MPTCP Wor ki ng Group C. Paasch

Internet-Draft G G eenway
I nt ended status: Experinental Appl e, Inc.
Expires: March 10, 2016 A. Ford

Pexi p

Sept enber 7, 2015

Mul ti path TCP behi nd Layer-4 | oadbal ancers
dr af t - paasch- npt cp- | oadbal ancer - 00

Abst ract

Large webserver farns consist of thousands of frontend proxies that
serve as endpoints for the TCP and TLS connection and relay traffic
to the (sometinmes distant) backend servers. Load-bal anci ng across
those server is done by |ayer-4 | oadbal ancers that ensure that a TCP
flowwi Il always reach the sane server.

Mul tipath TCP's use of nultiple TCP subflows for the transm ssion of
the data streamrequires those | oadbal ancers to be aware of MPTCP to
ensure that all subflows belonging to the same MPTCP connecti on reach
the same frontend proxy. In this docunment we anal yze the chall enges
related to this and suggest a sinple nodification to the generation
of the MPTCP-token to overcone those chall enges.

Status of This Menp

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi mum of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on March 10, 2016.

Copyri ght Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Paasch, et al. Expi res March 10, 2016 [Page 1]

I nternet-Draft Mul ti path TCP | oadbal ancers Sept ember 2015

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis document nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction

2. Probl em st at enent

3. Proposals o ..
3.1. Explicitly announcing the token
3.2. Changing the token generation .
Concl usi on C e e e
| ANA Consi derations .

. References e
6.1. Normative References
6.2. Informative References

Aut hors’ Addr esses

oo »
N~N~N~N~NoobMAPbWDN

1. Introduction

Internet services rely on large server farns to deliver content to
the end-user. |In order to cope with the load on those server farns
they rely on a large, distributed | oad-bal ancing architecture at
different | ayers. Backend servers are serving the content from
within the data center to the frontend proxies. These frontend
proxies are the ones terminating the TCP connections fromthe
clients. A server farmrelies on a |l arge nunber of these frontend
proxies to provide sufficient capacity. |In order to bal ance the | oad
on those frontend proxies, |ayer-4 |oadbal ancers are installed in
front of these. Those |oadbal ancers ensure that a TCP-flow will

al ways be routed to the same frontend proxy. For resilience and
capacity reasons the data-center typically deploys nultiple of these
| oadbal ancers [Shuff13] [Patel 13].

These | ayer-4 | oadbal ancers rely on consi stent hashing algorithms to
ensure that a TCP-flow is routed to the appropriate frontend proxy.
The consi stent hashing al gorithm avoi ds state-synchroni zati on across
t he | oadbal ancers, naking sure that in case a TCP-flow gets routed to
a different |oadbal ancer (e.g., due to a change in routing) the TCP-
floww Il still be sent to the appropriate frontend proxy

[G eenbergl3].

Paasch, et al. Expi res March 10, 2016 [Page 2]

I nternet-Draft Mul ti path TCP | oadbal ancers Sept ember 2015

Mul tipath TCP uses different TCP flows and spreads the application’'s
data stream across these [RFC6824]. These TCP subfl ows use a
different 4-tuple in order to be routed on a different path on the
Internet. However, |egacy |ayer-4 |oadbal ancers are not aware that
these different TCP flows actually belong to the same MPTCP
connecti on.

The renmai nder of this docunent explains the issues that arise due to
this and suggests a possible change to MPTCP' s token-generation
algorithmto overcome these issues.

2. Probl em st at enent

In an architecture with a single |layer-4 | oadbal ancer but nultiple

frontend proxies, the |ayer-4 |oadbal ancer will have to nake sure
that the different TCP subflows that belong to the sane MPTCP
connection are routed to the same frontend proxy. In order to

achi eve this, the | oadbal ancer has to be nade "MPTCP-aware", tracking
the keys exchanged in the MP_CAPABLE handshake. This state-tracking
all ows the | oadbal ancer to al so cal culate the token associated with
the MPTCP-connection. The | oadbal ancer thus creates a mappi ng
(token, frontend proxy), stored in nmenory for the lifetime of the
MPTCP connection. As new TCP subflows are being created by the
client, the token included in the SYN+tMP_JO N nessage all ows the

| oadbal ancer to ensure that this subflowis being routed to the
appropriate frontend proxy.

However, as soon as the data center enmploys nultiple of these |ayer-4
| oadbal ancers, it may happen that TCP subflows that belong to the
same MPTCP connection are being routed to different |oadbal ancers.
This inplies that the | oadbal ancer needs to share the mappi ng-state
it created for all MPTCP connections anong all other | oadbal ancers to
ensure that all |oadbal ancers route the subflows of an MPTCP
connection to the sane frontend proxy. This is substantially nore
conplicated to inplenent, and would suffer fromlatency issues.

Anot her issue when MPTCP is being used in a large server farmis that
the different frontend proxies may generate the sane token for

di fferent MPTCP connections. This may happen because the token is a
truncated hash of the key, and hash collisions may occur. A server
farmhandling mllions of MPTCP connections has actually a very high
chance of generating those token-collisions. A |oadbal ancer will
thus no nore be able to accurately send the SYN+MP_JO N to the
correct frontend proxy in case a token-collision happened for this
MPTCP connecti on.

Paasch, et al. Expi res March 10, 2016 [Page 3]

I nternet-Draft Mul ti path TCP | oadbal ancers Sept ember 2015

3.

3.

Proposal s

The issues described in Section 2 have their origin due to the
undeterm nistic nature in the token-generation. Indeed, if it
becomes possi ble for the | oadbal ancer to infer the frontend proxy to
forward this flow to, MPTCP becones depl oyable in such kinds of

envi ronnent s.

The suggested sol utions have their basis in a token fromwhich a

| oadbal acer can glean routing information in a statel ess nanner. To
al l ow t he | oadbal ancer to infer the proxy based on the token, the
proxi es each need to be assigned to a range of unique integers. Wen
the token falls within a certain range, the | oadbal ancer knows to

whi ch proxy to forward the sufblow. Using a contiguous range of

i ntegers makes the frontend very vul nerable to attackers. Thus, a
reversible function is needed that makes the token random | ooking. A
32-bit bl ock-cipher (e.g., RC5) provides this random| ooki ng

reversi ble function. Thus, for both proposals we assunme that the
frontend proxies and the |ayer-4 | oadbal ancer share a | ocal secret Y,
of size 32 bits. This secret is only known to the server-side data
center infrastructure. |If X is an integer fromw thin the range
associated to the proxy, the proxy will generate the token by
encypting X with secret Y. The |oadbalancer will sinmply decrypt the
token with the secret Y, which provides it the value of X, allow ng
it to forward the TCP flow to the appropriate proxy.

Thi s approach al so ensures that the tokens generated by different
servers are unique to each server, elininating the token-collision
i ssue outlined in the previous section

In the following we outline two different approaches to handle the
above described problens, using this approach. The two proposals
provi de different ways of comruni cating the token over to the peer
during the MP_CAPABLE handshake. We would |ike these proposals to
serve as a discussion basis for the design of the definite solution

1. Explicitly announcing the token

One way of communicating the token to sinply announce it in plaintext
wi thin the MP_CAPABLE handshake. In order to allowthis, the wre-
format of the MP_CAPABLE handshake needs to change however.

One solution would be to sinmply increase the size of the MP_CAPABLE
by 4 bytes, giving space for the token to be included in the SYN and
SYN ACK as well as adding it to the third ACK. However, due to the
scarce TCP-option space this solution would suffer depl oynment
difficulties.

Paasch, et al. Expi res March 10, 2016 [Page 4]

I nternet-Draft Mul ti path TCP | oadbal ancers Sept ember 2015

If the solution proposed in [I-D. paasch-nptcp-syncookies] is being
depl oyed, the MP_CAPABLE-option in the SYN segnent has been reduced
to 4 bytes. This gives us space within the option-space of the SYN
segnment that can be used. This allows the client to announce its
token within the SYN-segnent. To allow the server to announce its
token in the SYN ACK, wi thout bunping the option-size up to 16 bytes,
we reduce the size of the server’'s key down to 32 bits, which gives
space for the server’'s token. To avoid introducing security-risks by
reduci ng the size of the server’'s key, we suggest to bunp the
client’s key up to 96 bits. This provides still a total of 128 bits
of entropy for the HMAC computation. The suggested handshake is
outlined in Figure 1

SYN + MP_CAPABLE_SYN (Token_A)

(the client announces the 4-byte locally
uni que token to the server in the
SYN- segnent) .

SYN ACK + MP_CAPABLE_SYNACK (Token_B, Key B)

(the server replies with a SYN ACK announci ng
as well a 4-byte locally unique token and a 4-byte key)

ACK + MP_CAPABLE_ACK (Key A, Key B)

(third ack, the client replies with a 12-byte Key_ A
and echoes the 4-byte Key B as well).

The suggested handshake explicitly announces the token
Figure 1

Reducing the size of the server’'s key down to 32 bits m ght be
considered a security risk. However, one nmight argue that neither
parties involved in the handshake (client and server) have an
interest in conpronising the connection. Thus, the server can have
confidence that the client is going to generate a 96 bits key with
sufficient entropy and thus the server can safely reduce its key-size
down to 32 bhits.

However, this would require the server to act statefully in the SYN

exhcnage if it wanted to be able to open connections back to the
client, since the token never appears again in the handshake.

Paasch, et al. Expi res March 10, 2016 [Page 5]

I nternet-Draft Mul ti path TCP | oadbal ancers Sept ember 2015

3.2. Changing the token generation

Anot her suggestion is based on a | ess drastic change to the
MP_CAPABLE handshake. W suggest to infer the token based on the key
provi ded by the host. However, in contrast to [RFC6824], the token
is not a truncated hash of the keys. The token-generation uses
rather the follow ng schene: If we define Z as the 32 high-order bits
and K the 32 | oworder bits of the MPTCP-key generated by a host, we
suggest to generate the token as the encryption of Z with key K by
using a 32-bit bl ock-cipher (the block-ci pher may for exanple be RC5
- it remains to be defined by the working-group which is an
appropriate bl ock-cipher to use for this case). The size of the
MPTCP- key remai ns unchanged and is actually the concatenation of Z
with K Both, Kand Z are different for each and every connecti on,
thus the MPTCP-key still provides 64 bits of randommess.

Using this approach, a frontend proxy can make sure that a

| oadbal ancer can derive the identity of the backend server solely
through the token in the SYN-segnent of the MP_JO N exchange, without
the need to track any MPTCP-rel ated state. To achieve this, the
frontend proxy needs to generate K and Z in a specific way.
Basically, the proxy derives the token through the method descri bed
at the beginning of this Section 3. This gives us the follow ng

rel ation:

token = bl ock_cipher(proxy_id, Y) (Y is the local secret)
However, as described above, at the sane time we enforce:
token = bl ock_cipher(Z, K)

Thus, the proxy sinply generates a random nunber K, and can thus
generate Z by decrypting the token with key K It is TBD what nunber
of bits of a token could be used for conveying routing information.
Exl cudi ng those bits, the token would be random and the key Kis
randomas well, so Z will be randomas well. An attacker

evesdr oppi ng the token cannot infer anything on Z nor on K However,
prol onged gathering of token data could lead to building up sone data
about the key K

4. Concl usi on

In order to be deployable at a large scale, Miltipath TCP has to

evol ve to acconpndate the use-case of distributed | ayer-4

| oadbal ancers. In this docunent we expl ained the different problens
that arise when one wants to deploy MPTCP in a |large server farm W
followed up with two possi bl e approaches to solve the issues around
the non-determnistic nature of the token. W argue that it is

Paasch, et al. Expi res March 10, 2016 [Page 6]

I nternet-Draft Mul ti path TCP | oadbal ancers Sept ember 2015

i nportant that the working group considers this problemand strives
to find a solution.

5. | ANA Consi derations

No | ANA consi derati ons.
6. References
6.1. Normative References

[1-D. paasch- mpt cp- syncooki es]
Paasch, C., Biswas, A, and D. Haas, "Making Multipath TCP
robust for statel ess webservers", draft-paasch-nptcp-
syncooki es-00 (work in progress), April 2015.

[RFC6824] Ford, A., Raiciu, C, Handley, M, and O Bonaventure,
"TCP Extensions for Miultipath Operation with Miltiple
Addr esses", RFC 6824, January 2013.

6.2. Informative References

[G eenber gl13]
Greenberg, A, Lahiri, P., Maltz, D., Parveen, P., and S
Sengupta, "Towards a Next Generation Data Center
Architecture: Scalability and Conmoditization", 2018,
<http://dl.acmorg/citation.cfnPi d=1397732>.

[Patel 13] Parveen, P., Bansal, D., Yuan, L., Murthy, A, Miltz, D
Kern, R, Kumar, H, Zikos, M, Wi, H, Kim C., and N
Karri, "Ananta: C oud Scal e Load Bal anci ng", 2013,
<http://dl.acmorg/citation.cfnPi d=2486026>.

[Shuff13] Shuff, P., "Building A Billion User Load Bal ancer", 2013,
<htt ps://wwv. yout ube. conf wat ch?v=MKgJeqF1DHwn>.

Aut hors’ Addr esses

Chri st oph Paasch

Appl e, Inc.

Cupertino

us

Enmai | : cpaasch@ppl e. com

Paasch, et al. Expi res March 10, 2016 [Page 7]

I nternet-Draft

G eg G eenwnay

Appl e, Inc.

Cupertino

us

Enmai | : ggreenway@ppl e. com
Al an Ford

Pexi p

Enmai |l : alan.ford@nuail.com

Paasch, et al. Expi res March 10, 2016

Mul ti path TCP | oadbal ancers

Sept ember 2015

[Page 8]

