IEN-T9 Tomas Lozano-Perez (TLPECCA)
Computer Corporation of America

575 Technology Square

Cambridge, Massachusetts 02139

January 1979

A Protocol Test Facility: Request for Comment
"Introduction"

This short paper is a request for comments on a new approach to testing
and debugging protocol implementations. Our goal is to design a tool to
make testing and debugging protocol implementations easier. The concept
is based on providing a central, network-wide facility to test protocol
implementations.

Users of this facility would have available to them a whole range of
programs to test particular protocol

implementations. For example, one program might engage in an NVP
vocoder negotiation; ancther might test the connection procedure of a
TCP implementation. Users could also write their own test programs,
either as variations of existing ones, or new cnes aimed at exercising
one partiecular aspect of their implementation. The tests would be run
at a central network site and the resulting communication trace as well
as any error conditions and diagnosties would be returned to the user or
be available for later study at the central site.

The tests would be specified in a high level language designed
specifically for this purpose. The test programs can simulate "correct”
and "ineorrect" protocol behavior on the part of the tester. The
high-level language not only simplifies the task of writing the tests
but also serve as an unambiguous definition of the tester's behavior and
of correct behavior in those ecircumstances.

An important aspect of our testing concept is that a network test
facility will provide a single network-wide performance standard for
protocol implementations. This contrasts to the current situation where
protocol testing is most often done by independent pairs of hosts. This
process tends to produce "dialects" of the protocol. Due to the
tendency of network "eliques" to develop, i.e. the group of hosts that
tested together mainly communicate with each other, incompatible
implementations are slow to be found. When they are found, further
implementation and testing is required. This standardization eycle can
take a long time to converge. We believe that a central protocol test
facility will speed the initial convergence while also being a powerful
tool for maintenance,

[page 1]



January 1979
IEN-THS A Protocol Test Facility

"Current Protocol Testing Methods"

In current practice, testing a network protocol consists of attempting
to use the fledgling protocol implementation to communicate with an
existing implementation of the protocol. During the early phases of
development this might be the other half (i.e. receive vs send) of the
sSame

implementation. During later development, testing amounts to attempting
normal communication with implementations on other hosts., Implementors
rely on this type of testing begcause it iz not economical for users to
develop their own testing program.

Thi=s kind of program testing is unsatisfactory for a variety of reasons,
having to do with the lack of control over the distant host's
implementation:

(1) The kind of tests that can be run is limited and depends on the
particular set of implementation decisions the other implementor made,
e.g. retransmission strategies, timeouts, ete.

(2) Test scenarios are limited to those involving correct protocol
operation on the part of the distant host (or to the particular form of
incorrect behavior to which the foreign host considers correct). The
tester cannct force the other host to selectively vioclate the protocol
or Lo crash on cue.

{(3) During the early phases of development, it might be difficult to
find a host (and a person) willing to cooperate in the testing.

(4) In general, it is difficult to limit tests to specific portions of
the protoecol, e.g. initial connection or reset procedures.

After running the tests, the analysis is still a difficult task; one
problem is that it is hard to tell what went wrong during a particular
test. The are several reasons for this:

(1) One usually does not know exactly what messages were received by the
foreign host,

(2) Since the implementation is not completely specified by the protocol
constraints, one cannot tell what the other program did.

I
(3) Most protocol error messages are useless as a diagnostie sinee they

are defined for all possible implementations and thus tend to be very
general .

[page 2]



January 1979
IEN-TQ A Protocol Test Facility

These problems are clearly the result of carrying out tests in a
situation not intended for testing; normal protocol implementations are
not test programs. All of these factors conspire to make protocol
testing and debugging extremely painful. The process is further
complicated by the faet that, currently, protocols are specified in a
natural language and are subject to all of its ambiguities, Many (if
not most) failures during initial testing of a protocol implementation
are due to conflieting interpretations of the protocol specification.
The result is that most implementations are inadequately tested when
they first become "operationalh,

"The Network Test Facility"

The previous section brought up four kinds of deficiencies of current
protocol testing technigques:

(1) Lack of a unique testing "reference":
{(2) Lack of control by the tester;
(3) Unpredictable behavior on the part of the foreign host;

(4) Problems with unpredictable network behavior, e.g. lost or garbled
me3sages.

Most of these problems can be significantly reduced by means of a
network facility designed with protoeol testing in mind. The key idea
is to provide a large =set of test programs written in a speecially
designed high level language. The user can then specify parameters to
these tests and so cover a nearly complete range of test scenarios. The
uzer can also write tests 4if he so desires; although, this is not
envisioned as the usual mode of use. The tests would amount to a
functional specification of the protocol. They would be written early
on, as the protocol was being specified.

Test specifications would be executed at one or more network =ites
causing a controlled and repeatable interaction with the implementation
under test. This facility could also record the interactions and
provide diagnostic messages on the reasons for failure. The use of such
a facility does not remove +the problems associated with unpredictable
network behavior, but it reduces the interaction of such effect with
other uncertainties.

Two basic questions must be discussed about such a facility:

(1) How are the tests specified;

[page 3]



January 1979
IEN-T9 A Protocol Test Facility

(2) How are the tests used.

These gquestions will be addressed in the next sections.
nSpecifying Protocol Tests"

What precisely is a protocol test?

A protocol test is a predictable sequence of messages between two (or
more) processes, which follows the syntactie conventions of the
protoceol. The important thing is to be able to tell whether the
behavior of one of the processes satisfies the protocol definition, If
not, the source of the violation should be pinpointed.

Specifying a test for a protocol implementation, is akin to specifying a
protocol. It is not as simple as providing a list of messages %to be
gent, since correct protocol behavior normally reguires reacting to
messages received. For this reason, tests must be specified as
programs,

Protocol apecifications involve a ayntactic and a semantic component.
The syntax of the protocol speecifies what constitutes a legal message,
i.e. bit patterns, checksums, ete. There are two components to the
semanties: (1) effects on the communication state, i.e. receiving or
sending a message affects what other messages are legal; and (2)
side-effects, e.gz. <Lhe delivery of data, playback of voice, ete.
Protocol tests must satisfy the syntactice conventions of the protoecol
and be able to detect violations +to it. Similarly, the test must be
able to implement the restrictions on communication state specified by
the protocol, e.g. connection establishment or flow control. In
addition, viclations to these specifications must be detected. It is
sometimes desirable +to test the behavior of +the implementation to
incorrect input so a test should be able to produce incorrect behavior
sequences, It is very hard for the tester to determine whether a
communication is having the desired side-effects at the foreign host.
This checking must be done by the user based on the test specification.

Test specifications, 1like the protocol specifications they resemble,
focus on the changes in communication =state. The ayntax is assumed to
apply to all transmissions, i.e. 13 treated as a 3END and RECEIVE
subroutine and the side-effects are not described explicitely. This
type of apecification works better for host=host protoecocls than for
high=level protocols where the "side-effect semantics"™ are more
difficult.

[page 4]



January 1979
IEN-T9 A Protocol Test Facility

"PROTEST: A PROtocol TESTing language"

The test specification technique we are proposing is modelled on
Augmented Transition Networks (ATN), a grammar specification technique
described in [Woods] for application %o parsing natural language
sentences. It is a state based technique, like many proposed protocol
specificatin techniques. The ATH extends the finite state machine
formalism to general programming language power by means of the
following augmentations:

(1) General tests on the ares (not just equality test on input).

(2) General actions on the ares, e.g. setting variables, calling
subroutines, output functions, ete,

(3) PUSH/POP actions which provide the ability to use an ATN as a
(recursive) subroutine. This mechanism is very important since it
allows hierarchical definition of the state diagram as well as capturing
similarities between state sequences,

Let us consider an ATN model of a very simple data transmission protocol
(originally defined in [Stenning] as a PASCAL program). The protocol
has two components, a transmitter and a receiver, both are shown below
in table format. Each one e¢an be used to test the correct
impl ementation of the other.

TRANSMITTER
STATE TEST NEXT ACTION
A - B LU := ISN + 1
! HS := ISN
B! H3-LU < TW-1 B HS := HS+1
! & SEND MSG(HS)
! EXIST MSG(HS+1)
et e e e e T m —mm m e e
! TIMEOUT(I) B SEND MSG(I)
I ------ bk kL N 4 i - -
! RCV ACK(I) C
I--‘-‘ﬂu —————— S T T T T T T S S - - R - — —
! LU > HS T - POP

o T - T ——

[page 5]



January 1979

IEN-T9 A Protoecol Test Faeility
cC1 HS »= I »= LU B LU 2= I+
L e e e
! I <LU B IGHORE ACK(I)
RECEIVER
STATE TEST NEXT ACTION
DI - E RECEIVED(®) := 0
! HR := ISM
E ! RCV MSG(I) F RECEIVED{I) := RECEIVED{I)+1
F | RECEIVED(NR) »>= 1 E HR := NR + 1

! SEND ACK(NR-1)

! - E SEND ACK(NR-1)

i o

The operation of the protocol depends on the following variables:

ISN - The initial sequence number, presumably determined during the
connection extablishment phase.

LU = is the Lowest Unacknowledged sequence number of any of the
messages sent.

HS - is the Highest Sequence number sent.

TW - is the Transmit Window size, i.e. the number of unacknowledged
messages allowed.

Each ACK(i) acknowledges receipt of all messages with seguence number
less than or equal to i. The protocel simply sends a message whenever
the number of unacknowledged messages (HS - LU) is 1less than the
transmit window size. Whenever a message is sent, HS is incremented and
whenever an ACK is received, LU is set to 1 plus the ACEnowledged
sequence number. When all messages are acknowledged and no more

[page 6]



January 1979
IEN-TY A Protocol Test Faecility

messages remain to be sent, a POP action is executed which returns to
the ecaller.

The receiver keeps an (possibly infinite) array indicating which
messages have been received. NR indicates the next sequence number
expected in the receiver, i.e. the lowest unacknowledged sequence
number. When a message with sequence number i is received, it is marked

as such in the RECEIVED array. NR is then incremented as long as
RECEIVED(NR) is > 0. After this cyecle HNR is again the lowest
unacknowledged sequence number, so ACK(NR-1) is sent.

Notice that these two ATN's only specify the eyeling of the
communication state. All the syntactic constraints are embodied in the
SEND and RECEIVE procedures. It is these procedures which actually
build network messages, carry out the checksum computation, ete.

The two networks above ocan be used to test implementations of the
protocol. They in turn can be used as part of other networks, e.g. a
test sequence that involves alternating the transmitter and receiver
role. A slight wvariation of the receiver ATN alsoc allows testing the
retransmission mechanism of the transmitter. The receiver currently
tests if RECEIVED(NR) »>= 1 before acknowledgeing any new messages. We
can change the 1 to REPEAT, some arbitrary number. This forces the
transmitter to SEND each message at least REPEAT times (maybe more,
since messages may be lost in transit). This illustrates the econtrol
possible with this kind of testing, which is lacking when another
implementation is used for testing.

"Using PROTEST to test protocol implementations"

The PROTEST system would run on a small stand alone machine, and be
avallable around the eloek. Sessions would be arranged by a
supervisor/logger process, whose job is scheduling times and resources
and supervising the data base of specification files. We expect that
normal use of the facility will involve executing a pre-existing test,
but the user can also specify a test by 8imply shipping a file with the
definition of an ATN to the monitor process. Tests can be combined or
iterated by specifying simple ATN's that use other tests as subroutines
(via PUSH actions).

The key component of the PROTEST system is an interpreter. This program
executes tests written in the PROTEST language. The program iz driven by
input from a message I/0 module. This module implements the SEND and
RECEIVE actions. It takes messages from the IMP interface and arranges
them into a structure specified by a DATA FORMAT component of the test
specification. This allows symbolic access to the messages, The

[page 7]



January 1979
IEN-T9 A Protoecol Test Facility

interpreter produces messages which are converted by the I/0 routine
into legal network messages (by adding the header, ete.). Running a
test generates a trace file of all the messages recieved and sent during
a teat session and the assoeciated state of the ATN being run. Any error
and diagnostic information produced by the system is included in a
separate file, The error messages indicate the atate where failure
peeurs; this defines the range of correct responses in the aituation.

"Conclusions"

We believe the kind of facility we describe here to be highly desirable
in an environment where many different implementations of a protocol are
being developed and maintained. It should help guarantee certain
minimum standards of compatibility among the implementations without
restricting the implementation details. The test sequences can also
serve as a functional definition of correct protocol behavior.

[page 8]



