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Status of this Memo

   This RFC is being distributed to members of the Internet community
   in order to solicit comments on the Implementors Guide. While this
   document may not be directly relevant to the research problems
   of the Internet, it may be of some interest to a number of researchers
   and implementors. Distribution of this memo is unlimited.

            IMPLEMENTATION GUIDE FOR THE ISO TRANSPORT PROTOCOL

1   Interpretation of formal description.

   It is assumed that the reader is familiar with both the formal
   description technique, Estelle [ISO85a], and the transport protocol
   as described in IS 8073 [ISO84a] and in N3756 [ISO85b].

1.1   General interpretation guide.

   The development of the formal description of the ISO Transport
   Protocol was guided by the three following assumptions.

                      1. A generality principle

   The formal description is intended to express all of the behavior
   that any implementation is to demonstrate, while not being bound
   to the way that any particular implementation would realize that
   behavior within its operating context.

                      2. Preservation of the deliberate
                         nondeterminism of IS 8073

   The text description in the IS 8073 contains deliberate expressions
   of nondeterminism and indeterminism in the behavior of the
   transport protocol for the sake of flexibility in application.
   (Nondeterminism in this context means that the order of execution
   for a set of actions that can be taken is not specified.
   Indeterminism means that the execution of a given action cannot be
   predicted on the basis of system state or the executions of other
   actions.)
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                      3. Discipline in the usage of Estelle

   A given feature of Estelle was to be used only if the nature of
   the mechanism to be described strongly indicates its usage,
   or to adhere to the generality principle, or to retain the
   nondeterminism of IS 8073.

   Implementation efficiency was not a particular goal nor was there
   an attempt to directly correlate Estelle mechanisms and features
   to implementation mechanisms and features.  Thus, the description
   does not represent optimal behavior for the implemented protocol.

   These assumptions imply that the formal description contains higher
   levels of abstraction than would be expected in a description for
   a particular operating environment.  Such abstraction is essential,
   because of the diversity of networks and network elements by which
   implementation and design decisions are influenced.  Even when
   operating environments are essentially identical, design choice and
   originality in solving a technical problem must be allowed.
   The same behavior may be expressed in many different ways.  The
   goal in producing the transport formal description was to attempt
   to capture this equivalence.  Some mechanisms of transport are not
   fully described or appear to be overly complicated because of the
   adherence to the generality principle.  Resolution of these
   situations may require significant effort on the part of the
   implementor.

   Since the description does not represent optimal behavior for the
   implemented protocol, implementors should take the three assumptions
   above into account when using the description to implement the
   protocol.  It may be advisable to adapt the standard description in
   such a way that:

     a.   abstractions (such as modules, channels, spontaneous
          transitions and binding comments) are interpreted and realized
          as mechanisms appropriate to the operating environment and
          service requirements;

     b.   modules, transitions, functions and procedures containing
          material irrelevant to the classes or options to be supported
          are reduced or eliminated as needed; and

     c.   desired real-time behavior is accounted for.

   The use in the formal description of an Estelle feature (for
   instance, "process"), does not imply that an implementation must
   necessarily realize the feature by a synonymous feature of the
   operating context.  Thus, a module declared to be a "process" in an
   Estelle description need not represent a real process as seen by a
   host operating system; "process" in Estelle refers to the
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   synchronization properties of a set of procedures (transitions).

   Realizations of Estelle features and mechanisms are dependent in an
   essential way upon the performance and service an implementation is
   to provide.  Implementations for operational usage have much more
   stringent requirements for optimal behavior and robustness than do
   implementations used for simulated operation (e.g., correctness or
   conformance testing).  It is thus important that an operational
   implementation realize the abstract features and mechanisms of a
   formal description in an efficient and effective manner.

   For operational usage, two useful criteria for interpretation of
   formal mechanisms are:

        [1] minimization of delays caused by the mechanism
            itself; e.g.,

               --transit delay for a medium that realizes a
                 channel

               --access delay or latency for channel medium

               --scheduling delay for timed transitions
                 (spontaneous transitions with delay clause)

               --execution scheduling for modules using
                 exported variables (delay in accessing
                 variable)

        [2] minimization of the "handling" required by each
            invocation of the mechanism; e.g.,

               --module execution scheduling and context
                 switching

               --synchronization or protocols for realized
                 channel

               --predicate evaluation for spontaneous
                 transitions

   Spontaneous transitions represent nondeterminism and indeterminism,
   so that uniform realization of them in an implementation must be
   questioned as an implementation strategy.  The time at which the
   action described by a spontaneous transition will actually take
   place cannot be specified because of one or more of the following
   situations:

     a.   it is not known when, relative to any specific event defining
          the protocol (e.g., input network, input from user, timer
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          expirations), the conditions enabling the transition will
          actually occur;

     b.   even if the enabling conditions are ultimately deterministic,
          it is not practical to describe all the possible ways this
          could occur, given the different ways in which implementations
          will examine these conditions; and

     c.   a particular implementation may not be concerned with the
          enabling conditions or will account for them in some other
          way; i.e., it is irrelevant when the action takes place, if
          ever.

   As an example of a), consider the situation when splitting over the
   network connection, in Class 4, in which all of the network
   connections to which the transport connection has been assigned have
   all disconnected, with the transport connection still in the OPEN
   state.  There is no way to predict when this will happen, nor is
   there any specific event signalling its occurrence.  When it does
   occur, the transport protocol machine may want to attempt to obtain
   a new network connection.

   As an example of b), consider that timers may be expressed
   succinctly in Estelle by transitions similar to the following:

                 from A to B
                 provided predicate delay( timer_interval )

                 begin
                 (* action driven by timeout *)
                 end;

   But there are operations for which the timer period may need to
   be very accurate (close to real time) and others in which some
   delay in executing the action can be tolerated.  The implementor
   must determine the optimal behavior desired for each instance
   and use an appropriate mechanism to realize it, rather than
   using a uniform approach to implementing all spontaneous
   transitions.

   As an example of the situation in c), consider the closing of an
   unused network connection.  If the network is such that the cost
   of letting the network connection remain open is small compared
   cost of opening it, then an implementation might not want to
   consider closing the network connection until, say, the weekend.
   Another implementation might decide to close the network
   connection within 30 msec after discovering that the connection
   is not busy.  For still another implementation, this could be
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   meaningless because it operates over a connectionless network
   service.

   If a description has only a very few spontaneous transitions, then
   it may be relatively easy to implement them literally (i.e., to
   schedule and execute them as Estelle abstractly does) and not
   incur the overhead from examining all of the variables that occur
   in the enabling conditions.  However, the number and complexity of
   the enabling conditions for spontaneous transitions in the transport
   description strongly suggests that an implementation which realizes
   spontaneous transitions literally will suffer badly from such
   overhead.

1.2   Guide to the formal description.

   So that implementors gain insight into interpretation of the
   mechanisms and features of the formal description of transport, the
   following paragraphs discuss the meanings of such mechanisms and
   features as intended by the editors of the formal description.

1.2.1   Transport Protocol Entity.

1.2.1.1   Structure.

   The diagram below shows the general structure of the Transport
   Protocol Entity (TPE) module, as given in the formal description.
   >From an abstract operational viewpoint, the transport protocol
   Machines (TPMs) and the Slaves operate as child processes of the the
   TPE process.  Each TPM represents the endpoint actions of the
   protocol on a single transport connection.  The Slave represents
   control of data output to the network.  The internal operations of
   the TPMs and the Slave are discussed below in separate sections.

   This structure permits describing multiple connections, multiplexing
   and splitting on network connections, dynamic existence of endpoints
   and class negotiation.  In the diagram, interaction points are
   denoted by the symbol "O", while (Estelle) channels joining these
   interaction points are denoted by
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             *
             *
             *

   The symbol "X" represents a logical association through variables,
   and the denotations

           <<<<<<<

           >>>>>>>

              V
              V
              V

   indicate the passage of data, in the direction of the symbol
   vertices, by way of these associations.  The acronyms TSAP and
   NSAP denote Transport Service Access Point and Network Service
   Access Point, respectively.  The structure of the TSAPs and
   NSAPs shown is discussed further on, in Parts 1.2.2.1 and
   1.2.2.2.

             |<-----------------TSAP---------------->|
   ----------O---------O---------O---------O---------O---------
   |  TPE    *                   *         *                  |
   |         *                   *         *                  |
   |     ____O____           ____O____ ____O____              |
   |     |       |           |       | |       |              |
   |     |  TPM  |           |  TPM  | |  TPM  |              |
   |     |       |           |       | |       |              |
   |     |___X___|           |__X_X__| |___X___|              |
   |         V                  V V        V                  |
   |         V   multiplex      V V        V                  |
   |         >>>>>>>> <<<<<<<<<<< V        V                  |
   |                V V     split V        V                  |
   |                V V           V        V                  |
   |              ---X----     ---X---- ---X----              |
   |              |Slave |     |Slave | |Slave |              |
   |              |__O___|     |__O___| |__O___|              |
   |                 V            V        V                  |
   |                 V            V        V                  |
   |-----------------O------------O--------O------------------|
                   NSAP           |<------>|

                               NSAP
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   The structuring principles of Estelle provide a formal means of
   expressing and enforcing certain synchronization properties between
   communicating processes.  It must be stressed that the scheduling
   implied by Estelle descriptions need not and in some cases should
   not be implemented.  The intent of the structure in the transport
   formal description is to state formally the synchronization of
   access tovariables shared by the transport entity and the transport
   connection endpoints and to permit expression of dynamic objects
   within the entity.  In nearly all aspects of operation except these,
   it may be more efficient in some implementation environments to
   permit the TPE and the TPMs to run in parallel (the Estelle
   scheduling specifically excludes the parallel operation of the TPE
   and the TPMs). This is particularly true of internal management
   ("housekeeping") actions and those actions not directly related to
   communication between the TPE and the TPMs or instantiation of TPMs.
   Typical actions of this latter sort are: receipt of NSDUs from the
   network, integrity checking and decoding of TPDUs, and network
   connection management. Such actions could have been collected into
   other modules for scheduling closer to that of an implementation,
   but surely at the risk of further complicating the description.
   Consequently, the formal description structure should be understood
   as expressing relationships among actions and objects and not
   explicit implementation behavior.

1.2.1.2   Transport protocol entity operation.

   The details of the operation of the TPE from a conceptual point of
   view are given in the SYS section of the formal description.
   However, there are several further comments that can be made
   regarding the design of the TPE.  The Estelle body for the TPE
   module has no state variable.  This means that any transition of
   the TPE may be enabled and executed at any time.  Choice of
   transition is determined primarily by priority.  This suggests
   that the semantics of the TPE transitions is that of interrupt
   traps.

   The TPE handles only the T-CONNECT-request from the user and the TPM
   handle all other user input.  All network events are handled by the
   TPE, in addition to resource management to the extent defined in the
   description.  The TPE also manages all aspects of connection
   references, including reference freezing.  The TPE does not
   explicitly manage the CPU resource for the TPMs, since this is
   implied by the Estelle scheduling across the module hierarchy.
   Instantiation of TPMs is also the responsibility of the TPE, as is
   TPM release when the transport connection is to be closed.  Once a
   TPM is created, the TPE does not in general interfere with TPM’s
   activities, with the following exceptions:  the TPE may reduce credit
   to a Class 4 TPM without notice;  the TPE may dissociate a Class 4
   TPM from a network connection when splitting is being used.
   Communication between the TPE and the TPMs is through a set of
   exported variables owned by the TPMs, and through a channel which
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   passes TPDUs to be transmitted to the remote peer.  This channel is
   not directly connected to any network connection, so each
   interaction on it carries a reference number indicating which network
   connection is to be used. Since the reference is only a reference,
   this permits usage of this mechanism when the network service is
   connectionless, as well.  The mechanism provides flexibility for
   both splitting and multiplexing on network connections.

   One major function that the TPE performs for all its TPMs is that of
   initial processing of received TPDUs.  First, a set of integrity
   checks is made to determine if each TPDU in an NSDU is decodable:

     a.   PDU length indicators and their sums are checked against the
          NSDU length for consistency;

     b.   TPDU types versus minimum header lengths for the types are
          checked, so that if the TPDU can be decoded, then proper
          association to TPMs can be made without any problem;

     c.   TPDUs are searched for checksums and the local checksum is
          computed for any checksum found; and

     d.   parameter codes in variable part of headers are checked where
          applicable.

   These integrity checks guarantee that an NSDU passing the check can
   be separated as necessary into TPDUs, these TPDUs can be associated
   to the transport connections or to the Slave as appropriate and they
   can be further decoded without error.

   The TPE next decodes the fixed part of the TPDU headers to determine
   the disposition of the TPDU.  The Slave gets TPDUs that cannot be
   assigned to a TPM (spurious TPDU).  New TPMs are created in response
   to CR TPDUs that correspond to a TSAP for this TPE.

   All management of NSAPs is done by the TPE.  This consists of keeping
   track of all network connections, their service quality
   characteristics and their availability, informing the TPMs associated
   with these network connections.

   The TPE has no timer module as such.  Timing is handled by using the
   DELAY feature of Estelle, since this feature captures the essence of
   timing without specifying how the actual timing is to be achieved
   within the operating environment.  See Part 1.2.5 for more details.

1.2.2   Service Access Points.

   The service access points (SAP) of the transport entity are modeled
   using the Estelle channel/interaction point formalism.  (Note: The
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   term "channel" in Estelle is a keyword that denotes a set of
   interactions which may be exchanged at interaction points [LIN85].
   However, it is useful conceptually to think of "channel" as denoting
   a communication path that carries the interactions between modules.)
   The abstract service primitives for a SAP are interactions on
   channels entering and leaving the TPE.  The transport user is
   considered to be at the end of the channel connected to the transport
   SAP (TSAP) and the network service provider is considered to be at
   the end of the channel connected to the network SAP (NSAP).  An
   interaction put into a channel by some module can be considered to
   move instantaneously over the channel onto a queue at the other end.
   The sender of such an interaction no longer has access to the
   interaction once it has been put into the channel.  The operation of
   the system modeled by the formal description has been designed with
   this semantics in mind, rather than the equivalent but much more
   abstract Estelle semantics.  (In the Estelle semantics, each
   interaction point is considered to have associated with it an
   unbounded queue.  The "attach" and "connect" primitives bind two
   interaction points, such that an action, implied by the keyword
   "out", at one interaction point causes a specified interaction to be
   placed onto the queue associated with the other interaction point.)
   The sections that follow discuss the TSAP and the NSAP and the way
   that these SAPs are described in the formal description.

1.2.2.1   Transport Service Access Point.

   The international transport standard allows for more than one TSAP to
   be associated with a transport entity, and multiple users may be
   associated with a given TSAP.  A situation in which this is useful is
   when it is desirable to have a certain quality of service correlated
   with a given TSAP.  For example, one TSAP could be reserved for
   applications requiring a high throughput, such as file transfer.  The
   operation of transport connections associated with this TSAP could
   then be designed to favor throughput.  Another TSAP might serve users
   requiring short response time, such as terminals.  Still another TSAP
   could be reserved for encryption reasons.

   In order to provide a way of referencing users associated with TSAPs,
   the user access to transport in the formal description is through an
   array of Estelle interaction points.  This array is indexed by a TSAP
   address (T_address) and a Transport Connection Endpoint Identifier
   (TCEP_id).  Note that this dimensional object (TSAP) is considered
   simply to be a uniform set of abstract interfaces.  The indices must
   be of (Pascal) ordinal type in Estelle.  However, the actual address
   structure of TSAPs may not conform easily to such typing in an
   implementation.  Consequently, the indices as they appear in the
   formal description should be viewed as an organizational mechanism
   rather than as an explicit way of associating objects in an
   operational setting.  For example, actual TSAP addresses might be
   kept in some kind of table, with the table index being used to
   reference objects associated with the TSAP.
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   One particular issue concerned with realizing TSAPs is that of making
   known to the users the means of referencing the transport interface,
   i.e., somehow providing the T_addresses and TCEP_ids to the users.
   This issue is not considered in any detail by either IS 7498 [ISO84b]
   or IS 8073.  Abstractly, the required reference is the
   T_address/TCEP_id pair.  However, this gives no insight as to how the
   mechanism could work.  Some approaches to this problem are discussed
   in Part 5.

   Another issue is that of flow control on the TSAP channels.  Flow
   control is not part of the semantics for the Estelle channel, so the
   problem must be dealt with in another way.  The formal description
   gives an abstract definition of interface flow control using Pascal
   and Estelle mechanisms.  This abstraction resembles many actual
   schemes for flow control, but the realization of flow control will
   still be dependent on the way the interface is implemented.  Part 3.2
   discusses this in more detail.

1.2.2.2   Network Service Access Point.

   An NSAP may also have more than one network connection associated
   with it.  For example, the virtual circuits of X.25 correspond with
   this notion.  On the other hand, an NSAP may have no network
   connection associated with it, for example when the service at the
   NSAP is connectionless.  This certainly will be the case when
   transport operates on a LAN or over IP.  Consequently, although the
   syntactical appearance of the NSAP in the formal description is
   similar to that for the TSAP, the semantics are essentially distinct
   [NTI85].

   Distinct NSAPs can correspond or not to physically distinct networks.
   Thus, one NSAP could access X.25 service, another might access an
   IEEE 802.3 LAN, while a third might access a satellite link.  On the
   other hand, distinct NSAPs could correspond to different addresses on
   the same network, with no particular rationale other than facile
   management for the distinction.  There are performance and system
   design issues that arise in considering how NSAPs should be managed
   in such situations.  For example, if distinct NSAPs represent
   distinct networks, then a transport entity which must handle all
   resource management for the transport connections and operate these
   connections as well may have trouble keeping pace with data arriving
   concurrently from two LANs and a satellite link.  It might be a
   better design solution to separate the management of the transport
   connection resources from that of the NSAP resources and inputs, or
   even to provide separate transport entities to handle some of the
   different network services, depending on the service quality to be
   maintained.  It may be helpful to think of the (total) transport
   service as not necessarily being provided by a single monolithic
   entity--several distinct entities can reside at the transport layer
   on the same end-system.
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   The issues of NSAP management come primarily from connection-oriented
   network services.  This is because a connectionless service is either
   available to all transport connections or it is available to none,
   representing infinite degrees of multiplexing and splitting. In the
   connection-oriented case, NSAP management is complicated by
   multiplexing, splitting, service quality considerations and the
   particular character of the network service.  These issues are
   discussed further in Part 3.4.1.  In the formal description, network
   connection management is carried out by means of a record associated
   with each possible connection and an array, associated with each TPM,
   each array member corresponding to a possible network connection.
   Since there is, on some network services, a very large number of
   possible network connections, it is clear that in an implementation
   these data structures may need to be made dynamic rather than static.
   The connection record, indexed by NSAP and NCEP_id, consists of a
   Slave module reference, virtual data connections to the TPMs to be
   associated with the network connection, a data connection (out) to
   the NSAP, and a data connection to the Slave.  There is also a
   "state" variable for keeping track of the availability of the
   connection, variables for managing the Slave and an internal
   reference number to identify the connection to TPMs.  A member of the
   network connection array associated with a TPM provides the TPM with
   status information on the network connection and input data (network)
   events and TPDUs).  A considerable amount of management of the
   network connections is provided by the formal description, including
   splitting, multiplexing, service quality (when defined), interface
   flow control, and concatenation of TPDUs. This management is carried
   out solely by the transport entity, leaving the TPMs free to handle
   only the explicit transport connection issues.  This management
   scheme is flexible enough that it can be simplified and adapted to
   handle the NSAP for a connectionless service.

   The principal issue for management of connectionless NSAPs is that of
   buffering, particularly if the data transmission rates are high, or
   there is a large number of transport connections being served.  It
   may also be desirable for the transport entity to monitor the service
   it is getting from the network.  This would entail, for example,
   periodically computing the mean transmission delays for adjusting
   timers or to exert backpressure on the transport connections if
   network access delay rises, indicating loading.  (In the formal
   description, the Slave processor provides a simple form of output
   buffer management: when its queue exceeds a threshold, it shuts off
   data from the TPMs associated with it.  Through primitive functions,
   the threshold is loosely correlated with network behavior.  However,
   this mechanism is not intended to be a solution to this difficult
   performance problem.)
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1.2.3   Transport Protocol Machine.

   Transport Protocol Machines (TPM) in the formal description are in
   six classes: General, Class 0, Class 1, Class 2, Class 3 and Class 4.
   Only the General, Class 2 and Class 4 TPMs are discussed here.  The
   reason for this diversity is to facilitate describing class
   negotiations and to show clearly the actions of each class in the
   data transfer phase.  The General TPM is instantiated when a
   connection request is received from a transport user or when a CR
   TPDU is received from a remote peer entity.  This TPM is replaced by
   a class-specific TPM when the connect response is received from the
   responding user or when the CC TPDU is received from the responding
   peer entity.

   The General, Class 2 and Class 4 TPMs are discussed below in more
   detail.  In an implementation, it probably will be prudent to merge
   the Class 2 and Class 4 operations with that of the General TPM, with
   new variables selecting the class-specific operation as necessary
   (see also Part 9.4 for information on obtaining Class 2 operation
   from a Class 4 implementation).  This may simplify and improve the
   behavior of the implemented protocol overall.

1.2.3.1   General Transport Protocol Machine.

   Connection negotiation and establishment for all classes can be
   handled by the General Transport Protocol Machine.  Some parts of the
   description of this TPM are sufficiently class dependent that they
   can safely be removed if that class is not implemented.  Other parts
   are general and must be retained for proper operation of the TPM. The
   General TPM handles only connection establishment and negotiation, so
   that only CR, CC, DR and DC TPDUs are sent or received (the TPE
   prevents other kinds of TPDUs from reaching the General TPM).

   Since the General TPM is not instantiated until a T-CONNECT-request
   or a CR TPDU is received, the TPE creates a special internal
   connection to the module’s TSAP interaction point to pass the
   T-CONNECT-request event to the TPM.  This provides automaton
   completeness according to the specfication of the protocol.  When the
   TPM is to be replaced by a class-specific TPM, the sent or received
   CC is copied to the new TPM so that negotiation information is not
   lost.

   In the IS 8073 state tables for the various classes, the majority of
   the behavioral information for the automaton is contained in the
   connection establishment phase.  The editors of the formal
   description have retained most of the information contained in the
   state tables of IS 8073 in the description of the General TPM.

1.2.3.2   Class 2 Transport Protocol Machine.

   The formal description of the Class 2 TPM closely resembles that of
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   Class 4, in many respects.  This is not accidental, in that: the
   conformance statement in IS 8073 links Class 2 with Class 4; and the
   editors of the formal description produced the Class 2 TPM
   description by copying the Class 4 TPM description and removing
   material on timers, checksums, and the like that is not part of the
   Class 2 operation.  The suggestion of obtaining Class 2 operation
   from a Class 4 implementation, described in Part 9.4, is in fact
   based on this adaptation.

   One feature of Class 2 that does not appear in Class 4, however, is
   the option to not use end-to-end flow control.  In this mode of
   operation, Class 2 is essentially Class 0 with multiplexing.  In
   fact, the formal description of the Class 0 TPM was derived from
   Class 2 (in IS 8073, these two classes have essentially identical
   state tables).  This implies that Class 0 operation could be obtained
   from Class 2 by not multiplexing, not sending DC TPDUs, electing not
   to use flow control and terminating the network connection when a DR
   TPDU is received (expedited data cannot be used if flow control is
   not used).  When Class 2 is operated in this mode, a somewhat
   different procedure is used to handle data flow internal to the TPM
   than is used when end-to-end flow control is present.

1.2.3.3   Class 4 Transport Protocol Machine.

   Dynamic queues model the buffering of TPDUs in both the Class 4 and
   Class 2 TPMs.  This provides a more general model of implementations
   than does the fixed array representation and is easier to describe.
   Also, the fixed array representation has semantics that, carried
   into an implementation, would produce inefficiency.  Consequently,
   linked lists with queue management functions make up the TPDU
   storage description, despite the fact that pointers have a very
   implementation-like flavor.  One of the queue management functions
   permits removing several TPDUs from the head of the send queue, to
   model the acknowledgement of several TPDUs at once, as specified in
   IS 8073.  Each TPDU record in the queue carries the number of
   retransmissions tried, for timer control (not present in the Class 2
   TPDU records).

   There are two states of the Class 4 TPM that do not appear in IS
   8073. One of these was put in solely to facilitate obtaining credit
   in case no credit was granted for the CR or CC TPDU.  The other state
   was put in to clarify operations when there is unacknowledged
   expedited data outstanding (Class 2 does not have this state).

   The timers used in the Class 4 TPM are discussed below, as is the
   description of end-to-end flow control.

   For simplicity in description, the editors of the formal description
   assumed that no queueing of expedited data would occur at the user
   interface of the receiving entity.  The user has the capability to
   block the up-flow of expedited data until it is ready.  This
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   assumption has several implications. First, an ED TPDU cannot be
   acknowledged until the user is ready to accept it.  This is because
   the receipt of an EA TPDU would indicate to the sending peer that the
   receiver is ready to receive the next ED TPDU, which would not be
   true.  Second, because of the way normal data flow is blocked by the
   sending of an ED TPDU, normal data flow ceases until the receiving
   user is ready for the ED TPDU.  This suggests that the user
   interface should employ separate and noninterfering mechanisms
   for passing normal and expedited data to the user.  Moreover,
   the mechanism for expedited data passage should be blocked only in
   dire operational conditions.  This means that receipt of expedited
   data by the user should be a procedure (transition) that operates
   at nearly the highest priority in the user process.  The alternative
   to describing the expedited data handling in this way would entail a
   scheme of properly synchronizing the queued ED TPDUs with the DT
   TPDUs received.  This requires some intricate handling of DT and ED
   sequence numbers. While this alternative may be attractive for
   implementations, for clarity in the formal description it provides
   only unnecessary complication.

   The description of normal data TSDU processing is based on the
   assumption that the data the T-DATA-request refers to is potentially
   arbitrarily long.  The semantic of the TSDU in this case is analogous
   to that of a file pointer, in the sense that any file pointer is a
   reference to a finite but arbitrarily large set of octet-strings.
   The formation of TPDUs from this string is analogous to reading the
   file in  fixed-length segments--records or blocks, for example.  The
   reassembly of TPDUs into a string is analogous to appending each TPDU
   to the tail of a file; the file is passed when the end-of-TSDU
   (end-of-file) is received.  This scheme permits conceptual buffering
   of the entire TSDU in the receiver and avoids the question of whether
   or not received data can be passed to the user before the EOT is
   received.  (The file pointer may refer to a file owned by the user,
   so that the question then becomes moot.)

   The encoding of TPDUs is completely described, using Pascal functions
   and some special data manipulation functions of Estelle (these are
   not normally part of Pascal).  There is one encoding function
   corresponding to each TPDU type, rather than a single parameterized
   function that does all of them.  This was done so that the separate
   structures of the individual types could be readily discerned, since
   the purpose of the functions is descriptive and not necessarily
   computational.

   The output of TPDUs from the TPM is guarded by an internal flow
   control flag.  When the TPDU is first sent, this flag is ignored,
   since if the TPDU does not get through, a retransmission may take
   care of it.  However, when a retransmission is tried, the flag is
   heeded and the TPDU is not sent, but the retransmission count is
   incremented.  This guarantees that either the TPDU will eventually
   be sent or the connection will time out (this despite the fact that
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   the peer will never have received any TPDU to acknowledge).
   Checksum computations are done in the TPM rather than by the TPE,
   since the TPE must handle all classes.  Also, if the TPMs can be
   made to truly run in parallel, the performance may be greatly
   enhanced.

   The decoding of received TPDUs is partially described in the Class 4
   TPM description.  Only the CR and CC TPDUs present any problems in
   decoding, and these are largely due to the nondeterministic order of
   parameters in the variable part of the TPDU headers and the
   locality-and class-dependent content of this variable part.  Since
   contents of this variable part (except the TSAP-IDs) do not affect
   the association of the TPDU with a transport connection, the
   decoding of the variable part is not described in detail.  Such a
   description would be very lengthy indeed because of all the
   possibilities and would not contribute measurably to understanding
   by the reader.

1.2.4   Network Slave.

   The primary functions of the Network Slave are to provide downward
   flow control in the TPE, to concatenate TPDUs into a single NSDU and
   to respond to the receipt of spurious TPDUs.  The Slave has an
   internal queue on which it keeps TPDUs until the network is ready to
   accept them for transmission.  The TPE is kept informed as to the
   length of queue, and the output of the TPMs is throttled if the
   length exceeds this some threshold.  This threshold can be adjusted
   to meet current operating conditions.  The Slave will concatenate
   the TPDUs in its queue if the option to concatenate is exercised and
   the conditions for concatenating are met.  Concatenation is a TPE
   option, which may be exercised or not at any time.

1.2.5   Timers.

   In the formal description timers are all modeled using a spontaneous
   transition with delay, where the delay parameter is the timer period.
   To activate the timer, a timer identifier is placed into a set,
   thereby satisfying a predicate of the form

   provided timer_x in active_timers

   However, the transition code is not executed until the elapsed time
   ;from the placement of the identifier in the set is at least equal
   to the delay parameter.  The editors of the formal description chose
   to model timers in this fashion because it provided a simply
   expressed description of timer behavior and eliminated having to
   consider how timing is done in a real system or to provide special
   timer modules and communication to them.  It is thus recommended that
   implementors not follow the timer model closely in implementations,
   considering instead the simplest and most efficient means of timing
   permitted by the implementation environment.  Implementors should
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   also note that the delay parameter is typed "integer" in the formal
   description. No scale conversion from actual time is expressed in the
   timer transition, so that this scale conversion must be considered
   when timers are realized.

1.2.5.1   Transport Protocol Entity timers.

   There is only one timer given in the formal description of the
   TPE--the reference timer.  The reference timer was placed here ;so
   that it can be used by all classes and all connections, as needed.
   There is actually little justification for having a reference timer
   within the TPM--it wastes resources by holding the transport
   endpoint, even though the TPM is incapable of responding to any
   input.  Consequently, the TPE is responsible for all aspects of
   reference management, including the timeouts.

1.2.5.2   Transport Protocol Machine timers.

   Class 2 transport does not have any timers that are required by IS
   8073.  However, the standard does recommend that an optional timer be
   used by Class 2 in certain cases to avoid deadlock.  The formal
   description provides this timer, with comments to justify its usage.
   It is recommended that such a timer be provided for Class 2
   operation.  Class 4 transport has several timers for connection
   control, flow control and retransmissions of unacknowledged data.
   Each of these timers is discussed briefly below in terms of how they
   were related to the Class 4 operations in the formal description.
   Further discussion of these timers is given in Part 8.

1.2.5.2.1   Window timer.

   The window timer is used for transport connection control as well as
   providing timely updates of flow control credit information.  One of
   these timers is provided in each TPM.   It is reset each time an AK
   TPDU is sent, except during fast retransmission of AKs for flow
   control confirmation, when it is disabled.

1.2.5.2.2   Inactivity timer.

   The primary usage of the inactivity timer is to detect when the
   remote peer has ceased to send anything (including AK TPDUs).  This
   timer is mandatory when operating over a connectionless network
   service, since there is no other way to determine whether or not the
   remote peer is still functioning.  On a connection-oriented network
   service it has an additional usage since to some extent the continued
   existence of the network connection indicates that the peer host has
   not crashed.

   Because of splitting, it is useful to provide an inactivity timer on
   each network connection to which a TPM is assigned.  In this manner,
   if a network connection is unused for some time, it can be released,
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   even though a TPM assigned to it continues to operate over other
   network connections. The formal description provides this capability
   in each TPM.

1.2.5.2.3   Network connection timer.

   This timer is an optional timer used to ensure that every network
   connection to which a TPM is assigned gets used periodically.  This
   prevents the expiration of the peer entity’s inactivity timer for a
   network connection.  There is one timer for each network connection
   to which the TPM is assigned.  If there is a DT or ED TPDU waiting to
   be sent, then it is chosen to be sent on the network connection.  If
   no such TPDU is waiting, then an AK TPDU is sent.  Thus, the NC timer
   serves somewhat the same purpose as the window timer, but is broader
   in scope.

1.2.5.2.4   Give-up timer.

   There is one give-up timer for a TPM which is set whenever the
   retransmission limit for any CR, CC, DT, ED or DR TPDU is reached.
   Upon expiration of this timer, the transport connection is closed.

1.2.5.2.5   Retransmission timers.

   Retransmission timers are provided for CR, CC, DT, ED and DR TPDUs.
   The formal description provides distinct timers for each of these
   TPDU types, for each TPM.  However, this is for clarity in the
   description, and Part 8.2.5 presents arguments for other strategies
   to be used in implementations.  Also, DT TPDUs with distinct sequence
   numbers are each provided with timers, as well.  There is a primitive
   function which determines the range within the send window for which
   timers will be set.  This has been done to express flexibility in the
   retransmission scheme.

   The flow control confirmation scheme specified in IS 8073 also
   provides for a "fast" retransmission timer to ensure the reception of
   an AK TPDU carrying window resynchronization after credit reduction
   or when opening a window that was previously closed.  The formal
   description permits one such timer for a TPM.  It is disabled after
   the peer entity has confirmed the window information.

1.2.5.2.6   Error transport protocol data unit timer.

   In IS 8073, there is a provision for an optional timeout to limit the
   wait for a response by the peer entity to an ER TPDU.  When this
   timer expires, the transport connection is terminated.  Each Class 2
   or Class 4 TPM is provided with one of these timers in N3756.

1.2.6   End-to-end Flow Control.

   Flow control in the formal description has been written in such a way
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   as to permit flexibility in credit control schemes and
   acknowledgement strategies.

1.2.6.1   Credit control.

   The credit mechanism in the formal description provides for actual
   management of credit by the TPE.  This is done through variables
   exported by the TPMs which indicate to the TPE when credit is needed
   and for the TPE to indicate when credit has been granted.  In this
   manner, the TPE has control over the credit a TPM has.  The mechanism
   allows for reduction in credit (Class 4 only) and the possibility of
   precipitous window closure.  The mechanism does not preclude the use
   of credit granted by the user or other sources, since credit need is
   expressed as current credit being less than some threshold.  Setting
   the threshold to zero permits these other schemes.  An AK TPDU is
   sent each time credit is updated.

   The end-to-end flow control is also coupled to the interface flow
   control to the user.  If the user has blocked the interface up-flow,
   then the TPM is prohibited from requesting more credit when the
   current window is used up.

1.2.6.2   Acknowledgement.

   The mechanism for acknowledging normal data provides flexibility
   sufficient to send an AK TPDU in response to every Nth DT TPDU
   received where N > 0 and N may be constant or dynamically determined.
   Each TPM is provided with this, independent of all other TPMs, so
   that acknowledgement strategy can be determined separately for each
   transport connection.  The capability of altering the acknowledgement
   strategy is useful in operation over networks with varying error
   rates.

1.2.6.3  Sequencing of received data.

   It is not specified in IS 8073 what must be done with out-of-sequence
   but within-window DT TPDUs received, except that an AK TPDU with
   current window and sequence information be sent.  There are
   performance reasons why such DT TPDUs should be held (cached): in
   particular, avoidance of retransmissions.  However, this buffering
   scheme is complicated to implement and worse to describe formally
   without resorting to mechanisms too closely resembling
   implementation.  Thus, the formal description mechanism discards such
   DT TPDUs and relies on retransmission to fill the gaps in the window
   sequence, for the sake of simplicity in the description.

1.2.7   Expedited data.

   The transmission of expedited data, as expressed by IS 8073, requires
   the blockage of normal data transmission until the acknowledgement is
   received.  This is handled in the formal description by providing a
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   special state in which normal data transmission cannot take place.
   However, recent experiments with Class 4 transport over network
   services with high bandwidth, high transit delay and high error
   rates, undertaken by the NBS and COMSAT Laboratories, have shown that
   the protocol suffers a marked decline in its performance in such
   conditions.  This situation has been presented to ISO, with the
   result that the the protocol will be modified to permit the sending
   of normal data already accepted by the transport entity from the user
   before the expedited data request but not yet put onto the network.
   When the modification is incorporated into IS 8073, the formal
   description will be appropriately aligned.

2   Environment of implementation.

   The following sections describe some general approaches to
   implementing the transport protocol and the advantages and
   disadvantages of each.  Certain commercial products are identified
   throughout the rest of this document.  In no case does such
   identification imply the recommendation or endorsement of these
   products by the Department of Defense, nor does it imply that the
   products identified are the best available for the purpose described.
   In all cases such identification is intended only to illustrate the
   possibility of implementation of an idea or approach.  UNIX is a
   trademark of AT&T Bell Laboratories.

   Most of the discussions in the remainder of the document deal with
   Class 4 exclusively, since there are far more implementation issues
   with Class 4 than for Class 2.  Also, since Class 2 is logically a
   special case of Class 4, it is possible to implement Class 4 alone,
   with special provisions to behave as Class 2 when necessary.

2.1   Host operating system program.

   A common method of implementing the OSI transport service is to
   integrate the required code into the specific operating system
   supporting the data communications applications.  The particular
   technique for integration usually depends upon the structure and
   facilities of the operating system to be used.  For example, the
   transport software might be implemented in the operating system
   kernel, accessible through a standard set of system calls.  This
   scheme is typically used when implementing transport for the UNIX
   operating system.  Class 4 transport has been implemented using this
   technique for System V by AT&T and for BSD 4.2 by several
   organizations.  As another example, the transport service might be
   structured as a device driver.  This approach is used by DEC for the
   VAX/VMS implementation of classes 0, 2, and 4 of the OSI transport
   protocol.  The Intel iRMX-86 implementation of Class 4 transport is
   another example.  Intel implements the transport software as a first
   level job within the operating system.  Such an approach allows the
   software to be linked to the operating system and loaded with every
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   boot of the system.

   Several advantages may accrue to the communications user when
   transport is implemented as an integral part of the operating system.
   First,  the interface to data communications services is well known
   to the application programmer since the same principles are followed
   as for other operating system services.  This allows the fast
   implementation of communications applications without the need for
   retraining of programmers.  Second, the operating system can support
   several different suites of protocols without the need to change
   application programs.  This advantage can be realized only with
   careful engineering and control of the user-system call interface to
   the transport services.  Third, the transport software may take
   advantage of the normally available operating system services such as
   scheduling, flow control, memory management, and interprocess
   communication.  This saves time in the development and maintenance of
   the transport software.

   The disadvantages that exist with operating system integration of the
   TP are primarily dependent upon the specific operating system.
   However, the major disadvantage, degradation of host application
   performance, is always present.  Since the communications software
   requires the attention of the processor to handle interrupts and
   process protocol events, some degradation will occur in the
   performance of host applications.  The degree of degradation is
   largely a feature of the hardware architecture and processing
   resources required by the protocol.  Other disadvantages that may
   appear relate to limited performance on the part of the
   communications service.  This limited performance is usually a
   function of the particular operating system and is most directly
   related to the method of interprocess communication provided with the
   operating system.  In general, the more times a message must be
   copied from one area of memory to another, the poorer the
   communications software will perform.  The method of copying and the
   number  of copies is often a function of the specific operating
   system.  For example, copying could be optimized if true shared
   memory is supported in the operating system.  In this case, a
   significant amount of copying can be reduced to pointer-passing.

2.2   User program.

   The OSI transport service can be implemented as a user job within any
   operating system provided a means of multi-task communications is
   available or can be implemented.  This approach is almost always a
   bad one.  Performance problems will usually exist because the
   communication task is competing for resources like any other
   application program.  The only justification for this approach is the
   need to develop a simple implementation of the transport service
   quickly.  The NBS implemented the transport protocol using this
   approach as the basis for a transport protocol correctness testing
   system.  Since performance was not a goal of the NBS implementation,
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   the ease of development and maintenance made this approach
   attractive.

2.3   Independent processing element attached to a system bus.

   Implementation of the transport service on an independent processor
   that attaches to the system bus may provide substantial performance
   improvements over other approaches.  As computing power and memory
   have become cheaper this approach has become realistic.  Examples
   include the Intel implementation of iNA-961 on a variety of multibus
   boards such as the iSBC 186/51 and the iSXM 554.  Similar products
   have been developed by Motorola and by several independent vendors of
   IBM PC add-ons.  This approach requires that the transport software
   operate on an independent hardware set running under operating system
   code developed to support the communications software environment.
   Communication with the application programs takes place across the
   system bus using some simple, proprietary vendor protocol.  Careful
   engineering can provide the application programmer with a standard
   interface to the communications processor that is similar to the
   interface to the input/output subsystem.

   The advantages of this approach are mainly concentrated upon enhanced
   performance both for the host applications and the communications
   service.  Depending on such factors as the speed of the
   communications processor and the system bus, data communications
   throughput may improve by one or two orders of magnitude over that
   available from host operating system integrated implementations.
   Throughput for host applications should also improve since the
   communications processing and interrupt handling for timers and data
   links have been removed from the host processor.  The communications
   mechanism used between the host and communication processors is
   usually sufficiently simple that no real burden is added to either
   processor.

   The disadvantages for this approach are caused by complexity in
   developing the communications software.  Software development for the
   communications board cannot be supported with the standard operating
   system tools.  A method of downloading the processor board and
   debugging the communications software may be required; a trade-off
   could be to put the code into firmware or microcode.  The
   communications software must include at least a hardware monitor and,
   more typically, a small operating system to support such functions as
   interprocess communication, buffer management, flow control, and task
   synchronization.  Debugging of the user to communication subsystem
   interface may involve several levels of system software and hardware.

   The design of the processing element can follow conventional lines,
   in which a single processor handling almost all of the operation of
   the protocol.  However, with inexpensive processor and memory chips
   now available, a multiprocessor design is economically viable.  The
   diagram below shows one such design, which almost directly
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   corresponds to the structure of the formal description.  There are
   several advantages to this design:

    1) management of CPU and memory resources is at a minimum;

    2) essentially no resource contention;

    3) transport connection operation can be written in microcode,
       separate from network service handling;

    4) transport connections can run with true parallelism;

    5) throughput is not limited by contention of connections for CPU
       and network access; and

    6) lower software complexity, due to functional separation.

   Possible disadvantages are greater inflexibility and hardware
   complexity.  However, these might be offset by lower development
   costs for microcode, since the code separation should provide overall
   lower code complexity in the TPE and the TPM implementations.

   In this system, the TPE instantiates a TPM by enabling its clock.
   Incoming Outgoing are passed to the TPMs along the memory bus.  TPDUs
   TPDUs from a TPM are sent on the output data bus.  The user interface
   controller accepts connect requests from the user and directs them to
   the TPE.  The TPE assigns a connection reference and informs the
   interface controller to direct further inputs for this connection to
   the designated TPM.  The shared TPM memory is analogous to the
   exported variables of the TPM modules in the formal description, and
   is used by the TPE to input TPDUs and other information to the TPM.

   In summary, the off-loading of communications protocols onto
   independent processing systems attached to a host processor across a
   system bus is quite common.  As processing power and memory become
   cheaper, the amount of software off-loaded grows.  it is now typical
   to fine transport service available for several system buses with
   interfaces to operating systems such as UNIX, XENIX, iRMX, MS-DOS,
   and VERSADOS.
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   Legend:    ****  data channel
              ....  control channel
              ====  interface i/o bus
               O    channel or bus connection point

                  user
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   |________________|
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           *
           V
      to network
       interface

2.4   Front end processor.

   A more traditional approach to off-loading communications protocols
   involves the use of a free-standing front end processor, an approach
   very similar to that of placing the transport service onto a board
   attached to the system bus.  The difference is one of scale.  Typical
   front end p interface locally as desirable, as long as such additions
   are strictly local (i.e., the invoking of such services does not
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   result in the exchange of TPDUs with the peer entity).

   The interface between the  user  and  transport  is  by nature
   asynchronous (although some hypothetical implementation that is
   wholly synchronous could be conjectured).  This characteristic  is
   due  to two factors: 1) the interprocess communications (IPC)
   mechanism--used  between  the  user  and transport--decouples the
   two, and to avoid blocking the user process (while waiting for a
   response) requires  an  asynchronous response  mechanism,  and  2)
   there are some asynchronously-generated transport indications that
   must  be handled (e.g.,  the  arrival of user data or the abrupt
   termination of  the  transport  connection  due  to  network errors).

   If it is assumed that the user interface to transport is
   asynchronous,  there are other aspects of the interface that are also
   predetermined.  The most important of these is that transport
   service  requests are confirmed twice.  The first confirmation occurs
   at the time  of  the  transport  service request  initiation.  Here,
   interface routines can be used to identify invalid sequences of
   requests, such as a request to  send  data  on  a  connection that is
   not yet open.  The second confirmation occurs when the service
   request crosses the interface into the transport entity.  The entity
   may accept or reject the request, depending on its resources and its
   assessment of connection (transport and network) status, priority,
   service quality.

   If the interface is to be asynchronous, then some mechanism must be
   provided to handle the asynchronous (and sometimes unexpected)
   events.  Two ways this is commonly achieved are: 1) by polling, and
   2) by a software interrupt mechanism.  The first of these can be
   wasteful of host resources in a multiprogramming environment, while
   the second may be complicated to implement.  However, if the
   interface is a combination of hardware and software, as in the cases
   discussed in Parts 2.3 and 2.4, then hardware interrupts may be
   available.

   One way of implementing the abstract services is to associate with
   each service primitive an actual function that is invoked.  Such
   functions could be held in a special interface library with other
   functions and procedures that realize the interface.  Each service
   primitive function would access the interprocess communication (IPC)
   mechanism as necessary to pass parameters to/from the transport
   entity.

   The description of the abstract service in IS 8073 and N3756 implies
   that the interface must handle TSDUs of arbitrary length.  This
   situation suggests that it may be useful to implement a TSDU as an
   object such as a file-pointer rather than as the message itself.  In
   this way, in the sending entity, TPDUs can be formed by reading
   segments of TPDU-size from the file designated, without regard for
   the actual length of the file.  In the receiving entity, each new
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   TPDU could be buffered in a file designated by a file-pointer, which
   would then be passed to the user when the EOT arrives.  In the formal
   description of transport, this procedure is actually described,
   although explicit file-pointers and files are not used in the
   description.  This method of implementing the data interface is not
   essentially different from maintaining a linked list of buffers.  (A
   disk file is arranged in precisely this fashion, although the file
   user is usually not aware of the structure.)

   The abstract service definition describes  the  set  of parameters
   that must be passed in each of the service primitives so that
   transport can act properly on  behalf  of  the user.   These
   parameters are required for the transport protocol to operate
   correctly (e.g., a called address  must  be passed  with  the
   connect  request and the connect response must contain a responding
   address).   The  abstract  service defintion does not preclude,
   however, the inclusion of local parameters.  Local parameters may be
   included in the implementation  of  the  service  interface  for use
   by the local entity.  One example is a buffer management parameter
   passed from  the  user  in connect requests and confirms, providing
   the transport entity with expected buffer  usage  estimates.  The
   local  entity  could  use  this  in implementing a more efficient
   buffer management strategy than would otherwise be possible.

   One issue that is  of  importance  when  designing  and implementing
   a transport entity is the provision of a registration mechanism for
   transport users.  This facility provides a means of identifying to
   the transport entity those users who are willing to participate in
   communications with remote users.  An example of such a user is a
   data base management system, which ordinarily responds to connections
   requests rather than to initiate them.  This procedure of user
   identification is sometimes called a "passive open".  There are
   several ways in which registration can be implemented.  One is to
   install the set of users that  provide services  in  a table at
   system generation time.  This method may have the disadvantage of
   being  inflexible.   A  more flexible  approach is to implement a
   local transport service primitive, "listen", to indicate a waiting
   user.   The  user then  registers  its transport suffix with the
   transport entity via the listen primitive.  Another possibility is a
   combination of predefined table and listen primitive.  Other
   parameters may also be included,  such  as a partially or fully
   qualified transport address from which the user is willing  to
   receive  connections.  A  variant  on  this  approach  is  to
   provide  an ACTIVE/PASSIVE local parameter on the connect  request
   service primitive.  Part 5 discusses this issue in more detail.

3.2   Flow control.

   Interface flow control is generally considered to be a local
   implementation issue.  However, in order to completely specify the
   behavior of the transport entity, it was necessary to include in the
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   formal description a model of the control of data flow across the
   service boundaries of transport.  The international standards for
   transport and the OSI reference model state only that interface flow
   control shall be provided but give no guidance on its features.

   The actual mechanisms used to accomplish flow control, which need not
   explicitly follow the model in the formal description, are dependent
   on the way in which the interface itself is realized, i.e., what
   TSDUs and service primitives really are and how the transport entity
   actually communicates with its user, its environment, and the network
   service.  For example, if the transport entity communicates with its
   user by means of named (UNIX) pipes, then flow control can be
   realized using a special interface library routine, which the
   receiving process invokes, to control the pipe.  This approach also
   entails some consideration for the capacity of the pipe and blocking
   of the sending process when the pipe is full (discussed further in
   Part 3.3).  The close correspondence of this interpretation to the
   model is clear.  However, such an interpretation is apparently not
   workable if the user process and the transport entity are in
   physically separate processors.  In this situation, an explicit
   protocol between the receiving process and the sending process must
   be provided, which could have the complexity of the data transfer
   portion of the Class 0 transport protocol (Class 2 if flow
   controlled).  Note that the formal model, under proper
   interpretation, also describes this mechanism.

3.3   Interprocess communication.

   One of the most important elements of a data communication system is
   the approach to interprocess communication (IPC).  This is true
   because suites of protocols are often implemented as groups of
   cooperating tasks.  Even if the protocol suites are not implemented
   as task groups, the communication system is a funnel for service
   requests from multiple user processes.  The services are normally
   communicated through some interprocess pathway.  Usually, the
   implementation environment places some restrictions upon the
   interprocess communications method that can be used.  This section
   describes the desired traits of IPC for use in data communications
   protocol implementations, outlines some possible uses for IPC, and
   discusses three common and generic approaches to IPC.

   To support the implementation of data communications protocols, IPC
   should possess several desirable traits.  First,  IPC should be
   transaction based.  This permits sending a message without the
   overhead of establishing and maintaining a connection.  The
   transactions should be confirmed so that a sender can detect and
   respond to non-delivery.  Second,  IPC should support both the
   synchronous and the asynchronous modes of message exchange.  An IPC
   receiver should be able to ask for delivery of any pending messages
   and not be blocked from continuing if no messages are present.
   Optionally, the receiver should be permitted to wait if no messages
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   are present, or to continue if the path to the destination is
   congested.  Third, IPC should preserve the order of messages sent to
   the same destination.  This allows the use of the IPC without
   modification to support protocols that preserve user data sequence.
   Fourth, IPC should provide a flow control mechanism to allow pacing
   of the sender’s transmission speed to that of the receiver.

   The uses of IPC in implementation of data communication systems are
   many and varied.  A common and expected use for IPC is that of
   passing user messages among the protocol tasks that are cooperating
   to perform the data communication functions.  The user messages may
   contain the actual data or, more efficiently, references to the
   location of the user data.  Another common use for the IPC is
   implementation and enforcement of local interface flow control.  By
   limiting the number of IPC messages queued on a particular address,
   senders can be slowed to a rate appropriate for the IPC consumer.  A
   third typical use for IPC is the synchronization of processes.  Two
   cooperating tasks can coordinate their activities or access to shared
   resources by passing IPC messages at particular events in their
   processing.

   More creative uses of IPC include buffer, timer, and scheduling
   management.  By establishing buffers as a list of messages available
   at a known address at system initialization time, the potential
   exists to manage buffers simply and efficiently.  A process requiring
   a buffer would simply read an IPC message from the known address.  If
   no messages (i.e., buffers) are available, the process could block
   (or continue, as an option).  A process that owned a buffer and
   wished to release it would simply write a message to the known
   address, thus unblocking any processes waiting for a buffer.

   To manage timers, messages can be sent to a known address that
   represents the timer module.  The timer module can then maintain the
   list of timer messages with respect to a hardware clock.  Upon
   expiration of a timer, the associated message can be returned to the
   originator via IPC.  This provides a convenient method to process the
   set of countdown timers required by the transport protocol.

   Scheduling management can be achieved by using separate IPC addresses
   for message classes.  A receiving process can enforce a scheduling
   discipline by the order in which the message queues are read.  For
   example, a transport process might possess three queues:  1) normal
   data from the user, 2) expedited data from the user, and 3) messages
   from the network.  If the transport process then wants to give top
   priority to network messages, middle priority to expedited user
   messages, and lowest priority to normal user messages, all that is
   required is receipt of IPC messages on the highest priority queue
   until no more messages are available.  Then the receiver moves to the
   next lower in priority and so on.  More sophistication is possible by
   setting limits upon the number of consecutive messages received from
   each queue and/or varying the order in which each queue is examined.
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   It is easy to see how a round-robin scheduling discipline could be
   implemented using this form of IPC.

   Approaches to IPC can be placed into one of three classes:  1) shared
   memory, 2) memory-memory copying, and 3) input/output channel
   copying. Shared memory is the most desirable of the three classes
   because the amount of data movement is kept to a minimum.  To pass
   IPC messages using shared memory, the sender builds a small message
   referencing a potentially large amount of user data.  The small
   message is then either copied from the sender’s process space to the
   receiver’s process space or the small message is mapped from one
   process space to another using techniques specific to the operating
   system and hardware involved.  These approaches to shared memory are
   equivalent since the amount of data movement is kept to a minimum.
   The price to be paid for using this approach is due to the
   synchronization of access to the shared memory.  This type of sharing
   is well understood, and several efficient and simple techniques exist
   to manage the sharing.

   Memory-memory copying is an approach that has been commonly used for
   IPC in UNIX operating system implementations.  To pass an IPC message
   under UNIX data is copied from the sender’s buffer to a kernel buffer
   and then from a kernel buffer to the receiver’s buffer.  Thus two
   copy operations are required for each IPC message. Other methods
   might only involve a single copy operation.  Also note that if one of
   the processes involved is the transport protocol implemented in the
   kernel, the IPC message must only be copied once.  The main
   disadvantage of this approach is inefficiency.  The major advantage
   is simplicity.

   When the processes that must exchange messages reside on physically
   separate computer systems (e.g., a host and front end), an
   input/output channel of some type must be used to support the IPC.
   In such a case, the problem is similar to that of the general problem
   of a transport protocol.  The sender must provide his IPC message to
   some standard operating system output mechanism from where it will be
   transmitted via some physical medium to the receiver’s operating
   system.  The receiver’s operating system will then pass the message
   on to the receiving process via some standard operating system input
   mechanism.  This set of procedures can vary greatly in efficiency and
   complexity depending upon the operating systems and hardware
   involved.  Usually this approach to IPC is used only when the
   circumstances require it.

3.4   Interface to real networks.

   Implementations of the class 4 transport protocol have been operated
   over a wide variety of networks including:  1) ARPANET, 2) X.25
   networks, 3) satellite channels, 4) CSMA/CD local area networks, 5)
   token bus local area networks, and  6) token ring local area
   networks.  This section briefly describes known instances of each use
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   of class 4 transport and provides some quantitative evaluation of the
   performance expectations for transport over each network type.

3.4.1   Issues.

   The interface of the transport entity to the network service in
   general will be realized in a different way from the user interface.
   The network service processor is often separate from the host CPU,
   connected to it by a bus, direct memory access (DMA), or other link.
   A typical way to access the network service is by means of a device
   driver.  The transfer of data across the interface in this instance
   would be by buffer-copying.  The use of double-buffering reduces some
   of the complexity of flow control, which is usually accomplished by
   examining the capacity of the target buffer.  If the transport
   processor and the network processor are distinct and connected by a
   bus or external link, the network access may be more complicated
   since copying will take place across the bus or link rather than
   across the memory board.  In any case, the network service
   primitives, as they appear in the formal description and IS 8073 must
   be carefully correlated to the actual access scheme, so that the
   semantics of the primitives is preserved.  One way to do this is to
   create a library of routines, each of which corresponds to one of the
   service primitives.  Each routine is responsible for sending the
   proper signal to the network interface unit, whether this
   communication is directly, as on a bus, or indirectly via a device
   driver.  In the case of a connectionless network service, there is
   only one primitive, the N_DATA_request (or N_UNIT_DATA_request),
   which has to be realized.

   In the formal description, flow control to the NSAP is controlled by
   by a Slave module, which exerts the "backpressure" on the TPM if its
   internal queue gets too long.  Incoming flow, however, is controlled
   in much the same way as the flow to the transport user is controlled.
   The implementor is reminded that the formal description of the flow
   control is specified for completeness and not as an implementation
   guide.  Thus, an implementation should depend upon actual interfaces
   in the operating environment to realize necessary functions.

3.4.2   Instances of operation.

3.4.2.1   ARPANET

   An early implementation of the class 4 transport protocol was
   developed by the NBS as a basis for conformance tests [NBS83].  This
   implementation was used over the ARPANET to communicate between NBS,
   BBN, and DCA.  The early NBS implementation was executed on a
   PDP-11/70.  A later revision of the NBS implementation has been moved
   to a VAX-11/750 and VAX-11/7;80. The Norwegian Telecommunication
   Administration (NTA) has implemented class 4 transport for the UNIX
   BSD 4.2 operating system to run on a VAX [NTA84].  A later NTA
   implementation runs on a Sun 2-120 workstation.  The University of
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   Wisconsin has also implemented the class 4 transport protocol on a
   VAX-11/750 [BRI85]. The Wisconsin implementation is embedded in the
   BSD 4.2 UNIX kernel.  For most of these implementations class 4
   transport runs above the DOD IP and below DOD application protocols.

3.4.2.2   X.25 networks

   The NBS implementations have been used over Telenet, an X.25 public
   data network (PDN).  The heaviest use has been testing of class 4
   transport between the NBS and several remotely located vendors, in
   preparation for a demonstration at the 1984 National Computing
   Conference and the 1985 Autofact demonstration.  Several approaches
   to implementation were seen in the vendors’ systems, including ones
   similar to those discussed in Part 6.2.  At the Autofact
   demonstration many vendors operated class 4 transport and the ISO
   internetwork protocol across an internetwork of CSMA/CD and token bus
   local networks and Accunet, an AT&T X.25 public data network.

3.4.2.3   Satellite channels.

   The COMSAT Laboratories have implemented class 4 transport for
   operation over point-to-point satellite channels with data rates up
   to 1.544 Mbps [CHO85].  This implementation has been used for
   experiments between the NBS and COMSAT.  As a result of these
   experiments several improvements have been made to the class 4
   transport specification within the international standards arena
   (both ISO and CCITT). The COMSAT implementation runs under a
   proprietary multiprocessing operating system known as COSMOS.  The
   hardware base includes multiple Motorola 68010 CPUs with local memory
   and Multibus shared memory for data messages.

3.4.2.4   CSMA/CD networks.

   The CSMA/CD network as defined by the IEEE 802.3 standard is the most
   popular network over which the class 4 transport has been
   implemented. Implementations of transport over CSMA/CD networks have
   been demonstrated by: AT&T, Charles River Data Systems,
   Computervision, DEC, Hewlitt-Packard, ICL, Intel, Intergraph, NCR and
   SUN.  Most of these were demonstrated at the 1984 National Computer
   Conference [MIL85b] and again at the 1985 Autofact Conference.
   Several of these vendors are now delivering products based on the
   demonstration software.

3.4.2.5   Token bus networks.

   Due to the establishment of class 4 transport as a mandatory protocol
   within the General Motor’s manufacturing automation protocol (MAP),
   many implementations have been demonstrated operating over a token
   bus network as defined by the IEEE 802.4 standard.  Most past
   implementations relied upon a Concord Data Systems token interface
   module (TIM) to gain access to the 5 Mbps broadband 802.4 service.
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   Several vendors have recently announced boards supporting a 10 Mbps
   broadband 802.4 service.  The newer boards plug directly into
   computer system buses while the TIM’s are accessed across a high
   level data link control (HDLC) serial channel.  Vendors demonstrating
   class 4 transport over IEEE 802.4 networks include Allen-Bradley,
   AT&T, DEC, Gould, Hewlett-Packard, Honeywell, IBM, Intel, Motorola,
   NCR and Siemens.

3.4.2.6   Token ring networks.

   The class 4 transport implementations by the University of Wisconsin
   and by the NTA run over a 10 Mbps token ring network in addition to
   ARPANET.  The ring used is from Proteon rather than the recently
   finished IEEE 802.5 standard.

3.4.3   Performance expectations.

   Performance research regarding the class 4 transport protocol has
   been limited.  Some work has been done at the University of
   Wisconsin, at NTA, at Intel, at COMSAT, and at the NBS.  The material
   presented below draws from this limited body of research to provide
   an implementor with some quantitative feeling for the performance
   that can be expected from class 4 transport implementations using
   different network types.  More detail is available from several
   published reports [NTA84, BRI85, INT85, MIL85b, COL85].  Some of the
   results reported derive from actual measurements while other results
   arise from simulation.  This distinction is clearly noted.

3.4.3.1   Throughput.

   Several live experiments have been conducted to determine the
   throughput possible with implementations of class 4 transport.
   Achievable throughput depends upon many factors including:  1) CPU
   capabilities, 2) use or non-use of transport checksum, 3) IPC
   mechanism, 4) buffer management technique, 5) receiver resequencing,
   6) network error properties, 7) transport flow control, 8) network
   congestion and 9) TPDU size.  Some of these are specifically
   discussed elsewhere in this document.  The reader must keep in mind
   these issues when interpreting the throughput measures presented
   here.

   The University of Wisconsin implemented class 4 transport in the UNIX
   kernel for a VAX-11/750 with the express purpose of measuring the
   achievable throughput.  Throughputs observed over the ARPANET ranged
   between 10.4 Kbps and 14.4 Kbps.  On an unloaded Proteon ring local
   network, observed throughput with checksum ranged between 280 Kbps
   and 560 Kbps.  Without checksum, throughput ranged between 384 Kbps
   and 1 Mbps.

   The COMSAT Laboratories implemented class 4 transport under a
   proprietary multiprocessor operating system for a multiprocessor
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   68010 hardware architecture.  The transport implementation executed
   on one 68010 while the traffic generator and link drivers executed on
   a second 68010.  All user messages were created in a global shared
   memory and were copied only for transmission on the satellite link.
   Throughputs as high as 1.4 Mbps were observed without transport
   checksumming while up to 535 Kbps could be achieved when transport
   checksums were used.  Note that when the 1.4 Mbps was achieved the
   transport CPU was idle 20% of the time (i.e., the 1.544 Mbps
   satellite link was the bottleneck).  Thus, the transport
   implementation used here could probably achieve around 1.9 Mbps user
   throughput with the experiment parameters remaining unchanged.
   Higher throughputs are possible by increasing the TPDU size; however,
   larger messages stand an increased chance of damage during
   transmission.

   Intel has implemented a class 4 transport product for operation over
   a CSMA/CD local network (iNA-960 running on the iSBC 186/51 or iSXM
   552).  Intel has measured throughputs achieved with this combination
   and  has published the results in a technical analysis comparing
   iNA-960 performance on the 186/51 with iNA-960 on the 552.  The CPU
   used to run transport was a 6 MHz 80186.  An 82586 co-processor was
   used to handle the medium access control.  Throughputs measured
   ranged between 360 Kbps and 1.32 Mbps, depending on the parameter
   values used.

   Simulation of class 4 transport via a model developed at the NBS has
   been used to predict the performance of the COMSAT implementation and
   is now being used to predict the performance of a three processor
   architecture that includes an 8 MHz host connected to an 8 MHz front
   end over a system bus.  The third processor provides medium access
   control for the specific local networks  being modeled.  Early model
   results predict throughputs over an unloaded CSMA/CD local network of
   up to 1.8 Mbps.  The same system modeled over a token bus local
   network with the same transport parameters yields throughput
   estimates of up to 1.6 Mbps.  The token bus technology, however,
   permits larger message sizes than CSMA/CD does.  When TPDUs of 5120
   bytes are used, throughput on the token bus network is predicted to
   reach 4.3 Mbps.

3.4.3.2   Delay.

   The one-way delay between sending transport user and receiving
   transport user is determined by a complex set of factors.  Readers
   should also note that, in general, this is a difficult measure to
   make and little work has been done to date with respect to expected
   one-way delays with class 4 transport implementations.  In this
   section a tutorial is given to explain the factors that determine the
   one-way delay to be expected by a transport user.  Delay experiments
   performed by Intel are reported [INT85], as well as some simulation
   experiments conducted by the NBS [MIL85a].
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   The transport user can generally expect one-way delays to be
   determined by the following equation.

     D = TS + ND + TR + [IS] + [IR]        (1)

   where:

      [.] means the enclosed quantity may be 0

      D is the one-way transport user delay,

      TS is the transport data send processing time,

      IS is the internet datagram send processing time,

      ND is the network delay,

      IR is the internet datagram receive processing
      time, and

      TR is the transport data receive processing time.

   Although no performance measurements are available for the ISO
   internetwork protocol (ISO IP), the ISO IP is so similar to the DOD
   IP that processing times associated with sending and receiving
   datagrams should be the about the same for both IPs.  Thus, the IS
   and IR terms given above are ignored from this point on in the
   discussion.  Note that many of these factors vary depending upon the
   application traffic pattern and loads seen by a transport
   implementation.  In the following discussion, the transport traffic
   is assumed to be a single message.

   The value for TS depends upon the CPU used, the IPC mechanism, the
   use or non-use of checksum, the size of the user message and the size
   of TPDUs, the buffer management scheme in use, and the method chosen
   for timer management.  Checksum processing times have been observed
   that include 3.9 us per octet for a VAX-11/750, 7.5 us per octet on a
   Motorola 68010, and 6 us per octet on an Intel 80186.  The class 4
   transport checksum algorithm has considerable effect on achievable
   performance. This is discussed further in Part 7.  Typical values for
   TS, excluding the processing due to the checksum, are about 4 ms for
   CPUs such as the Motorola 68010 and the Intel 80186.  For 1024 octet
   TPDUs, checksum calculation can increase the TS value to about 12 ms.

   The value of TR depends upon similar details as TS.  An additional
   consideration is whether or not the receiver caches (buffers) out of
   order TPDUs.  If so, the TR will be higher when no packets are lost
   (because of the overhead incurred by the resequencing logic).  Also,
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   when packets are lost, TR can appear to increase due to transport
   resequencing delay.  When out of order packets are not cached, lost
   packets increase D because each unacknowledged packet must be
   retransmitted (and then only after a delay waiting for the
   retransmission timer to expire).  These details are not taken into
   account in equation 1.  Typical TR values that can be expected with
   non-caching implementations on Motorola 68010 and Intel 80186 CPUs
   are approximately 3 to 3.5 ms.  When transport checksumming is used
   on these CPUs, TR becomes about 11 ms for 1024 byte TPDUs.

   The value of ND is highly variable, depending on the specific network
   technology in use and on the conditions in that network.  In general,
   ND can be defined by the following equation.

     ND = NQ + MA + TX + PD + TQ   (2)

   where:

     NQ is network queuing delay,

     MA is medium access delay,

     TX is message transmission time,

     PD is network propagation delay, and

     TQ is transport receive queuing delay.

   Each term of the equation is discussed in the following paragraphs.

   Network queuing delay (NQ) is the time that a TPDU waits on a network
   transmit queue until that TPDU is the first in line for transmission.
   NQ depends on the size of the network transmit queue, the rate at
   which the queue is emptied, and the number of TPDUs already on the
   queue.  The size of the transmit queue is usually an implementation
   parameter and is generally at least two messages.  The rate at which
   the queue empties depends upon MA and TX (see the discussion below).
   The number of TPDUs already on the queue is determined by the traffic
   intensity (ratio of mean arrival rate to mean service rate).  As an
   example, consider an 8 Kbps point-to-point link serving an eight
   message queue that contains 4 messages with an average size of 200
   bytes per message.  The next message to be placed into the transmit
   queue would experience an NQ of 800 ms (i.e., 4 messages times 200
   ms).  In this example, MA is zero.  These basic facts permit the
   computation of NQ for particular environments.  Note that if the
   network send queue is full, back pressure flow control will force
   TPDUs to queue in transport transmit buffers and cause TS to appear
   to increase by the amount of the transport queuing delay.  This
   condition depends on application traffic patterns but is ignored for
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   the purpose of this discussion.

   The value of MA depends upon the network access method and on the
   network congestion or load.  For a point-to-point link MA is zero.
   For CSMA/CD networks MA depends upon the load, the number of
   stations, the arrival pattern, and the propagation delay.  For
   CSMA/CD networks MA has values that typically range from zero (no
   load) up to about 3 ms (80% loads).  Note that the value of MA as
   seen by individual stations on a CSMA/CD network is predicted (by NBS
   simulation studies) to be as high as 27 ms under 70% loads.  Thus,
   depending upon the traffic patterns, individual stations may see an
   average MA value that is much greater than the average MA value for
   the network as a whole. On token bus networks MA is determined by the
   token rotation time (TRT) which depends upon the load, the number of
   stations, the arrival pattern, the propagation delay, and the values
   of the token holding time and target rotation times at each station.

   For small networks of 12 stations with a propagation delay of 8 ns,
   NBS simulation studies predict TRT values of about 1 ms for zero load
   and 4.5 ms for 70% loads for 200 byte messages arriving with
   exponential arrival distribution.  Traffic patterns also appear to be
   an important determinant of target rotation time.  When a pair of
   stations performs a continuous file transfer, average TRT for the
   simulated network is predicted to be 3 ms for zero background load
   and 12.5 ms for 70% background load (total network load of 85%).

   The message size and the network transmission speed directly
   determine TX.  Typical transmission speeds include 5 and 10 Mbps for
   standard local networks;  64 Kbps, 384 Kbps, or 1.544 Mbps for
   point-to-point satellite channels;  and 9.6 Kbps or 56 Kbps for
   public data network access links.

   The properties of the network in use determine the values of PD. On
   an IEEE 802.3 network, PD is limited to 25.6 us.  For IEEE 802.4
   networks, the signal is propagated up-link to a head end and then
   down-link from the head end.  Propagation delay in these networks
   depends on the distance of the source and destination stations from
   the head end and on the head end latency. Because the maximum network
   length is much greater than with IEEE 802.3 networks, the PD values
   can also be much greater.  The IEEE 802.4 standard requires that a
   network provider give a value for the maximum transmission path
   delay.  For satellite channels PD is typically between 280 and 330
   ms.  For the ARPANET, PD depends upon the number of hops that a
   message makes between source and destination nodes.  The NBS and NTIA
   measured ARPANET PD average values of about 190 ms [NTI85].  In the
   ARPA internet system the PD is quite variable, depending on the
   number of internet gateway hops and the PD values of any intervening
   networks (possibly containing satellite channels).  In experiments on
   an internetwork containing a a satellite link to Korea, it was
   determined by David Mills [RFC85] that internet PD values could range
   from 19 ms to 1500 ms.  Thus, PD values ranging from 300 to 600 ms
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   can be considered as typical for ARPANET internetwork operation.

   The amount of time a TPDU waits in the network receive queue before
   being processed by the receiving transport is represented by TQ,
   similar to NQ in that the value of TQ depends upon the size of the
   queue, the number of TPDUs already in the queue, and the rate at
   which the queue is emptied by transport.

   Often the user delay D will be dominated by one of the components. On
   a satellite channel the principal component of D is PD, which implies
   that ND is a principal component by equation (2).  On an unloaded
   LAN, TS and TR might contribute most to D.  On a highly loaded LAN,
   MA may cause NQ to rise, again implying that ND is a major factor in
   determining D.

   Some one-way delay measures have been made by Intel for the iNA-960
   product running on a 6 MHz 80186.  For an unloaded 10 Mbps CSMA/CD
   network the Intel measures show delays as low as 22 ms.  The NBS has
   done some simulations of class 4 transport over 10 Mbps CSMA/CD and
   token bus networks.  These (unvalidated) predictions show one-way
   delays as low as 6 ms on unloaded LANs and as high as 372 ms on
   CSMA/CD LANs with 70% load.

3.4.3.3   Response time.

   Determination of transport user response time (i.e., two-way delay)
   depends upon many of the same factors discussed above for one-way
   delay.  In fact, response time can be represented by equation 3 as
   shown below.

      R = 2D + AS + AR     (3)

   where:

     R is transport user response time,

     D is one-way transport user delay,

     AS is acknowledgement send processing time, and

     AR is acknowledgement receive processing time.

   D has been explained above.  AS and AR deal with the acknowledgement
   sent by transport in response to the TPDU that embodies the user
   request.

   AS is simply the amount of time that the receiving transport must
   spend to generate an AK TPDU.  Typical times for this function are
   about 2 to 3 ms on processors such as the Motorola 68010 and the
   Intel 80186.  Of course the actual time required depends upon factors
   such as those explained for TS above.
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   The amount of time, AR, that the sending transport must spend to
   process a received AK TPDU.  Determination of the actual time
   required depends upon factors previously described.  Note that for AR
   and AS, processing when the checksum is included takes somewhat
   longer. However, AK TPDUs are usually between 10 and 20 octets in
   length and therefore the increased time due to checksum processing is
   much less than for DT TPDUs.

   No class 4 transport user response time measures are available;
   however, some simulations have been done at the NBS.  These
   predictions are based upon implementation strategies that have been
   used by commercial vendors in building microprocessor-based class 4
   transport products.  Average response times of about 21 ms on an
   unloaded 10 Mbps token bus network, 25 ms with 70% loading, were
   predicted by the simulations.  On a 10 Mbps CSMA/CD network, the
   simulations predict response times of about 17 ms for no load and 54
   ms for a 70% load.

3.5   Error and status reporting.

   Although the abstract service definition for the  transport protocol
   specifies  a set of services to be offered, the actual set of
   services  provided  by  an  implementation need  not  be limited to
   these.  In particular, local status and error information can be
   provided as a confirmed service (request/response) and as an
   asynchronous "interrupt" (indication).  One use for this service  is
   to  allow  users  to query the transport entity about the status of
   their connections.  An example of information  that  could  be
   returned from the entity is:

        o  connection state
        o  current send sequence number
        o  current receive and transmit credit windows
        o  transport/network interface status
        o  number of retransmissions
        o  number of DTs and AKs sent and received
        o  current timer values

   Another use for the local status and error reporting service is  for
   administration  purposes.   Using  the  service, an administrator can
   gather information such as described above for  each open connection.
   In addition, statistics concerning the transport entity as a whole
   can be obtained, such as number of transport connections open,
   average number of connections open over a  given  reporting  period,
   buffer  use statistics, and total number of retransmitted DT TPDUs.
   The administrator might also be given the  authority  to  cancel
   connections,  restart  the  entity,  or  manually  set timer values.
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4   Entity resource management.

4.1   CPU management.

   The formal description has implicit scheduling of TPM modules, due to
   the semantics of the Estelle structuring principles.  However, the
   implementor should not depend on this scheduling to obtain optimal
   behavior, since, as stated in Part 1, the structures in the formal
   description were imposed for purposes other than operational
   efficiency.

   Whether by design or by default,  every  implementation of the
   transport protocol embodies some decision about allocating the CPU
   resource among transport connections.   The resource may be
   monolithic, i.e. a single CPU, or it may be distributed, as in the
   example design given in Part 2.3.  In the former, there are  two
   simple techniques  for apportioning CPU processing time  among
   transport  connections.   The first of these,
   first-come/first-served, consists of the transport entity handling
   user service requests in the order in which they arrive.  No
   attempt  is  made  to  prevent one transport connection from using
   an inordinate amount of the CPU.

   The second simple technique is  round-robin  scheduling of
   connections.   Under this method, each transport connection is
   serviced in turn.  For  each  connection,  transport processes one
   user service request, if there is one present at the interface,
   before proceeding to the next connection.

   The quality of service parameters provided in the connection request
   can be used to provide a finer-grained strategy for managing the CPU.
   The CPU could be allocated to connections requiring low delay more
   often while those requiring high throughput would be served less
   often but for longer periods (i.e., several connections requiring
   high throughput might be serviced in a concurrent cluster).

   For example, in the service sequence below, let "T" represent
   m > 0 service requests, each requiring high throughput, let "D"
   represent one service request requiring low delay and let the suffix
   n = 1,2,3 represent a connection identifier, unique only within a
   particular service requirement type (T,D).  Thus T1 represents a set
   of service requests for connection 1 of the service requirement type
   T, and D1 represents a service set (with one member) for connection 1
   of service requirement type D.

   D1___D2___D3___T1___D1___D2___D3___T2___D1___D2___D3___T1...

   If m = 4 in this service sequence, then service set D1 will get
   worst-case service once every seventh service request processed.
   Service set T1 receives service on its four requests only once in
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   fourteen requests processed.

   D1___D2___D3___T1___D1___D2___D3___T2___D1___D2___D3___T1...
   |              |    |              |    |              |
   |  3 requests  |  4 |       3      |  4 |       3      |

   This means that the CPU is allocated to T1 29% ( 4/14 ) of the
   available time, whereas D1 obtains service 14% ( 1/7 ) of the time,
   assuming processing requirements for all service requests to be
   equal.  Now assume that, on average, there is a service request
   arriving for one out of three of the service requirement type D
   connections.  The CPU is then allocated to the T type 40% ( 4/10 )
   while the D type is allocated 10% ( 1/10 ).

4.2   Buffer management.

   Buffers are used as temporary storage areas for data on its  way to
   or arriving from the network.  Decisions must be made about buffer
   management in two areas.  The first is the overall  strategy  for
   managing  buffers in a multi-layered protocol environment.  The
   second  is  specifically  how  to allocate buffers within the
   transport entity.

   In the formal description no details of buffer strategy are given,
   since such strategy depends so heavily on the implementation
   environment.  Only a general mechanism is discussed in the formal
   description for allocating receive credit to a transport connection,
   without any expression as to how this resource is managed.

   Good buffer management should correlate to the traffic presented by
   the applications using the transport service.  This traffic has
   implications as well for the performance of the protocol. At present,
   the relationship of buffer strategy to optimal service for a given
   traffic distribution is not well understood.  Some work has been
   done, however, and the reader is referred to the work of Jeffery
   Spirn [SPI82, SPI83] and to the experiment plan for research by the
   NBS [HEA85] on the effect of application traffic patterns on the
   performance of Class 4 transport.

4.2.1   Overall buffer strategy.

   Three schemes for management of  buffers  in  a  multilayered
   environment  are described here.  These represent a spectrum of
   possibilities available to the implementor.  The first  of these is a
   strictly layered approach in which each entity in the protocol
   hierarchy, as a process, manages its own pool of buffers
   independently  of  entities  at  other layers.  One advantage of this
   approach  is  simplicity;   it is not necessary for an entity  to
   coordinate  buffer  usage with a resource manager which is serving
   the needs of numerous  protocol entities.  Another advantage is
   modularity.  The interface presented to entities in other layers is
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   well  defined; protocol  service  requests and responses are passed
   between layers by value (copying) versus by reference (pointer
   copying). In particular, this is a strict interpretation of the OSI
   reference model, IS 7498 [ISO84b], and the protocol entities hide
   message details from each other, simplifying handling at the entity
   interfaces.

   The single disadvantage to a  strictly  layered  scheme derives  from
   the  value-passing  nature  of the interface.  Each time protocol
   data and control  information  is  passed from  one layer to another
   it must be copied from one layer’s buffers to those of another layer.
   Copying  between  layers in  a  multi-layered  environment is
   expensive and imposes a severe penalty on the performance of the
   communications system, as  well as the computer system on which it is
   running as a whole.

   The second scheme for managing buffers  among  multiple protocol
   layers  is  buffer  sharing.   In  this  approach, buffers are a
   shared resource among multiple protocol  entities; protocol data and
   control information contained in the buffers is exchanged by passing
   a buffer pointer, or  reference, rather  than  the  values  as in the
   strictly layered approach  described  above.   The  advantage  to
   passing buffers by reference is that only a small amount of
   information, the buffer pointer, is copied  from  layer  to  layer.
   The  resulting  performance  is much better than that of the strictly
   layered approach.

   There are several requirements  that  must  be  met  to implement
   buffer sharing.  First, the host system architecture must allow
   memory sharing among protocol entities  that are  sharing the
   buffers.  This can be achieved in a variety of ways:  multiple
   protocol entities may be  implemented  as one  process, all sharing
   the same process space (e.g., kernel space),  or  the  host  system
   architecture  may  allow processes  to  map portions of their address
   space to common buffer areas at some known location in physical
   memory.

   A buffer manager is another requirement for implementing shared
   buffers.  The buffer manager has the responsibility of providing
   buffers  to  protocol entities when needed from a list of free
   buffers and recycling used buffers  back into  the  free  list. The
   pool may consist of one or more lists, depending on the level of
   control desired.  For example, there  could be separate lists of
   buffers for outgoing and incoming messages.

   The protocol entities must be implemented in such a way as to
   cooperate with the buffer manager.  While this appears to be an
   obvious condition, it has important implications for the strategy
   used by implementors to develop the communications system.  This
   cooperation can be described as follows:  an entity at layer N
   requests and is allocated a buffer by the manager; each such buffer
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   is returned to the manager by some entity at layer N - k (outgoing
   data) or N + k (incoming data).

   Protocol  entities also must be designed to cooperate with each
   other.  As buffers are allocated and sent towards the  network  from
   higher  layers, allowance must be made for protocol control
   information to be added at lower layers.  This usually means
   allocating  oversized buffers to allow space for headers to be
   prepended at lower layers.  Similarly, as buffers move upward from
   the network, each protocol entity processes its headers before
   passing the buffer on.  These  manipulations  can  be handled by
   managing pointers into the buffer header space.

   In their pure forms, both strictly layered  and  shared buffer
   schemes are not practical.  In the former, there is a performance
   penalty for copying buffers.  On the other hand, it  is not practical
   to implement buffers that are shared by entities in all layers of the
   protocol hierarchy: the  lower protocol layers (OSI layers 1 - 4)
   have essentially static buffer requirements, whereas the upper
   protocol layers (OSI layers 5 - 7) tend to be dynamic in their buffer
   requirements.  That is, several different applications may be running
   concurrently, with buffer requirements varying as the set of
   applications varies.  However, at the transport layer, this latter
   variation is not visible and variations in buffer requirements will
   depend more on service quality considerations than on the specific
   nature of the applications being served.  This suggests a hybrid
   scheme in which the entities in OSI layers 1 - 4 share buffers while
   the entities in each of the OSI layers 5 - 7 share in a buffer pool
   associated with each layer.  This approach provides most of the
   efficiency of a pure shared buffer scheme and allows for simple,
   modular interfaces where they are most appropriate.

4.2.2   Buffer management in the transport entity.

   Buffers are allocated in the transport entity  for  two purposes:
   sending and receiving data.  For sending data, the decision of how
   much buffer space to allocate is  relatively simple;  enough  space
   should be allocated for outgoing data to hold the maximum number of
   data messages that the  entity will have outstanding (i.e., sent but
   unacknowledged) at any time.  The send buffer space is determined  by
   one  of  two values,  whichever  is lower:  the send credit received
   from the receiving transport entity, or a maximum  value  imposed by
   the  local  implementation,  based  on  such  factors as overall
   buffer capacity.

   The allocation of receive buffers is a more interesting problem
   because  it is directly related to the credit value transmitted the
   peer transport entity in CR (or CC) and AK TPDUs.  If the total
   credit offered to the peer entity exceeds the total available buffer
   space and credit reduction  is  not  implemented, deadlock  may
   occur, causing termination of one or more transport connections.  For
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   the purposes of  this discussion,  offered  credit  is assumed to be
   equivalent to available buffer space.

   The simplest scheme for receive buffer  allocation  is allocation of
   a fixed amount per transport connection.  This amount is allocated
   regardless of how the connection  is  to be  used.   This  scheme is
   fair in that all connections are treated equally.  The implementation
   approach in Part 2.3, in which each transport connection is handled
   by a physically separate processor, obviously could use this scheme,
   since the allocation would be in the form of memory chips assigned by
   the system designer when the system is built.

   A more flexible method  of  allocating  receive  buffer space  is
   based  on the connection quality of service (QOS) requested by the
   user.  For instance, a QOS indicating  high throughput would be given
   more send and receive buffer space than one a QOS indicating low
   delay.  Similarly, connection priority can  be  used  to  determine
   send and receive buffer allocation, with important (i.e., high
   priority) connections  allocated  more buffer space.

   A slightly more complex scheme is to apportion send and receive
   buffer  space using both QOS and priority.  For each connection, QOS
   indicates a general category of  operation  (e.g., high throughput or
   low delay).  Within the general category, priority determines the
   specific  amount  of  buffer  space allocated  from  a range of
   possible values.  The general categories may well overlap, resulting,
   for example, in a high priority connection with low throughput
   requirements being allocated more buffer space than low priority
   connection requiring a high throughput.

5   Management of Transport service endpoints.

   As mentioned in Part 1.2.1.1, a transport entity needs some way of
   referencing a transport connection endpoint within the end system: a
   TCEP_id.  There are several factors influencing the management of
   TCEP_ids:

    1)  IPC mechanism between the transport entity and the session
        entity (Part 3.3);

    2)  transport entity resources and resource management (Part 4);

    3)  number of distinct TSAPs supported by the entity (Part 1.2.2.1);
        and

    4)  user process rendezvous mechanism (the means by which session
        processes identify themselves to the transport entity, at a
        given TSAP, for association with a transport connection);

   The IPC mechanism and the user process rendezvous mechanism have more
   direct influence than the other two factors on how the TCEP_id
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   management is implemented.

   The number of TCEP_ids available should reflect the resources that
   are available to the transport entity, since each TCEP_id in use
   represents a potential transport connection.  The formal description
   assumes that there is a function in the TPE which can decide, on the
   basis of current resource availability, whether or not to issue a
   TCEP_id for any connection request received.  If the TCEP_id is
   issued, then resources are allocated for the connection endpoint.
   However, there is a somewhat different problem for the users of
   transport.  Here, the transport entity must somehow inform the
   session entity as to the TCEP_ids available at a given TSAP.

   In the formal description, a T-CONNECT-request is permitted to enter
   at any TSAP/TCEP_id.  A function in the TPE considers whether or not
   resources are availble to support the requested connection.  There is
   also a function which checks to see if a TSAP/TCEP_id is busy by
   seeing if there is a TPM allocated to it.  But this function is not
   useful to the session entity which does not have access to the
   transport entity’s operations.  This description of the procedure is
   clearly too loose for an implementation.

   One solution to this problem is to provide a new (abstract) service,
   T-REGISTER, locally, at the interface between transport and session.

   ___________________________________________________________________
   |           Primitives                       Parameters           |
   |_________________________________________________________________|
   |  T-REGISTER        request     |  Session process  identifier   |
   |________________________________|________________________________|
   |  T-REGISTER        indication  |  Transport endpoint identifier,|
   |                                |  Session process  identifier   |
   |________________________________|________________________________|
   |  T-REGISTER        refusal     |  Session process  identifier   |
   |________________________________|________________________________|

   This service is used as follows:

     1)   A session process is identified to the transport entity by a
          T-REGISTER-request event.  If a TCEP_id is available,  the
          transport entity selects a TCEP_id and places it into a table
          corresponding to the TSAP at which the T-REGISTER-request
          event occurred, along with the session process identifier. The
          TCEP_id and the session process identifier are then
          transmitted to the session entity by means of the T-REGISTER-
          indication event. If no TCEP_id is available, then a T-
          REGISTER-refusal event carrying the session process identifier
          is returned.  At any time that an assigned TCEP_id is not
          associated with an active transport connection process
          (allocated TPM), the transport entity can issue a T-REGISTER-
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          refusal to the session entity to indicate, for example, that
          resources are no longer available to support a connection,
          since TC resources are not allocated at registration time.

     2)   If the session entity is to initiate the transport connection,
          it issues a T-CONNECT-request with the TCEP_id as a parameter.
          (Note that this procedure is at a slight variance to the
          procedure in N3756, which specifies no such parameter, due to
          the requirement of alignment of the formal description with
          the service description of transport and the definition of the
          session protocol.) If the session entity is expecting a
          connection request from a remote peer at this TSAP, then the
          transport does nothing with the TCEP_id until a CR TPDU
          addressed to the TSAP arrives.  When such a CR TPDU arrives,
          the transport entity issues a T-CONNECT-indication to the
          session entity with a TCEP_id as a parameter.  As a management
          aid, the table entry for the TCEP_id can be marked "busy" when
          the TCEP_id is associated with an allocated TPM.

     3)   If a CR TPDU is received and no TCEP_id is in the table for
          the TSAP addressed, then the transport selects a TCEP_id,
          includes it as a parameter in the T-CONNECT-indication sent to
          the session entity, and places it in the table. The T-
          CONNECT-response returned by the session entity will carry the
          TCEP_id and the session process identifier.  If the session
          process identifier is already in the table, the new one is
          discarded; otherwise it is placed into the table. This
          procedure is also followed if the table has entries but they
          are all marked busy or are empty.  If the table is full and
          all entries ar marked busy, then the transport entity
          transmits a DR TPDU to the peer transport entity to indicate
          that the connection cannot be made.  Note that the transport
          entity can disable a TSAP by marking all its table entries
          busy.

   The realization of the T-REGISTER service will depend on the IPC
   mechanisms available between the transport and session entities. The
   problem of user process rendezvous is solved in general by the T-
   REGISTER service, which is based on a solution proposed by Michael
   Chernik of the NBS [CHK85].

6   Management of Network service endpoints in Transport.

6.1   Endpoint identification.

   The identification of endpoints at an NSAP is different from that for
   the TSAP.  The nature of the services at distinct TSAPs is
   fundamentally the same, although the quality could vary, as a local
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   choice.  However, it is possible for distinct NSAPs to represent
   access to essentially different network services.  For example, one
   NSAP may provide access to a connectionless network service by means
   of an internetwork protocol.  Another NSAP may provide access to a
   connection-oriented service, for use in communicating on a local
   subnetwork.  It is also possible to have several distinct NSAPs on
   the same subnetwork, each of which provides some service features of
   local interest that distinguishes it from the other NSAPs.

   A transport entity accessing an X.25 service could use the logical
   channel numbers for the virtual circuits as NCEP_ids.  An NSAP
   providing access only to a permanent virtual circuit would need only
   a single NCEP_id to multiplex the transport connections.  Similarly,
   a CSMA/CD network would need only a single NCEP_id, although the
   network is connectionless.

6.2   Management issues.

   The Class 4 transport protocol has been succesfully operated over
   both connectionless and connection-oriented network services.  In
   both modes of operation there exists some information about the
   network service that a transport implementation could make use of to
   enhance performance.  For example, knowledge of expected delay to a
   destination would permit optimal selection of retransmission timer
   value for a connection instance.  The information that transport
   implementations could use and the mechanisms for obtaining and
   managing that information are, as a group, not well understood.
   Projects are underway within ISO committees to address the management
   of OSI as an architecture and the management of the transport layer
   as a layer.

   For operation of the Class 4 transport protocol over
   connection-oriented network service several issues must be addressed
   including:

     a.   When should a new network connection be opened to support a
          transport connection (versus multiplexing)?

     b.   When a network connection is no longer being used by any
          transport connection, should the network connection be closed
          or remain open awaiting a new transport connection?

     c.   When a network connection is aborted, how should the peer
          transport entities that were using the connection cooperate to
          re-establish it?  If splitting is not to be used, how can this
          re-establishment be achieved such that one and only one
          network connection results?

   The Class 4 transport specification permits a transport entity to
   multiplex several transport connections (TCs) over a single network
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   connection (NC) and to split a single TC across several NCs.  The
   implementor must decide whether to support these options and, if so,
   how.  Even when the implementor decides never to initiate splitting
   or multiplexing the transport entity must be prepared to accept this
   behavior from other transport implementations.  When multiplexing is
   used TPDUs from multiple TCs can be concatenated into a single
   network service data unit (NSDU).  Therefore, damage to an NSDU may
   effect several TCs.  In general, Class 2 connections should not be
   multiplexed with Class 4 connections.  The reason for this is that if
   the error rate on the network connection is high enough that the
   error recovery capability of Class 4 is needed, then it is too high
   for Class 2 operation.  The deciding criterion is the tolerance of
   the user for frequent disconnection and data errors.

   Several issues in splitting must be considered:

    1) maximum number of NCs that can be assigned to a given TC;

    2) minimum number of NCs required by a TC to maintain the "quality
       of service" expected (default of 1);

    3) when to split;

    4) inactivity control;

    5) assignment of received TPDU to TC; and

    6) notification to TC of NC status (assigned, dissociated, etc ).

   All of these except 3) are covered in the formal description.  The
   methods used in the formal description need not be used explicitly,
   but they suggest approaches to implementation.

   To support the possibility of multiplexing and splitting the
   implementor must provide a common function below the TC state
   machines that maps a set of TCs to a set of NCs.  The formal
   description provides a general means of doing this, requiring mainly
   implementation environment details to complete the mechanism.
   Decisions about when network connections are to be opened or closed
   can be made locally using local decision criteria.  Factors that may
   effect the decision include costs of establishing an NC, costs of
   maintaining an open NC with little traffic flowing, and estimates of
   the probability of data flow between the source node and known
   destinations.  Management of this type is feasible when a priori
   knowledge exists but is very difficult when a need exists to adapt to
   dynamic traffic patterns and/or fluctuating network charging
   mechanisms.

   To handle the issue of re-establishment of the NC after failure, the
   ISO has proposed an addendum N3279 [ISO85c] to the basic transport
   standard describing a network connection management subprotocol
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   (NCMS) to be used in conjunction with the transport protocol.

7   Enhanced checksum algorithm.

7.1   Effect of checksum on transport performance.

   Performance experiments with Class 4 transport at the NBS have
   revealed that straightforward implementation of the Fletcher checksum
   using the algorithm recommended in the ISO transport standard leads
   to severe reduction of transport throughput.  Early modeling
   indicated throughput drops of as much as 66% when using the checksum.
   Work by Anastase Nakassis [NAK85] of the NBS led to several improved
   implementations.  The performance degradation due to checksum is now
   in the range of 40-55%, when using the improved implementations.

   It is possible that transport may be used over a network that does
   not provide error detection.  In such a case the transport checksum
   is necessary to ensure data integrity. In many instances, the
   underlying subnetwork provides some error checking mechanism.  The
   HDLC frame check sequence as used by X.25, IEEE 802.3 and 802.4 rely
   on a 32 bit cyclic redundancy check and satellite link hardware
   frequently provides the HDLC frame check sequence.  However, these
   are all link or physical layer error detection mechanisms which
   operate only point-to-point and not end-to-end as the transport
   checksum does.  Some links provide error recovery while other links
   simply discard damaged messages.  If adequate error recovery is
   provided, then the transport checksum is extra overhead, since
   transport will detect when the link mechanism has discarded a message
   and will retransmit the message.  Even when the IP fragments the
   TPDU, the receiving IP will discover a hole in the reassembly buffer
   and discard the partially assembled datagram (i.e., TPDU).  Transport
   will detect this missing TPDU and recover by means of the
   retransmission mechanism.

7.2   Enhanced algorithm.

   The Fletcher checksum algorithm given in an annex to IS 8073 is not
   part of the standard, and is included in the annex as a suggestion to
   implementors.  This was done so that as improvements or new
   algorithms came along, they could be incorporated without the
   necessity to change the standard.

   Nakassis has provided three ways of coding the algorithm, shown
   below, to provide implementors with insight rather than universally
   transportable code.  One version uses a high order language (C).  A
   second version uses C and VAX assembler, while a third uses only VAX
   assembler.  In all the versions, the constant MODX appears.  This
   represents the maximum number of sums that can be taken without
   experiencing overflow.  This constant depends on the processor’s word
   size and the arithmetic mode, as follows:
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    Choose n such that

     (n+1)*(254 + 255*n/2) <= 2**N - 1

   where N is the number of usable bits for signed (unsigned)
   arithmetic.  Nakassis shows [NAK85] that it is sufficient
   to take

     n <= sqrt( 2*(2**N - 1)/255 )

   and that n = sqrt( 2*(2**N - 1)/255 ) - 2 generally yields
   usable values.  The constant MODX then is taken to be n.

   Some typical values for MODX are given in the following table.

    BITS/WORD                MODX          ARITHMETIC
        15                     14             signed
        16                     21           unsigned
        31                   4102             signed
        32                   5802           unsigned

   This constant is used to reduce the number of times mod 255 addition
   is invoked, by way of speeding up the algorithm.

   It should be noted that it is also possible to implement the checksum
   in separate hardware.  However, because of the placement of the
   checksum within the TPDU header rather than at the end of the TPDU,
   implementing this with registers and an adder will require
   significant associated logic to access and process each octet of the
   TPDU and to move the checksum octets in to the proper positions in the
   TPDU. An alternative to designing this supporting logic is to use a
   fast, microcoded 8-bit CPU to handle this access and the computation.
   Although there is some speed penalty over separate logic, savings
   may be realized through a reduced chip count and development time.

7.2.1   C language algorithm.

   #define MODX 4102

     encodecc( mess,len,k )
     unsigned char mess[] ;    /* the TPDU to be checksummed */
     int      len,
              k;               /* position of first checksum octet
                                  as an offset from mess[0]  */
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     { int ip,
           iq,
           ir,
           c0,
           c1;
       unsigned char *p,*p1,*p2,*p3 ;

       p = mess ; p3 = mess + len ;

       if ( k > 0) { mess[k-1] = 0x00 ; mess[k] = 0x00 ; }
            /* insert zeros for checksum octets */

       c0 = 0 ; c1 = 0  ; p1 = mess ;
       while (p1 < p3)    /* outer sum accumulation loop */
       {
        p2 = p1 + MODX ; if (p2 > p3) p2 = p3 ;
        for (p = p1 ; p < p2 ; p++) /*  inner sum accumulation loop */
        { c0 = c0 + (*p) ; c1 = c1 + c0 ;
        }
        c0 = c0%255 ; c1 = c1%255 ; p1 = p2 ;
            /* adjust accumulated sums to mod 255 */
        }
        ip = (c1 << 8) + c0 ;     /* concatenate c1 and c0 */

        if (k > 0)
        {     /* compute and insert checksum octets */

         iq = ((len-k)*c0 - c1)%255 ; if (iq <= 0) iq = iq + 255 ;
         mess[k-1] = iq ;
         ir = (510 - c0 - iq) ;
         if (ir > 255) ir = ir - 255 ; mess[k] = ir ;
       }
       return(ip) ;
     }

7.2.2   C/assembler algorithm.

   #include <math>

     encodecm(mess,len,k)
     unsigned char *mess ;
     int      len,k      ;
     {
       int i,ip,c0,c1 ;

       if (k > 0) { mess[k-1] = 0x00 ; mess[k] = 0x00 ; }
       ip = optm1(mess,len,&c0,&c1) ;
       if (k > 0)
       { i = ( (len-k)*c0 - c1)%255 ; if (i <= 0) i = i + 255 ;
         mess[k-1] = i ;
         i = (510 - c0 - i) ; if (i > 255) i = i - 255 ;
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         mess[k] = i ;
       }
       return(ip) ;
     }
    ;       calling sequence optm(message,length,&c0,&c1) where
    ;       message is an array of bytes
    ;       length   is the length of the array
    ;       &c0 and &c1 are the addresses of the counters to hold the
    ;       remainder of; the first and second order partial sums
    ;       mod(255).

            .ENTRY   optm1,^M<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11>
            movl     4(ap),r8      ; r8---> message
            movl     8(ap),r9      ; r9=length
            clrq     r4            ; r5=r4=0
            clrq     r6            ; r7=r6=0
            clrl     r3            ; clear high order bytes of r3
            movl     #255,r10      ; r10 holds the value 255
            movl     #4102,r11     ; r11= MODX
    xloop:  movl     r11,r7        ; if r7=MODX
            cmpl     r9,r7         ; is r9>=r7 ?
            bgeq     yloop         ; if yes, go and execute the inner
                                   ; loop MODX times.
            movl     r9,r7         ; otherwise set r7, the inner loop
                                   ; counter,
    yloop:  movb     (r8)+,r3      ;
            addl2    r3,r4         ; sum1=sum1+byte
            addl2    r4,r6         ; sum2=sum2+sum1
            sobgtr   r7,yloop      ; while r7>0 return to iloop
                              ; for mod 255 addition
      ediv     r10,r6,r0,r6  ; r6=remainder
      ediv     r10,r4,r0,r4  ;
      subl2    r11,r9        ; adjust r9
      bgtr     xloop         ; go for another loop if necessary
      movl     r4,@12(ap)    ; first argument
      movl     r6,@16(ap)    ; second argument
      ashl     #8,r6,r0      ;
      addl2    r4,r0         ;
      ret

7.2.3  Assembler algorithm.

   buff0:  .blkb   3              ; allocate 3 bytes so that aloop is
                          ; optimally aligned
   ;       macro implementation of Fletcher’s algorithm.
   ;       calling sequence ip=encodemm(message,length,k) where
   ;       message is an array of bytes
   ;       length   is the length of the array
   ;       k        is the location of the check octets if >0,
   ;                an indication not to encode if 0.
   ;
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   movl     4(ap),r8      ; r8---> message
   movl     8(ap),r9      ; r9=length
   clrq     r4            ; r5=r4=0
   clrq     r6            ; r7=r6=0
   clrl     r3            ; clear high order bytes of r3
   movl     #255,r10      ; r10 holds the value 255
   movl     12(ap),r2     ; r2=k
   bleq     bloop         ; if r2<=0, we do not encode
   subl3    r2,r9,r11     ; set r11=L-k
   addl2    r8,r2         ; r2---> octet k+1
   clrb     (r2)          ; clear check octet k+1
   clrb     -(r2)         ; clear check octet k, r2---> octet k.
   bloop:  movw     #4102,r7   ; set r7 (inner loop counter) = to MODX
   cmpl     r9,r7         ; if r9>=MODX, then go directly to adjust r9
   bgeq     aloop         ; and execute the inner loop MODX times.
   movl     r9,r7         ; otherwise set r7, the inner loop counter,
                          ; equal to r9, the number of the
                          ; unprocessed characters
   aloop:  movb     (r8)+,r3      ;
   addl2    r3,r4         ; c0=c0+byte
   addl2    r4,r6         ; sum2=sum2+sum1
   sobgtr   r7,aloop      ; while r7>0 return to iloop
                                  ; for mod 255 addition
   ediv     r10,r6,r0,r6  ; r6=remainder
   ediv     r10,r4,r0,r4  ;
   subl2    #4102,r9      ;
   bgtr     bloop         ; go for another loop if necessary
   ashl     #8,r6,r0      ; r0=256*r6
   addl2    r4,r0         ; r0=256*r6+r4
   cmpl     r2,r7         ; since r7=0, we are checking if r2 is
   bleq     exit          ; zero or less: if yes we bypass
                                  ; the encoding.
   movl     r6,r8         ; r8=c1
   mull3    r11,r4,r6     ; r6=(L-k)*c0
   ediv     r10,r6,r7,r6  ; r6 = (L-k)*c0 mod(255)
   subl2    r8,r6         ; r6= ((L-k)*c0)%255 -c1 and if negative,
   bgtr     byte1         ; we must
   addl2    r10,r6        ; add 255
   byte1:  movb     r6,(r2)+ ; save the octet and let r2---> octet k+1
   addl2    r6,r4         ; r4=r4+r6=(x+c0)
   subl3    r4,r10,r4     ; r4=255-(x+c0)
   bgtr     byte2         ; if >0 r4=octet (k+1)
   addl2    r10,r4        ; r4=255+r4
   byte2:  movb     r4,(r2)       ; save y in octet k+1
   exit:   ret

8   Parameter selection.

8.1   Connection control.

   Expressions for timer values used to control the general transport
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   connection behavior are given in IS 8073.  However, values for the
   specific factors in the expressions are not given and the expressions
   are only estimates.  The derivation of timer values from these
   expressions is not mandatory in the standard.  The timer value
   expressions in IS 8073 are for a connection-oriented network service
   and may not apply to a connectionless network service.

   The following symbols are used to denote factors contributing to
   timer values, throughout the remainder of this Part.

    Elr = expected maximum transit delay, local to remote

    Erl = expected maximum transit delay, remote to local

    Ar  = time needed by remote entity to generate an acknowledgement

    Al  = time needed by local entity to generate an acknowledgement

    x   = local processing time for an incoming TPDU

    Mlr = maximum NSDU lifetime, local to remote

    Mrl = maximum NSDU lifetime, remote to local

    T1  = bound for maximum time local entity will wait for
          acknowledgement before retransmitting a TPDU

    R   = bound for maximum local entity will continue to transmit a
          TPDU that requires acknowledgment

    N   = bound for maximum number of times local entity  will transmit
          a TPDU requiring acknowledgement

    L   = bound for the maximum time between the transmission of a
          TPDU and the receipt of any acknowledgment relating to it.

    I   = bound for the time after which an entity will initiate
          procedures to terminate a transport connection if a TPDU is
          not received from the peer entity

    W   = bound for the maximum time an entity will wait before
          transmitting up-to-date window information

   These symbols and their definitions correspond to those given in
   Clause 12 of IS 8073.

8.1.1   Give-up timer.

   The give-up timer determines the  amount  of  time  the transport
   entity  will continue to await an acknowledgement (or other
   appropriate reply) of a transmitted message  after the  message
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   has  been  retransmitted the maximum number of times.    The
   recommendation given in IS 8073 for values of this timer is
   expressed by

    T1 + W + Mrl, for DT and ED TPDUs

    T1 + Mrl, for CR, CC, and DR TPDUs,

   where

    T1 = Elr + Erl + Ar + x.

   However, it should be noted that Ar will not be known for either the
   CR or the CC TPDU, and that Elr and Erl may vary considerably due to
   routing in some conectionless network services.  In Part 8.3.1, the
   determination of values for T1 is discussed in more detail.  Values
   for Mrl generally are relatively fixed for a given network service.
   Since Mrl is usually much larger than expected values of T1, a
   rule-of-thumb for the give-up timer value is 2*Mrl + Al + x for the
   CR, CC and DR TPDUs and 2*Mrl + W for DT and ED TPDUs.

8.1.2   Inactivity timer.

   This timer measures  the  maximum  time  period  during which a
   transport connection can be inactive, i.e., the maximum time an
   entity can wait without receiving incoming messages.  A usable value
   for the inactivity timer is

    I = 2*( max( T1,W )*N ).

   This accounts for the possibility that the remote peer is using a
   window timer value different from that of the local peer.  Note that
   an inactivity timer is important for operation over connectionless
   network services, since the periodic receipt of AK TPDUs is the only
   way that the local entity can be certain that its peer is still
   functioning.

8.1.3   Window timer.

   The window timer has two purposes.  It is used to assure that the
   remote peer entity periodically receives the current state of the
   local entity’s flow control, and it ensures that the remote peer
   entity is aware that the local entity is still functioning.  The
   first purpose is necessary to place an upper bound on the time
   necessary to resynchronize the flow control should an AK TPDU which
   notifies the remote peer of increases in credit be lost.  The second
   purpose is necessary to prevent the inactivity timer of the remote
   peerfrom expiring.  The value for the window timer, W, depends on
   several factors, among which are the transit delay, the
   acknowledgement strategy, and the probability of TPDU loss in the
   network.  Generally, W should satisfy the following condition:
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     W > C*(Erl + x)

   where C is the maximum amount of credit offered.  The rationale for
   this condition is that the right-hand side represents the maximum
   time for receiving the entire window.  The protocol requires that all
   data received be acknowledged when the upper edge of the window is
   seen as a sequence number in a received DT TPDU.  Since the window
   timer is reset each time an AK TPDU is transmitted, there is usually
   no need to set the timer to any less than the value on the right-hand
   side of the condition.  An exception is when both C and the maximum
   TPDU size are large, and Erl is large.

   When the probability that a TPDU will be lost is small, the value of
   W can be quite large, on the order of several minutes.  However, this
   increases the delay the peer entity will experience in detecting the
   deactivation of the local transport entity.  Thus, the value of W
   should be given some consideration in terms of how soon the peer
   entity needs to detect inactivity.  This could be done by placing
   such information into a quality of service record associated with the
   peer’s address.

   When the expected network error rate is high, it may be necessary to
   reduce the value of W to ensure that AK TPDUs are being received by
   the remote entity, especially when both entities are quiescent for
   some period of time.

8.1.4   Reference timer.

   The reference timer measures  the  time  period  during which a
   source reference must not be reassigned to another transport
   connection, in order that spurious duplicate  messages not
   interfere  with a new connection.  The value for this timer
   given in IS 8073 is

    L = Mlr + Mrl + R + Ar

   where

    R = T1*N + z

   in which z is a small tolerance quantity to allow for factors
   internal to the entity.  The use of L as a bound, however, must be
   considered carefully.  In some cases, L may be very large, and not
   realistic as an upper or a lower bound.  Such cases may be
   encountered on routes over several catenated networks where R is set
   high to provide adequate recovery from TPDU loss.  In other cases L
   may be very small, as when transmission is carried out over a LAN and
   R is set small due to low probability of TPDU loss.  When L is
   computed to be very small, the reference need not be timed out at
   all, since the probability of interference is zero.  On the other
   hand, if L is computed to be very large a smaller value can be used.
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   One choice for the value  might be

    L = min( R,(Mrl + Mlr)/2 )

   If the reference number assigned to  a  new  connection  by  an
   entity  is monotonically incremented for each new connection through
   the entire available reference space (maximum 2**16 - 1), the timer
   is not critical: the sequence space is large enough that it is likely
   that there will be no spurious messages in  the network by the time
   reference numbers are reused.

8.2   Flow control.

   The peer-to-peer flow control mechanism  in  the  transport protocol
   determines  the  upper bound on the pace of data exchange that occurs
   on  transport  connections.   The transport  entity  at  each end of
   a connection offers a credit to its peer representing the number of
   data  messages it  is  currently willing to accept.  All received
   data messages are acknowledged,  with  the  acknowledgement  message
   containing  the  current  receive  credit  information.  The three
   credit allocation schemes discussed  below  present  a diverse  set
   of  examples  of  how one might derive receive credit values.

8.2.1   Pessimistic credit allocation.

   Pessimistic credit allocation is perhaps the simplest form of flow
   control.  It is similar in concept to X-on/X-off control.  In this
   method, the receiver always offers a credit of one TPDU.  When the DT
   TPDU is received, the receiver responds with an AK TPDU carrying a
   credit of zero.  When the DT TPDU has been processed by the receiving
   entity, an additional AK TPDU carrying a credit of one will be sent.
   The advantage to this approach is  that  the data  exchange  is  very
   tightly controlled by the receiving entity.  The disadvantages are:
   1) the  exchange  is  slow, every data  message requiring at least
   the time of two round trips to complete the transfer transfer, and 2)
   the ratio of acknowledgement to data messages sent is 2:1.  While not
   recommeneded, this scheme illustrates one extreme method of credit
   allocation.

8.2.2   Optimistic credit allocation.

   At the other extreme from pessimistic credit allocation is optimistic
   credit  allocation,  in  which  the  receiver offers more credit than
   it has buffers.  This scheme  has  two  dangers.  First, if the
   receiving user is not accepting data at a fast enough rate, the
   receiving transport’s  buffers  will  become filled.  Since  the
   credit  offered  was optimistic, the sending entity will continue to
   transmit data, which must be dropped  by the receiving entity for
   lack of buffers. Eventually,  the  sender  may  reach  the  maximum
   number   of retransmissions and terminate the connection.
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   The second danger in using optimistic flow  control  is that the
   sending entity may transmit faster than the receiving entity can
   consume.  This could result from  the  sender being  implemented  on
   a faster machine or being a more efficient implementation.  The
   resultant behavior is essentially the same as described above:
   receive buffer saturation, dropped data messages, and connection
   termination.

   The two dangers  cited  above  can  be  ameliorated  by implementing
   the credit reduction scheme as specified in the protocol.  However,
   optimistic credit allocation works  well only  in  limited
   circumstances.   In most situations it is inappropriate and
   inefficient even when using credit reduction.  Rather  than seeking
   to avoid congestion, optimistic allocation causes it, in most cases,
   and credit reduction simply allows  one to recover from congestion
   once it has happened.  Note that optimistic credit allocation
   combined with caching out-of-sequence messages requires a
   sophisticated buffer management scheme to avoid reasssembly deadlock
   and subsequent loss of the transport connection.

8.2.3   Buffer-based credit allocation.

   Basing the receive  credit  offered  on  the  actual availability  of
   receive  buffers  is  a  better method for achieving flow control.
   Indeed, with few exceptions, the implementations that have been
   studied used this method.  It continuous  flow  of  data  and
   eliminating the need for the credit-restoring  acknowledgements.
   Since  only  available buffer space is offered, the dangers of
   optimistic credit allocation are also avoided.

   The amount of buffer space needed to  maintain  a  continuous bulk
   data  transfer,  which represents the maximum buffer requirement, is
   dependent on round trip  delay  and network  speed.  Generally, one
   would want the buffer space, and hence the credit, large enough to
   allow  the  sender  to send continuously, so that incremental credit
   updates arrive just prior to the sending entity  exhausting  the
   available credit.   One example is a single-hop satellite link
   operating at 1.544  Mbits/sec.   One  report [COL85]  indicates  that
   the buffer requirement necessary for continuous flow is approximately
   120 Kbytes.  For 10 Mbits/sec. IEEE 802.3 and 802.4 LANs, the figure
   is on the order of 10K to 15K bytes [BRI85, INT85, MIL85].

   An interesting modification to the buffer-based  credit allocation
   scheme is suggested by R.K. Jain [JAI85].  Whereas the approach
   described above is based strictly on the available buffer space, Jain
   suggests a scheme in which credit is reduced  voluntarily  by  the
   sending  entity  when  network congestion  is  detected.  Congestion
   is implied by the occurrence of retransmissions.  The sending
   entity,  recognizing retransmissions,  reduces  the local value of
   credit to one, slowly raising it to the actual receive credit
   allocation as error-free transmissions continue to occur.  This
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   technique can overcome various types of network congestion occurring
   when a fast sender overruns a slow receiver when no link level flow
   control is available.

8.2.4   Acknowledgement policies.

   It is useful first to  review the four uses of the acknowledgement
   message in Class 4 transport.  An acknowledgement message:

          1) confirms correct receipt of data messages,

          2) contains a credit allocation, indicating how  many
             data  messages  the  entity  is willing to receive
             from the correspondent entity,

          3) may  optionally  contain  fields   which   confirm
             receipt   of  critical  acknowledgement  messages,
             known as flow control confirmation (FCC), and

          4) is sent upon expiration of  the  window  timer  to
             maintain  a minimum level of traffic on an
             otherwise quiescent connection.

   In choosing an acknowledgement strategy, the first and  third uses
   mentioned  above,  data  confirmation and FCC, are the most relevant;
   the second, credit allocation, is  determined according  to  the
   flow  control  strategy  chosen, and the fourth,  the  window
   acknowledgement,  is  only   mentioned briefly in the discussion on
   flow control confirmation.

8.2.4.1   Acknowledgement of data.

   The primary purpose of the acknowledgement  message  is to  confirm
   correct  receipt  of  data messages.  There are several choices that
   the implementor must make when  designing a  specific
   implementation.   Which  choice to make is based largely on the
   operating  environment  (e.g.,  network error  characteristics).
   The issues to be decided upon are discussed in the sections below.

8.2.4.1.1  Misordered data messages.

   Data messages received out  of  order  due  to  network misordering
   or loss can be cached or discarded.  There is no single determinant
   that guides the implementor to one or  the  other choice.  Rather,
   there are a number of issues to be considered.

   One issue is the importance of maintaining a low  delay as  perceived
   by  the user.  If transport data messages are lost or damaged in
   transit, the absence of a  positive acknowledgement  will trigger a
   retransmission at the sending entity.  When the retransmitted data
   message arrives at  the receiving  transport,  it  can be delivered
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   to the user.  If subsequent data messages had  been  cached,  they
   could  be delivered  to  the user at the same time.  The delay
   between the sending  and  receiving  users  would,  on  average, be
   shorter  than  if messages subsequent to a lost message were
   dependent on retransmission for recovery.

   A second factor that influences the caching choice is  the cost of
   transmission.  If transmission costs are high, it is more economical
   to cache  misordered  data,  in  conjunction with the use of
   selective acknowledgement (described below), to avoid
   retransmissions.

   There are two resources that are conserved by not caching misordered
   data: design and implementation time for the transport entity and CPU
   processing time during execution.  Savings  in  both  categories
   accrue  because a non-caching implementation is simpler in its buffer
   management.  Data TPDUs are discarded rather than being reordered.
   This avoids the overhead of managing the gaps  in  the  received
   data  sequence space, searching of sequenced message lists, and
   inserting retransmitted data messages into the lists.

8.2.4.1.2   Nth acknowledgement.

   In general, an acknowledgement message  is  sent  after receipt of
   every N data messages on a connection. If N is small compared to the
   credit offered, then a finer granularity of buffer  control  is
   afforded  to  the  data sender’s buffer management function.  Data
   messages are confirmed in small groups,  allowing buffers to be
   reused sooner than if N were larger.  The cost of having N small is
   twofold.  First, more acknowledgement  messages must be generated by
   one transport entity and processed by another, consuming some of  the
   CPU resource  at  both  ends  of a connection.  Second, the
   acknowledgement messages consume transmission bandwidth,  which may
   be expensive or limited.

   For larger  N,  buffer  management  is  less  efficient because the
   granularity with which buffers are controlled is N times the maximum
   TPDU size.  For example, when data  messages are  transmitted to a
   receiving entity employing this strategy with large N, N data
   messages must be  sent  before an  acknowledgement  is  returned
   (although the window timer causes the acknowledgement to  be  sent
   eventually regardless  of  N).  If the minimum credit allocation for
   continuous operation is actually  a  fraction  of  N,  a credit  of N
   must still be offered, and N receive buffers reserved, to achieve a
   continuous  flow  of  data  messages.  Thus,  more  receive  buffers
   are used than are actually needed.  (Alternatively, if one relies on
   the timer,  which  must  be adjusted to the receipt time for N and
   will not expire until some time after the fraction of N has been
   sent,  there  may be idle time.)

   The choice of values for N depends on several factors.  First, if the

McCoy                                                          [Page 58]



RFC 1008                                                       June 1987

   rate at which DT TDPUs are arriving is relatively low, then there is
   not much justification for using a value for N that exceeds 2.  On
   the other hand, if the DT TPDU arrival rates is high or the TPDU’s
   arrive in large groups (e.g., in a frame from a satellite link), then
   it may be reasonable to use a larger value for N, simply to avoid the
   overhead of generating and sending the acknowledgements while
   procesing the DT TPDUs.  Second, the value of N should be related to
   the maximum credit to be offered. Letting C be the maximum credit to
   be offered, one should choose N < C/2, since the receipt of C TPDUs
   without acknowledging will provoke sending one in any case. However,
   since the extended formats option for transport provides max C =
   2**16 - 1, a choice of N = 2**15 - 2 is likely to cause some of the
   sender’s retransmission timers to expire.  Since the retransmitted
   TPDU’s will arrive out of sequence, they will provoke the sending of
   AK TPDU’s.  Thus, not much is gained by using an N large.  A better
   choice is N = log C (base 2).  Third, the value of should be related
   to the maximum TPDU size used on the connection and the overall
   buffer management. For example, the buffer management may be tied to
   the largest TPDU that any connection will use, with each connection
   managing the actual way in which the negotiated TPDU size relates to
   this buffer size.  In such case, if a connection has negotiated a
   maximum TPDU size of 128 octets and the buffers are 2048 octets, it
   may provide better management to partially fill a buffer before
   acknowledging.  If the example connection has two buffers and has
   based offered credit on this, then one choice for N could be 2*log(
   2048/128 ) = 8.  This would mean that an AK TPDU would be sent when a
   buffer is half filled ( 2048/128 = 16 ), and a double buffering
   scheme used to manage the use of the two buffers.  the use of the t
   There are two studies which indicate that, in many cases, 2 is a good
   choice for N [COL85, BRI85].  The increased granularity in buffer
   management is reasonably small when compared to the credit
   allocation, which ranges from 8K to 120K octets in the studies cited.
   The benefit is that the number of acknowledgements generated (and
   consumed) is cut approximately in half.

8.2.4.1.3   Selective acknowledgement.

   Selective acknowledgement is an option that allows misordered data
   messages to be confirmed even in the presence of gaps in the received
   message sequence.   (Note that selective  acknowledgement  is  only
   meaningul whe caching out-of-orderdata messags.)  The  advantage  to
   using  this mechanism  is hat i grealy reduces the number of
   unnecessary retransmissions, thus saving both  computing  time  and
   transmission bandwidth [COL85] (see the discussion in Part 8.2.4.1.1
   for  more  details).

8.2.4.2   Flow control confirmation and fast retransmission.

   Flow control confirmation (FCC) is a mechanism of the transport
   protocol whereby acknowledgement messages containing critical flow
   control information are confirmed.  The critical  acknowledgement
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   messages are those  that open a closed flow control window and
   certain ones that occur subsequent  to a credit reduction.  In
   principle, if these critical messages are lost, proper
   resynchroniztion of the flow control relies on the window timer,
   which is generally of relatively long duration.   In order to reduce
   delay in resynchronizing the flow control, the receiving entity can
   repeatedly send, within short intervals, AK TPDUs carrying a request
   for confirmation of the flow control state, a procedure known as
   "fast" retransmission (of the acknowledgement).  If the sender
   responds with an AK TPDU carrying an FCC parameter, fast
   retransmission is halted.  If no AK TPDU carrying the FCC parameter
   is received, the fast transmission halts after having reached a
   maximum number of retransmissions, and the window timer resumes
   control of AK TPDU transmission.  It should be noted that FCC is an
   optional mechanism of transport and the data sender is not required
   to respond to a request for confirmation of the flow control state
   wih an AK TPDU carrying the FCC parameter.

   Some considerations for deciding whether or not to use FCC and fast
   retransmisson procedures are as follows:

    1) likelihood of credit reduction on a given transport connection;

    2) probability of TPDU loss;

    3) expected window timer period;

    4) window size; and

    5) acknowledgement strategy.

   At this time, there is no reported experience with using FCC and fast
   retransmission.  Thus, it is not known whether or not the procedures
   produce sufficient reduction of resynchronization delay to warrant
   implementing them.

   When implementing fast retransmission, it is suggested that the timer
   used for the window timer be employed as the fast timer, since the
   window is disabled during fast retransmission in any case.  This will
   avoid having to manage another timer.  The formal description
   expressed the fast retransmission timer as a separate timer for
   clarity.

8.2.4.3   Concatenation of acknowledgement and data.

   When full duplex communication is being operated by two transport
   entities, data and acknowledgement TPDUs from each one of the
   entities travel in the same direction.  The transport protocol
   permits concatenating AK TPDUs in the same NSDU as a DT TPDU.  The
   advantage of using this feaure in an implementation is that fewer
   NSDUs will be transmitted, and, consequently, fewer total octets will
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   be sent, due to the reduced number of network headers transmitted.
   However, when operating over the IP, this advantage may not
   necessarily be recognized, due to the possible fragmentation of the
   NSDU by the IP.  A careful analysis of the treatment of the NSDU in
   internetwork environments should be done to determine whether or not
   concatenation of TPDUs is of sufficient benefit to justify its use in
   that situation.

8.2.5   Retransmission policies.

   There are primarily two  retransmission  policies  that can be
   employed in a transport implementation.  In the first of these, a
   separate retransmission timer  is  initiated  for each  data  message
   sent by the transport entity.  At first glance, this approach appears
   to be simple and  straightforward to implement.  The deficiency of
   this scheme is that it is inefficient.  This derives from two
   sources.  First,  for each data message transmitted, a timer must be
   initiated and cancelled, which consumes a significant amount of  CPU
   processing  time  [BRI85].   Second, as the list of outstanding
   timers grows, management of the list also  becomes  increasingly
   expensive.   There  are  techniques  which  make list management more
   efficient, such as a list per connection and hashing,  but
   implementing  a  policy of one retransmission timer per transport
   connection is a superior choice.

   The second retransmission policy, implementing one retransmission
   timer for each transport conenction, avoids some of the
   inefficiencies cited above: the  list  of  outstanding  timers  is
   shorter by approximately an order of magnitude.  However, if the
   entity receiving the data is generating an  acknowledgement for
   every  data message, the timer must still be cancelled and restarted
   for each  data/acknowledgement  message pair  (this is an additional
   impetus for implementing an Nth acknowledgement policy with N=2).

   The rules governing the  single  timer  per  connection scheme are
   listed below.

          1) If  a  data  message  is   transmitted   and   the
             retransmission  timer  for  the  connection is not
             already running, the timer is started.

          2) If an acknowledgement for previously unacknowledged
             data is received, the retransmission timer is restarted.

          3) If an acknowledgement message is received for  the
             last  outstanding  data  message on the connection
             then the timer is cancelled.

          4) If the retransmission timer expires, one  or  more
             unacknowledged  data  messages  are retransmitted,
             beginning with the one sent earliest.  (Two
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             reports [HEA85, BRI85] suggest that the number
             to retransmit is one.)

8.3   Protocol control.

8.3.1   Retransmission timer values.

8.3.1.1   Data retransmission timer.

   The value for the reference timer may have a significant impact on
   the performance of the transport protocol [COL85].  However,
   determining the proper value to use is sometimes difficult.
   According to IS 8073, the value for the timer is computed using the
   transit delays, Erl and Elr, the acknowledgement delay, Ar, and the
   local TPDU processing time, x:

    T1 = Erl + Elr + Ar + x

   The  difficulty  in  arriving at a good retransmission timer value is
   directly related to the variability of  these  factors Of the two,
   Erl and Elr are the most susceptible to variation, and therefore have
   the most impact on  determining a  good  timer  value.   The
   following  paragraphs  discuss methods for choosing retransmission
   timer  values  that  are appropriate in several network environments.

   In a single-hop satellite environment, network delay (Erl or Elr) has
   small variance because of the constant propagation delay of about 270
   ms., which overshadows the other components  of network  delay.
   Consequently, a fixed retransmission timer provides good performance.
   For example, for a 64K  bit/sec.  link  speed and network queue size
   of four, 650 ms. provides good performance [COL85].

   Local area  networks  also  have  constant  propagation delay.
   However, propagation delay is a relatively unimportant factor in
   total network delay for a local area network.  Medium  access  delay
   and  queuing delay are the significant components of network delay,
   and (Ar + x) also plays a significant  role  in determining an
   appropriate retransmission timer.  From the discussion presented in
   Part 3.4.3.2 typical numbers for (Ar + x) are on the order of 5 - 6.5
   ms and for Erl or Elr, 5 - 35 ms.  Consequently, a reasonable value
   for  the  retransmission  timer is 100 ms.  This value works well for
   local area networks, according to one cited report [INT85] and
   simulation work performed at the NBS.

   For better performance in an environment with long propagation
   delays and significant variance, such as an internetwork an adaptive
   algorithm is preferred, such as the one suggested value  for  TCP/IP
   [ISI81].  As analyzed by Jain [JAI85], the algorithm uses an
   exponential averaging scheme to  derive  a round trip delay estimate:

               D(i)  = b * D(i-1)  +  (1-b) * S(i)
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   where D(i) is the update of the delay estimate, S(i) is  the sample
   round  trip  time measured between transmission of a given packet and
   receipt of its acknowledgement, and b is  a weighting   factor
   between  0  and  1,  usually  0.5.   The retransmission timer is
   expressed as some multiplier, k,  of D.  Small values of k cause
   quick detection of lost packets, but result in a higher number of
   false timeouts and,  therefore, unnecessary   retransmissions.    In
   addition,  the retransmission timer should  be  increased
   arbitrarily  for each case of multiple transmissions; an exponential
   increase is suggested, such that

               D(i) = c * D(i-1)

   where c is a dimensionless parameter greater than one.

   The remaining parameter for the adaptive  algorithm  is the  initial
   delay  estimate,  D(0).   It  is preferable to choose a slightly
   larger value than needed, so that unnecessary retransmissions  do
   not  occur at the beginning.  One possibility is to measure the round
   trip delay  during connection  establishment.   In  any  case, the
   timer converges except under conditions of sustained congestion.

8.3.1.2   Expedited data retransmission timer.

   The timer which  governs  retransmission  of  expedited data should
   be set using the normal data retransmission timer value.

8.3.1.3   Connect-request/confirm retransmission timer.

   Connect request and confirm  messages  are  subject  to Erl + Elr,
   total network delay, plus  processing  time  at  the receiving
   transport entity, if these values are known.  If an accurate estimate
   of the round trip time is not known, two  views  can be espoused in
   choosing the value for this timer.  First,  since  this  timer
   governs  connection establishment, it is desirable to minimize delay
   and so a small value can be chosen, possibly resulting in unnecessary
   retransmissions.  Alternatively, a larger value can be used, reducing
   the possibility of unnecessary retransmissions, but resulting in
   longer delay in connection establishment should the connect request
   or confirm message be lost.  The choice between these two views is
   dictated largely by local requirements.

8.3.1.4  Disconnect-request retransmission timer.

   The timer which governs retransmission of  the  disconnect request
   message  should  be  set from the normal data retransmission timer
   value.

8.3.1.5   Fast retransmission timer.

   The fast  retransmission  timer  causes  critical acknowledgement
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   messages to be retransmitted avoiding delay in resynchronizing
   credit.  This timer should be set to approximately Erl + Elr.

8.3.2   Maximum number of retransmissions.

   This transport parameter determines the maximum  number of  times  a
   data message will be retransmitted.  A typical value is eight.  If
   monitoring of network service is performed then this value can be
   adjusted according to observed error rates.  As a high error rate
   implies a high probability of TPDU loss, when it is desirable to
   continue sending despite the decline in quality of service, the
   number of TPDU retransmissions (N) should be increased and the
   retransmission interval (T1) reduced.

8.4   Selection of maximum Transport Protocol data unit size.

   The choice of maximum size for TPDUs in negotiation proposals depends
   on the application to be served and the service quality of the
   supporting network.  In general, an application which produces large
   TSDUs should use as large TPDUs as can be negotiated, to reduce the
   overhead due to a large number of small TPDUs.  An application which
   produces small TSDUs should not be affected by the choice of a large
   maximum TPDU size, since a TPDU need not be filled to the maximum
   size to be sent.  Consequently, applications such as file transfers
   would need larger TPDUs while terminals would not.  On a high
   bandwidth network service, large TPDUs give better channel
   utilization than do smaller ones.  However, when error rates are
   high, the likelihood for a given TPDU to be damaged is correlated to
   the size and the frequency of the TPDUs.  Thus, smaller TPDU size in
   the condition of high error rates will yield a smaller probability
   that any particular TPDU will be lost.

   The implementor must choose whether or not to apply a uniform maximum
   TPDU size to all connections.  If the network service is uniform in
   service quality, then the selection of a uniform maximum can simplify
   the implementation.  However, if the network quality is not uniform
   and it is desirable to optimize the service provided to the transport
   user as much as possible, then it may be better to determine the
   maximum size on an individual connection basis.  This can be done at
   the time of the network service access if the characteristics of the
   subnetwork are known.

   NOTE: The maximum TPDU size is important in the calculation of the
   flow control credit, which is in numbers of TPDUs offered.  If buffer
   space is granted on an octet base, then credit must be granted as
   buffer space divided by maximum TPDU size.  Use of a smaller TPDU
   size can be equivalent to optimistic credit allocation and can lead
   to the expected problems, if proper analysis of the management is not
   done.
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9   Special options.

   Special options may be obtained by taking advantage of the manner in
   which IS 8073 and N3756 have been written.  It must be emphasized
   that these options in no way violate the intentions of the standards
   bodies that produced the standards.  Flexibility was deliberately
   written into the standards to ensure that they do not constrain
   applicability to a wide variety of situations.

9.1   Negotiations.

   The negotiation procedures in IS 8073 have deliberate ambiguities in
   them to permit flexibility of usage within closed groups of
   communicants (the standard defines explicitly only the behavior among
   open communicants).  A closed group of communicants in an open system
   is one which, by reason of organization, security or other special
   needs, carries on certain communication among its members which is
   not of interest or not accessible to other open system members.
   Examples of some closed groups within DOD might be:  an Air Force
   Command, such as the SAC; a Navy base or an Army post; a ship;
   Defense Intelligence; Joint Chiefs of Staff. Use of this
   characteristic does not constitute standard behavior, but it does not
   violate conformance to the standard, since the effects of such usage
   are not visible to non-members of the closed group.  Using the
   procedures in this way permits options not provided by the standard.
   Such options might permit,for example, carrying special protection
   codes on protocol data units or for identifying DT TPDUs as carrying
   a particular kind of message.

   Standard negotiation procedures state that any parameter in a
   received CR TPDU that is not defined by the standard shall be
   ignored.  This defines only the behavior that is to be exhibited
   between two open systems.  It does not say that an implementation
   which recognizes such non-standard parameters shall not be operated
   in networks supporting open systems interconnection.  Further, any
   other type TPDU containing non-standard parameters is to be treated
   as a protocol error when received.  The presumption here is that the
   non-standard parameter is not recognized, since it has not been
   defined.  Now consider the following example:

   Entity A sends Entity B a CR TPDU containing a non-standard
   parameter.

   Entity B has been implemented to recognize the non-standard parameter
   and to interpret its presence to mean that Entity A will be sending
   DT TPDUs to Entity B with a special protection identifier parameter
   included.

   Entity B sends a CC TPDU containing the non-standard parameter to
   indicate to Entity A that it has received and understood the
   parameter, and is prepared to receive the specially marked DT TPDUs
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   from Entity A.  Since Entity A originally sent the non-standard
   parameter, it recognizes the parameter in the CC TPDU and does not
   treat it as a protocol error.

   Entity A may now send the specially marked DT TPDUs to Entity B and
   Entity B will not reject them as protocol errors.

   Note that Entity B sends a CC TPDU with the non-standard parameter
   only if it receives a CR TPDU containing the parameter, so that it
   does not create a protocol error for an initiating entity that does
   not use the parameter.  Note also that if Entity B had not recognized
   the parameter in the CR TPDU, it would have ignored it and not
   returned a CC TPDU containing the parameter.  This non-standard
   behavior is clearly invisible and inaccessible to Transport entities
   outside the closed group that has chosen to implement it, since they
   are incapable of distinguishing it from errors in protocol.

9.2   Recovery from peer deactivation.

   Transport does not directly support the recovery of the transport
   connection from a crashed remote transport entity.  A partial
   recovery is possible, given proper interpretation of the state tables
   in Annex A to IS 8073 and implementation design.  The interpretation
   of the Class 4 state tables necessary to effect this operation is as
   follows:

   Whenever a CR TPDU is received in the state OPEN, the entity is
   required only to record the new network connection and to reset the
   inactivity timer.  Thus, if the initiator of the original connection
   is the peer which crashed, it may send a new CR TPDU to the surviving
   peer, somehow communicating to it the original reference numbers
   (there are several ways that this can be done).

      Whenever a CC TPDU is received in the

   state OPEN, the receiver is required only to record the new network
   connection, reset the inactivity timer and send either an AK, DT or
   ED TPDU.  Thus, if the responder for the original connection is the
   peer which crashed, it may send a new CC TPDU to the surviving peer,
   communicating to it the original reference numbers.

   In order for this procedure to operate properly, the situation in a.,
   above, requires a CC TPDU to be sent in response.  This could be the
   original CC TPDU that was sent, except for new reference numbers.
   The original initiator will have sent a new reference number in the
   new CR TPDU, so this would go directly into the CC TPDU to be
   returned.  The new reference number for the responder could just be a
   new assignment, with the old reference number frozen.  In the
   situation in b., the originator could retain its reference number (or
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   assign a new one if necessary), since the CC TPDU should carry both
   old reference numbers and a new one for the responder (see below).
   In either situation, only the new reference numbers need be extracted
   from the CR/CC TPDUs, since the options and parameters will have been
   previously negotiated.  This procedure evidently requires that the CR
   and CC TPDUs of each connection be stored by the peers in nonvolatile
   memory, plus particulars of the negotiations.

   To transfer the new reference numbers, it is suggested that the a new
   parameter in the CR and CC TPDU be defined, as in Part 9.1, above.
   This parameter could also carry the state of data transfer, to aid in
   resynchronizing, in the following form:

    1) the last DT sequence number received by the peer that crashed;

    2) the last DT sequence number sent by the peer that
       crashed;

    3) the credit last extended by the peer that crashed;

    4) the last credit perceived as offered by the surviving peer;

    5) the next DT sequence number the peer that crashed expects to
       send (this may not be the same as the last one sent, if the last
       one sent was never acknowledged);

    6) the sequence number of an unacknowledged ED TPDU, if any;

    7) the normal data sequence number corresponding to the
       transmission of an unacknowledged ED TPDU, if any (this is to
       ensure the proper ordering of the ED TPDU in the normal data
       flow);

   A number of other considerations must be taken into account when
   attempting data transfer resynchronization.  First, the recovery will
   be greatly complicated if subsequencing or flow control confirmation
   is in effect when the crash occurs.  Careful analysis should be done
   to determine whether or not these features provide sufficient benefit
   to warrant their inclusion in a survivable system.  Second,
   non-volatile storage of TPDUs which are unacknowledged must be used
   in order that data loss at the time of recovery can be minimized.
   Third, the values for the retranmsission timers for the communicating
   peers must allow sufficient time for the recovery to be attempted.
   This may result in longer delays in retransmitting when TPDUs are
   lost under normal conditions. One way that this might be achieved is
   for the peers to exchange in the original CR/CC TPDU exchange, their
   expected lower bounds for the retransmission timers, following the
   procedure in Part 9.1.  In this manner, the peer that crashed may be
   determine whether or not a new connection should be attempted. Fourth,
   while the recovery involves directly only the transport peers when
   operating over a connectionless network service, recovery when
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   operating over a connection-oriented network service requires some
   sort of agreement as to when a new network connection is to be
   established (if necessary) and which peer is responsible for doing
   it.  This is required to ensure that unnecessary network
   connections are not opened as a result of the recovery.  Splitting
   network connections may help to ameliorate this problem.

9.3   Selection of transport connection reference numbers.

   In N3756, when the reference wait period for a connection begins, the
   resources associated with the connection are released and the
   reference number is placed in a set of frozen references.  A timer
   associated with this number is started, and when it expires, the
   number is removed from the set.  A function which chooses reference
   numbers checks this set before assigning the next reference number.
   If it is desired to provide a much longer period by the use of a
   large reference number space, this can be met by replacing the
   implementation dependent function "select_local_ref" (page TPE-17 of
   N3756) by the following code:

    function select_local_ref : reference_type;

    begin
    last_ref := (last_ref + 1) mod( N+1 ) + 1;
    while last_ref in frozen_ref[class_4] do
              last_ref := (last_ref + 1) mod( N+1 ) + 1;
    select_local_ref := last_ref;
    end;

   where "last_ref" is a new variable to be defined in declarations
   (pages TPE-10 - TPE-11), used to keep track of the last reference
   value assigned, and N is the length of the reference number cycle,
   which cannot exceed 2**16 - 1 since the reference number fields in
   TPDUs are restricted to 16 bits in length.

9.4   Obtaining Class 2 operation from a Class 4 implementation.

   The operation of Class 4 as described in IS 8073 logically contains
   that of the Class 2 protocol.  The formal description, however, is
   written assuming Class 4 and Class 2 to be distinct.  This was done
   because the description must reflect the conformance statement of IS
   8073, which provides that Class 2 alone may be implemented.

   However, Class 2 operation can be obtained from a Class 4
   implementation, which would yield the advantages of lower complexity,
   smaller memory requirements, and lower implementation costs as
   compared to implementing the classes separately.  The implementor
   will have to make the following provisions in the transport entity
   and the Class 4 transport machine to realize Class 2 operation.

McCoy                                                          [Page 68]



RFC 1008                                                       June 1987

     1)   Disable all timers.  In the formal description, all Class 4
          timers except the reference timer are in the Class 4 TPM.
          These timers can be designed at the outset to be enabled or
          not at the instantiation of the TPM.  The reference timer is
          in the Transport Entity module (TPE) and is activated by the
          TPE recognizing that the TPM has set its "please_kill_me"
          variable to "freeze".  If the TPM sets this variable instead
          to "now", the reference timer for that transport connection is
          never started.  However, IS 8073 provides that the reference
          timer can be used, as a local entity management decision, for
          Class 2.

          The above procedure should be used when negotiating from Class
          4 to Class 2.  If Class 2 is proposed as the preferred class,
          then it is advisable to not disable the inactivity timer, to
          avoid the possibility of deadlock during connection
          establishment if the peer entity never responds to the CR
          TPDU.  The inactivity timer should be set when the CR TPDU is
          sent and deactivated when the CC TPDU is received.

     2)   Disable checksums.  This can be done simply by ensuring that
          the boolean variable "use_checksums" is always set to "false"
          whenever Class 2 is to be proposed or negotiated.

     3)   Never permit flow control credit reduction. The formal
          description makes flow control credit management a function of
          the TPE operations and such management is not reflected in the
          operation of the TPM.  Thus, this provision may be handled by
          always making the "credit-granting" mechanism aware of the
          class of the TPM being served.

     4)   Include Class 2 reaction to network service events.  The Class
          4 handling of network service events is more flexible than
          that of Class 2 to provide the recovery behavior
          characteristic of Class 4.  Thus, an option should be provided
          on the handling of N_DISCONNECT_indication and
          N_RESET_indication for Class 2 operation.  This consists of
          sending a T_DISCONNECT_indication to the Transport User,
          setting "please_kill_me" to "now" (optionally to "freeze"),
          and transitioning to the CLOSED state, for both events.  (The
          Class 4 action in the case of the N_DISCONNECT is to remove
          the network connection from the set of those associated with
          the transport connection and to attempt to obtain a new
          network connection if the set becomes empty.  The action on
          receipt of the N_RESET is to do nothing, since the TPE has
          already issued the N_RESET_response.)

     5)   Ensure that TPDU parameters conform to Class 2.  This implies
          that subsequence numbers should not be used on AK TPDUs, and
          no flow control confirmation parameters should ever appear in
          an AK TPDU.  The checksum parameter is prevented from
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          appearing by the "false" value of the "use_checksums"
          variable.  (The acknowledgement time parameter in the CR and
          CC TPDUs will not be used, by virtue of the negotiation
          procedure.  No special assurance for its non-use is
          necessary.)

          The TPE management of network connections should see to it
          that splitting is never attempted with Class 4 TPMs running as
          Class 2.  The handling of multiplexing is the same for both
          classes, but it is not good practice to multiplex Class 4 and
          Class 2 together on the same network connection.
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