OAuth Working Group N. Sakimura, Ed.

Internet-Draft Nomura Research Institute

Intended status: Standards Track J. Bradley
Expires: July 22, 2016 Ping Identity

January 19, 2016

OAuth 2.0 JWT Authorization Request

draft-ietf-oauth-jwsreq-07

Abstract

The authorization request in OAuth 2.0 [RFC6749] utilizes query parameter serialization, which means that
parameters are encoded in the URI of the request. This document introduces the ability to send request parameters in
form of a JSON Web Token (JWT) instead, which allows the request to be signed and encrypted. using JWT
serialization. The request is sent by value or by reference.

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may
also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted
by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other
than as "work in progress."

This Internet-Draft will expire on July 22, 2016.

Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these
documents carefully, as they describe your rights and restrictions with respect to this document. Code Components
extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust
Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

[y

. Introduction
1.1. Requirements Language
2. Terminology
2.1. Request Object
2.2. Request Object URI
3. Request Object
4. Authorization Request
4.1. Passing a Request Object by Value
4.2. Passing a Request Object by Reference
4.2.1. URL Referencing the Request Object
4.2.2. Request using the "request_uri" Request Parameter
4.2.3. Authorization Server Fetches Request Object
5. Validating JWT-Based Requests
5.1. Encrypted Request Object
5.2. Signed Request Object
5.3. Request Parameter Assembly and Validation
. Authorization Server Response
. IANA Considerations
. Security Considerations
. Acknowledgements
10. Revision History
11. References
11.1. Normative References
11.2. Informative References
Authors' Addresses

© oo N

1. Introduction

The OAuth 2.0 specification [RFC 6749] defines the encoding of requests and responses and in case of the
authorization request query parameter serialization has been chosen. For example, the parameters 'response_type',
‘client_id', 'state’, and 'redirect_uri' are encoded in the URI of the request:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

The encoding in the URI does not allow application layer security with confidentiality and integrity protection to be
used. While TLS is used to offer communication security between the client and the resource server, TLS sessions
are often terminated prematurely at some middlebox (such as a load balancer). The use of application layer security
additionally allows requests to be prepared by a third party so that a client application cannot request more
permissions than previously agreed. This offers an additional degree of privacy protection.

Further, the request by reference allows to reduce the over-the-wire overhead.

There are other potential formats that could be used for this purpose instead of JWT. The JWT was chosen because
of

its close relationship with JSON, which is used as OAuth's response format;

its developer friendliness due to its textaual nature;

its relative compactness compared to XML;

its development status that it is an RFC and so is its associated signing and encryption methods as
[RFC7515] and [RFC7516].

A wp =

The parameters request and request_uri are introduced as additional authorization request parameters for the OAuth
2.0 [RFC6749] flows. The request parameter is a JSON Web Token (JWT) [RFC7519] whose JWT Claims Set holds
the JSON encoded OAuth 2.0 authorization request parameters. The JWT [RFC7519] can be passed to the
authorization endpoint by reference, in which case the parameter request_uri is used instead of the request.

Using JWT [RFC7519] as the request encoding instead of query parameters has several advantages:

1. The request can be signed so that an integrity check can be implemented. If a suitable algorithm is
used for the signing, then it will provide verification of the client making the request.

2. The request may be encrypted so that end-to-end confidentiality may be obtained even if in the case
TLS connection is terminated at a gateway or a similar device.

3. The request may be signed by a third party attesting that the authorization request is compliant to
certain policy. For example, a request can be pre-examined by a third party that all the personal data
requested is strictly necessary to perform the process that the end-user asked for, and statically
signed by that third party. The client would then send the request along with dynamic parameters
such as state. The authorization server then examines the signature and shows the conformance
status to the end-user, who would have some assurance as to the legitimacy of the request when
authorizing it. In some cases, it may even be desirable to skip the authorization dialogue under such

circumstances.
There are a few cases that request by reference are useful such as:

1. When it is desirable to reduced the size of transmitted request. Since we are using application layer
security, it may substantially increase the size of the request particulary in the case of using public
key cryptography.

2. Static signature: The client can make a signed Request Object and put it at a place that the
Authorization Server can access. This may just be done by a client utility or other process, so that
the private key does not have to reside on the client, simplifying programming. Downside of it is that
the signed portion just become a token.

3. When the server wants the requests to be cacheable: The request_uri may include a SHA-256 hash
of the contents of the resources referenced by the Request URI. With this, the server knows if the
resource has changed without fetching it, so it does not have to re-fetch the same content, which is a
win as well. This is explained in Section 4.2.

This capability is in use by OpenlD Connect [OpenlID.Core].

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119
[RFC2119].

2. Terminology

For the purposes of this specification, the following terms and definitions apply.

2.1. Request Object

JWT [RFC7519] that holds an OAuth 2.0 authorization request as JWT Claims Set

2.2. Request Object URI

Absolute URI from which the Request Object [request_object] can be obtained

3. Request Object

A Request Object [request_object] is used to provide authorization request parameters for an OAuth 2.0 authorization
request. It contains OAuth 2.0 [RFC6749] authorization request parameters including extension parameters. The
parameters are represented as the JWT claims. Parameter names and string values MUST be included as JSON
strings. Numerical values MUST be included as JSON numbers. It MAY include any extension parameters. This
JSON [RFC7159] constitutes the JWT Claims Set [RFC7519]. The JWS Claims Set is then signed, encrypted, or
signed and encrypted.

To sign, JSON Web Signature (JWS) [RFC7515] is used. The result is a JWS signed JWT [RFC7519]. If signed, the
Authorization Request Object SHOULD contain the Claims iss (issuer) and aud (audience) as members, with their
semantics being the same as defined in the JWT [RFC7519] specification.

To encrypt, JWE [RFC7516] is used. Note that JWE is always integrity protected, so if only integrity protection is
desired, JWS signature is not needed.

It can also be signed then encrypted. This is sometimes desired to reduced the repudiation risk from the point of view
of the receiver. In this case, it MUST be signed then encrypted, with the result being a Nested JWT, as defined in
JWT [RFC7519].

The Authorization Request Object may be sent by value as described in Section 4.1 or by reference as described in
Section 4.2.

REQUIRED OAuth 2.0 Authorization Request parameters that are not included in the Request Object MUST be sent
as query parameters. If a required parameter is missing from both the query parameters and the Request Object, the
request is malformed.

request and request_uri parameters MUST NOT be included in Request Objects.

If the parameter exists in both the query string and the Authorization Request Object, the values in the Request
Object take precedence. This means that if it intends to use a cached request object, it cannot include parameters
such as state that are expected to differ in every request. It is fine to include them in the request object if it is going
to be prepared afresh every time.

The following is a non-normative example of the Claims in a Request Object before base64url encoding and signing.
Note that it includes extension variables such as "nonce" and "max_age".

{
"iss": "s6BhdRkqt3",
"aud": "https://server.example.com",

"response_type": "code id_token",
"client_id": "s6BhdRkqt3",

"redirect_uri": "https://client.example.org/cb",
"scope": "openid",

"state": "afOifjsldkj",

"nonce": "n-0S6_WzA2Mj",

"max_age": 86400

1

Signing it with the RS256 algorithm results in this Request Object value (with line wraps within values for display
purposes only):

eyJhbGciOiJSUzI1NilsImtpZCl6lmsyYmR;jIn0.ew0KICJpc3MiOiAiczZCaGRSa3
FOMylsDQoglmF1ZCl6lCJodHRwczovL3NIcnZlci5leGFtcGxILmNvbSIsDQoglinJl
¢3BvbnNIX3R5cGUIOIAIY 29kZSBpZF90b2tIbils DQoglmNsaWVudF9pZCl61CJzNk
JoZFJreXQzliwNCiAicmVkaXJlY3RfdXJpljoglmh0dHBzOi8vY2xpZW50LmV4YW1w
bGUub3JnL2NiliwNCiAic2NvcGUIOiAib3BIbmlkliwNCiAic3RhdGUIOIAIY WYwaW
Zqgc2xka20iLAOKICJub25jZS161CJuLTBTNI9OXekEy TWoiLAOKICJtY XhfYWdlljog
ODYOMDAsDQogImNsYWiItcyl6IAOKICB7DQogl CAidXNIcmluZm8iOiANCiAgICB7DQ
oglCAgICJnaXZIbl9uYW1lljogeyJic3NIbnRpY WwiOiBOcnVIfSWNCiAgICAgim5p
Y2tuYW1lljogbnVsbCwNCiAgICAgImVtY WisljogeyJic3NIbnRpY WwiOiBOcnVIfS
WNCiAgICAgImVtYWIsX3ZlcmlimaWVkljogeyJlc3NIbnRpY WwiOiB0cnVIfSWNCiAg
ICAgInBpY3R1cmUiOiBudWxsDQoglCAgfSWNCiAgICJpZF90b2tIbil6I AOKICAgIH
sNCiAgICAgImdibmRicil61G51bGwsDQoglCAglCJiaXJ0aGRhdGUIOiB7ImVzc2Vu
dGIhbCI6IHRydWV9ILAOKICAgICAIYWNyljogeyd2YWx1ZXMiOiBbInVybjptY WNIOm
luY 29tbW9uOmlhcDpzaWx2ZX1iXX0ONCiAglCB9DQogIHONCnO0.nwwnNsk 1-Zkbmnvs
F6zTHM8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
KzuMXZFSZ3p6Mb8dkxtVyjoy2Glzvud T_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx
0GxFbuPbj96tVuj11pTnmFCURBIEOXKYr7iGOCRB3btfJhM0_AKQUfgKnRIrRscc8K
ol-cSLWoYE9I5QqholimzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLIXmMPG
iyon_-Te111V8UES83IIzCYlb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAIMGzw

The following RSA public key, represented in JWK format, can be used to validate the Request Object signature in
this and subsequent Request Object examples (with line wraps within values for display purposes only):

{
"kty":"RSA",
"kid":"k2bdc",
"n":"y9Lqv4fCpBEi-u2-ZCKg83YVvbFEk6JMs_pSj76eMkddWRuWX2aBKGHALKIE5P
7_vn__PCKZWePt3vGkB6ePgzAFUuO8NmKemwE5bQl0ebk|Chtt_6KzT50aaXDF
169CLJMk51Cc4VYFaxggevMncYrzaW_50mZ1yGSFIQzLYP8bijAHGV|dEFgZa
ZEN9Isn_GdWLaJpHrB3ROIS50E45wxrig9xMncVb8gDPuXZarvghLLOHzOuYR
adBJVoWZowDNTpKpk2RkIZ7QaBO7XDv3uR7s_sf2g-bAjSYxYUGsgkNA9b3xV
W53am_UZZ3tZbFTIh557JICWKHIWj5uzed Xaw",
"e":"AQAB"
}

4. Authorization Request

The client constructs the authorization request URI by adding one of the following parameters but not both to the
query component of the authorization endpoint URI using the application/x-www-form-urlencoded format:

request
The Request Object [aro] that holds authorization request parameters stated in the section 4 of OAuth 2.0
[RFC6749].

request_uri
The absolute URL that points to the Request Object [aro] that holds authorization request parameters stated in
the section 4 of OAuth 2.0 [RFC6749].

The client directs the resource owner to the constructed URI using an HTTP redirection response, or by other means
available to it via the user-agent.

For example, the client directs the end-user's user-agent to make the following HTTPS request:

GET /authz?request=eyJhbG..AIMGzw HTTP/1.1
Host: server.example.com

The value for the request parameter is abbreviated for brevity.
The authorization request object MAY be signed AND/OR encrypted.

When the Request Object is used, the OAuth 2.0 request parameter values contained in the JWT supersede those
passed using the OAuth 2.0 request syntax. However, parameters MAY also be passed using the OAuth 2.0 request

syntax even when a Request Object is used; this would typically be done to enable a cached, pre-signed (and
possibly pre-encrypted) Request Object value to be used containing the fixed request parameters, while parameters
that can vary with each request, such as state and nonce, are passed as OAuth 2.0 parameters.

4.1. Passing a Request Object by Value

The Client sends the Authorization Request as a Request Object to the Authorization Endpoint as the request
parameter value.

The following is a non-normative example of an Authorization Request using the request parameter (with line wraps
within values for display purposes only):

https://server.example.com/authorize?
response_type=code%20id_token
&client_id=s6BhdRkqt3
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
&scope=openid
&state=af0ifjsldkj
&nonce=n-0S6_WzA2Mj
&request=eyJhbGciOiJSUzI1NilsImtpZCl6lmsyYmRjln0.ew0KICJpc3MiOiA
iczZCaGRSa3F0MylsDQoglmF1ZCl6lCJodHRwczovL3NIcnZIci5leGFtcGxILmN
vbS1sDQoglnJlc3BvbnNIX3R5cGUIOIAiY29kZSBpZF90b2tlIbilsDQoglmNsaWV
udF9pZCl61CJIzNkJoZFJreXQzliwNCiAicmVkaXJlY3RfdXJpljoglmh0dHBzOi8
vY2xpZW50LmV4YW1wbGUub3JnL2NiliwNCiAic2NvcGUIOiAib3BIbmIkliwNCiA
ic3RhdGUIOIAIYWYwaWZgc2xka20iLAOKICJub25jZS161CJULTBTNI9XekEy TWo
iLAOKICJtY XhfYWdlljogODYOMDAsDQoglmNs Y Witcy|6|AOKICB7DQogl CAidXN
lcmluZm8iOiANCiAgICB7DQoglICAgICJnaXZIbl9uYW1lljogeyJic3NIbnRpY Ww
i0iBOcnVIfSWNCIAgICAgIm5pY2tuY W1lljogbnVsbCwNCiAglCAgImVtY Wisljo
geyJIc3NIbnRpY WwiOiBOcnVIfSWNCiAgICAgImVtYWIsX3ZlcmimaWVkljogeyJ
Ic3NIbnRpY WwiOiBOcnVIfSWNCiAgICAgInBpY3R1cmUiOiBudWxsDQogl CAgfSw
NCiAglCJpZF90b2tIbil6l AOKICAgIHsNCiAgICAgImdlbmRicil61G51bGws DQo
glCAgICJiaXJ0aGRhdGUiOiB7ImVzc2VudGlhbCl6IHRydWVILAOKICAgICAIYWN
yljogeyJ2YWx1ZXMiOiBblnVybjptY WNIOmIuY 29tbW9uOmlhc DpzaWx2ZX1iXX0
NCiAgICB9DQogIHONCNO.nwwnNsk1-ZkbmnvsF6z THM8CHERFMGQPhos-EJcaH4H
h-sMgk8ePrGhw_trPYs8KQxsn6RIEmo_wHwajy FKzuMXZFSZ3p6Mb8dkxtVyjoy?2
GlzvudT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx0GxFbuPbj96tVuj11pTnmFC
UR6BIEOXKYr7iGOCRB3btfJhM0_AKQUfgKnRIrRscc8Kol-cSLWoYE9I5Qgholimz
jT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLIXmPGiyon_-Te111V8uES83I|
zCYIb_NMXviTIVc1jpspnTSD7xMbpL-2QgwUsAIMGzw

4.2. Passing a Request Object by Reference

The request_uri Authorization Request parameter enables OAuth authorization requests to be passed by reference,
rather than by value. This parameter is used identically to the request parameter, other than that the Request Object
value is retrieved from the resource at the specified URL, rather than passed by value.

When the request_uri parameter is used, the OAuth 2.0 authorization request parameter values contained in the
referenced JWT supersede those passed using the OAuth 2.0 request syntax. However, parameters MAY also be
passed using the OAuth 2.0 request syntax even when a request_uri is used; this would typically be done to enable a
cached, pre-signed (and possibly pre-encrypted) Request Object value to be used containing the fixed request
parameters, while parameters that can vary with each request, such as state and nonce, are passed as OAuth 2.0
parameters.

Servers MAY cache the contents of the resources referenced by Request URIs. If the contents of the referenced
resource could ever change, the URI SHOULD include the base64url encoded SHA-256 hash as defined in FIPS180-2
[FIPS180-2] of the referenced resource contents as the fragment component of the URI. If the fragment value used
for a URI changes, that signals the server that any cached value for that URI with the old fragment value is no longer
valid.

The entire Request URI MUST NOT exceed 512 ASCII characters. There are three reasons for this restriction.

1. Many WAP / feature phones do not accept large payloads. The restriction are typically either 512 or
1024 ASCII characters.

2. The maximum URL length supported by older versions of Internet Explorer is 2083 ASCII characters.

3. On a slow connection such as 2G mobile connection, a large URL would cause the slow response
and using such is not advisable from the user experience point of view.

The contents of the resource referenced by the URL MUST be a Request Object. The scheme used in the request_uri
value MUST be https, unless the target Request Object is signed in a way that is verifiable by the Authorization
Server. The request_uri value MUST be reachable by the Authorization Server, and SHOULD be reachable by the
Client.

The following is a non-normative example of the contents of a Request Object resource that can be referenced by a
request_uri (with line wraps within values for display purposes only):

eyJhbGciOiJSUzI1NilsImtpZCl6ImsyYmR;jIn0.ewOKICJpc3MiOiAiczZCaGRSa3
FOMylsDQoglmF1ZCl6ICJodHRwczovL3NIcnZIicisleGFtcGxILmNvbSIsDQoglnJl
¢3BvbnNIX3R5cGUIOIAiY29kZSBpZF90b2tIbils DQoglmNsaWVudF9pZCl6ICJzNk
JoZFJreXQzliwNCiAicmVkaXJlY3RfdXJpljoglmh0dHBzOi8vY 2xpZW50LmV4YW1w
bGUub3JnL2NiliwNCiAic2NvcGUIOiAib3BIbmlkliwNCiAic3RhdGUIOIAIY WY waW
Zqc2xka20iLAOKICJub25jZS16ICJULTBTNIOXekEy TWoiLAOKICJtY XhfYWdlljog
ODYOMDAsDQogIlmNsYWitcy16|AOKICB7DQoglCAidXNIcmluZm8iOiANCiAgICB7DQ
oglCAgICJnaXZIbl9uYW1lljogeyJic3NIbnRpY WwiOiB0cnVIfSWNCiAgICAgim5p
Y2tuYW1lljogbnVsbCwNCiAgICAgImVtYWisljogeydJic3NIbnRpY WwiOiBOcnVIfS
WNCiAgICAgImVtYWIisX3ZlcmimaWVkljogeyJlc3NIbnRpYWwiOiBOcnVIFSWNCiAg
ICAgInBpY3R1cmUiOiBudWxsDQoglCAgfSWNCiAgICJpZF90b2tIbil6l AOKICAgIH
sNCiAgICAgImdibmRIcil6IG51bGwsDQoglCAglCJiaXJ0aGRhdGUiIOiIB7ImVzc2Vu
dGlhbCI6IHRydWV9ILAOKICAgICAIY WNyljogeyJ2Y Wx1ZXMiOiBbInVybjptY WNIOm
luY29tbW9uOmlhcDpzaWx2ZX1iXXONCiAgICB9DQogIHONCnO0.nwwnNsk 1-Zkbmnvs
F6zTHM8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
KzuMXZFSZ3p6Mb8dkxtVyjoy2GlzvudT_u7PkY2t8QU9NjBcHs68PkgjDVTrG1uRTx
0GxFbuPbj96tVuj11pTnmFCURBIEOXKYr7iGOCRB3btfJhM0_AKQUfgKnRIrRscc8K
ol-cSLWoYE9I5QgholimzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLIXmMPG
iyon_-Te111V8UES83IIzCYIlb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAIMGzw

4.2.1. URL Referencing the Request Object

The Client stores the Request Object resource either locally or remotely at a URL the Authorization Server can
access. This URL is the Request URI, request_uri.

It is possible for the Request Object to include values that is to be revealed only to the Authorization Server. As
such, the request_uri MUST have appropriate entropy for its lifetime. It is RECOMMENDED that it be removed if it is
known that it will not be used again or after a reasonable timeout unless access control measures are taken.

The following is a non-normative example of a Request URI value (with line wraps within values for display purposes
only):

https://client.example.org/request.jwt#
GkurKxf5TOY-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM

4.2.2. Request using the "request_uri" Request Parameter

The Client sends the Authorization Request to the Authorization Endpoint.

The following is a non-normative example of an Authorization Request using the request_uri parameter (with line
wraps within values for display purposes only):

https://server.example.com/authorize?
response_type=code%20id_token
&client_id=s6BhdRkqt3
&request_uri=https%3A%2F%2Fclient.example.org%2Frequest.jwt
%23GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM
&state=af0ifjsldkj

4.2.3. Authorization Server Fetches Request Object

Upon receipt of the Request, the Authorization Server MUST send an HTTP GET request to the request_uri to
retrieve the referenced Request Object, unless it is already cached, and parse it to recreate the Authorization
Request parameters.

Note that the client SHOULD use a unique URI for each request utilizing distinct parameters, or otherwise prevent the
Authorization Server from caching the request_uri.

The following is a non-normative example of this fetch process:

GET /request.jwt HTTP/1.1
Host: client.example.org

5. Validating JWT-Based Requests

5.1. Encrypted Request Object

The Authorization Server MUST decrypt the JWT in accordance with the JSON Web Encryption [RFC7516]
specification. If the result is a signed request object, signature validation MUST be performed as defined in Section
5.2 as well.

The Authorization Server MUST return an error if decryption fails.

5.2. Signed Request Object

To perform Signature Validation, the alg Header Parameter in the JOSE Header MUST match the value of the pre-
registered algorithm. The signature MUST be validated against the appropriate key for that client_id and algorithm.

The Authorization Server MUST return an error if signature validation fails.

5.3. Request Parameter Assembly and Validation

The Authorization Server MUST assemble the set of Authorization Request parameters to be used from the Request
Object value and the OAuth 2.0 Authorization Request parameters (minus the request or request_uri parameters). If
the same parameter exists both in the Request Object and the OAuth Authorization Request parameters, the
parameter in the Request Object is used. Using the assembled set of Authorization Request parameters, the
Authorization Server then validates the request as specified in OAuth 2.0 [RFC6749].

6. Authorization Server Response
Authorization Server Response is created and sent to the client as in Section 4 of OAuth 2.0 [RFC6749] .
In addition, this document uses these additional error values:

invalid_request_uri
The request_uri in the Authorization Request returns an error or contains invalid data.

invalid_request_object
The request parameter contains an invalid Request Object.

request_not_supported
The Authorization Server does not support the use of the request parameter.

request_uri_not_supported
The Authorization Server does not support use of the request_uri parameter.

7.1ANA Considerations

This specification requests no actions by IANA.

8. Security Considerations

In addition to the all the security considerations discussed in OAuth 2.0 [RFC6819], the following security
considerations SHOULD be taken into account.

When sending the authorization request object through request parameter, it SHOULD be signed with then considered
appropriate algorithm using [RFC7515]. The alg=none SHOULD NOT be used in such a case.

If the request object contains personally identifiable or sensitive information, the "request_uri" MUST be of one-time
use and MUST have large enough entropy deemed necessary with applicable security policy. For higher security
requirement, using [RFC7516] is strongly recommended.

9. Acknowledgements

Follwoing people contributed to the creation of this document in OAuth WG. (Affiliations at the time of the contribution
is used.)

Sergey Beryozkin, Brian Campbell (Ping Identity), Michael B. Jones (Microsoft), Jim Manico, Axel Nenker(DT), (add
yourself).

Following people contributed to creating this document through the OpenlD Connect 1.0 [OpenID.Core].

Brian Campbell (Ping Identity), George Fletcher (AOL), Ryo Itou (Yahoo! Japan), Edmund Jay (lllumila), Michael B.
Jones (Microsoft), Breno de Medeiros (Google), Hideki Nara (TACT), Justin Richer (MITRE), (add yourself).

In addition following people contributed to this and previous versions through The OAuth Working Group.

Dirk Balfanz (Google), James H. Manger (Telstra), John Panzer (Google), David Recordon (Facebook), Marius
Scurtescu (Google), Luke Shepard (Facebook), (add yourself).

10. Revision History
-07

Changed the abbrev to OAuth JAR from oauth-jar.

Clarified sig and enc methods.

Better English.

Removed claims from one of the example.

Re-worded the URI construction.

Changed the example to use request instead of request_uri.

® (Clarified that Request Object parameters takes precedence regardless of request or request_uri parameters
were used.

Generalized the language in 4.2.1 to convey the intent more clearly.

Changed "Server" to "Authorization Server" as a clarification.

Stopped talking about request_object_signing_alg.

IANA considerations now reflect the current status.

Added Brian Campbell to the contributers list. Made the lists alphabetic order based on the last names.

Clarified that the affiliation is at the time of the contribution.

Added "older versions of " to the reference to |IE uri length limitations.
Stopped talking about signed or unsigned JWS etc.

® 1.Introduction improved.

® Added explanation on the 512 chars URL restriction.
® Updated Acknowledgements.

® More alignment with OpenID Connect.

Fixed typos in examples. (request_url -> request_uri, cliend_id -> client_id)
® Aligned the error messages with the OAuth IANA registry.
® Added another rationale for having request object.

Fixed the non-normative description about the advantage of static signature.
® (Changed the requirement for the parameter values in the request itself and the request object from 'MUST
MATCH" to 'Req Obj takes precedence.

® Now that they are RFCs, replaced JWS, JWE, etc. with RFC numbers.

® Copy Edits.

11. References

11.1. Normative References

[FIPS180-2]

[RFC2119]

[RFC5246]

[RFC6749]
[RFC6819]

[RFC7159]

[RFC7515]

[RFC7516]

[RFC7518]
[RFC7519]

U.S. Department of Commerce and National Institute of Standards and Technology, "Secure Hash
Signature Standard", FIPS 180-2, August 2002.

Defines Secure Hash Algorithm 256 (SHA256)

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997.

Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI
10.17487/RFC5246, August 2008.

Hardt, D., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012.

Lodderstedt, T., McGloin, M. and P. Hunt, "OAuth 2.0 Threat Model and Security Considerations", RFC
6819, DOI 10.17487/RFC6819, January 2013.

Bray, T., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, DOI
10.17487/RFC7159, March 2014.

Jones, M., Bradley, J. and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, DOI
10.17487/RFC7515, May 2015.

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI 10.17487/RFC7516, May
2015.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI 10.17487/RFC7518, May 2015.

Jones, M., Bradley, J. and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519,
May 2015.

11.2. Informative References

[OpenID.Core] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B. and C. Mortimore, "OpenlD Connect Core 1.0",

February 2014.

Authors' Addresses

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc7159
http://tools.ietf.org/html/rfc7515
http://tools.ietf.org/html/rfc7516
http://tools.ietf.org/html/rfc7518
http://tools.ietf.org/html/rfc7519

Nat Sakimura (editor)

Nomura Research Institute

1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
Chiyoda-ku, Tokyo 100-0005

Japan

Phone: +81-3-5533-2111

EMail: n-sakimura@nri.co.jp

URI: http://nat.sakimura.org/

John Bradley

Ping Identity

Casilla 177, Sucursal Talagante
Talagante, RM

Chile

Phone: +44 20 8133 3718

EMail: ve7jtb@ve7jtb.com

URI: http://www.thread-safe.com/

mailto:n-sakimura@nri.co.jp
http://nat.sakimura.org/
mailto:ve7jtb@ve7jtb.com
http://www.thread-safe.com/

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	2. Terminology
	2.1. Request Object
	2.2. Request Object URI
	3. Request Object
	4. Authorization Request
	4.1. Passing a Request Object by Value
	4.2. Passing a Request Object by Reference
	4.2.1. URL Referencing the Request Object
	4.2.2. Request using the "request_uri" Request Parameter
	4.2.3. Authorization Server Fetches Request Object
	5. Validating JWT-Based Requests
	5.1. Encrypted Request Object
	5.2. Signed Request Object
	5.3. Request Parameter Assembly and Validation
	6. Authorization Server Response
	7. IANA Considerations
	8. Security Considerations
	9. Acknowledgements
	10. Revision History
	11. References
	11.1. Normative References
	11.2. Informative References
	Authors' Addresses

