IEN-T3 N. Abramovitz
M. Padlipsky
K. Biba

23 January 1979

A TCP Implementation Issue
INTRODUCTION

The fragmentation approach taken in the Internet Protocol specification
of September T8 has certain consequences which appear to dictate design
strategies that lead to undesirable implementations. Some of the areas
involved are data buffering, forecing a more centralized (as opposed to
distributed) network subsystem design, and extra data manipulation.
Other consequences exist for "secure' hosts, which will be discussed
later. This paper describes the problems in some detail, and proposes
both a general solution and several mechanizations of that solution.

CONTEXT

To put the problem in context an overview of our (KS03) network
subsystem goals and proposed design would be useful. The first goal
related to this paper is to build a 'unilevel' network which ean
eventually be upgraded toc a multilevel secure network system without
significant redesign. This entails studying proposed multilevel
networks to ensure the original KSO0S network subsystem doesn't preclude
them. The second geoal iz to allow other high level protoecols to use the
loeal network. An example of this could be an ARPANET Host to Host
Protocol interpreter and a Transmiasion Control Protocol interpreter
communicating through a single IMP. A third geoal is to minimize the
number of data copy operations. For machines (like the PDP=11/70) with
limited virtual addressing, this forces certain design constraints. The
last important goal is to minimize the 'denial of service' threats such
as a malicious user monopolizing all the network buffer space.

From the design goals above, and others not germane here, we decided to
choose 3 basieally distributed design over a more centralized one. In
our view Lhe key difference between distributed and centralized is that
there are many logical copies of the protoecol handlers instead of just
one. Therefore, a distributed implementation would prefer to
demultiplex data sooner than a centralized one. The KS0S network
subsystem has the Transmission Control Protocol and Internet Protocol
handlers on a per user process basis. The distributed protoeccl handlers
communicate with a single process controlling access to the nebtwork
hardware device. (This single process, the Daemcn, could alsoc be

[page 1]

23 January 1979

A TCP Implementation Issue IEN=T3

distributed, but synchronization on the network device would be
necessary and we would rather avoid that.) Buffer space is allocated in
each distributed handler to eliminate denial of service to all network
users on a host by common buffer space exhaustion by a single user.
Also i/o can now be done directly into user buffers thereby decreasing
data copy operations. The following diagrams show the KS0S5 distributed
design and also a centralized design for comparison.

| USER | i USER |
(USER PROCESS) (USER PROCESS3) { PROCESS | . « | PROCESS |
I []] [}
P i O e] | ottt o)]
e —— H — | L *
S o o O o 4 o
| i i H # ¥
]] | |] i
| Bt 1 - - e ey e i I T o e e]
| INTER=] INTER-| ! !
| NET | | HET | | TCP i
I] 1 1 i [
]] I [1]
j=m——— i | m———— H Ep——|
]] g |
| INTER- |
* S HET: o <
L * {mme—m——— |
[P —— ! i DAEMON |
! DAEMON | i |
I] [] [
[} i 1 1
= H |mmemmame 1
CURRENT K303 DESIGN CENTRALIZED DESIGH

DIGRESSION ON SECURITY

Note that it is an impeortant pragmatie goal of our design to minimize
the amount of code in the Daemon. This is soc because the Daemon is
currently the only network subsystem component responsible for security
and thus the only network subsystem component we intend to subject to

verifiecation.

The secure systems theoretie point here is that if the

multiplexing/demultiplexing of data to/from a network is performed
securely, we can be spared the agony and expense of verifying all the
network code and still be in a position where security compromises will
not be a problem - even if the unverified protocol interpreters 'in' the
participating process can foul up the individual process, that is, they
can't 1) bring down the whole network attachment or 2) cause data to be

compromised.

Admittedly it would be special pleading to ask for a

protocol change just to make our Daemon smaller, but as we will show

[page 2]

23 January 1979
IEN-T3 A TCP Implementation Issue

there are practical problems for non-secure systems as well when it
comes to the sort of demultiplexXing implied by the current Internet
Protocol fragmentation approach.

ANALYSIS

This whole discussion is based upon our current understanding of
fragments, A fragment consists of an Internet header and some amcunt of
data. This data must pe in multiples of & octets for t .e first n-1
fragments. TCP headers then may span fragments and many fragments may
not have a TCP header at all. 5Since a connection is uniquely defined by
a tuple of sending/receiving network number, host number, and port
number and port numbers are contained in the TCP header, most fragments
Wwill arrive without an adequate identifying characteristic for the
Daemon (or whatever the demultiplexer is on some other system) to decide
which user buffer area should receive the fragment. The current
Internet Identification field is assigned by the sending side, so it is
priori inappropriate for demultiplexing at the receiving side. Even if
it were gotten from the receiver side via some sort of initial
connection protocol, the Daemon could not demultiplex on it anyway,
because it doesn't know when this field will stop being used without
going through Internet Protocol handling; that is, the Identification
field only helps in fragment reassembly, by its very nature. So, if
matters remain as they are today, the Internet Protoecol forces itself
into the Daemon.

What are the implications of placing the Internet Protocol inside the
Daemon? From a practical point of view, we can think of two problem
areas: code space and data buffering. (We will also address some
security problems.)

On many systems the functions of the Daemon occur down in the guts of
the operating system. On systems without wvirtual memory or systems
tight on "monitor' space, it may be difficult toc add more code to the
system. With the distinet possibility of greater functionality being
given to the Internet Protocol via various options, this code space
limitation may become a real problem. A3 a sidelight, testing new
versions of the Internet Protoecl interpreter ecould be quite messy.

The major practlcal consideration is the buffering strategy to be used
for the Internet Protoecol handler. As stated previously, fragments can
not be given to the distributed handlers until all the fragments for a
segment arrive. This fragmentation approach mandates the use of a
centralized buffering strategy for collecting fragments for all network
users. For machines with limited addressing range (the PDP-11/70 and
its contemporaries), the amount of centralized buffer space dictates the
number of network users able to use the network.

[page 3]

23 January 1979
A TCP Implementation Issue IEN-T3

Limitations with the number of users is not the only problem, however:
let's examine the buffer space partitioning implications of the
implieitly dictated centralized strategy: the buffer space could be
addressable by all network users and the Daemon by using shared memory,
or the buffer space could be located internal to the Daemon. For the
case that the buffer space is shared between all users, the Daemon must
be informed by the user that a buffer is ready to be reused. An obvious
consequence could occur: a malicicus user could exhaust the buffer
resource. This problem could be combated by limiting the number of
buffers a network user may use, but this approach has the disadvantage
of decreasing effective throughput. The other case of only letting the
Daemon have access to the buffer area has all the problems of sharing
the area, plus the additional one of data must be copied to the network
user space. Another factor to slow down effective throuzhput.

From a security view point we make these eclaims: First, as stated
previously, the more code we need to inelude inside the security
perimeter the harder it will be to verify the correctness of the Daemon.
Second, we suspect the Internet Protocol specification should alse be
verified before secure systems could use it. Third, we feel we can not
ignore the security problems caused by centralized buffering: we can nob
have global shared memory between the Daemon and all network users;

this would be a viclation of the security model because users can be at
different levels. Further, denial of service by buffer exhaustion is
unacceptable in our view of a secure system.

GENERAL SOLUTION

In light of the above observations, we feel that the current
fragmentation approach is impractical for more operating system and
machine architecture=z than just our own. It is of course, particularly
distasteful to us. We feel the general solution is to have the Internet
header contain a field which allows demultiplexing to take place on each
fragment. Exactly what the field should contain involves both matbers
of taste and sundry more or leas subtle tradeoffs, which we will address
next. The first major point We wish to make is that the ability to
demultiplex fragments directly in order not to preclude a distributed
implementation (or implieitly legislate a centralized implementation) is
necessary in principle.

MECHANIZATIONS

One way to mechanize the general solution is by MOVING the port number

fields in the TCP header into the Internet header. Because port numbers
are uniquely asscciated with processes, this would allow for the desired
demultiplexing. Unfortunately this approach not only increases the size
of the Internet header, but it alsoc impliecitly changes the scope of the

[page 4]

23 January 1979
IEN=T3 A TCP Implementation Issue

Internet Protocol from an Internetworking-oriented datagram service to
having at least some aspect of a process to process protocol. This
approach may well also violate the principle of protocol layering, which
we are reluctant to do. That is, TCP really ought to be usable without
Internet for strictly local nets and, for that matter, for nets which
opt for some reason to do internetting via 'smart' gateways. Further it
would require modifications of both Internet and TCP and changes to
current software as to where connection validation would be performed as
well as minor data structure modifications.

A more desirable mechanization is to REPLICATE just the destination port
in the Internet header. Tnis again increases the size of the Internet
fragment, but at least USE of this field would be at the implementer's
discretion, and of course, the inecrease is smaller. The impact on
existing software should be less than the previous method. Indeed,
existing Internet Protocol handlers wouldn't need to change their logic
flow. Also it appears that layering would be preserved, because it's
not really 'the' port number in the field, it's just a convenient
connection unique number on which to demultiplex.

Two other mechanizations occur to us, both of which seem to be
sufficiently undesirable in principle that we note them only to prove
that we have not overlooked them: In the first place, we could establish
some sort of convention which uses the 1822 Specification
link/message-id to demultiplex on. In the second place, we could invent
some entirely new number which would be assigned by the receiving host
as it likes, to live in the Internet header. The btrouble with both of
these schemes is that they would entail noticeable expansion to existing
protocols, and for this reason we do not favor either. (If forced to
choose, the '"new' number would clearly be preferable because it is not
communication subnet specific, but we do not really feel we need bto do
what amounts to the invention of an initial connection protocol on the
fly just to solve the demultiplexing problem.)

RECOMMENDATION

We feel there is a need to be able to demultiplex on fragments, for
pragmatic and for security related reasons. We do not contend bthat we
have covered all possible solutions to this problem, nor all possible
mechanizations of our own solution. We lean towards the second
mechanization on the principle that it leaves the
multiplexing/demultiplexing issue up to the TCP implementers. We
request comments concerning to the points raised in this paper.

Assuming the comments don't point out something fundamental we have
inadvertently overlooked, Wwe recommend that the Internet Protocol header
for each fragment be expanded to ineclude a field which contains a

[page 5]

23 January 1979
A TCP Implementation Issue IEN=-T3

replication of the TCP destination port field of the TCP header for the
associated segment.

[paze 6]

