MPTCP Wor ki ng Group C. Paasch

Internet-Draft A. Bi swas
I nt ended status: Experinmental D. Haas
Expires: April 16, 2016 Appl e, Inc.

Cct ober 14, 2015

Maki ng Mul tipath TCP robust for statel ess webservers
dr af t - paasch- npt cp- syncooki es- 02

Abstract

Thi s docunent proposes a nodification of the MPTCP handshake t hat
allows it to work efficiently with stateless servers. W first
identify the issues around statel ess connection establishment using
SYN-cooki es. Further, we suggest an extension to Miultipath TCP to
overconme these issues and di scuss alternatives.

As a side-effect, the proposed nodification to the handshake opens
the door to reduce the size of the MP_CAPABLE option in the SYN

This reduces the growi ng pressure on the TCP-option space in the SYN
segnent, giving space for future extensions to TCP

Status of This Menp

This Internet-Draft is submtted in full confornance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engi neering
Task Force (I ETF). Note that other groups may al so distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on April 16, 2016.
Copyri ght Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega

Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

Paasch, et al. Expires April 16, 2016 [Page 1]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis document rnust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. | nt roducti on 2
2. Probl em st at ement 3
3. Proposal . 4
3.1 Loss of the th|rd ACK .o 4
3.1.1. MP_CAPABLE_ACK speC|f|cat|0n 5
3.1.2. TCP Fast Open . - . 8
3.1.3. Negotiation . 8
3.1.4. DATA FIN . 8
3.1.5. Server sending data . 8
3.1.6. M ddl ebox consi derations e e e 9
3.2. Loss of the first data segnrent 10
4., Aternative solutions 11
5. | ANA Considerations 1
6. Security Considerations 1
7. Acknowl edgrentso ... 12
8. References . . 4
8.1. Normative References e 4
8. 2. Informati ve References 12
Aut hors’ Addresses .. 113
1. Introduction

During the establishnent of a TCP connection, a server must create
state upon the reception of the SYN [RFCO793]. Specifically, it
needs to generate an initial sequence number, and reply to the
options indicated in the SYN. The server typically maintains in-
nmenory state for the enbryonic connection, including state about what
options were negotiated, such as w ndow scale factor [RFC7323] and

the maxi mum segnent size. It also maintains state about whether SACK
[RFC2018] and TCP Ti nestanps were negoti ated during the 3-way
handshake.

Attackers exploit this state creation on the server through the SYN
flooding attack. Indeed, an attacker only needs to emt SYN segnents
with different 4-tuples (source and destination |IP addresses and port
nunbers) in order to nake the server create the state and thus
consume its nenory, while the attacker itself does not need to

mai ntain any state for such an attack [RFC4987].

Paasch, et al. Expires April 16, 2016 [Page 2]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

A common mitigation of this attack is to use a nechanismcalled SYN
cookies. SYN-cookies rely on the fact that a TCP-connecti on echoes
back certain information that the server puts in the SYN ACK during
the three-way handshake. Notably, the sequence-nunber is echoed back
in the acknow edgnment field as well as the TCP tinestanp val ue inside
the timestanp option. \Wen generating the SYN ACK, the server
generates these fields in a verifiable fashion. Typically, servers
use the 4-tuple, the client’'s sequence nunber plus a |l ocal secret
(whi ch changes over tine) to generate the initial sequence nunber by
appl yi ng a hashing function to the aforenmentioned fields. Further
setting certain bits either in the sequence nunber or the TCP
timestanp value allows to encode for exanpl e whether SACK has been
negoti ated and what wi ndow scaling has been received [M)8]. Upon the
reception of the third ACK, the server can thus verify whether the
acknow edgnent nunber is indeed the reply to a SYNACK it has
generated (using the 4-tuple and the local secret). Further, it can
decode fromthe timestanp echo reply the required information
concerni ng SACK, wi ndow scaling and MSS-si ze.

In case the third ACK is | ost during the 3-way handshake of TCP
statel ess servers only work if it’'s the client who initiates the
conmuni cati on by sending data to the server - which is comonly the
case in today's application-layer protocols. As the data segnent

i ncl udes the acknow edgenment nunber for the original SYN ACK as wel |
as the TCP tinmestanp value, the server is able to reconstruct the

connection state even if the third ACKis lost in the network. |If
the very first data segnent is also |lost, then the server is unable
to reconstruct the connection state and will respond to subsequent

data sent by the client with a TCP Reset.

Mul tipath TCP (MPTCP [RFC6824]) is unable to reconstruct the MPTCP

| evel connection state if the third ack is lost in the network (as
explained in the following section). |If the first data segnment from
the client reaches the server, the server can reconstruct the TCP
state but not the MPTCP state. Such a server can fallback to regul ar
TCP upon the loss of the third ACK. MPTCP is also prone to the sane
problemas regular TCP if the first data segnent is also |ost.

In the foll owing section a nore detail ed assessnment of the issues
with MPTCP and TCP SYN-cookies is presented. Section 3 then shows
how t hese i ssues m ght get sol ved.

2. Probl em st at emrent
Mul tipath TCP adds additional state to the 3-way handshake. Notably,
the keys must be stored in the state so that |ater on new subfl ows

can be established as well as the initial data sequence number is
known to both hosts. |In order to support stateless servers,

Paasch, et al. Expires April 16, 2016 [Page 3]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

Mul tipath TCP echoes the keys in the third ACK. A statel ess server
thus can generate its own key in a verifiable fashion (simlar to the
initial sequence number), and is able to learn the client’s key
through the echo in the third ACKL The generation of the key is

i mpl enent ati on-specific. An exanmple of such a key-generati on would
be: Key Server = Hash(5-tuple, server’s subflow sequence nunber,

| ocal _secret). The reliance on the third ACK however inplies that if
this segnent gets lost, then the server cannot reconstruct the state
associ ated to the MPTCP connection. |Indeed, a Miltipath TCP
connection is forced to fallback to regular TCP in case the third ACK
gets |l ost or has been reordered with the first data segment of the
client, because it cannot infer the client’s key fromthe connection
and thus won't be able to generate a valid HVAC to establish new
subfl ows nor does it know the initial data sequence nunber. In the
remai nder of this docunment we refer to the aforenentioned issue as
"Loss of the third ACK".

Statel ess servers also are unable to recover connection state when
the third ack and the first data segnment are lost. This issue,
outlined hereafter, happens even when regular TCP is being used. In
case the client is sending nultiple segnents when initiating the
connection, it mght be that the third ack as well as the first data
segnent get lost. Thus, the server only receives the second data
segnent and will try to reconstruct the state based on this segnent’s
4-tupl e, sequence nunber and tinestanp value. However, as this
segnent’ s sequence nunber has al ready gone beyond the client’s
initial sequence number, it will not be able to regenerate the
appropriate SYN-cookie and thus the verification will fail. The
server effectively cannot infer that the sequence nunmber in the
segnent has gone beyond TCP's initial sequence nunber. This will
nake the server send a TCP reset as it appears to the server that it
received a segnent for which no SYN cookie was ever generated.

3. Proposa

Thi s section shows how the above problens mght be solved in
Mul tipath TCP

3.1. Loss of the third ACK

In order to make Multipath TCP robust against the |loss of the third
ACK when SYN-cooki es are being depl oyed on servers, we nust nmake sure
that the state-information relevant to Miltipath TCP reaches the
server in areliable way. |If the client is initiating the data
transfer to the server (this data is being delivered reliably through
TCP) the state-information could be delivered together with this data
and thus is implicitly reliably sent to the server - when the data
reaches the server, the state-information reaches the server as well.

Paasch, et al. Expires April 16, 2016 [Page 4]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

We achi eve this by addi ng another variant to the MP_CAPABLE option
differentiated by the length of it (we call this option
MP_CAPABLE _ACK in the remainder of this docunent). It is solely sent
on the very first data segment fromthe client to the server. This
option serves the dual purpose of conveying the client’s and server’s
key as well as the DSS mappi ng whi ch woul d ot herwi se have been sent
in a DSS option on the first data segment.

Maki ng the MP_CAPABLE in the third ACK reliable opens the door for
anot her inprovenent in MPTCP. 1In fact, the client doesn’t need to
send its owm key in the SYN anynore (it will send it reliably in the
MP_CAPABLE ACK). Thus, the MP_CAPABLE option in the SYN segnent can
avoi d addi ng the key, reducing the option-space requirenment of the
MP_CAPABLE down to 4 bytes. This is a ngjor inprovenent as the
option-space in the SYN segnment is very linmted, and allows a TCP
connection to negotiate future extensions in the SYN

As this change is a major extension to Miultipath TCP, we require that
the version nunber of the MP_CAPABLE is increased. Further details
on the negotiation are presented in Section 3.1.3. The following is
a detailled description of the option fornat and t he suggested
handshake.

3.1.1. MP_CAPABLE ACK specification

We suggest to renove the key fromthe MP_CAPABLE in the SYN segnent.
The format of the MP_CAPABLE remains the same (with the bits Ato H
as well as the version nunber), with the difference that the key is
no more present. Hosts are able to differentiate between the

di fferent MP_CAPABLE options through the length-field of the TCP-
option.

The MP_CAPABLE option in the SYNACK as well as the third ACK (which
does not contain any data) remai n unnodified from RFC6824.

The MP_CAPABLE ACK option (shown in Figure 1) contains the sane set
of bits Ato Has well as the version nunber, |ike the MP_CAPABLE
option. Further, the option includes the data-level length as well
as the checksum (in case it has been negotiated during the 3-way
handshake). This allows the server to reconstruct the mapping and
deliver the data to the application. It nust be noted that the

i nformation inside the MP_CAPABLE ACK is less explicit than a DSS
option. Notably, the data-sequence nunber, data acknow edgnent as
well as the relative subfl ow sequence nunber are not part of the
MP_CAPABLE _ACK. Neverthel ess, the server is able to reconstruct the
mappi ng because the MP_CAPABLE ACK is guaranteed to only be sent on
the very first data segnment. Thus, inplicitly the relative subfl ow

Paasch, et al. Expires April 16, 2016 [Page 5]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

sequence nunber equals 1 as well as the data-sequence nunber, which
is equal to the initial data-sequence nunber

1 2 3
01234567890123456789012345678901
Fom e e e oo oo - Fom e e e oo oo - R, o e e e e e e a oo +
| Ki nd | Lengt h=24 | Subtype| Version| A|B|C|D EF|GH
oo oo Fommm o - o e e e e i o +

| Data-Level Length (2 octets) | Checksum (2 octets, optional)

Format of the MP_CAPABLE ACK opti on.
Figure 1

The handshake (depicted in Figure 2) starts with the client sending
the MP_CAPABLE option to the server inside the SYN. The client is
not required to having generated its key already at this point.

Upon reception of this SYN-segnment, a stateful server generates a
random key and replies with a SYNACK. If the server behaves in a
statel ess manner it has to generate it’'s own key in a verifiable
fashion. This verifiable way of generating the key can be done by
using a hash of the 4-tuple, sequence nunber and a | ocal secret
(simlar to what is done for the TCP-sequence nunber [RFC4987]). It
will thus be able to verify whether it is indeed the originator of
the key echoed back in the MP_CAPABLE_ACK option. When generating
this verifiable key, the server has to ensure that the token derived
fromthis key is locally unique (Section 3.1 of RFC6824). |If there
is already an MPTCP-session with such a token, the server nust

fall back to regular TCP by not sending an MP_CAPABLE in the third
ACK.

Paasch, et al. Expires April 16, 2016 [Page 6]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

DATA + MP_CAPABLE ACK (Key_ A, Key_B, Length, Csum 24 bytes)

The nodi fi ed MPTCP- handshake only consunmes 4 bytes in the SYN
Fi gure 2

To conpl ete the three-way handshake, the client has to reply with a
third ACK and the MP_CAPABLE option (with both keys as defined in
RFC6824). If the client has already data to send, it can even avoid
sending the third ACK, and imredi ately send the data together with
the MP_CAPABLE_ACK. (Otherwi se, the client sends the MP_CAPABLE ACK
as soon as the application wites data on the socket.

The goal of the third ACK (with the MP_CAPABLE) as well as the
MP_CAPABLE ACK is to convey the client’s key to the server. An
indication for the client that the server received the key is when
the server issues a DATA _ACK inside the DSS-option (even if this
DATA ACK does not acknow edge any data). Thus, as long as the client
has not sent an MP_CAPABLE ACK with data, it nust add the MP_CAPABLE
option in each (non-data) segnent sent to the server. It nust do
this until it either did send an MP_CAPABLE ACK or until it received
a DATA ACK fromthe server. The reason for this is explained in
Section 3.1.2 and Section 3.1.5. Conbining the MP_CAPABLE with the
DATA ACK will require 20 + 8 bytes, which still |eaves 12 bytes for
the TCP timestanp option.

Finally, the server nust send a duplicate acknow edgnent to the
client upon reception of the client’s key. This, to convey to the
client that it successfully received the MP_CAPABLE(_ACK) option. It
must be noted that this 4-way handshake does not prevent the client
to send data before the reception of this fourth acknow edgnent.

Thi s mechani sm of sending the MP_CAPABLE with a DATA ACK until the
server acknow edges it, introduces additional conplexity to the
handshake. However, we consider the gain of reducing the MP_CAPABLE
option in the SYN-segment as significant enough, that it is worth to
accept this added conplexity.

Paasch, et al. Expires April 16, 2016 [Page 7]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

3.1.2. TCP Fast QOpen

If TCP Fast Open [RFC7413] is being used in conbination with
Multipath TCP [I-D.barre-nmptcp-tfo], the server is allowed to send
data right after the SYN ACK, without the need to wait for the third
ACK. The server sending this data cannot include a DATA ACK option
inside the DSS option as it does not yet know the client’s key. This
is not an issue as the DATA ACK is optional in the DSS option.

However, the client receiving this data sent by the server will have
to acknowl edge it with a DATA ACK. As specified above, the client
nmust al so send an MP_CAPABLE option on this acknow edgnent as it
didn't yet receive a DATA ACK fromthe server.

3.1.3. Negotiation

We require a way for the hosts to negotiate support for the suggested
handshake. As we nodify the size of the MP_CAPABLE, our proposal
relies on a new version of MPTCP. The client requests this new
version of MPTCP during the MP_CAPABLE exchange (it remains to be
defined by the | ETF which version of MPTCP includes the
MP_CAPABLE_ACK option). |If the server supports this version, it
replies with a SYN ACK including the MP_CAPABLE and indicating this
same version.

3.1.4. DATA FIN

As the MP_CAPABLE ACK option includes the same bitfields as the
regul ar MP_CAPABLE, there is no space to indicate a DATA FIN as is
done in the DSS option. This inplies that a client cannot send a
DATA FIN together with the first segnent of data. Thus, if the
server requests the usage of MP_CAPABLE ACK through the Cbit, the
client nust send a separate segnment with the DSS-option, setting the
DATA FIN-flag to 1, after it has sent the data-segnent that includes
the MP_CAPABLE_ACK opti on.

3.1.5. Server sending data

The MP_CAPABLE_ACK version can only be sent by the client if it
actually has data to send. One question that this raises is how the
proposal will work when the server is the first one to send data to
the client. In the follow ng we descri be how the handshake wil |
still work when servers behave in a stateless and stateful manner.

For statel ess servers the sane issue arises as well for regular TCP.
Upon loss of the third ACK, the server cannot conplete the three-way
handshake. Thus, stateless servers that begin the application |evel
protocol by enmitting data rely on the fact that the third ACK is

Paasch, et al. Expires April 16, 2016 [Page 8]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

received (irregardl ess of whether MPTCP is used or not). Thus, this
inmplies that the server also will receive the MP_CAPABLE with this
third ACK

Stateful servers will retransmt the SYN ACK until the third ACK
(including the MP_CAPABLE) has been received. This will thus provide
to the server the client’s key. Wen the client eventually sends its
own first data segnment to the server, it actually does not has to use
t he MP_CAPABLE_ACK option because the server already did send a

DATA ACK to the client.

3.1.6. M ddl ebox consi derations

Mul ti path TCP has been designed with mi ddl eboxes in mnd and so the
MP_CAPABLE_ACK option nust al so be able to go through m ddl eboxes.
The foll owi ng m ddl ebox behavi ors have been consi dered and
MP_CAPABLE_ACK acts accordingly across these m ddl eboxes:

o Renpvi ng MP_CAPABLE ACK-option: |If a mddl ebox strips the
MP_CAPABLE ACK option out of the data segnent, the server receives
data without a correspondi ng mapping. As defined in Section 3.6
of [RFC6824], the server nust then do a seam ess fallback to
regul ar TCP

o Coal escing segnents: A mddl ebox night coal esce the first and
second data segnment into one single segnent. Wile doing so, it
nm ght renove one of the options (either MP_CAPABLE ACK or the DSS-
option of the second segnment because of the Iimted 40 bytes TCP
option space). There are two cases to consider

* |f the DSS-option is not included in the segnment, the second
hal f of the payload is not covered by a mapping. Thus, the
server will do a seam ess fallback to regular TCP as defined by
[RFC6824] in Section 3.6. This fallback will trigger because
RFC6824 specifies that during the beginning of a connection (as
| ong as the path has not been proven to | et the MPTCP-options
unnodified in both directions) a seam ess fallback to regul ar
TCP nust be done by stopping to send DATA ACKs to the client.

* |f the MP_CAPABLE ACK option is not present, then the DSS-
option provides an offset of the TCP sequence nunber. As the
server behaves statelessly it can only assune that the present
nmappi ng belongs to the first byte of the payload (sinlar to
what is explained in detail in Section 3.2). As this however
is not true, it will calculate an incorrect initial TCP
sequence nunber and thus reply with a TCP-reset as the SYN
cookie is invalid. As such kind of m ddl eboxes are very rare
we consider this behavior as acceptable.

Paasch, et al. Expires April 16, 2016 [Page 9]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

3.

o Splitting segnents: A TCP segnentation of fl oad engi ne (TSO i ght
split the first segnent in smaller segnments and copy the
MP_CAPABLE_ACK option on each of these segnents. Thanks to the
dat a- 1 ength val ue included in the MP_CAPABLE ACK option, the
server is able to detect this and correctly reconstructs the
mapping. In case the first of these splitted segnents gets | ost,
the server finds itself in a situation simlar to the one
described in Section 2. The TCP sequence nunber doesn’t all ow
anynore to verify the SYN-cookie and thus a TCP reset is sent.
Thi s behavior is the same as for regular TCP

o Payl oad nodi fying m ddl ebox: In case the m ddl ebox nodifies the
payl oad, the DSS-checksumincluded in the MP_CAPABLE ACK option
allows to detect this and will trigger a fallback to regular TCP
as defined in [RFC6824].

Loss of the first data segnent

Section 2 described the issue of losing the first data segnment of a
connection while TCP SYN-cookies are in use. The follow ng outlines
how Mul ti path TCP actually allows to fix this particular issue

Consi der the packet-flow of Figure 3. Upon reception of the second
data segnent, the included data sequence napping allows the server to
actually detect that this is not the first segnent of a TCP
connection. |Indeed, the relative subfl ow sequence nunber inside the
DSS-mapping is actually 100, indicating that this segnment is already
further ahead in the TCP stream This allows the server to actually
reconstruct the initial sequence nunber based on the sequence numnber
in the TCP-header ((X+100) - 100) that has been provided by the
client and verify whether its SYN-cookie is correct. Thus, no TCP-
reset is being sent - in contrast to regular TCP, where the server
cannot verify the SYN-cookie. The server knows that the received
segnent is not the first one of the data streamand thus it can store

it tenporarily in the out-of-order queue of the connection. It nust
be noted that the server is not yet able to fully reconstruct the
MPTCP state. |In order to do this it still nust await the

MP_CAPABLE ACK option that is provided in the first data segnent.

The server responds to the out-of-order data with a duplicate ACK
The duplicate ACK may al so have SACK data if SACK was negoti at ed
However, if this duplicate ACK does not have an MPTCP | evel Data ACK
the client nay interpret this as a fallback to TCP. This is because
the client cannot determine if an option stripping mddl ebox renoved
the MPTCP option on TCP segnents after connection establishnment. So
even though the server has not fully recreated the MPTCP state at
this point, it should respond with a Data ACK set to the Data
Sequence Number Y-100. The client’s TCP inpl enentati on may

Paasch, et al. Expires April 16, 2016 [Page 10]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

4.

retransmt the first data segnment after a TCP retransnmit tineout or
it my do so as part of an Early Retransnit that can be triggered by
an ACK arriving fromthe server.

Host A Host B
------ SYN + MP_CAPABLE o
""""" SWAK + WoowemBLE
A Cweowsle T
___________________________________ X
DATA (TCP-seq = X) + MP_CAPABLE_ACK
DATA (TGP seq = X+100) + DSS (DSN = v, subseq = 100)
___ >

DATA ACK (Y - 100)

Mul tipath TCP's DSS option allows to handle the loss of the first
data segment as the host can infer the initial sequence nunber.

Figure 3
Alternative solutions

An alternative solution to creating the MP_CAPABLE ACK option woul d
have been to emt the MP_CAPABLE-option together with the DSS-option
on the first data segnent. However, as the MP_CAPABLE option is 20
bytes | ong and the DSS-option (using 4-byte sequence nunbers)
consunmes 16 bytes, a total of 36 bytes of the TCP option space woul d
be consuned by this approach. This option has been disnissed as it
woul d prevent any other TCP option in the first data segment, a
constraint that would severely Iimt TCP's extensibility in the
future.

| ANA Consi derati ons
Qur proposal requires the change of the MPTCP-version nunber.
Security Considerations
Sending the keys in a reliable way after the three-way handshake
inplies that there is a |l arger wi ndow during which an on-path

attacker mght nodify the keys that are being sent in the
MP_CAPABLE ACK. However, we do not think that this can actually be

Paasch, et al. Expires April 16, 2016 [Page 11]

I nternet-Draft Mul ti path TCP depl oynent Cct ober 2015

8.

8.

8.

considered as a security issue. |If an attacker nodifies the keys,
the outcome will be that the client and the server won't agree
anynore on the data-sequence nunbers. The data-flow will thus stall
Consi dering that the attacker has to be an active on-path attacker to
l aunch this attack, he has already other neans of interfering with
the connection. Thus, this attack is considered as irrel evant.

Further, if servers inplenment the proposal from Section 3.2, to
handl e the scenario where the first data-segnent is lost, the

i ncom ng segnments need to be stored in the out-of-order queue. The
server will store these segnents w thout having verified the key that
the client provides in the MP_CAPABLE option. This m ght be
considered as a security risk where an attacker could consune buffer
space in the server. It must be noted however that in order to
achieve this, the attacker needs to correctly guess the SYN-cookie so
that the verification described in Section 3.2 is successful. As
MPTCP does not try to be nore secure than regular TCP, this thread
can be considered acceptable, as it uses the sane |evel of security
as regular TCP's SYN-cookies. Nevertheless, servers are free to
avoid storing those segnents in the out-of-order queue if the thread
i s considered inportant enough

Acknowl edgnent s

We would like to thank Oivier Bonaventure, Yoshifum N shida and
Al an Ford for their comrents and suggestions on this draft.

Ref er ences
1. Normative References

[RFC4987] Eddy, W, "TCP SYN Fl oodi ng Attacks and Conmon
Mtigations", RFC 4987, August 2007.

[RFC6824] Ford, A., Raiciu, C, Handley, M, and O Bonaventure,
"TCP Extensions for Miltipath Operation with Miltiple
Addr esses", RFC 6824, January 2013.

2. Infornmtive References

[1-D. barre-nptcp-tfo]
Barre, S., Detal, G, and O Bonaventure, "TFO support for
Mul tipath TCP", draft-barre-nptcp-tfo-01 (work in
progress), January 2015.

[MD8] McManus, P., "Ilnproving syncooki es", 2008,
<http://1wn.net/Articles/ 277146/ >.

Paasch, et al. Expires April 16, 2016 [Page 12]

I nternet-Draft Mul ti path TCP depl oynent

[RFCO793] Postel, J., "Transm ssion Control Protocol",

793, Septenber 1981.

[RFC2018] Mathis, M, Mhdavi, J., Floyd, S.,

Cct ober 2015

STD 7, RFC

and A. Ronmnow, "TCP

Sel ective Acknow edgnent Options", RFC 2018, COctober 1996.

[RFC7323] Bornman, D., Braden, B., Jacobson, V.,

Schef f enegger, "TCP Extensions for Hi gh Perfornmance", RFC

7323, Septenmber 2014.

[RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S.,

Fast Open", RFC 7413, Decenber 2014.
Aut hors’ Addr esses

Chri st oph Paasch

Appl e, Inc.

Cupertino

us

Emai | : cpaasch@ppl e. com

Anuni ta Bi swas

Appl e, Inc.

Cupertino

us

Emai | : anum t a_bi swas@ppl e. com
Darren Haas

Appl e, Inc.

Cupertino

us

Emai | : dhaas@ppl e. com

Paasch, et al. Expires April 16, 2016

and A. Jain, "TCP

[Page 13]

