
Network Working Group G. Trewitt
Request for Comments: 1023 Stanford
 C. Partridge
 BBN/NNSC
 October 1987

 HEMS Monitoring and Control Language

 This RFC specifies the design of a general-purpose, yet efficient,
 monitoring and control language for managing network entities. The
 data in the entity is modeled as a hierarchy and specific items are
 named by giving the path from the root of the tree. Most items are
 read-only, but some can be "set" in order to perform control
 operations. Both requests and responses are represented using the
 ISO ASN.1 data encoding rules.

STATUS OF THIS MEMO

 The purpose of this RFC is provide a specification for monitoring and
 control of network entities in the Internet. This is an experimental
 specification and is intended for use in testing the ideas presented
 here. No proposals in this memo are intended as standards for the
 Internet at this time. After sufficient experimentation and
 discussion, this RFC will be redrafted, perhaps as a standard.
 Distribution of this memo is unlimited.

 This language is a component of the High-Level Entity Monitoring
 System (HEMS) described in RFC-1021 and RFC-1022. Readers may want
 to consult these RFCs when reading this memo. RFC-1024 contains
 detailed assignments of numbers and structures used in this system.
 This memo assumes a knowledge of the ISO data encoding standard,
 ASN.1.

OVERVIEW AND SCOPE

 The basic model of monitoring and control used in this proposal is
 that a query is sent to a monitored entity and the entity sends back
 a response. The term query is used in the database sense -- it may
 request information, modify things, or both. We will use gateway-
 oriented examples, but it should be understood that this query-
 response mechanism can be applied to other entities besides just
 gateways.

 In particular, there is no notion of an interactive "conversation" as
 in SMTP [RFC-821] or FTP [RFC-959]. A query is a complete request
 that stands on its own and elicits a complete response.

Trewitt & Partridge [Page 1]

RFC 1023 HEMS Language October 1987

 It is not necessary for a monitored entity to be able to store the
 complete query. It is quite possible for an implementation to
 process the query on the fly, producing portions of the response
 while the query is still being received.

 Other RFCs associated with HEMS are: RFC-1021 -- Overview; RFC-1022
 -- transport protocol and message encapsulation; RFC-1024 -- precise
 data definitions. These issues are not dealt with here. It is
 assumed that there is some mechanism to transport a sequence of
 octets to a query processor within the monitored entity and that
 there is some mechanism to return a sequence of octets to the entity
 making the query.

ENCODING OF QUERIES AND RESPONSES

 Both queries and responses are encoded using the representation
 defined in ISO Standard ASN.1 (Abstract Syntax Notation 1). ASN.1
 represents data as sequences of <tag,length,contents> triples that
 are encoded as a stream of octets. The data tuples may be
 recursively nested to represent structured data such as arrays or
 records. For a full description of this notation, see the ISO
 documents IS 8824 and IS 8825. See the end of this memo for
 information about ordering these documents.

NOTATION USED IN THIS PROPOSAL

 The notation used in this memo is similar to that used in ASN.1, but
 less formal, smaller, and (hopefully) easier to read. The most
 important difference is that, in this memo, we are not concerned with
 the length of the data items.

 ASN.1 data items may be either a "simple type" such as integer or
 octet string or a "structured type", a collection of data items. The
 notation or a "structured type", a collection of data items. The
 notation:
 ID(value)
 represents a simple data item whose tag is "ID" with the given value.
 A structured data item is represented as:
 ID { ... contents ... }
 where contents is a sequence of data items. Remember that the
 contents may include both simple and structured types, so the
 structure is fully recursive.

 There are situations where it is desirable to specify a type but give
 no value, such as when there is no meaningful value for a particular
 measured parameter or when the entire contents of a structured type
 is being specified. In this situation, the same notation is used,

Trewitt & Partridge [Page 2]

RFC 1023 HEMS Language October 1987

 but with the value omitted:
 ID()
 or
 ID{}
 The representation of this is obvious -- the data item has zero for
 the length and no contents.

DATA MODEL

 Data in a monitored entity is modeled as a hierarchy.
 Implementations are not required to organize the data internally as a
 hierarchy, but they must provide this view of the data through the
 query language. A hierarchy offers useful structure for the
 following operations:

 Organization A hierarchy allows related data to be grouped
 together in a natural way.

 Naming The name of a piece of data is just the path from
 the root to the data of interest.

 Mapping onto ASN.1
 ASN.1 can easily represent a hierarchy by using
 "constructor" types as an envelope for an entire
 subtree.

 Efficient Representation
 Hierarchical structures are quite compact and can
 be traversed very quickly.

 Each node in the hierarchy must have names for its component parts.
 Although we would normally think of names as being ASCII strings such
 as "input errors", the actual name would just be an ASN.1 tag. Such
 names would be small integers (typically, less than 100) and so could
 easily be mapped by the monitored entity onto its internal
 representation.

 We will use the term "dictionary" to represent an internal node in
 the hierarchy. Here is a possible organization of the hierarchy in
 an entity that has several network interfaces and multiple processes.
 The exact organization of data in entities is specified in RFC-1024.

Trewitt & Partridge [Page 3]

RFC 1023 HEMS Language October 1987

 system {
 name -- host name
 clock-msec -- msec since boot
 interfaces -- # of interfaces
 }
 interfaces { -- one per interface
 interface { type, ip-addr, in-pkts, out-pkts, . . . }
 interface { type, ip-addr, in-pkts, out-pkts, . . . }
 interface { type, ip-addr, in-pkts, out-pkts, . . . }
 :
 }
 processes {
 process { name, stack, interrupts, . . . }
 process { name, stack, interrupts, . . . }
 :
 }
 route-table {
 route-entry { dest, interface, nexthop, cost, . . . }
 route-entry { dest, interface, nexthop, cost, . . . }
 :
 }
 arp-table {
 arp-entry { hard-addr, ip-addr, age }
 arp-entry { hard-addr, ip-addr, age }
 :
 }
 memory { }

 The "name" of the clock in this entity would be:
 system{ clock-msec }
 and the name of a route-entry’s IP address would be:
 route-table{ route-entry{ ip-addr } }.
 Actually, this is the name of the IP addresses of ALL of the routing
 table entries. This ambiguity is a problem in any situation where
 there are several instances of an item being monitored. If there was
 a meaningful index for such tabular data (e.g., "routing table entry
 #1"), there would be no problem. Unfortunately, there usually isn’t
 such an index. The solution to this problem requires that the data
 be accessed on the basis of some of its content. More on this later.

 More than one piece of data can be named by a single ASN.1 object.
 The entire collection of system information is named by:
 system{ }
 and the name of a routing table’s IP address and cost would be:
 route-table{ route-entry{ ip-addr, cost } }.

Trewitt & Partridge [Page 4]

RFC 1023 HEMS Language October 1987

Arrays

 There is one sub-type of a dictionary that is used as the basis for
 tables of objects with identical types. We call these dictionaries
 arrays. In the example above, the dictionaries for interfaces,
 processes, routing tables, and ARP tables are all arrays. In fact,
 we expect that most of the interesting data in an entity will be
 contained in arrays.

 The primary difference between arrays and plain dictionaries is that
 arrays may contain only one type of item, while dictionaries, in
 general, will contain many different types of items. Arrays are
 usually accessed associatively using special operators in the
 language.

 The fact that these objects are viewed externally as arrays does not
 mean that they are represented in an implementation as linear lists
 of objects. Any collection of same-typed objects is viewed as an
 array, even though it might be represented as, for example, a hash
 table.

REPRESENTATION OF A REPLY

 The data returned to the monitoring entity is a sequence of ASN.1
 data items. Each of these corresponds to one the top-level
 dictionaries maintained by the monitored entity. The tags for these
 data items will be in the "application-specific" class (e.g., if an
 entity has the above structure for its data, then the only top-level
 data items that will be returned will have tags corresponding to
 these groups). If a query returned data from two of these, the
 representation might look like:
 interfaces{ . . . } route-table{ . . . }
 which is just a stream of two ASN.1 objects (each of which may
 consist of many sub-objects).

 Data not in the root dictionary will have tags from the context-
 specific class. Therefore, data must always be fully qualified. For
 example, the name of the entity would always be returned encapsulated
 inside an ASN.1 object for "system". If it were not, there would be
 no way to tell if the object that was returned were "name" inside the
 "system" dictionary or "dest" inside the "interfaces" dictionary
 (assuming in this case that "name" and "dest" were assigned the same
 ASN.1 tag).

 Having fully-qualified data simplifies decoding of the data at the
 receiving end and allows the tags to be locally chosen (e.g.,
 definitions for tags dealing with ARP tables can’t conflict with
 definitions for tags dealing with interfaces). Therefore, the people

Trewitt & Partridge [Page 5]

RFC 1023 HEMS Language October 1987

 doing the name assignments are less constrained. In addition, most
 of the identifiers will be fairly small integers.

 It will often be the case that requested data may not be available,
 either because the request was badly formed (asked for data that
 couldn’t exist) or because the particular data item wasn’t defined in
 a particular situation (time since last error, when there hasn’t been
 an error). In this situation, the returned data item will have the
 same tag as in the request, but will have zero-length data.
 Therefore, there can NEVER be an "undefined data" error.

 This allows completely generic queries to be composed without regard
 to whether the data is defined at all of the entities that will
 receive the request. All of the available data will be returned,
 without generating errors that might otherwise terminate the
 processing of the query.

REPRESENTATION OF A REQUEST

 A request to a monitored entity is also a sequence of ASN.1 data
 items. Each item will fit into one of the following categories:

 Template These are objects with the same types as the
 objects returned by a request. The difference
 is that a template only specifies the shape of
 the data -- there are no values contained in
 it. Templates are used to select specific data
 to be returned. No ordering of returned data
 is implied by the ordering in a template. A
 template may be either simple or structured,
 depending upon what data it is naming. The
 representations of the simple data items in a
 template all have a length of zero.

 Tag A tag is a special case of a template that is a
 simple (non-structured) type (i.e., it names
 exactly one node in the dictionary tree).

 Opcodes These objects tell the query interpreter to do
 something. They are described in detail later in
 this report. Opcodes are represented as an
 application-specific type whose value determines
 the operation. These values are defined in
 RFC-1024.

 Data These are the same objects that are used to
 represent information returned from an entity.
 It is occasionally be necessary to send data as

Trewitt & Partridge [Page 6]

RFC 1023 HEMS Language October 1987

 part of a request. For example, when requesting
 information about the interface with IP address
 "10.0.0.51", the address would be sent in the
 same format in the request as it would be seen
 in a reply.

 Data, Tags, and Templates are usually in either the context-specific
 class, except for items in the root dictionary and a few special
 cases, which are in the application-specific class.

QUERY LANGUAGE

 Although queries are formed in a flexible way using what we term a
 "language", this is not a programming language. There are operations
 that operate on data, but most other features of programming
 languages are not present. In particular:

 - Programs are not stored in the query processor.

 - The only form of temporary storage is a stack.

 In the current version of the query language:

 - There are no subroutines.

 - There are no control structures defined in the language.

 - There are no arithmetic or conditional operators.

 These features could be added to the language if needed.

 This language is designed with the goal of being expressive enough to
 write useful queries with, but to guarantee simplicity, both of query
 execution and language implementation.

 The central element of the language is the stack. It may contain
 templates, (and therefore tags), data, or dictionaries (and therefore
 arrays) from the entity being monitored. Initially, it contains one
 item, the root dictionary.

 The overall operation consists of reading ASN.1 objects from the
 input stream. All objects that aren’t opcodes are pushed onto the
 stack as soon as they are read. Each opcode is executed immediately
 and may remove things from the stack and may generate ASN.1 objects
 and send them to the output stream. Note that portions of the
 response may be generated while the query is still being received.

 The following opcodes are defined in the language. This is a

Trewitt & Partridge [Page 7]

RFC 1023 HEMS Language October 1987

 provisional list -- changes may need to be made to deal with
 additional needs.

 In the descriptions below, opcode names are in capital letters,
 preceded by the arguments used from the stack and followed by results
 left on the stack. For example:

 OP a b OP t
 means that the OP operator takes <a> and off of the
 stack and leaves <t> on the stack. Many of the operators
 below leave the first operand (<a> in this example) on
 the stack for future use.

 Here are the operators defined in the query language:

 GET dict template GET dict
 Emit an ASN.1 object with the same "shape" as the given
 template. Any items in the template that are not in
 <dictionary> (or its components) are represented as
 objects with a length of zero. This handles requests for
 data that isn’t available, either because it isn’t
 defined or because it doesn’t apply in this situation.

 or dict GET dict
 If there is no template, get all of the items in the
 dictionary. This is equivalent to providing a template
 that lists all of the items in the dictionary.

 BEGIN dict1 tag BEGIN dict1 dict
 Pushes the value for dict{ tag } on the stack, which
 should be another dictionary. At the same time, produce
 the beginning octets of an ASN.1 object corresponding to
 that dictionary. It is up to the implementation to
 choose between using the "indefinite length"
 representation or going back and filling the length in
 later.

 END dict END --
 Pop the dictionary off of the stack and terminate the
 currently open ASN.1 object. Must be paired with a
 BEGIN.

Getting Items Based on Their Values

 One problem that has not been dealt with was alluded to earlier:
 When dealing with array data, how do you specify one or more entries
 based upon some value in the array entries? Consider the situation
 where there are several interfaces. The data might be organized as:

Trewitt & Partridge [Page 8]

RFC 1023 HEMS Language October 1987

 interfaces {
 interface { type, ip-addr, in-pkts, out-pkts, ...}
 interface { type, ip-addr, in-pkts, out-pkts, ...}
 :
 :
 }

 If you only want information about one interface (perhaps because
 there is an enormous amount of data about each), then you have to
 have some way to name it. One possibility is to just number the
 interfaces and refer to the desired interface as:
 interfaces(3)
 for the third one.

 But this is probably not sufficient since interface numbers may
 change over time, perhaps from one reboot to the next. This method
 is not sufficient at all for arrays with many elements, such as
 processes, routing tables, etc. Large, changing arrays are probably
 the more common case, in fact.

 Because of the lack of utility of indexing in this context, there is
 no general mechanism in the language for indexing.

 A better scheme is to select objects based upon some value contained
 in them, such as the IP address or process name. The GET-MATCH
 operator provides this functionality in a fairly general way.

 GET-MATCH array value template GET-MATCH array
 <array> should be a array (dictionary containing only
 one type of item). The first tag in <value> and
 <template> must match this type. For each entry in
 <array>, match the <value> against the contents of
 the entry. If there is a match, emit the entry based
 upon <template>, just as in a GET operation.

 If there are several leaf items in the value to be matched against,
 as in:
 route-entry{ interface(1), cost(3) }
 all of them must match an array entry for it to be emitted.

 Here is an example of how this operator would be used to obtain the
 input and output packet counts for the interface with ip-address
 10.0.0.51.

Trewitt & Partridge [Page 9]

RFC 1023 HEMS Language October 1987

 interfaces BEGIN -- get dictionary
 interface{ ip-addr(10.0.0.51) } -- value to match
 interface{ in-pkts out-pkts } -- data template to get
 GET-MATCH
 END -- finished with dict

 The exact meaning of a "match" is dependent upon the characteristics
 of the entities being compared. In almost all cases, it is a
 comparison for exact equality. However, it is quite reasonable to
 define values that allow matches to do interesting things. For
 example, one might define three different flavors of "ip-addr": one
 that has only the IP net number, one with the IP net+subnet, and the
 whole IP address. Another possibility is to allow for wildcards in
 IP addresses (e.g., if the "host" part of an IP address was all ones,
 then that would match against any IP address with the same net
 number).

 So, for all data items defined, the behavior of the match operation
 must be defined if it is not simple equality.

 Implementations don’t have to provide the ability to use all items in
 an object to match against. It is expected that some data structures
 that provide for efficient lookup for one item may be very
 inefficient for matching against others. (For instance, routing
 tables are designed for lookup with IP addresses. It may be very
 difficult to search the routing table, matching against costs.)

 NOTE: It would be desirable to provide a general-purpose filtering
 capability, rather than just "equality" as provided by GET-MATCH.
 However, because of the potential complexity of such a facility, lack
 of a widely-accepted representation for filter expressions, and time
 pressure, we are not defining this mechanism now.

 However, if a generalized filtering mechanism is devised, the GET-
 MATCH operator will disappear.

Data Attributes

 Although ASN.1 data is self-describing as far as the structure goes,
 it gives no information about what the data means (e.g., By looking
 at the raw data, it is possible to tell that an item is of type
 [context 5] and 4 octets long). That does not tell how to interpret
 the data (is this an integer, an IP address, or a 4-character
 string?), or what the data means (IP address of what?).

 Most of the time, this information will come from RFC-1024, which
 defines all of the ASN.1 tags and their precise meaning. When
 extensions have been made, it may not be possible to get

Trewitt & Partridge [Page 10]

RFC 1023 HEMS Language October 1987

 documentation on the extensions. (See the section about extensions,
 page 15.)

 The query language provides a set of operators parallel to the GET
 and GET-MATCH operators that return a set of attributes describing
 the data. This information should be sufficient to let a human
 understand the meaning of the data and to let a sophisticated
 application treat the data appropriately. The information is
 sufficient to let an application format the information on a display
 and decide whether or not to subtract one sample from another.

 Some of the attributes are textual descriptions to help a human
 understand the nature of the data and provide meaningful labels for
 it. Extensive descriptions of standard data are optional, since they
 are defined in RFC-1024. Complete descriptions of extensions must be
 available, even if they are documented in a user’s manual. Network
 firefighters may not have the manual handy when the network is
 broken.

 The format of the attributes is not as simple as the format of the
 data itself. It isn’t possible to use the data’s tag, since that
 would just look exactly like the data itself. The format is:

 Attributes ::= [APPLICATION 2] IMPLICIT SEQUENCE {
 tagASN1 [0] IMPLICIT INTEGER,
 valueFormat [1] IMPLICIT INTEGER,
 longDesc [2] IMPLICIT IA5String OPTIONAL,
 shortDesc [3] IMPLICIT IA5String OPTIONAL,
 unitsDesc [4] IMPLICIT IA5String OPTIONAL,
 precision [5] IMPLICIT INTEGER OPTIONAL,
 properties [6] IMPLICIT BITSTRING OPTIONAL,
 }

 For example, the attributes for
 system{ name, clock-msec }
 might be:
 system{
 Attributes{
 tagASN1(name), valueFormat(IA5String),
 longDesc("The name of the host"),
 shortDesc("hostname")
 },
 Attributes{
 tagASN1(clock-msec), valueFormat(Integer),
 longDesc("milliseconds since boot"),
 shortDesc("uptime"), unitsDesc("ms")
 precision(4294967296),
 properties(1)

Trewitt & Partridge [Page 11]

RFC 1023 HEMS Language October 1987

 }
 Note that in this example <name> and <clock-msec> are integer values
 for the ASN.1 tags for the two data items. A complete definition of
 the contents of the Attributes type is in RFC-1024.

 Note that there will be exactly as many Attributes items in the
 result as there are objects in the template. Attributes objects for
 items which do not exist in the entity will have a valueFormat of
 NULL and none of the optional elements will appear.

 GET-ATTRIBUTES
 dict template GET-ATTRIBUTES dict
 Emit ASN.1 Attributes objects that for the objects named
 in <template>. Any items in the template that are not
 in <dictionary> (or its components), elicit an
 Attributes object with no.

 or dict GET-ATTRIBUTES dict
 If there is no template, emit Attribute objects for all
 of the items in the dictionary. This is equivalent to
 providing a template that lists all of the items in the
 dictionary. This allows a complete list of a
 dictionary’s contents to be obtained.

 GET-ATTRIBUTES-MATCH
 dict value template GET-ATTRIBUTES-MATCH dict <array>
 should be an array (dictionary containing only one
 type of item). The first tag in <value> and
 <template> must match this type. For each entry in
 <array>, match the <value> against the contents of the
 entry. If there is a match, emit the atributes based
 upon <template>, just as in a GET-ATTRIBUTES operation.

 GET-ATTRIBUTES-MATCH is necessary because there will be situations
 where the contents of the elements of an array may differ, even
 though the array elements themselves are of the same type. The most
 obvious example of this is the situation where several network
 interfaces exist and are of different types, with different data
 collected for each type.

 NOTE: The GET-ATTRIBUTES-MATCH operator will disappear if a
 generalized filtering mechanism is devised.

 ADDITIONAL NOTE: A much cleaner method would be to store the
 attributes as sub-components of the data item of interest. For
 example, requesting:
 system{ clock-msec() } GET
 would normally just get the value of the data. Asking for an

Trewitt & Partridge [Page 12]

RFC 1023 HEMS Language October 1987

 additional layer down the tree would now get its attributes:
 system{ clock-msec{ shortDesc, unitsDesc } GET
 would get the named attributes. (The attributes would be named with
 application-specific tags.) Unfortunately, ASN.1 doesn’t provide an
 obvious notation to describe this type of organization. So, we’re
 stuck with the GET-ATTRIBUTES operator. However, if this cleaner
 organization becomes possible, this decision may be re-thought.

Examining Memory

 Even with the ability to symbolically access all of this information
 in an entity, there will still be times when it is necessary to get
 to very low levels and examine memory, as in remote debugging
 operations. The building blocks outlined so far can easily be
 extended to allow memory to be examined.

 Memory is modeled as an array, with an ASN.1 representation of
 OctetString. Because of the variety of addressing architectures in
 existence, the conversion between the OctetString and "memory" is
 very machine-dependent. The only simple case is for byte-addressed
 machines with 8 bits per byte.

 Each address space in an entity is represented by one dictionary. In
 a one-address-space situation, this dictionary will be at the top
 level. If each process has its own address space, then one "memory"
 dictionary may exist for each process.

 The GET-RANGE operator is provided for the primary purpose of
 retrieving the contents of memory, but can be used on any array. It
 is only useful in these other contexts if the array index is
 meaningful.

 GET-RANGE array start length GET-RANGE dict
 Get <length> elements of <array> starting at <start>.
 <start> and <length> are both ASN.1 INTEGER type.

 The returned data may not be <length> octets long, since it may take
 more than one octet to represent one memory location.

 Memory is special in that it will not automatically be returned as
 part of a request for an entire dictionary (e.g., If memory is part
 of the "system" dictionary, then requesting:
 system{}
 will emit the entire contents of the system dictionary, but not the
 memory item).

 NOTE: The GET-RANGE operator may disappear if a generalized
 filtering mechanism is devised.

Trewitt & Partridge [Page 13]

RFC 1023 HEMS Language October 1987

Controlling Things

 All of the operators defined so far only allow data in an entity to
 be retrieved. By replacing the "template" arguments used in the GET
 operators with values, data in the entity can be changed.

 There are many control operations that do not correspond to simply
 changing the value of a piece of data, such as bringing an interface
 "down" or "up". In these cases, a special data item associated with
 the component being controlled (e.g., each interface), would be
 defined. Control operations then consist of "setting" this item to
 an appropriate command code.

 SET dict value SET dict
 Set the value(s) of data in the entity to the value(s)
 given in <value>.

 SET-MATCH array mvalue svalue SET-MATCH dict
 <array> should be a array (dictionary containing only one
 type of item). The first tag in <mvalue> and <svalue>
 must match this type. For each entry in <array>, match
 the <mvalue> against the contents of the entry. If there
 is a match, set value(s) in the entity to the value(s) in
 <svalue>, just as in SET.

 CREATE array value SET dict
 Insert a new entry into <array>. Depending upon the
 context, there may be severe restrictions about what
 constitutes a valid <value>.

 DELETE array value SET dict
 Delete the entry(s) in <array> that have values that
 match <value>.

 If there are several leaf items in the matched value, as in
 route-entry{ interface(1), cost(3) }
 all of them must match an array entry for any values to be changed.

 Here is an example of how this operator would be used to shut down
 the interface with ip-address 10.0.0.51 changing its status to
 "down".

 interfaces BEGIN -- get dictionary
 interface{ ip-addr(10.0.0.51) } -- value to match
 interface{ status(down) } -- value to set
 SET-MATCH
 END -- finished with dict

Trewitt & Partridge [Page 14]

RFC 1023 HEMS Language October 1987

 Delete the routing table entry for 36.0.0.0.

 route-table BEGIN -- get dictionary
 route-entry{ ip-addr(36.0.0.0) } -- value to match
 DELETE
 END -- finished with dict

 Note that this BEGIN/END pair ends up sending an empty ASN.1 item.
 We don’t regard this as a problem, as it is likely that there will be
 some get operations executed in the same context. In addition, the
 "open" ASN.1 item provides the correct context for reporting errors.
 (See page 14.)

 NOTE: The SET-MATCH operator will disappear and the DELETE operator
 will change if a generalized filtering mechanism is devised.

Atomic Operations

 Atomic operations can be provided if desired by allowing the stack to
 contain a fragment of a query. A new operation would take a query
 fragment and verify its executability and execute it, atomically.

 This is mentioned as a possibility, but it may be difficult to
 implement. More study is needed.

ERRORS

 If some particular information is requested but is not available for
 any reason (e.g., it doesn’t apply to this implementation, isn’t
 collected, etc.), it can ALWAYS be returned as "no-value" by giving
 the ASN.1 length as 0.

 When there is any other kind of error, such as having improper
 arguments on the top of the stack or trying to execute BEGIN when the
 tag doesn’t refer to a dictionary, an ERROR object be emitted. The
 contents of this object identify the exact nature of the error and
 are discussed in RFC-1024.

 Since there may be several unterminated ASN.1 objects in progress at
 the time the error occurs, each one must be terminated. Each
 unterminated object will be closed with a copy of the ERROR object.
 Depending upon the type of length encoding used for this object, this
 will involve filling the value for the length (definite length form)
 or emitting two zero octets (indefinite length form). After all
 objects are terminated, a final copy of the ERROR object will be
 emitted. This structure guarantees that the error will be noticed at
 every level of interpretation on the receiving end.

Trewitt & Partridge [Page 15]

RFC 1023 HEMS Language October 1987

 If there was an error before any ASN.1 objects were generated, then
 the result would simply be:
 error(details)

 If a couple of ASN.1 objects were unterminated, the result might look
 like:

 interfaces{
 interface { name(...) type(...) error(details) }
 error(details)
 }
 error{details}

EXTENDING THE SET OF VALUES

 There are two ways to extend the set of values understood by the
 query language. The first is to register the data and its meaning
 and get an ASN.1 tag assigned for it. This is the preferred method
 because it makes that data specification available for everyone to
 use.

 The second method is to use the VendorSpecific application type to
 "wrap" the vendor-specific data. Wherever an implementation defines
 data that is not in RFC-1024, the "VendorSpecific" tag should be used
 to label a dictionary containing the vendor-specific data. For
 example, if a vendor had some data associated with interfaces that
 was too strange to get standard numbers assigned for, they could,
 instead represent the data like this:

 interfaces {
 interface {
 in-pkts, out-pkts, ...
 VendorSpecific { ephemeris, declination }
 }
 }

 In this case, ephemeris and declination are two context-dependent
 tags assigned by the vendor for its non-standard data.

 If the vendor-specific method is chosen, the private data MUST have
 descriptions available through the GET-ATTRIBUTES and GET-
 ATTRIBUTESMATCH operators. Even with this descriptive ability, the
 preferred method is to get standard numbers assigned if possible.

IMPLEMENTATION

 Although it is not normally in the spirit of RFCs to define an
 implementation, the authors feel that some suggestions will be useful

Trewitt & Partridge [Page 16]

RFC 1023 HEMS Language October 1987

 to early implementors of the query language. This list is not meant
 to be complete, but merely to give some hints about how the authors
 imagine that the query processor might be implemented efficiently.

 - The stack is an abstraction -- it should be implemented
 with pointers, not by copying dictionaries, etc.

 - An object-oriented approach should make initial
 implementation fairly easy. Changes to the "shape" if the
 data items (which will certainly occur, early on) will also
 be easier to make.

 - Only a few "messages" need to be understood by objects.

 - Most interesting objects are dictionaries, each of which
 can be implemented using pointers to the data and procedure
 "hooks" to perform specific operations such as GET, MATCH,
 SET, etc.

 - The hardest part is actually extracting the data from an
 existing TCP/IP implementions that weren’t designed with
 detailed monitoring in mind. This should be less of a
 problem if a system is designed with easy monitoring as a
 goal.

OBTAINING A COPY OF THE ASN.1 SPECIFICATION

 Copies of ISO Standard ASN.1 (Abstract Syntax Notation 1) are
 available from the following source. It comes in two parts; both are
 needed:

 IS 8824 -- Specification (meaning, notation)
 IS 8825 -- Encoding Rules (representation)

 They are available from:

 Omnicom Inc.
 115 Park St, S.E. (new address as of March, 1987)
 Vienna, VA 22180
 (703) 281-1135

Trewitt & Partridge [Page 17]

