
MPTCP Working Group C. Paasch
Internet-Draft G. Greenway
Intended status: Experimental Apple, Inc.
Expires: March 10, 2016 A. Ford
 Pexip
 September 7, 2015

 Multipath TCP behind Layer-4 loadbalancers
 draft-paasch-mptcp-loadbalancer-00

Abstract

 Large webserver farms consist of thousands of frontend proxies that
 serve as endpoints for the TCP and TLS connection and relay traffic
 to the (sometimes distant) backend servers. Load-balancing across
 those server is done by layer-4 loadbalancers that ensure that a TCP
 flow will always reach the same server.

 Multipath TCP’s use of multiple TCP subflows for the transmission of
 the data stream requires those loadbalancers to be aware of MPTCP to
 ensure that all subflows belonging to the same MPTCP connection reach
 the same frontend proxy. In this document we analyze the challenges
 related to this and suggest a simple modification to the generation
 of the MPTCP-token to overcome those challenges.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 10, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Paasch, et al. Expires March 10, 2016 [Page 1]

Internet-Draft Multipath TCP loadbalancers September 2015

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Problem statement . 3
 3. Proposals . 4
 3.1. Explicitly announcing the token 4
 3.2. Changing the token generation 6
 4. Conclusion . 6
 5. IANA Considerations . 7
 6. References . 7
 6.1. Normative References 7
 6.2. Informative References 7
 Authors’ Addresses . 7

1. Introduction

 Internet services rely on large server farms to deliver content to
 the end-user. In order to cope with the load on those server farms
 they rely on a large, distributed load-balancing architecture at
 different layers. Backend servers are serving the content from
 within the data center to the frontend proxies. These frontend
 proxies are the ones terminating the TCP connections from the
 clients. A server farm relies on a large number of these frontend
 proxies to provide sufficient capacity. In order to balance the load
 on those frontend proxies, layer-4 loadbalancers are installed in
 front of these. Those loadbalancers ensure that a TCP-flow will
 always be routed to the same frontend proxy. For resilience and
 capacity reasons the data-center typically deploys multiple of these
 loadbalancers [Shuff13] [Patel13].

 These layer-4 loadbalancers rely on consistent hashing algorithms to
 ensure that a TCP-flow is routed to the appropriate frontend proxy.
 The consistent hashing algorithm avoids state-synchronization across
 the loadbalancers, making sure that in case a TCP-flow gets routed to
 a different loadbalancer (e.g., due to a change in routing) the TCP-
 flow will still be sent to the appropriate frontend proxy
 [Greenberg13].

Paasch, et al. Expires March 10, 2016 [Page 2]

Internet-Draft Multipath TCP loadbalancers September 2015

 Multipath TCP uses different TCP flows and spreads the application’s
 data stream across these [RFC6824]. These TCP subflows use a
 different 4-tuple in order to be routed on a different path on the
 Internet. However, legacy layer-4 loadbalancers are not aware that
 these different TCP flows actually belong to the same MPTCP
 connection.

 The remainder of this document explains the issues that arise due to
 this and suggests a possible change to MPTCP’s token-generation
 algorithm to overcome these issues.

2. Problem statement

 In an architecture with a single layer-4 loadbalancer but multiple
 frontend proxies, the layer-4 loadbalancer will have to make sure
 that the different TCP subflows that belong to the same MPTCP
 connection are routed to the same frontend proxy. In order to
 achieve this, the loadbalancer has to be made "MPTCP-aware", tracking
 the keys exchanged in the MP_CAPABLE handshake. This state-tracking
 allows the loadbalancer to also calculate the token associated with
 the MPTCP-connection. The loadbalancer thus creates a mapping
 (token, frontend proxy), stored in memory for the lifetime of the
 MPTCP connection. As new TCP subflows are being created by the
 client, the token included in the SYN+MP_JOIN message allows the
 loadbalancer to ensure that this subflow is being routed to the
 appropriate frontend proxy.

 However, as soon as the data center employs multiple of these layer-4
 loadbalancers, it may happen that TCP subflows that belong to the
 same MPTCP connection are being routed to different loadbalancers.
 This implies that the loadbalancer needs to share the mapping-state
 it created for all MPTCP connections among all other loadbalancers to
 ensure that all loadbalancers route the subflows of an MPTCP
 connection to the same frontend proxy. This is substantially more
 complicated to implement, and would suffer from latency issues.

 Another issue when MPTCP is being used in a large server farm is that
 the different frontend proxies may generate the same token for
 different MPTCP connections. This may happen because the token is a
 truncated hash of the key, and hash collisions may occur. A server
 farm handling millions of MPTCP connections has actually a very high
 chance of generating those token-collisions. A loadbalancer will
 thus no more be able to accurately send the SYN+MP_JOIN to the
 correct frontend proxy in case a token-collision happened for this
 MPTCP connection.

Paasch, et al. Expires March 10, 2016 [Page 3]

Internet-Draft Multipath TCP loadbalancers September 2015

3. Proposals

 The issues described in Section 2 have their origin due to the
 undeterministic nature in the token-generation. Indeed, if it
 becomes possible for the loadbalancer to infer the frontend proxy to
 forward this flow to, MPTCP becomes deployable in such kinds of
 environments.

 The suggested solutions have their basis in a token from which a
 loadbalacer can glean routing information in a stateless manner. To
 allow the loadbalancer to infer the proxy based on the token, the
 proxies each need to be assigned to a range of unique integers. When
 the token falls within a certain range, the loadbalancer knows to
 which proxy to forward the sufblow. Using a contiguous range of
 integers makes the frontend very vulnerable to attackers. Thus, a
 reversible function is needed that makes the token random-looking. A
 32-bit block-cipher (e.g., RC5) provides this random-looking
 reversible function. Thus, for both proposals we assume that the
 frontend proxies and the layer-4 loadbalancer share a local secret Y,
 of size 32 bits. This secret is only known to the server-side data
 center infrastructure. If X is an integer from within the range
 associated to the proxy, the proxy will generate the token by
 encypting X with secret Y. The loadbalancer will simply decrypt the
 token with the secret Y, which provides it the value of X, allowing
 it to forward the TCP flow to the appropriate proxy.

 This approach also ensures that the tokens generated by different
 servers are unique to each server, eliminating the token-collision
 issue outlined in the previous section.

 In the following we outline two different approaches to handle the
 above described problems, using this approach. The two proposals
 provide different ways of communicating the token over to the peer
 during the MP_CAPABLE handshake. We would like these proposals to
 serve as a discussion basis for the design of the definite solution.

3.1. Explicitly announcing the token

 One way of communicating the token to simply announce it in plaintext
 within the MP_CAPABLE handshake. In order to allow this, the wire-
 format of the MP_CAPABLE handshake needs to change however.

 One solution would be to simply increase the size of the MP_CAPABLE
 by 4 bytes, giving space for the token to be included in the SYN and
 SYN/ACK as well as adding it to the third ACK. However, due to the
 scarce TCP-option space this solution would suffer deployment
 difficulties.

Paasch, et al. Expires March 10, 2016 [Page 4]

Internet-Draft Multipath TCP loadbalancers September 2015

 If the solution proposed in [I-D.paasch-mptcp-syncookies] is being
 deployed, the MP_CAPABLE-option in the SYN-segment has been reduced
 to 4 bytes. This gives us space within the option-space of the SYN-
 segment that can be used. This allows the client to announce its
 token within the SYN-segment. To allow the server to announce its
 token in the SYN/ACK, without bumping the option-size up to 16 bytes,
 we reduce the size of the server’s key down to 32 bits, which gives
 space for the server’s token. To avoid introducing security-risks by
 reducing the size of the server’s key, we suggest to bump the
 client’s key up to 96 bits. This provides still a total of 128 bits
 of entropy for the HMAC computation. The suggested handshake is
 outlined in Figure 1.

 SYN + MP_CAPABLE_SYN (Token_A)
 ------------------------------------->
 (the client announces the 4-byte locally
 unique token to the server in the
 SYN-segment).

 SYN/ACK + MP_CAPABLE_SYNACK (Token_B, Key_B)
 <-------------------------------------
 (the server replies with a SYN/ACK announcing
 as well a 4-byte locally unique token and a 4-byte key)

 ACK + MP_CAPABLE_ACK (Key_A, Key_B)
 -------------------------------------->
 (third ack, the client replies with a 12-byte Key_A
 and echoes the 4-byte Key_B as well).

 The suggested handshake explicitly announces the token.

 Figure 1

 Reducing the size of the server’s key down to 32 bits might be
 considered a security risk. However, one might argue that neither
 parties involved in the handshake (client and server) have an
 interest in compromising the connection. Thus, the server can have
 confidence that the client is going to generate a 96 bits key with
 sufficient entropy and thus the server can safely reduce its key-size
 down to 32 bits.

 However, this would require the server to act statefully in the SYN
 exhcnage if it wanted to be able to open connections back to the
 client, since the token never appears again in the handshake.

Paasch, et al. Expires March 10, 2016 [Page 5]

Internet-Draft Multipath TCP loadbalancers September 2015

3.2. Changing the token generation

 Another suggestion is based on a less drastic change to the
 MP_CAPABLE handshake. We suggest to infer the token based on the key
 provided by the host. However, in contrast to [RFC6824], the token
 is not a truncated hash of the keys. The token-generation uses
 rather the following scheme: If we define Z as the 32 high-order bits
 and K the 32 low-order bits of the MPTCP-key generated by a host, we
 suggest to generate the token as the encryption of Z with key K by
 using a 32-bit block-cipher (the block-cipher may for example be RC5
 - it remains to be defined by the working-group which is an
 appropriate block-cipher to use for this case). The size of the
 MPTCP-key remains unchanged and is actually the concatenation of Z
 with K. Both, K and Z are different for each and every connection,
 thus the MPTCP-key still provides 64 bits of randomness.

 Using this approach, a frontend proxy can make sure that a
 loadbalancer can derive the identity of the backend server solely
 through the token in the SYN-segment of the MP_JOIN exchange, without
 the need to track any MPTCP-related state. To achieve this, the
 frontend proxy needs to generate K and Z in a specific way.
 Basically, the proxy derives the token through the method described
 at the beginning of this Section 3. This gives us the following
 relation:

 token = block_cipher(proxy_id, Y) (Y is the local secret)

 However, as described above, at the same time we enforce:

 token = block_cipher(Z, K)

 Thus, the proxy simply generates a random number K, and can thus
 generate Z by decrypting the token with key K. It is TBD what number
 of bits of a token could be used for conveying routing information.
 Exlcuding those bits, the token would be random, and the key K is
 random as well, so Z will be random as well. An attacker
 evesdropping the token cannot infer anything on Z nor on K. However,
 prolonged gathering of token data could lead to building up some data
 about the key K.

4. Conclusion

 In order to be deployable at a large scale, Multipath TCP has to
 evolve to accomodate the use-case of distributed layer-4
 loadbalancers. In this document we explained the different problems
 that arise when one wants to deploy MPTCP in a large server farm. We
 followed up with two possible approaches to solve the issues around
 the non-deterministic nature of the token. We argue that it is

Paasch, et al. Expires March 10, 2016 [Page 6]

Internet-Draft Multipath TCP loadbalancers September 2015

 important that the working group considers this problem and strives
 to find a solution.

5. IANA Considerations

 No IANA considerations.

6. References

6.1. Normative References

 [I-D.paasch-mptcp-syncookies]
 Paasch, C., Biswas, A., and D. Haas, "Making Multipath TCP
 robust for stateless webservers", draft-paasch-mptcp-
 syncookies-00 (work in progress), April 2015.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

6.2. Informative References

 [Greenberg13]
 Greenberg, A., Lahiri, P., Maltz, D., Parveen, P., and S.
 Sengupta, "Towards a Next Generation Data Center
 Architecture: Scalability and Commoditization", 2018,
 <http://dl.acm.org/citation.cfm?id=1397732>.

 [Patel13] Parveen, P., Bansal, D., Yuan, L., Murthy, A., Maltz, D.,
 Kern, R., Kumar, H., Zikos, M., Wu, H., Kim, C., and N.
 Karri, "Ananta: Cloud Scale Load Balancing", 2013,
 <http://dl.acm.org/citation.cfm?id=2486026>.

 [Shuff13] Shuff, P., "Building A Billion User Load Balancer", 2013,
 <https://www.youtube.com/watch?v=MKgJeqF1DHw>.

Authors’ Addresses

 Christoph Paasch
 Apple, Inc.
 Cupertino
 US

 Email: cpaasch@apple.com

Paasch, et al. Expires March 10, 2016 [Page 7]

Internet-Draft Multipath TCP loadbalancers September 2015

 Greg Greenway
 Apple, Inc.
 Cupertino
 US

 Email: ggreenway@apple.com

 Alan Ford
 Pexip

 Email: alan.ford@gmail.com

Paasch, et al. Expires March 10, 2016 [Page 8]

