
Network Working Group D. Arnon
Request for Comments: 1019 Xerox PARC
 September 1987

 Report of the Workshop on Environments for Computational Mathematics
 July 30, 1987
 ACM SIGGRAPH Conference
 Anaheim Convention Center, Anaheim, California

Status of This Memo

 This memo is a report on the discussion of the representation of
 equations in a workshop at the ACM SIGGRAPH Conference held in
 Anaheim, California on 30 July 1987. Distribution of this memo is
 unlimited.

Introduction

 Since the 1950’s, many researchers have worked to realize the vision
 of natural and powerful computer systems for interactive mathematical
 work. Nowadays this vision can be expressed as the goal of an
 integrated system for symbolic, numerical, graphical, and
 documentational mathematical work. Recently the development of
 personal computers (with high resolution screens, window systems, and
 mice), high-speed networks, electronic mail, and electronic
 publishing, have created a technological base that is more than
 adequate for the realization of such systems. However, the growth of
 separate Mathematical Typesetting, Multimedia Electronic Mail,
 Numerical Computation, and Computer Algebra communities, each with
 its own conventions, threatens to prevent these systems from being
 built.

 To be specific, little thought has been given to unifying the
 different expression representations currently used in the different
 communities. This must take place if there is to be interchange of
 mathematical expressions among Document, Display, and Computation
 systems. Also, tools that are wanted in several communities (e.g.,
 WYSIWYG mathematical expression editors), are being built
 independently by each, with little awareness of the duplication of
 effort that thereby occurs. Worst of all, the ample opportunities
 for cross-fertilization among the different communities are not being
 exploited. For example, some Computer Algebra systems explicitly
 associate a type with a mathematical expression (e.g., 3 x 3 matrix
 of polynomials with complex number coefficients), which could enable
 automated math proofreaders, analogous to spelling checkers.

 The goal of the Workshop on Environments for Computational
 Mathematics was to open a dialogue among representatives of the

Arnon [Page 1]

RFC 1019 September 1987

 Computer Algebra, Numerical Computation, Multimedia Electronic Mail,
 and Mathematical Typesetting communities. In July 1986, during the
 Computers and Mathematics Conference at Stanford University, a subset
 of this year’s participants met at Xerox PARC to discuss User
 Interfaces for Computer Algebra Systems. This group agreed to hold
 future meetings, of which the present Workshop is the first. Alan
 Katz’s recent essay, "Issues in Defining an Equations Representation
 Standard", RFC-1003, DDN Network Information Center, March 1987
 (reprinted in the ACM SIGSAM Bulletin May 1987, pp. 19-24),
 influenced the discussion at the Workshop, especially since it
 discusses the interchange of mathematical expressions.

 This report does not aim to be a transcript of the Workshop, but
 rather tries to extract the major points upon which (in the Editor’s
 view) rough consensus was reached. It is the Editor’s view that the
 Workshop discussion can be summarized in the form of a basic
 architecture for "Standard Mathematical Systems", presented in
 Section II below. Meeting participants seemed to agree that: (1)
 existing mathematical systems should be augmented or modified to
 conform to this architecture, and (2) future systems should be built
 in accordance with it.

 The Talks and Panel-Audience discussions at the Workshop were
 videotaped. Currently, these tapes are being edited for submission
 to the SIGGRAPH Video Review, to form a "Video Proceedings". If
 accepted by SIGGRAPH, the Video Proceedings will be publicly
 available for a nominal distribution charge.

 One aspect of the mathematical systems vision that we explicitly left
 out of this Workshop is the question of "intelligence" in
 mathematical systems. This has been a powerful motivation to systems
 builders since the early days. Despite its importance, we do not
 expect intelligent behavior in mathematical systems to be realized in
 the short term, and so we leave it aside. Computer Assisted
 Instruction for mathematics also lies beyond the scope of the
 Workshop. And although it might have been appropriate to invite
 representatives of the Spreadsheets and Graphics communities, we did
 not. Many of those who were at the Workshop have given considerable
 thought to Spreadsheets and Graphics in mathematical systems.

 Financial support from the Xerox Corporation for AudioVisual
 equipment rental at SIGGRAPH is gratefully acknowledged. Thanks are
 due to Kevin McIsaac for serving as chief cameraman, providing
 critical comments on this report, and contributing in diverse other
 ways to the Workshop. Thanks also to Richard Fateman, Michael
 Spivak, and Neil Soiffer for critical comments on this report.
 Subhana Menis and Erin Foley have helped with logistics and
 documentation at several points along the way.

 Information on the Video Proceedings, and any other aspect of the
 Workshop can be obtained from the author of this report.

Arnon [Page 2]

RFC 1019 September 1987

I. Particulars of the meeting

 The Workshop had four parts: (1) Talks, (2) Panel Discussion, (3)
 Panel and Audience discussion, (4) and Live demos. Only a few of the
 systems presented in the talks were demonstrated live. However, many
 of the talks contained videotapes of the systems being discussed.

 The talks, each 15 minutes in length, were:

 1. "The MathCad System: a Graphical Interface for Computer
 Mathematics", Richard Smaby, MathSOFT Inc.

 2. "MATLAB - an Interactive Matrix Laboratory", Cleve Moler,
 MathWorks Inc.

 3. "Milo: A Macintosh System for Students", Ron Avitzur, Free Lance
 Developer, Palo Alto, CA.

 4. "MathScribe: A User Interface for Computer Algebra systems", Neil
 Soiffer, Tektronix Labs.

 5. "INFOR: an Interactive WYSIWYG System for Technical Text",
 William Schelter, University of Texas.

 6. "Iris User Interface for Computer Algebra Systems", Benton Leong,
 University of Waterloo.

 7. "CaminoReal: A Direct Manipulation Style User Interface for
 Mathematical Software", Dennis Arnon, Xerox PARC.

 8. "Domain-Driven Expression Display in Scratchpad II", Stephen
 Watt, IBM Yorktown Heights.

 9. "Internal and External Representations of Valid Mathematical
 Reasoning", Tryg Ager, Stanford University.

 10. "Presentation and Interchange of Mathematical Expressions in the
 Andrew System", Maria Wadlow, Carnegie-Mellon University.

 The Panel discussion lasted 45 minutes. The panelists were:

 Richard Fateman, University of California at Berkeley
 Richard Jenks, IBM Yorktown Heights
 Michael Spivak, Personal TeX
 Ronald Whitney, American Mathematical Society

Arnon [Page 3]

RFC 1019 September 1987

 The panelists were asked to consider the following issues in planning
 their presentations:

 1. Should we try to build integrated documentation/computation
 systems?

 2. WYSIWYG editing of mathematical expressions.

 3. Interchange representation of mathematics.

 4. User interface design for integrated documentation/computation
 systems.

 5. Coping with large mathematical expressions.

 A Panel-Audience discussion lasted another 45 minutes, and the Demos
 lasted about one hour.

 Other Workshop participants, besides those named above, included:

 S. Kamal Abdali, Tektronix Labs
 George Allen, Design Science
 Alan Katz, Information Sciences Institute
 J. Robert Cooke, Cornell University and Cooke Publications
 Larry Lesser, Inference Corporation
 Tom Libert, University of Michigan
 Kevin McIsaac, Xerox PARC and University of Western Australia
 Elizabeth Ralston, Inference Corporation

II. Standard Mathematical Systems - a Proposed Architecture

 We postulate that there is an "Abstract Syntax" for any mathematical
 expression. A piece of Abstract Syntax consists of an Operator and
 an (ordered) list of Arguments, where each Argument is (recursively)
 a piece of Abstract Syntax. Functional Notation, Lisp SExpressions,
 Directed Acyclic Graphs, and N-ary Trees are equivalent
 representations of Abstract Syntax, in the sense of being equally
 expressive, although one or another might be considered preferable
 from the standpoint of computation and algorithms. For example, the
 functional expression "Plus[Times[a,b],c]" represents the Abstract
 Syntax of an expression that would commonly be written "a*b+c".

 A "Standard Mathematical Component" (abbreviated SMC) is a collection
 of software and hardware modules, with a single function, which if it
 reads mathematical expressions, reads them as Abstract Syntax, and if
 it writes mathematical expressions, writes them as Abstract Syntax.
 A "Standard Mathematical System" (abbreviated SMS) is a collection of
 SMC’s which are used together, and which communicate with each other
 in Abstract Syntax.

 We identify at least four possible types of components in an SMS.

Arnon [Page 4]

RFC 1019 September 1987

 Any particular SMS may have zero, one, or several instances of each
 component type. The connection between two particular components of
 an SMS, of whatever type, is via Abstract Syntax passed over a "wire"
 joining them.

 1) EDs - Math Editors

 These edit Abstract Syntax to Abstract Syntax. A particular system
 may have editors that work on some other representations of
 mathematics (e.g., bitmaps, or particular formatting languages),
 however they do not qualify as an ED components of a SMS. An ED may
 be WYSIWYG or language-oriented.

 2) DISPs - Math Displayers

 These are suites of software packages, device drivers, and hardware
 devices that take in an expr in Abstract Syntax and render it. For
 example, (1) the combination of an Abstract Syntax->TeX translator,
 TeX itself, and a printer, or (2) a plotting package plus a plotting
 device. A DISP component may or may not support "pointing" (i.e.,
 selection), within an expression it has displayed, fix a printer
 probably doesn’t, but terminal screen may. If pointing is supported,
 then a DISP component must be able to pass back the selected
 subexpression(s) in Abstract Syntax. We are not attempting here to
 foresee, or limit, the selection mechanisms that different DISPs may
 offer, but only to require that a DISP be able to communicate its
 selections in Abstract Syntax.

 3) COMPs - Computation systems

 Examples are Numerical Libraries and Computer Algebra systems. There
 are questions as to the state of a COMP component at the time it
 receives an expression. For example, what global flags are set, or
 what previous expressions have been computed that the current
 expression may refer to. However, we don’t delve into these hard
 issues at this time.

 4) DOCs - Document systems

 These are what would typically called "text editors", "document
 editors", or "electronic mail systems". We are interested in their
 handling of math expressions. In reality, they manage other document
 constituents as well (e.g., text and graphics). The design of the
 user interface for the interaction of math, text, and graphics is a
 nontrivial problem, and will doubtless be the subject of further
 research.

 A typical SMS will have an ED and a DISP that are much more closely
 coupled than is suggested here. For example, the ED’s internal
 representation of Abstract Syntax, and the DISP’s internal
 representation (e.g., a tree of boxes), may have pointers back and

Arnon [Page 5]

RFC 1019 September 1987

 forth, or perhaps may even share a common data structure. This is
 acceptable, but it should always be possible to access the two
 components in the canonical, decoupled way. For example, the ED
 should be able to receive a standard Abstract Syntax representation
 for an expression, plus an editing command in Abstract Syntax (e.g.,
 Edit[expr, cmd]), and return an Abstract Syntax representation for
 the result. Similarly, the DISP should be able to receive Abstract
 Syntax over the wire and display it, and if it supports pointing, be
 able to return selected subexpressions in Abstract Syntax.

 The boundaries between the component types are not hard and fast. For
 example, an ED might support simple computations (e.g.,
 simplification, rearrangement of subexpressions, arithmetic), or a
 DOC might contain a facility for displaying mathematical expressions.
 The key thing for a given module to qualify as an SMC is its ability
 to read and write Abstract Syntax.

III. Recommendations and Qualifications

 1. It is our hypothesis that it will be feasible to encode a rich
 variety of other languages in Abstract Syntax, for example,
 programming constructs. Thus we intend it to be possible to
 pass such things as Lisp formatting programs, plot programs,
 TeX macros, etc. over the wire in Abstract Syntax. We also
 hypothesize that it will be possible to encode all present and
 future mathematical notations in Abstract Syntax (e.g.,
 commutative diagrams in two or three dimensions). For
 example, the 3 x 3 identify matrix might be encoded as:

 Matrix[[1,0,0], [0,1,0], [0,0,1]]

 while the Abstract Syntax expression:

 Matrix[5, 5, DiagonalRow[1, ThreeDots[], 1],
 BelowDiagonalTriangle[FlexZero[]],
 AboveDiagonalTriangle[FlexZero[]]]

 might encode a 5 x 5 matrix which is to be displayed with a
 "1" in the (1,1) position, a "1" in the (5,5) position, three
 dots between them on the diagonal, a big fat zero in the lower
 triangle indicating the presence of zeros there, and a big fat
 zero in the upper triangle indicating zeros.

 2. We assume the use of the ASCII character set for Abstract Syntax
 expressions. Greek letters, for example, would need to be
 encoded with expressions like Greek[alpha], or Alpha[].
 Similarly, font encoding is achieved by the use of Abstract
 Syntax such as the following for 12pt bold Times Roman:
 Font[timesRoman, 12, bold, <expression>] Two SMCs are free to
 communicate in a larger character set, or pass font
 specifications in other ways, but they should always be able to

Arnon [Page 6]

RFC 1019 September 1987

 express themselves in standard Abstract Syntax.

 3. COMPs (e.g., Computer Algebra systems), should be able to
 communicate in Abstract Syntax. Existing systems should
 have translators to/from Abstract Syntax added to them. In
 addition, if we can establish a collection of standard names and
 argument lists for common functions, and get all COMP’s to read
 and write them, then any Computer Algebra system will be able to
 talk to any other. Some examples of possible standard names and
 argument lists for common functions:

 Plus[a,b,...]
 Minus[a]
 Minus[a,b]
 Times[a,b,...]
 Divide[<numerator>, <denominator>]
 Power[<base>, <exponent>]
 PartialDerivative[<expr>, <var>]
 Integral[<expr>, <var>, <lowerLimit>,<upperLimit>] (limits optional)
 Summation[<<summand>, <lowerLimit>, <upperLimit>] (limits optional)

 A particular algebra system may read and write nonstandard
 Abstract Syntax. For example:

 Polynomial[Variables[x, y, z], List[Term[coeff, xExp, yExp, zExp],
 ...

 but, it should be able to translate this to an equivalent standard
 representation. For example:

 Plus[Times[coeff, Power[x, xExp], ...

 4. A DOC must store the Abstract Syntax representations of the
 expressions it contains. Thus it’s easy for it to pass its
 expressions to EDs, COMPs, or DISPs. A DOC is free to store
 additional expression representations. For example, a tree of
 Boxes, a bitmap, or a TeX description.

 5. DISPs will typically have local databases of formatting
 information. To actually render the Abstract Syntax, the DISP
 checks for display rules in its database. If none are found,
 it paints the Abstract Syntax in some standard way. Local
 formatting databases can be overridden by formatting rules passed
 over the wire, expressed in Abstract Syntax. It is formatting
 databases that store knowledge of particular display
 environments (for e.g., "typesetting for Journal X").

 The paradigm we wish to follow is that of the genetic code: A
 mathematical expression is like a particular instance of DNA, and
 upon receiving it a DISP consults the appropriate formatting
 database to see if it understands it. If not, the DISP just

Arnon [Page 7]

RFC 1019 September 1987

 "passed it through unchanged". The expression sent over the wire
 may be accompanied by directives or explanatory information,
 which again may or may not be meaningful to a particular DISP. In
 reality, formatting databases may need to contain Expert
 System-level sophistication to be able to produce professional
 quality typesetting results, but we believe that useful results
 can be achieved even without such sophistication.

 6. With the use of the SMC’s specified above, it becomes easy to use
 any DOC as a logging facility for a session with a COMP. Therefore,
 improvements in DOCs (e.g., browsers, level structuring, active
 documents, audit trails), will automatically give us better
 logging mechanisms for sessions with algebra systems.

 7. Note that Abstract Syntax is human-readable. Thus any text
 editor can be used as an ED. Of course, in a typical SMS, users
 should have no need to look at the Abstract Syntax flowing
 through the internal "wires" if they don’t care to. Many will
 want to interact only with mathematics that has a textbook-like
 appearance, and they should be able to do so.

 8. Alan Katz’s RFC (cited above) distinguishes the form (i.e.,
 appearance) of a mathematical expression from its content (i.e.,
 meaning, value). We do not agree that such a distinction can be
 made. We claim that Abstract Syntax can convey form, meaning,
 or both, and that its interpretation is strictly in the eye
 of the beholder(s). Meaning is just a handshake between sender
 and recipient.

 9. Help and status queries, the replies to help and status queries,
 and error messages should be read and written by SMC’s in
 Abstract Syntax.

 10. In general, it is permissible for two SMC’s to use private
 protocols for communication. Our example of a tightly coupled ED
 and DISP above is one example. Two instances of a Macsyma COMP
 would be another; they might agree to pass Macsyma internal
 representations back and forth. To qualify as SMC’s, however,
 they should be able to translate all such exchanges into
 equivalent exchanges in Abstract Syntax.

Arnon [Page 8]

