit counts. This allows a 50% carry
 over for the next interval. The carry over is self limiting to less
 than or equal to the refresh chit count. This prevents excessive
 build up. It provides some smoothing of the percentage allocation
 over time but will not allow an unused queue to build up chits
 indefinitely. No timer is required.

 If only a simple subset of the described algorithm is to be
 implemented, then low delay queuing would be the best choice. One
 should use a small queue. Service the queue with a high service rate
 but restrict the bandwidth to a small reasonable percentage of the
 available bandwidth. Currently, wide area networks with high traffic
 volumes do not provide low delay service unless low delay requests
 are able to preempt other traffic.

Applicability

 When the output speed and volume match the input speed and volume,
 queues don’t get large. If the queues never grow large enough to
 exceed the guaranteed low delay performance, no queuing algorithm
 other than first in, first out, should be used.

 The algorithm could be turned on when the main queue size exceeds a
 certain threshold. The routing node can periodically check for queue

Prue & Postel [Page 9]

RFC 1046 Type-of-Service Queuing February 1988

 build up. This queuing algorithm can be turned on when the maximum
 delays will exceed the allowed nodal delay for low delay class of
 service. It can also be turned off when queue sizes are no longer a
 problem.

Issues

 Several issues need to be addressed before type of service queuing as
 described should be implemented. What percentage of the bandwidth
 should each class of service consume assuming an infinite supply of
 each class of service datagrams? What maximum delay (MGD) should be
 guaranteed per node for low delay datagrams?

 It is possible to provide a more optimal route if the queue sizes for
 each class of service are considered in the routing decision. This,
 however, adds additional overhead and complexity to each routing
 node. This may be an unacceptable additional complexity.

 How are we going to limit the use of more desirable classes of
 service and higher priorities? The algorithm limits use of the
 various classes by restricting queue sizes especially the low delay
 queue size. This helps but it seems likely we will want to
 instrument the number of datagrams requesting each Type-of-Service
 and priority. When a datagram requests multiple classes of service,
 increment the instrumentation count once based upon the queue
 actually used, selecting, low delay, high throughput, high
 reliability, then regular. If instrumentation reveals an excessive
 imbalance, Internet operations can give this to administrators to
 handle. This instrumentation will show the distribution for types of
 service requested by the Internet users. This information can be
 used to tune the Internet to service the user demands.

 Will the routing algorithms in use today have problems when routing
 data with this algorithm? Simulation tests need to be done to model
 how the Internet will react. If, for example, an application
 requests multiple classes of service, round trip times may fluctuate
 significantly. Would TCP have to be more sophisticated in its round
 trip time estimator?

 An objection to this type of queuing algorithm is that it is making
 the routing and queuing more complicated. There is current interest
 in high speed packet switches which have very little protocol
 overhead when handling/routing packets. This algorithm complicates
 not simplifies the protocol. The bandwidth being made available is
 increasing. More T1 (1.5 Mbps) and higher speed links are being used
 all the time. However, in the history of communications, it seems
 that the demand for bandwidth has always exceeded the supply. When
 there is wide spread use of optical fiber we may temporarily

Prue & Postel [Page 10]

RFC 1046 Type-of-Service Queuing February 1988

 experience a glut of capacity. As soon as 1 gigabit optical fiber
 link becomes reasonably priced, new applications will be created to
 consume it all. A single full motion high resolution color image
 system can consume, as an upper limit, nearly a gigabit per second
 channel (30 fps X 24 b/pixel X 1024 X 1024 pixels).

 In the study of one gateway, Dave Clark discovered that the per
 datagram processing of the IP header constituted about 20% of the
 processing time. Much of the time per datagram was spent on
 restarting input, starting output and queuing datagrams. He thought
 that a small additional amount of processing to support Type-of-
 Service would be reasonable. He suggests that even if the code does
 slow the gateway down, we need to see if TOS is good for anything, so
 this experiment is valuable. To support the new high speed
 communications of the near future, Dave wants to see switches which
 will run one to two orders of magnitude faster. This can not be done
 by trimming a few instructions here or there.

 From a practical perspective, the problem this algorithm is trying to
 solve is the lack of low delay service through the Internet today.
 Implementing only the low delay queuing portion of this algorithm
 would allow the Internet to provide a class of service it otherwise
 could not provide. Requesters of this class of service would not get
 it for free. Low delay class of datagram streams get low delay at
 the cost of reliability and throughput.

Prue & Postel [Page 11]

